Remove empty DragonFly CVS IDs.
[dragonfly.git] / sys / dev / netif / ath / hal / ath_hal / ar5212 / ar5212_keycache.c
bloba1f2dbbf9730914d2d84a5c17a226e4198528822
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5212_keycache.c,v 1.4 2008/11/10 04:08:03 sam Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_internal.h"
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212desc.h"
29 * Note: The key cache hardware requires that each double-word
30 * pair be written in even/odd order (since the destination is
31 * a 64-bit register). Don't reorder the writes in this code
32 * w/o considering this!
34 #define KEY_XOR 0xaa
36 #define IS_MIC_ENABLED(ah) \
37 (AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
40 * Return the size of the hardware key cache.
42 uint32_t
43 ar5212GetKeyCacheSize(struct ath_hal *ah)
45 return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
49 * Return true if the specific key cache entry is valid.
51 HAL_BOOL
52 ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
54 if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
55 uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
56 if (val & AR_KEYTABLE_VALID)
57 return AH_TRUE;
59 return AH_FALSE;
63 * Clear the specified key cache entry and any associated MIC entry.
65 HAL_BOOL
66 ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
68 uint32_t keyType;
70 if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
71 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
72 __func__, entry);
73 return AH_FALSE;
75 keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
77 /* XXX why not clear key type/valid bit first? */
78 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
79 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
80 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
81 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
82 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
83 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
84 OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
85 OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
86 if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
87 uint16_t micentry = entry+64; /* MIC goes at slot+64 */
89 HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
90 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
91 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
92 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
93 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
94 /* NB: key type and MAC are known to be ok */
96 return AH_TRUE;
100 * Sets the mac part of the specified key cache entry (and any
101 * associated MIC entry) and mark them valid.
103 HAL_BOOL
104 ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
106 uint32_t macHi, macLo;
108 if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
109 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
110 __func__, entry);
111 return AH_FALSE;
114 * Set MAC address -- shifted right by 1. MacLo is
115 * the 4 MSBs, and MacHi is the 2 LSBs.
117 if (mac != AH_NULL) {
118 macHi = (mac[5] << 8) | mac[4];
119 macLo = (mac[3] << 24)| (mac[2] << 16)
120 | (mac[1] << 8) | mac[0];
121 macLo >>= 1;
122 macLo |= (macHi & 1) << 31; /* carry */
123 macHi >>= 1;
124 } else {
125 macLo = macHi = 0;
127 OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
128 OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
129 return AH_TRUE;
133 * Sets the contents of the specified key cache entry
134 * and any associated MIC entry.
136 HAL_BOOL
137 ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
138 const HAL_KEYVAL *k, const uint8_t *mac,
139 int xorKey)
141 struct ath_hal_5212 *ahp = AH5212(ah);
142 const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
143 uint32_t key0, key1, key2, key3, key4;
144 uint32_t keyType;
145 uint32_t xorMask = xorKey ?
146 (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
148 if (entry >= pCap->halKeyCacheSize) {
149 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
150 __func__, entry);
151 return AH_FALSE;
153 switch (k->kv_type) {
154 case HAL_CIPHER_AES_OCB:
155 keyType = AR_KEYTABLE_TYPE_AES;
156 break;
157 case HAL_CIPHER_AES_CCM:
158 if (!pCap->halCipherAesCcmSupport) {
159 HALDEBUG(ah, HAL_DEBUG_ANY,
160 "%s: AES-CCM not supported by mac rev 0x%x\n",
161 __func__, AH_PRIVATE(ah)->ah_macRev);
162 return AH_FALSE;
164 keyType = AR_KEYTABLE_TYPE_CCM;
165 break;
166 case HAL_CIPHER_TKIP:
167 keyType = AR_KEYTABLE_TYPE_TKIP;
168 if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
169 HALDEBUG(ah, HAL_DEBUG_ANY,
170 "%s: entry %u inappropriate for TKIP\n",
171 __func__, entry);
172 return AH_FALSE;
174 break;
175 case HAL_CIPHER_WEP:
176 if (k->kv_len < 40 / NBBY) {
177 HALDEBUG(ah, HAL_DEBUG_ANY,
178 "%s: WEP key length %u too small\n",
179 __func__, k->kv_len);
180 return AH_FALSE;
182 if (k->kv_len <= 40 / NBBY)
183 keyType = AR_KEYTABLE_TYPE_40;
184 else if (k->kv_len <= 104 / NBBY)
185 keyType = AR_KEYTABLE_TYPE_104;
186 else
187 keyType = AR_KEYTABLE_TYPE_128;
188 break;
189 case HAL_CIPHER_CLR:
190 keyType = AR_KEYTABLE_TYPE_CLR;
191 break;
192 default:
193 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
194 __func__, k->kv_type);
195 return AH_FALSE;
198 key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
199 key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
200 key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
201 key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
202 key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
203 if (k->kv_len <= 104 / NBBY)
204 key4 &= 0xff;
207 * Note: key cache hardware requires that each double-word
208 * pair be written in even/odd order (since the destination is
209 * a 64-bit register). Don't reorder these writes w/o
210 * considering this!
212 if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
213 uint16_t micentry = entry+64; /* MIC goes at slot+64 */
214 uint32_t mic0, mic1, mic2, mic3, mic4;
217 * Invalidate the encrypt/decrypt key until the MIC
218 * key is installed so pending rx frames will fail
219 * with decrypt errors rather than a MIC error.
221 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
222 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
223 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
224 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
225 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
226 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
227 (void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
231 * Write MIC entry according to new or old key layout.
232 * The MISC_MODE register is assumed already set so
233 * these writes will be handled properly (happens on
234 * attach and at every reset).
236 /* RX mic */
237 mic0 = LE_READ_4(k->kv_mic+0);
238 mic2 = LE_READ_4(k->kv_mic+4);
239 if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
241 * Both RX and TX mic values can be combined into
242 * one cache slot entry:
243 * 8*N + 800 31:0 RX Michael key 0
244 * 8*N + 804 15:0 TX Michael key 0 [31:16]
245 * 8*N + 808 31:0 RX Michael key 1
246 * 8*N + 80C 15:0 TX Michael key 0 [15:0]
247 * 8*N + 810 31:0 TX Michael key 1
248 * 8*N + 814 15:0 reserved
249 * 8*N + 818 31:0 reserved
250 * 8*N + 81C 14:0 reserved
251 * 15 key valid == 0
253 /* TX mic */
254 mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
255 mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
256 mic4 = LE_READ_4(k->kv_txmic+4);
257 } else {
258 mic1 = mic3 = mic4 = 0;
260 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
261 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
262 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
263 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
264 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
265 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
266 AR_KEYTABLE_TYPE_CLR);
267 /* NB: MIC key is not marked valid and has no MAC address */
268 OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
269 OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
271 /* correct intentionally corrupted key */
272 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
273 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
274 } else {
275 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
276 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
277 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
278 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
279 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
280 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
282 (void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
284 return AH_TRUE;