Remove empty DragonFly CVS IDs.
[dragonfly.git] / sys / dev / netif / ath / hal / ath_hal / ar5211 / ar5211_reset.c
blobafc6337f93fc5b7c8c1e169b65d9ea7f9801b6a3
1 /*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c 201758 2010-01-07 21:01:37Z mbr $
19 #include "opt_ah.h"
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
25 #include "ah.h"
26 #include "ah_internal.h"
27 #include "ah_devid.h"
29 #include "ar5211/ar5211.h"
30 #include "ar5211/ar5211reg.h"
31 #include "ar5211/ar5211phy.h"
33 #include "ah_eeprom_v3.h"
35 /* Add static register initialization vectors */
36 #include "ar5211/boss.ini"
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
42 typedef struct {
43 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
44 uint32_t channelSelect; /* P[7:4]S[3:0] bits */
45 uint16_t channel5111; /* 11a channel for 5111 */
46 } CHAN_INFO_2GHZ;
48 #define CI_2GHZ_INDEX_CORRECTION 19
49 static const CHAN_INFO_2GHZ chan2GHzData[] = {
50 { 1, 0x46, 96 }, /* 2312 -19 */
51 { 1, 0x46, 97 }, /* 2317 -18 */
52 { 1, 0x46, 98 }, /* 2322 -17 */
53 { 1, 0x46, 99 }, /* 2327 -16 */
54 { 1, 0x46, 100 }, /* 2332 -15 */
55 { 1, 0x46, 101 }, /* 2337 -14 */
56 { 1, 0x46, 102 }, /* 2342 -13 */
57 { 1, 0x46, 103 }, /* 2347 -12 */
58 { 1, 0x46, 104 }, /* 2352 -11 */
59 { 1, 0x46, 105 }, /* 2357 -10 */
60 { 1, 0x46, 106 }, /* 2362 -9 */
61 { 1, 0x46, 107 }, /* 2367 -8 */
62 { 1, 0x46, 108 }, /* 2372 -7 */
63 /* index -6 to 0 are pad to make this a nolookup table */
64 { 1, 0x46, 116 }, /* -6 */
65 { 1, 0x46, 116 }, /* -5 */
66 { 1, 0x46, 116 }, /* -4 */
67 { 1, 0x46, 116 }, /* -3 */
68 { 1, 0x46, 116 }, /* -2 */
69 { 1, 0x46, 116 }, /* -1 */
70 { 1, 0x46, 116 }, /* 0 */
71 { 1, 0x46, 116 }, /* 2412 1 */
72 { 1, 0x46, 117 }, /* 2417 2 */
73 { 1, 0x46, 118 }, /* 2422 3 */
74 { 1, 0x46, 119 }, /* 2427 4 */
75 { 1, 0x46, 120 }, /* 2432 5 */
76 { 1, 0x46, 121 }, /* 2437 6 */
77 { 1, 0x46, 122 }, /* 2442 7 */
78 { 1, 0x46, 123 }, /* 2447 8 */
79 { 1, 0x46, 124 }, /* 2452 9 */
80 { 1, 0x46, 125 }, /* 2457 10 */
81 { 1, 0x46, 126 }, /* 2462 11 */
82 { 1, 0x46, 127 }, /* 2467 12 */
83 { 1, 0x46, 128 }, /* 2472 13 */
84 { 1, 0x44, 124 }, /* 2484 14 */
85 { 1, 0x46, 136 }, /* 2512 15 */
86 { 1, 0x46, 140 }, /* 2532 16 */
87 { 1, 0x46, 144 }, /* 2552 17 */
88 { 1, 0x46, 148 }, /* 2572 18 */
89 { 1, 0x46, 152 }, /* 2592 19 */
90 { 1, 0x46, 156 }, /* 2612 20 */
91 { 1, 0x46, 160 }, /* 2632 21 */
92 { 1, 0x46, 164 }, /* 2652 22 */
93 { 1, 0x46, 168 }, /* 2672 23 */
94 { 1, 0x46, 172 }, /* 2692 24 */
95 { 1, 0x46, 176 }, /* 2712 25 */
96 { 1, 0x46, 180 } /* 2732 26 */
99 /* Power timeouts in usec to wait for chip to wake-up. */
100 #define POWER_UP_TIME 2000
102 #define DELAY_PLL_SETTLE 300 /* 300 us */
103 #define DELAY_BASE_ACTIVATE 100 /* 100 us */
105 #define NUM_RATES 8
107 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108 static HAL_BOOL ar5211SetChannel(struct ath_hal *,
109 const struct ieee80211_channel *);
110 static int16_t ar5211RunNoiseFloor(struct ath_hal *,
111 uint8_t runTime, int16_t startingNF);
112 static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
113 struct ieee80211_channel *chan);
114 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
115 const struct ieee80211_channel *chan);
116 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
117 const struct ieee80211_channel *chan);
118 static void ar5211SetPowerTable(struct ath_hal *,
119 PCDACS_EEPROM *pSrcStruct, uint16_t channel);
120 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
121 const struct ieee80211_channel *);
122 static void ar5211SetRateTable(struct ath_hal *,
123 RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
124 uint16_t numChannels, const struct ieee80211_channel *chan);
125 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
126 const PCDACS_EEPROM *pSrcStruct);
127 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
128 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
129 static uint16_t ar5211GetInterpolatedValue(uint16_t target,
130 uint16_t srcLeft, uint16_t srcRight,
131 uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
132 static void ar5211GetLowerUpperValues(uint16_t value,
133 const uint16_t *pList, uint16_t listSize,
134 uint16_t *pLowerValue, uint16_t *pUpperValue);
135 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
136 uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
137 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
139 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
140 static void ar5211RequestRfgain(struct ath_hal *);
141 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
142 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
143 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
144 static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
147 * Places the device in and out of reset and then places sane
148 * values in the registers based on EEPROM config, initialization
149 * vectors (as determined by the mode), and station configuration
151 * bChannelChange is used to preserve DMA/PCU registers across
152 * a HW Reset during channel change.
154 HAL_BOOL
155 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
156 struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
157 HAL_STATUS *status)
159 uint32_t softLedCfg, softLedState;
160 #define N(a) (sizeof (a) /sizeof (a[0]))
161 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
162 struct ath_hal_5211 *ahp = AH5211(ah);
163 HAL_CHANNEL_INTERNAL *ichan;
164 uint32_t i, ledstate;
165 HAL_STATUS ecode;
166 int q;
168 uint32_t data, synthDelay;
169 uint32_t macStaId1;
170 uint16_t modesIndex = 0, freqIndex = 0;
171 uint32_t saveFrameSeqCount[AR_NUM_DCU];
172 uint32_t saveTsfLow = 0, saveTsfHigh = 0;
173 uint32_t saveDefAntenna;
175 HALDEBUG(ah, HAL_DEBUG_RESET,
176 "%s: opmode %u channel %u/0x%x %s channel\n",
177 __func__, opmode, chan->ic_freq, chan->ic_flags,
178 bChannelChange ? "change" : "same");
180 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
182 * Map public channel to private.
184 ichan = ath_hal_checkchannel(ah, chan);
185 if (ichan == AH_NULL)
186 FAIL(HAL_EINVAL);
187 switch (opmode) {
188 case HAL_M_STA:
189 case HAL_M_IBSS:
190 case HAL_M_HOSTAP:
191 case HAL_M_MONITOR:
192 break;
193 default:
194 HALDEBUG(ah, HAL_DEBUG_ANY,
195 "%s: invalid operating mode %u\n", __func__, opmode);
196 FAIL(HAL_EINVAL);
197 break;
199 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
201 /* Preserve certain DMA hardware registers on a channel change */
202 if (bChannelChange) {
204 * Need to save/restore the TSF because of an issue
205 * that accelerates the TSF during a chip reset.
207 * We could use system timer routines to more
208 * accurately restore the TSF, but
209 * 1. Timer routines on certain platforms are
210 * not accurate enough (e.g. 1 ms resolution).
211 * 2. It would still not be accurate.
213 * The most important aspect of this workaround,
214 * is that, after reset, the TSF is behind
215 * other STAs TSFs. This will allow the STA to
216 * properly resynchronize its TSF in adhoc mode.
218 saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
219 saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
221 /* Read frame sequence count */
222 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
223 saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
224 } else {
225 for (i = 0; i < AR_NUM_DCU; i++)
226 saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
228 if (!IEEE80211_IS_CHAN_DFS(chan))
229 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
233 * Preserve the antenna on a channel change
235 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
236 if (saveDefAntenna == 0)
237 saveDefAntenna = 1;
239 /* Save hardware flag before chip reset clears the register */
240 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
242 /* Save led state from pci config register */
243 ledstate = OS_REG_READ(ah, AR_PCICFG) &
244 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
245 AR_PCICFG_LEDSLOW);
246 softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
247 softLedState = OS_REG_READ(ah, AR_GPIODO);
249 if (!ar5211ChipReset(ah, chan)) {
250 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
251 FAIL(HAL_EIO);
254 /* Setup the indices for the next set of register array writes */
255 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
256 freqIndex = 1;
257 if (IEEE80211_IS_CHAN_TURBO(chan))
258 modesIndex = 2;
259 else if (IEEE80211_IS_CHAN_A(chan))
260 modesIndex = 1;
261 else {
262 HALDEBUG(ah, HAL_DEBUG_ANY,
263 "%s: invalid channel %u/0x%x\n",
264 __func__, chan->ic_freq, chan->ic_flags);
265 FAIL(HAL_EINVAL);
267 } else {
268 freqIndex = 2;
269 if (IEEE80211_IS_CHAN_B(chan))
270 modesIndex = 3;
271 else if (IEEE80211_IS_CHAN_PUREG(chan))
272 modesIndex = 4;
273 else {
274 HALDEBUG(ah, HAL_DEBUG_ANY,
275 "%s: invalid channel %u/0x%x\n",
276 __func__, chan->ic_freq, chan->ic_flags);
277 FAIL(HAL_EINVAL);
281 /* Set correct Baseband to analog shift setting to access analog chips. */
282 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
283 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
284 } else {
285 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
288 /* Write parameters specific to AR5211 */
289 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
290 if (IEEE80211_IS_CHAN_2GHZ(chan) &&
291 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
292 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
293 uint32_t ob2GHz, db2GHz;
295 if (IEEE80211_IS_CHAN_CCK(chan)) {
296 ob2GHz = ee->ee_ob2GHz[0];
297 db2GHz = ee->ee_db2GHz[0];
298 } else {
299 ob2GHz = ee->ee_ob2GHz[1];
300 db2GHz = ee->ee_db2GHz[1];
302 ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
303 db2GHz = ath_hal_reverseBits(db2GHz, 3);
304 ar5211Mode2_4[25][freqIndex] =
305 (ar5211Mode2_4[25][freqIndex] & ~0xC0) |
306 ((ob2GHz << 6) & 0xC0);
307 ar5211Mode2_4[26][freqIndex] =
308 (ar5211Mode2_4[26][freqIndex] & ~0x0F) |
309 (((ob2GHz >> 2) & 0x1) |
310 ((db2GHz << 1) & 0x0E));
312 for (i = 0; i < N(ar5211Mode2_4); i++)
313 OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
314 ar5211Mode2_4[i][freqIndex]);
317 /* Write the analog registers 6 and 7 before other config */
318 ar5211SetRf6and7(ah, chan);
320 /* Write registers that vary across all modes */
321 for (i = 0; i < N(ar5211Modes); i++)
322 OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
324 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
325 for (i = 0; i < N(ar5211BB_RfGain); i++)
326 OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
328 /* Write Common Array Parameters */
329 for (i = 0; i < N(ar5211Common); i++) {
330 uint32_t reg = ar5211Common[i][0];
331 /* On channel change, don't reset the PCU registers */
332 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
333 OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
336 /* Fix pre-AR5211 register values, this includes AR5311s. */
337 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
339 * The TX and RX latency values have changed locations
340 * within the USEC register in AR5211. Since they're
341 * set via the .ini, for both AR5211 and AR5311, they
342 * are written properly here for AR5311.
344 data = OS_REG_READ(ah, AR_USEC);
345 /* Must be 0 for proper write in AR5311 */
346 HALASSERT((data & 0x00700000) == 0);
347 OS_REG_WRITE(ah, AR_USEC,
348 (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
349 ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
350 /* The following registers exist only on AR5311. */
351 OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
353 /* Set proper ADC & DAC delays for AR5311. */
354 OS_REG_WRITE(ah, 0x00009878, 0x00000008);
356 /* Enable the PCU FIFO corruption ECO on AR5311. */
357 OS_REG_WRITE(ah, AR_DIAG_SW,
358 OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
361 /* Restore certain DMA hardware registers on a channel change */
362 if (bChannelChange) {
363 /* Restore TSF */
364 OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
365 OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
367 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
368 OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
369 } else {
370 for (i = 0; i < AR_NUM_DCU; i++)
371 OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
375 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
376 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
377 | macStaId1
379 ar5211SetOperatingMode(ah, opmode);
381 /* Restore previous led state */
382 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
383 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
384 OS_REG_WRITE(ah, AR_GPIODO, softLedState);
386 /* Restore previous antenna */
387 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
389 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
390 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
392 /* Restore bmiss rssi & count thresholds */
393 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
395 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
398 * for pre-Production Oahu only.
399 * Disable clock gating in all DMA blocks. Helps when using
400 * 11B and AES but results in higher power consumption.
402 if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
403 AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
404 OS_REG_WRITE(ah, AR_CFG,
405 OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
408 /* Setup the transmit power values. */
409 if (!ar5211SetTransmitPower(ah, chan)) {
410 HALDEBUG(ah, HAL_DEBUG_ANY,
411 "%s: error init'ing transmit power\n", __func__);
412 FAIL(HAL_EIO);
416 * Configurable OFDM spoofing for 11n compatibility; used
417 * only when operating in station mode.
419 if (opmode != HAL_M_HOSTAP &&
420 (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
421 /* NB: override the .ini setting */
422 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
423 AR_PHY_FRAME_CTL_ERR_SERV,
424 MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
427 /* Setup board specific options for EEPROM version 3 */
428 ar5211SetBoardValues(ah, chan);
430 if (!ar5211SetChannel(ah, chan)) {
431 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
432 __func__);
433 FAIL(HAL_EIO);
436 /* Activate the PHY */
437 if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
438 IEEE80211_IS_CHAN_2GHZ(chan))
439 OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
440 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
443 * Wait for the frequency synth to settle (synth goes on
444 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
445 * Value is in 100ns increments.
447 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
448 if (IEEE80211_IS_CHAN_CCK(chan)) {
449 synthDelay = (4 * data) / 22;
450 } else {
451 synthDelay = data / 10;
454 * There is an issue if the AP starts the calibration before
455 * the baseband timeout completes. This could result in the
456 * rxclear false triggering. Add an extra delay to ensure this
457 * this does not happen.
459 OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
461 /* Calibrate the AGC and wait for completion. */
462 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
463 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
464 (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
466 /* Perform noise floor and set status */
467 if (!ar5211CalNoiseFloor(ah, chan)) {
468 if (!IEEE80211_IS_CHAN_CCK(chan))
469 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
470 HALDEBUG(ah, HAL_DEBUG_ANY,
471 "%s: noise floor calibration failed\n", __func__);
472 FAIL(HAL_EIO);
475 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
476 if (ahp->ah_calibrationTime != 0) {
477 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
478 AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
479 ahp->ah_bIQCalibration = AH_TRUE;
482 /* set 1:1 QCU to DCU mapping for all queues */
483 for (q = 0; q < AR_NUM_DCU; q++)
484 OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
486 for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
487 ar5211ResetTxQueue(ah, q);
489 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
490 OS_REG_WRITE(ah, AR_IMR_S0,
491 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
492 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
493 OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
494 OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
497 * GBL_EIFS must always be written after writing
498 * to any QCUMASK register.
500 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
502 /* Now set up the Interrupt Mask Register and save it for future use */
503 OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
504 ahp->ah_maskReg = INIT_INTERRUPT_MASK;
506 /* Enable bus error interrupts */
507 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
508 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
510 /* Enable interrupts specific to AP */
511 if (opmode == HAL_M_HOSTAP) {
512 OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
513 ahp->ah_maskReg |= AR_IMR_MIB;
516 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
517 ar5211EnableRfKill(ah);
520 * Writing to AR_BEACON will start timers. Hence it should
521 * be the last register to be written. Do not reset tsf, do
522 * not enable beacons at this point, but preserve other values
523 * like beaconInterval.
525 OS_REG_WRITE(ah, AR_BEACON,
526 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
528 /* Restore user-specified slot time and timeouts */
529 if (ahp->ah_sifstime != (u_int) -1)
530 ar5211SetSifsTime(ah, ahp->ah_sifstime);
531 if (ahp->ah_slottime != (u_int) -1)
532 ar5211SetSlotTime(ah, ahp->ah_slottime);
533 if (ahp->ah_acktimeout != (u_int) -1)
534 ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
535 if (ahp->ah_ctstimeout != (u_int) -1)
536 ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
537 if (AH_PRIVATE(ah)->ah_diagreg != 0)
538 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
540 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
542 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
544 return AH_TRUE;
545 bad:
546 if (status != AH_NULL)
547 *status = ecode;
548 return AH_FALSE;
549 #undef FAIL
550 #undef N
554 * Places the PHY and Radio chips into reset. A full reset
555 * must be called to leave this state. The PCI/MAC/PCU are
556 * not placed into reset as we must receive interrupt to
557 * re-enable the hardware.
559 HAL_BOOL
560 ar5211PhyDisable(struct ath_hal *ah)
562 return ar5211SetResetReg(ah, AR_RC_BB);
566 * Places all of hardware into reset
568 HAL_BOOL
569 ar5211Disable(struct ath_hal *ah)
571 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
572 return AH_FALSE;
574 * Reset the HW - PCI must be reset after the rest of the
575 * device has been reset.
577 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
578 return AH_FALSE;
579 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
581 return AH_TRUE;
585 * Places the hardware into reset and then pulls it out of reset
587 * Only write the PLL if we're changing to or from CCK mode
589 * Attach calls with channelFlags = 0, as the coldreset should have
590 * us in the correct mode and we cannot check the hwchannel flags.
592 HAL_BOOL
593 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
595 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
596 return AH_FALSE;
598 /* NB: called from attach with chan null */
599 if (chan != AH_NULL) {
600 /* Set CCK and Turbo modes correctly */
601 OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
602 AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
603 if (IEEE80211_IS_CHAN_B(chan)) {
604 OS_REG_WRITE(ah, AR5211_PHY_MODE,
605 AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
606 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
607 /* Wait for the PLL to settle */
608 OS_DELAY(DELAY_PLL_SETTLE);
609 } else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
610 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
611 OS_DELAY(DELAY_PLL_SETTLE);
612 OS_REG_WRITE(ah, AR5211_PHY_MODE,
613 AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
614 AR5211_PHY_MODE_RF2GHZ :
615 AR5211_PHY_MODE_RF5GHZ));
620 * Reset the HW - PCI must be reset after the rest of the
621 * device has been reset
623 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
624 return AH_FALSE;
625 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
627 /* Bring out of sleep mode (AGAIN) */
628 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
629 return AH_FALSE;
631 /* Clear warm reset register */
632 return ar5211SetResetReg(ah, 0);
636 * Recalibrate the lower PHY chips to account for temperature/environment
637 * changes.
639 HAL_BOOL
640 ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan,
641 u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
643 struct ath_hal_5211 *ahp = AH5211(ah);
644 HAL_CHANNEL_INTERNAL *ichan;
645 int32_t qCoff, qCoffDenom;
646 uint32_t data;
647 int32_t iqCorrMeas;
648 int32_t iCoff, iCoffDenom;
649 uint32_t powerMeasQ, powerMeasI;
651 ichan = ath_hal_checkchannel(ah, chan);
652 if (ichan == AH_NULL) {
653 HALDEBUG(ah, HAL_DEBUG_ANY,
654 "%s: invalid channel %u/0x%x; no mapping\n",
655 __func__, chan->ic_freq, chan->ic_flags);
656 return AH_FALSE;
658 /* IQ calibration in progress. Check to see if it has finished. */
659 if (ahp->ah_bIQCalibration &&
660 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
661 /* IQ Calibration has finished. */
662 ahp->ah_bIQCalibration = AH_FALSE;
664 /* Read calibration results. */
665 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
666 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
667 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
670 * Prescale these values to remove 64-bit operation requirement at the loss
671 * of a little precision.
673 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
674 qCoffDenom = powerMeasQ / 64;
676 /* Protect against divide-by-0. */
677 if (iCoffDenom != 0 && qCoffDenom != 0) {
678 iCoff = (-iqCorrMeas) / iCoffDenom;
679 /* IQCORR_Q_I_COFF is a signed 6 bit number */
680 iCoff = iCoff & 0x3f;
682 qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
683 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
684 qCoff = qCoff & 0x1f;
686 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
687 powerMeasI);
688 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
689 powerMeasQ);
690 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
691 iqCorrMeas);
692 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
693 iCoff);
694 HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
695 qCoff);
697 /* Write IQ */
698 data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
699 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
700 (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
701 ((uint32_t)qCoff);
702 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
705 *isCalDone = !ahp->ah_bIQCalibration;
707 if (longCal) {
708 /* Perform noise floor and set status */
709 if (!ar5211IsNfGood(ah, chan)) {
710 /* report up and clear internal state */
711 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
712 return AH_FALSE;
714 if (!ar5211CalNoiseFloor(ah, chan)) {
716 * Delay 5ms before retrying the noise floor
717 * just to make sure, as we are in an error
718 * condition here.
720 OS_DELAY(5000);
721 if (!ar5211CalNoiseFloor(ah, chan)) {
722 if (!IEEE80211_IS_CHAN_CCK(chan))
723 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
724 return AH_FALSE;
727 ar5211RequestRfgain(ah);
729 return AH_TRUE;
732 HAL_BOOL
733 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
734 HAL_BOOL *isIQdone)
736 return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
739 HAL_BOOL
740 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
742 /* XXX */
743 return AH_TRUE;
747 * Writes the given reset bit mask into the reset register
749 static HAL_BOOL
750 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
752 uint32_t mask = resetMask ? resetMask : ~0;
753 HAL_BOOL rt;
755 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
756 OS_REG_WRITE(ah, AR_RC, resetMask);
758 /* need to wait at least 128 clocks when reseting PCI before read */
759 OS_DELAY(15);
761 resetMask &= AR_RC_MAC | AR_RC_BB;
762 mask &= AR_RC_MAC | AR_RC_BB;
763 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
764 if ((resetMask & AR_RC_MAC) == 0) {
765 if (isBigEndian()) {
767 * Set CFG, little-endian for register
768 * and descriptor accesses.
770 mask = INIT_CONFIG_STATUS |
771 AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
772 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
773 } else
774 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
776 return rt;
780 * Takes the MHz channel value and sets the Channel value
782 * ASSUMES: Writes enabled to analog bus before AGC is active
783 * or by disabling the AGC.
785 static HAL_BOOL
786 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
788 uint32_t refClk, reg32, data2111;
789 int16_t chan5111, chanIEEE;
791 chanIEEE = chan->ic_ieee;
792 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
793 const CHAN_INFO_2GHZ* ci =
794 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
796 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
797 << 5)
798 | (ci->refClkSel << 4);
799 chan5111 = ci->channel5111;
800 } else {
801 data2111 = 0;
802 chan5111 = chanIEEE;
805 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
806 if (chan5111 >= 145 || (chan5111 & 0x1)) {
807 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
808 refClk = 1;
809 } else {
810 reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
811 refClk = 0;
814 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
815 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
816 reg32 >>= 8;
817 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
819 AH_PRIVATE(ah)->ah_curchan = chan;
820 return AH_TRUE;
823 static int16_t
824 ar5211GetNoiseFloor(struct ath_hal *ah)
826 int16_t nf;
828 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
829 if (nf & 0x100)
830 nf = 0 - ((nf ^ 0x1ff) + 1);
831 return nf;
835 * Peform the noisefloor calibration for the length of time set
836 * in runTime (valid values 1 to 7)
838 * Returns: The NF value at the end of the given time (or 0 for failure)
840 int16_t
841 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
843 int i, searchTime;
845 HALASSERT(runTime <= 7);
847 /* Setup noise floor run time and starting value */
848 OS_REG_WRITE(ah, AR_PHY(25),
849 (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
850 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
851 /* Calibrate the noise floor */
852 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
853 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
855 /* Compute the required amount of searchTime needed to finish NF */
856 if (runTime == 0) {
857 /* 8 search windows * 6.4us each */
858 searchTime = 8 * 7;
859 } else {
860 /* 512 * runtime search windows * 6.4us each */
861 searchTime = (runTime * 512) * 7;
865 * Do not read noise floor until it has been updated
867 * As a guesstimate - we may only get 1/60th the time on
868 * the air to see search windows in a heavily congested
869 * network (40 us every 2400 us of time)
871 for (i = 0; i < 60; i++) {
872 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
873 break;
874 OS_DELAY(searchTime);
876 if (i >= 60) {
877 HALDEBUG(ah, HAL_DEBUG_NFCAL,
878 "NF with runTime %d failed to end on channel %d\n",
879 runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
880 HALDEBUG(ah, HAL_DEBUG_NFCAL,
881 " PHY NF Reg state: 0x%x\n",
882 OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
883 HALDEBUG(ah, HAL_DEBUG_NFCAL,
884 " PHY Active Reg state: 0x%x\n",
885 OS_REG_READ(ah, AR_PHY_ACTIVE));
886 return 0;
889 return ar5211GetNoiseFloor(ah);
892 static HAL_BOOL
893 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
894 int16_t *nft)
896 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
898 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
899 case IEEE80211_CHAN_A:
900 *nft = ee->ee_noiseFloorThresh[0];
901 break;
902 case IEEE80211_CHAN_B:
903 *nft = ee->ee_noiseFloorThresh[1];
904 break;
905 case IEEE80211_CHAN_PUREG:
906 *nft = ee->ee_noiseFloorThresh[2];
907 break;
908 default:
909 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
910 __func__, chan->ic_flags);
911 return AH_FALSE;
913 return AH_TRUE;
917 * Read the NF and check it against the noise floor threshhold
919 * Returns: TRUE if the NF is good
921 static HAL_BOOL
922 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
924 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
925 int16_t nf, nfThresh;
927 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
928 return AH_FALSE;
929 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
930 HALDEBUG(ah, HAL_DEBUG_ANY,
931 "%s: NF did not complete in calibration window\n", __func__);
933 nf = ar5211GetNoiseFloor(ah);
934 if (nf > nfThresh) {
935 HALDEBUG(ah, HAL_DEBUG_ANY,
936 "%s: noise floor failed; detected %u, threshold %u\n",
937 __func__, nf, nfThresh);
939 * NB: Don't discriminate 2.4 vs 5Ghz, if this
940 * happens it indicates a problem regardless
941 * of the band.
943 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
945 ichan->rawNoiseFloor = nf;
946 return (nf <= nfThresh);
950 * Peform the noisefloor calibration and check for any constant channel
951 * interference.
953 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
954 * it is if'ed for MKK regulatory domain only.
956 * Returns: TRUE for a successful noise floor calibration; else FALSE
958 HAL_BOOL
959 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
961 #define N(a) (sizeof (a) / sizeof (a[0]))
962 /* Check for Carrier Wave interference in MKK regulatory zone */
963 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
964 (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
965 static const uint8_t runtime[3] = { 0, 2, 7 };
966 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
967 int16_t nf, nfThresh;
968 int i;
970 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
971 return AH_FALSE;
973 * Run a quick noise floor that will hopefully
974 * complete (decrease delay time).
976 for (i = 0; i < N(runtime); i++) {
977 nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
978 if (nf > nfThresh) {
979 HALDEBUG(ah, HAL_DEBUG_ANY,
980 "%s: run failed with %u > threshold %u "
981 "(runtime %u)\n", __func__,
982 nf, nfThresh, runtime[i]);
983 ichan->rawNoiseFloor = 0;
984 } else
985 ichan->rawNoiseFloor = nf;
987 return (i <= N(runtime));
988 } else {
989 /* Calibrate the noise floor */
990 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
991 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
992 AR_PHY_AGC_CONTROL_NF);
994 return AH_TRUE;
995 #undef N
999 * Adjust NF based on statistical values for 5GHz frequencies.
1001 int16_t
1002 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1004 static const struct {
1005 uint16_t freqLow;
1006 int16_t adjust;
1007 } adjust5111[] = {
1008 { 5790, 11 }, /* NB: ordered high -> low */
1009 { 5730, 10 },
1010 { 5690, 9 },
1011 { 5660, 8 },
1012 { 5610, 7 },
1013 { 5530, 5 },
1014 { 5450, 4 },
1015 { 5379, 2 },
1016 { 5209, 0 }, /* XXX? bogus but doesn't matter */
1017 { 0, 1 },
1019 int i;
1021 for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1023 /* NB: placeholder for 5111's less severe requirement */
1024 return adjust5111[i].adjust / 3;
1028 * Reads EEPROM header info from device structure and programs
1029 * analog registers 6 and 7
1031 * REQUIRES: Access to the analog device
1033 static HAL_BOOL
1034 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1036 #define N(a) (sizeof (a) / sizeof (a[0]))
1037 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1038 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1039 struct ath_hal_5211 *ahp = AH5211(ah);
1040 uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1041 uint16_t tempOB, tempDB;
1042 uint16_t freqIndex;
1043 int i;
1045 freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1048 * TODO: This array mode correspondes with the index used
1049 * during the read.
1050 * For readability, this should be changed to an enum or #define
1052 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1053 case IEEE80211_CHAN_A:
1054 if (freq > 4000 && freq < 5260) {
1055 tempOB = ee->ee_ob1;
1056 tempDB = ee->ee_db1;
1057 } else if (freq >= 5260 && freq < 5500) {
1058 tempOB = ee->ee_ob2;
1059 tempDB = ee->ee_db2;
1060 } else if (freq >= 5500 && freq < 5725) {
1061 tempOB = ee->ee_ob3;
1062 tempDB = ee->ee_db3;
1063 } else if (freq >= 5725) {
1064 tempOB = ee->ee_ob4;
1065 tempDB = ee->ee_db4;
1066 } else {
1067 /* XXX panic?? */
1068 tempOB = tempDB = 0;
1071 rfXpdGain = ee->ee_xgain[0];
1072 rfPloSel = ee->ee_xpd[0];
1073 rfPwdXpd = !ee->ee_xpd[0];
1075 ar5211Rf6n7[5][freqIndex] =
1076 (ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1077 (ee->ee_cornerCal.pd84<< 28);
1078 ar5211Rf6n7[6][freqIndex] =
1079 (ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1080 (ee->ee_cornerCal.pd90 << 26);
1081 ar5211Rf6n7[21][freqIndex] =
1082 (ar5211Rf6n7[21][freqIndex] & ~0x08) |
1083 (ee->ee_cornerCal.gSel << 3);
1084 break;
1085 case IEEE80211_CHAN_B:
1086 tempOB = ee->ee_obFor24;
1087 tempDB = ee->ee_dbFor24;
1088 rfXpdGain = ee->ee_xgain[1];
1089 rfPloSel = ee->ee_xpd[1];
1090 rfPwdXpd = !ee->ee_xpd[1];
1091 break;
1092 case IEEE80211_CHAN_PUREG:
1093 tempOB = ee->ee_obFor24g;
1094 tempDB = ee->ee_dbFor24g;
1095 rfXpdGain = ee->ee_xgain[2];
1096 rfPloSel = ee->ee_xpd[2];
1097 rfPwdXpd = !ee->ee_xpd[2];
1098 break;
1099 default:
1100 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1101 __func__, chan->ic_flags);
1102 return AH_FALSE;
1105 HALASSERT(1 <= tempOB && tempOB <= 5);
1106 HALASSERT(1 <= tempDB && tempDB <= 5);
1108 /* Set rfXpdGain and rfPwdXpd */
1109 ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1110 (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1111 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1112 ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1114 /* Set OB */
1115 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1116 ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1117 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1118 ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1120 /* Set DB */
1121 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1122 ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1124 /* Set rfPloSel */
1125 ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1126 ((rfPloSel << 3) & 0x08);
1128 /* Write the Rf registers 6 & 7 */
1129 for (i = 0; i < N(ar5211Rf6n7); i++)
1130 OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1132 /* Now that we have reprogrammed rfgain value, clear the flag. */
1133 ahp->ah_rfgainState = RFGAIN_INACTIVE;
1135 return AH_TRUE;
1136 #undef N
1139 HAL_BOOL
1140 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1141 const struct ieee80211_channel *chan)
1143 #define ANT_SWITCH_TABLE1 0x9960
1144 #define ANT_SWITCH_TABLE2 0x9964
1145 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1146 struct ath_hal_5211 *ahp = AH5211(ah);
1147 uint32_t antSwitchA, antSwitchB;
1148 int ix;
1150 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1151 case IEEE80211_CHAN_A: ix = 0; break;
1152 case IEEE80211_CHAN_B: ix = 1; break;
1153 case IEEE80211_CHAN_PUREG: ix = 2; break;
1154 default:
1155 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1156 __func__, chan->ic_flags);
1157 return AH_FALSE;
1160 antSwitchA = ee->ee_antennaControl[1][ix]
1161 | (ee->ee_antennaControl[2][ix] << 6)
1162 | (ee->ee_antennaControl[3][ix] << 12)
1163 | (ee->ee_antennaControl[4][ix] << 18)
1164 | (ee->ee_antennaControl[5][ix] << 24)
1166 antSwitchB = ee->ee_antennaControl[6][ix]
1167 | (ee->ee_antennaControl[7][ix] << 6)
1168 | (ee->ee_antennaControl[8][ix] << 12)
1169 | (ee->ee_antennaControl[9][ix] << 18)
1170 | (ee->ee_antennaControl[10][ix] << 24)
1173 * For fixed antenna, give the same setting for both switch banks
1175 switch (settings) {
1176 case HAL_ANT_FIXED_A:
1177 antSwitchB = antSwitchA;
1178 break;
1179 case HAL_ANT_FIXED_B:
1180 antSwitchA = antSwitchB;
1181 break;
1182 case HAL_ANT_VARIABLE:
1183 break;
1184 default:
1185 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1186 __func__, settings);
1187 return AH_FALSE;
1189 ahp->ah_diversityControl = settings;
1191 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1192 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1194 return AH_TRUE;
1195 #undef ANT_SWITCH_TABLE1
1196 #undef ANT_SWITCH_TABLE2
1200 * Reads EEPROM header info and programs the device for correct operation
1201 * given the channel value
1203 static HAL_BOOL
1204 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1206 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1207 struct ath_hal_5211 *ahp = AH5211(ah);
1208 int arrayMode, falseDectectBackoff;
1210 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1211 case IEEE80211_CHAN_A:
1212 arrayMode = 0;
1213 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1214 AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1215 break;
1216 case IEEE80211_CHAN_B:
1217 arrayMode = 1;
1218 break;
1219 case IEEE80211_CHAN_PUREG:
1220 arrayMode = 2;
1221 break;
1222 default:
1223 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1224 __func__, chan->ic_flags);
1225 return AH_FALSE;
1228 /* Set the antenna register(s) correctly for the chip revision */
1229 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1230 OS_REG_WRITE(ah, AR_PHY(68),
1231 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1232 } else {
1233 OS_REG_WRITE(ah, AR_PHY(68),
1234 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1235 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1237 ar5211SetAntennaSwitchInternal(ah,
1238 ahp->ah_diversityControl, chan);
1240 /* Set the Noise Floor Thresh on ar5211 devices */
1241 OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1242 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1244 OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1245 (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1246 ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1247 OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1248 (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1249 ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1250 OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1251 (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1252 ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1253 (ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1254 OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1255 (ee->ee_txEndToXPAOff[arrayMode] << 24) |
1256 (ee->ee_txEndToXPAOff[arrayMode] << 16) |
1257 (ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1258 ee->ee_txFrameToXPAOn[arrayMode]);
1259 OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1260 (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1261 (ee->ee_txEndToXLNAOn[arrayMode] << 8));
1262 OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1263 (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1264 ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1266 #define NO_FALSE_DETECT_BACKOFF 2
1267 #define CB22_FALSE_DETECT_BACKOFF 6
1269 * False detect backoff - suspected 32 MHz spur causes
1270 * false detects in OFDM, causing Tx Hangs. Decrease
1271 * weak signal sensitivity for this card.
1273 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1274 if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1275 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1276 IEEE80211_IS_CHAN_OFDM(chan))
1277 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1278 } else {
1279 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1280 uint32_t remainder = freq % 32;
1282 if (remainder && (remainder < 10 || remainder > 22))
1283 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1285 OS_REG_WRITE(ah, 0x9924,
1286 (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1287 | ((falseDectectBackoff << 1) & 0xF7));
1289 return AH_TRUE;
1290 #undef NO_FALSE_DETECT_BACKOFF
1291 #undef CB22_FALSE_DETECT_BACKOFF
1295 * Set the limit on the overall output power. Used for dynamic
1296 * transmit power control and the like.
1298 * NOTE: The power is passed in is in units of 0.5 dBm.
1300 HAL_BOOL
1301 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1304 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1305 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1306 return AH_TRUE;
1310 * Sets the transmit power in the baseband for the given
1311 * operating channel and mode.
1313 static HAL_BOOL
1314 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1316 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1317 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1318 TRGT_POWER_INFO *pi;
1319 RD_EDGES_POWER *rep;
1320 PCDACS_EEPROM eepromPcdacs;
1321 u_int nchan, cfgCtl;
1322 int i;
1324 /* setup the pcdac struct to point to the correct info, based on mode */
1325 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1326 case IEEE80211_CHAN_A:
1327 eepromPcdacs.numChannels = ee->ee_numChannels11a;
1328 eepromPcdacs.pChannelList= ee->ee_channels11a;
1329 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1330 nchan = ee->ee_numTargetPwr_11a;
1331 pi = ee->ee_trgtPwr_11a;
1332 break;
1333 case IEEE80211_CHAN_PUREG:
1334 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1335 eepromPcdacs.pChannelList= ee->ee_channels11g;
1336 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1337 nchan = ee->ee_numTargetPwr_11g;
1338 pi = ee->ee_trgtPwr_11g;
1339 break;
1340 case IEEE80211_CHAN_B:
1341 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1342 eepromPcdacs.pChannelList= ee->ee_channels11b;
1343 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1344 nchan = ee->ee_numTargetPwr_11b;
1345 pi = ee->ee_trgtPwr_11b;
1346 break;
1347 default:
1348 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1349 __func__, chan->ic_flags);
1350 return AH_FALSE;
1353 ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1355 rep = AH_NULL;
1356 /* Match CTL to EEPROM value */
1357 cfgCtl = ath_hal_getctl(ah, chan);
1358 for (i = 0; i < ee->ee_numCtls; i++)
1359 if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1360 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1361 break;
1363 ar5211SetRateTable(ah, rep, pi, nchan, chan);
1365 return AH_TRUE;
1369 * Read the transmit power levels from the structures taken
1370 * from EEPROM. Interpolate read transmit power values for
1371 * this channel. Organize the transmit power values into a
1372 * table for writing into the hardware.
1374 void
1375 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1376 uint16_t channel)
1378 static FULL_PCDAC_STRUCT pcdacStruct;
1379 static uint16_t pcdacTable[PWR_TABLE_SIZE];
1381 uint16_t i, j;
1382 uint16_t *pPcdacValues;
1383 int16_t *pScaledUpDbm;
1384 int16_t minScaledPwr;
1385 int16_t maxScaledPwr;
1386 int16_t pwr;
1387 uint16_t pcdacMin = 0;
1388 uint16_t pcdacMax = 63;
1389 uint16_t pcdacTableIndex;
1390 uint16_t scaledPcdac;
1391 uint32_t addr;
1392 uint32_t temp32;
1394 OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1395 OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1396 pPcdacValues = pcdacStruct.PcdacValues;
1397 pScaledUpDbm = pcdacStruct.PwrValues;
1399 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1400 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1401 pPcdacValues[j] = i;
1403 pcdacStruct.numPcdacValues = j;
1404 pcdacStruct.pcdacMin = PCDAC_START;
1405 pcdacStruct.pcdacMax = PCDAC_STOP;
1407 /* Fill out the power values for this channel */
1408 for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1409 pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1411 /* Now scale the pcdac values to fit in the 64 entry power table */
1412 minScaledPwr = pScaledUpDbm[0];
1413 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1415 /* find minimum and make monotonic */
1416 for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1417 if (minScaledPwr >= pScaledUpDbm[j]) {
1418 minScaledPwr = pScaledUpDbm[j];
1419 pcdacMin = j;
1422 * Make the full_hsh monotonically increasing otherwise
1423 * interpolation algorithm will get fooled gotta start
1424 * working from the top, hence i = 63 - j.
1426 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1427 if (i == 0)
1428 break;
1429 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1431 * It could be a glitch, so make the power for
1432 * this pcdac the same as the power from the
1433 * next highest pcdac.
1435 pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1439 for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1440 if (maxScaledPwr < pScaledUpDbm[j]) {
1441 maxScaledPwr = pScaledUpDbm[j];
1442 pcdacMax = j;
1445 /* Find the first power level with a pcdac */
1446 pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
1448 /* Write all the first pcdac entries based off the pcdacMin */
1449 pcdacTableIndex = 0;
1450 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1451 pcdacTable[pcdacTableIndex++] = pcdacMin;
1453 i = 0;
1454 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1455 pwr += PWR_STEP;
1456 /* stop if dbM > max_power_possible */
1457 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1458 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1459 i++;
1460 /* scale by 2 and add 1 to enable round up or down as needed */
1461 scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1462 pScaledUpDbm[i], pScaledUpDbm[i+1],
1463 (uint16_t)(pPcdacValues[i] * 2),
1464 (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1466 pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1467 if (pcdacTable[pcdacTableIndex] > pcdacMax)
1468 pcdacTable[pcdacTableIndex] = pcdacMax;
1469 pcdacTableIndex++;
1472 /* Write all the last pcdac entries based off the last valid pcdac */
1473 while (pcdacTableIndex < PWR_TABLE_SIZE) {
1474 pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1475 pcdacTableIndex++;
1478 /* Finally, write the power values into the baseband power table */
1479 addr = AR_PHY_BASE + (608 << 2);
1480 for (i = 0; i < 32; i++) {
1481 temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1482 temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1483 OS_REG_WRITE(ah, addr, temp32);
1484 addr += 4;
1490 * Set the transmit power in the baseband for the given
1491 * operating channel and mode.
1493 static void
1494 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1495 TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1496 const struct ieee80211_channel *chan)
1498 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1499 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1500 struct ath_hal_5211 *ahp = AH5211(ah);
1501 static uint16_t ratesArray[NUM_RATES];
1502 static const uint16_t tpcScaleReductionTable[5] =
1503 { 0, 3, 6, 9, MAX_RATE_POWER };
1505 uint16_t *pRatesPower;
1506 uint16_t lowerChannel, lowerIndex=0, lowerPower=0;
1507 uint16_t upperChannel, upperIndex=0, upperPower=0;
1508 uint16_t twiceMaxEdgePower=63;
1509 uint16_t twicePower = 0;
1510 uint16_t i, numEdges;
1511 uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1512 uint16_t twiceMaxRDPower;
1513 int16_t scaledPower = 0; /* for gcc -O2 */
1514 uint16_t mask = 0x3f;
1515 HAL_BOOL paPreDEnable = 0;
1516 int8_t twiceAntennaGain, twiceAntennaReduction = 0;
1518 pRatesPower = ratesArray;
1519 twiceMaxRDPower = chan->ic_maxregpower * 2;
1521 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1522 twiceAntennaGain = ee->ee_antennaGainMax[0];
1523 } else {
1524 twiceAntennaGain = ee->ee_antennaGainMax[1];
1527 twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1529 if (pRdEdgesPower) {
1530 /* Get the edge power */
1531 for (i = 0; i < NUM_EDGES; i++) {
1532 if (pRdEdgesPower[i].rdEdge == 0)
1533 break;
1534 tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1536 numEdges = i;
1538 ar5211GetLowerUpperValues(freq, tempChannelList,
1539 numEdges, &lowerChannel, &upperChannel);
1540 /* Get the index for this channel */
1541 for (i = 0; i < numEdges; i++)
1542 if (lowerChannel == tempChannelList[i])
1543 break;
1544 HALASSERT(i != numEdges);
1546 if ((lowerChannel == upperChannel &&
1547 lowerChannel == freq) ||
1548 pRdEdgesPower[i].flag) {
1549 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1550 HALASSERT(twiceMaxEdgePower > 0);
1554 /* extrapolate the power values for the test Groups */
1555 for (i = 0; i < numChannels; i++)
1556 tempChannelList[i] = pPowerInfo[i].testChannel;
1558 ar5211GetLowerUpperValues(freq, tempChannelList,
1559 numChannels, &lowerChannel, &upperChannel);
1561 /* get the index for the channel */
1562 for (i = 0; i < numChannels; i++) {
1563 if (lowerChannel == tempChannelList[i])
1564 lowerIndex = i;
1565 if (upperChannel == tempChannelList[i]) {
1566 upperIndex = i;
1567 break;
1571 for (i = 0; i < NUM_RATES; i++) {
1572 if (IEEE80211_IS_CHAN_OFDM(chan)) {
1573 /* power for rates 6,9,12,18,24 is all the same */
1574 if (i < 5) {
1575 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1576 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1577 } else if (i == 5) {
1578 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1579 upperPower = pPowerInfo[upperIndex].twicePwr36;
1580 } else if (i == 6) {
1581 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1582 upperPower = pPowerInfo[upperIndex].twicePwr48;
1583 } else if (i == 7) {
1584 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1585 upperPower = pPowerInfo[upperIndex].twicePwr54;
1587 } else {
1588 switch (i) {
1589 case 0:
1590 case 1:
1591 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1592 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1593 break;
1594 case 2:
1595 case 3:
1596 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1597 upperPower = pPowerInfo[upperIndex].twicePwr36;
1598 break;
1599 case 4:
1600 case 5:
1601 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1602 upperPower = pPowerInfo[upperIndex].twicePwr48;
1603 break;
1604 case 6:
1605 case 7:
1606 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1607 upperPower = pPowerInfo[upperIndex].twicePwr54;
1608 break;
1612 twicePower = ar5211GetInterpolatedValue(freq,
1613 lowerChannel, upperChannel, lowerPower, upperPower, 0);
1615 /* Reduce power by band edge restrictions */
1616 twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1619 * If turbo is set, reduce power to keep power
1620 * consumption under 2 Watts. Note that we always do
1621 * this unless specially configured. Then we limit
1622 * power only for non-AP operation.
1624 if (IEEE80211_IS_CHAN_TURBO(chan) &&
1625 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1626 #ifdef AH_ENABLE_AP_SUPPORT
1627 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1628 #endif
1630 twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1633 /* Reduce power by max regulatory domain allowed restrictions */
1634 pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1636 /* Use 6 Mb power level for transmit power scaling reduction */
1637 /* We don't want to reduce higher rates if its not needed */
1638 if (i == 0) {
1639 scaledPower = pRatesPower[0] -
1640 (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1641 if (scaledPower < 1)
1642 scaledPower = 1;
1645 pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1648 /* Record txPower at Rate 6 for info gathering */
1649 ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1651 #ifdef AH_DEBUG
1652 HALDEBUG(ah, HAL_DEBUG_RESET,
1653 "%s: final output power setting %d MHz:\n",
1654 __func__, chan->ic_freq);
1655 HALDEBUG(ah, HAL_DEBUG_RESET,
1656 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1657 scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1658 HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1659 tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1660 twiceAntennaReduction / 2);
1661 if (IEEE80211_IS_CHAN_TURBO(chan) &&
1662 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1663 HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1664 ee->ee_turbo2WMaxPower5);
1665 HALDEBUG(ah, HAL_DEBUG_RESET,
1666 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1667 pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1668 pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1669 pRatesPower[6] / 2, pRatesPower[7] / 2);
1670 #endif /* AH_DEBUG */
1672 /* Write the power table into the hardware */
1673 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1674 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1675 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1676 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1677 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
1678 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1679 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1680 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1681 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1682 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
1684 /* set max power to the power value at rate 6 */
1685 ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1687 AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1691 * Get or interpolate the pcdac value from the calibrated data
1693 uint16_t
1694 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1695 const PCDACS_EEPROM *pSrcStruct)
1697 uint16_t powerValue;
1698 uint16_t lFreq, rFreq; /* left and right frequency values */
1699 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
1700 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
1701 uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
1702 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1704 if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1705 /* value was copied from srcStruct */
1706 return powerValue;
1708 ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1709 pSrcStruct->numChannels, &lFreq, &rFreq);
1710 ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1711 &llPcdac, &ulPcdac);
1712 ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1713 &lrPcdac, &urPcdac);
1715 /* get the power index for the pcdac value */
1716 ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1717 ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1718 lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1719 llPcdac, ulPcdac, lPwr, uPwr, 0);
1721 ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1722 ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1723 rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1724 lrPcdac, urPcdac, lPwr, uPwr, 0);
1726 return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1727 lScaledPwr, rScaledPwr, 0);
1731 * Find the value from the calibrated source data struct
1733 HAL_BOOL
1734 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1735 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1737 const DATA_PER_CHANNEL *pChannelData;
1738 const uint16_t *pPcdac;
1739 uint16_t i, j;
1741 pChannelData = pSrcStruct->pDataPerChannel;
1742 for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1743 if (pChannelData->channelValue == channel) {
1744 pPcdac = pChannelData->PcdacValues;
1745 for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1746 if (*pPcdac == pcdacValue) {
1747 *powerValue = pChannelData->PwrValues[j];
1748 return AH_TRUE;
1750 pPcdac++;
1753 pChannelData++;
1755 return AH_FALSE;
1759 * Returns interpolated or the scaled up interpolated value
1761 uint16_t
1762 ar5211GetInterpolatedValue(uint16_t target,
1763 uint16_t srcLeft, uint16_t srcRight,
1764 uint16_t targetLeft, uint16_t targetRight,
1765 HAL_BOOL scaleUp)
1767 uint16_t rv;
1768 int16_t lRatio;
1769 uint16_t scaleValue = EEP_SCALE;
1771 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1772 if ((targetLeft * targetRight) == 0)
1773 return 0;
1774 if (scaleUp)
1775 scaleValue = 1;
1777 if (srcRight != srcLeft) {
1779 * Note the ratio always need to be scaled,
1780 * since it will be a fraction.
1782 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1783 if (lRatio < 0) {
1784 /* Return as Left target if value would be negative */
1785 rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1786 } else if (lRatio > EEP_SCALE) {
1787 /* Return as Right target if Ratio is greater than 100% (SCALE) */
1788 rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1789 } else {
1790 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1791 targetLeft) / scaleValue;
1793 } else {
1794 rv = targetLeft;
1795 if (scaleUp)
1796 rv *= EEP_SCALE;
1798 return rv;
1802 * Look for value being within 0.1 of the search values
1803 * however, NDIS can't do float calculations, so multiply everything
1804 * up by EEP_SCALE so can do integer arithmatic
1806 * INPUT value -value to search for
1807 * INPUT pList -ptr to the list to search
1808 * INPUT listSize -number of entries in list
1809 * OUTPUT pLowerValue -return the lower value
1810 * OUTPUT pUpperValue -return the upper value
1812 void
1813 ar5211GetLowerUpperValues(uint16_t value,
1814 const uint16_t *pList, uint16_t listSize,
1815 uint16_t *pLowerValue, uint16_t *pUpperValue)
1817 const uint16_t listEndValue = *(pList + listSize - 1);
1818 uint32_t target = value * EEP_SCALE;
1819 int i;
1822 * See if value is lower than the first value in the list
1823 * if so return first value
1825 if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1826 *pLowerValue = *pList;
1827 *pUpperValue = *pList;
1828 return;
1832 * See if value is greater than last value in list
1833 * if so return last value
1835 if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1836 *pLowerValue = listEndValue;
1837 *pUpperValue = listEndValue;
1838 return;
1841 /* look for value being near or between 2 values in list */
1842 for (i = 0; i < listSize; i++) {
1844 * If value is close to the current value of the list
1845 * then target is not between values, it is one of the values
1847 if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1848 *pLowerValue = pList[i];
1849 *pUpperValue = pList[i];
1850 return;
1854 * Look for value being between current value and next value
1855 * if so return these 2 values
1857 if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1858 *pLowerValue = pList[i];
1859 *pUpperValue = pList[i + 1];
1860 return;
1866 * Get the upper and lower pcdac given the channel and the pcdac
1867 * used in the search
1869 void
1870 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1871 const PCDACS_EEPROM *pSrcStruct,
1872 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1874 const DATA_PER_CHANNEL *pChannelData;
1875 int i;
1877 /* Find the channel information */
1878 pChannelData = pSrcStruct->pDataPerChannel;
1879 for (i = 0; i < pSrcStruct->numChannels; i++) {
1880 if (pChannelData->channelValue == channel)
1881 break;
1882 pChannelData++;
1884 ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1885 pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1888 #define DYN_ADJ_UP_MARGIN 15
1889 #define DYN_ADJ_LO_MARGIN 20
1891 static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1892 9, /* numStepsInLadder */
1893 4, /* defaultStepNum */
1894 { { {4, 1, 1, 1}, 6, "FG8"},
1895 { {4, 0, 1, 1}, 4, "FG7"},
1896 { {3, 1, 1, 1}, 3, "FG6"},
1897 { {4, 0, 0, 1}, 1, "FG5"},
1898 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
1899 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
1900 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
1901 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
1902 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
1907 * Initialize the gain structure to good values
1909 void
1910 ar5211InitializeGainValues(struct ath_hal *ah)
1912 struct ath_hal_5211 *ahp = AH5211(ah);
1913 GAIN_VALUES *gv = &ahp->ah_gainValues;
1915 /* initialize gain optimization values */
1916 gv->currStepNum = gainLadder.defaultStepNum;
1917 gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1918 gv->active = AH_TRUE;
1919 gv->loTrig = 20;
1920 gv->hiTrig = 35;
1923 static HAL_BOOL
1924 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1926 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1927 uint32_t gStep, g;
1928 uint32_t L1, L2, L3, L4;
1930 if (IEEE80211_IS_CHAN_CCK(chan)) {
1931 gStep = 0x18;
1932 L1 = 0;
1933 L2 = gStep + 4;
1934 L3 = 0x40;
1935 L4 = L3 + 50;
1937 gv->loTrig = L1;
1938 gv->hiTrig = L4+5;
1939 } else {
1940 gStep = 0x3f;
1941 L1 = 0;
1942 L2 = 50;
1943 L3 = L1;
1944 L4 = L3 + 50;
1946 gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1947 gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1949 g = gv->currGain;
1951 return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1955 * Enable the probe gain check on the next packet
1957 static void
1958 ar5211RequestRfgain(struct ath_hal *ah)
1960 struct ath_hal_5211 *ahp = AH5211(ah);
1962 /* Enable the gain readback probe */
1963 OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1964 SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1965 | AR_PHY_PAPD_PROBE_NEXT_TX);
1967 ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1971 * Exported call to check for a recent gain reading and return
1972 * the current state of the thermal calibration gain engine.
1974 HAL_RFGAIN
1975 ar5211GetRfgain(struct ath_hal *ah)
1977 struct ath_hal_5211 *ahp = AH5211(ah);
1978 GAIN_VALUES *gv = &ahp->ah_gainValues;
1979 uint32_t rddata;
1981 if (!gv->active)
1982 return HAL_RFGAIN_INACTIVE;
1984 if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1985 /* Caller had asked to setup a new reading. Check it. */
1986 rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1988 if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1989 /* bit got cleared, we have a new reading. */
1990 gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1991 /* inactive by default */
1992 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1994 if (!ar5211InvalidGainReadback(ah, gv) &&
1995 ar5211IsGainAdjustNeeded(ah, gv) &&
1996 ar5211AdjustGain(ah, gv) > 0) {
1998 * Change needed. Copy ladder info
1999 * into eeprom info.
2001 ar5211SetRfgain(ah, gv);
2002 ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2006 return ahp->ah_rfgainState;
2010 * Check to see if our readback gain level sits within the linear
2011 * region of our current variable attenuation window
2013 static HAL_BOOL
2014 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2016 return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2020 * Move the rabbit ears in the correct direction.
2022 static int32_t
2023 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2025 /* return > 0 for valid adjustments. */
2026 if (!gv->active)
2027 return -1;
2029 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2030 if (gv->currGain >= gv->hiTrig) {
2031 if (gv->currStepNum == 0) {
2032 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2033 "%s: Max gain limit.\n", __func__);
2034 return -1;
2036 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2037 "%s: Adding gain: currG=%d [%s] --> ",
2038 __func__, gv->currGain, gv->currStep->stepName);
2039 gv->targetGain = gv->currGain;
2040 while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2041 gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2042 gv->currStep->stepGain);
2043 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2045 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2046 gv->targetGain, gv->currStep->stepName);
2047 return 1;
2049 if (gv->currGain <= gv->loTrig) {
2050 if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2051 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2052 "%s: Min gain limit.\n", __func__);
2053 return -2;
2055 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2056 "%s: Deducting gain: currG=%d [%s] --> ",
2057 __func__, gv->currGain, gv->currStep->stepName);
2058 gv->targetGain = gv->currGain;
2059 while (gv->targetGain <= gv->loTrig &&
2060 gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2061 gv->targetGain -= 2 *
2062 (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2063 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2065 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2066 gv->targetGain, gv->currStep->stepName);
2067 return 2;
2069 return 0; /* caller didn't call needAdjGain first */
2073 * Adjust the 5GHz EEPROM information with the desired calibration values.
2075 static void
2076 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2078 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2080 if (!gv->active)
2081 return;
2082 ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2083 ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2084 ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2085 ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2088 static void
2089 ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2091 struct ath_hal_5211 *ahp = AH5211(ah);
2092 uint32_t val;
2094 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2095 switch (opmode) {
2096 case HAL_M_HOSTAP:
2097 OS_REG_WRITE(ah, AR_STA_ID1, val
2098 | AR_STA_ID1_STA_AP
2099 | AR_STA_ID1_RTS_USE_DEF
2100 | ahp->ah_staId1Defaults);
2101 break;
2102 case HAL_M_IBSS:
2103 OS_REG_WRITE(ah, AR_STA_ID1, val
2104 | AR_STA_ID1_ADHOC
2105 | AR_STA_ID1_DESC_ANTENNA
2106 | ahp->ah_staId1Defaults);
2107 break;
2108 case HAL_M_STA:
2109 case HAL_M_MONITOR:
2110 OS_REG_WRITE(ah, AR_STA_ID1, val
2111 | AR_STA_ID1_DEFAULT_ANTENNA
2112 | ahp->ah_staId1Defaults);
2113 break;
2117 void
2118 ar5211SetPCUConfig(struct ath_hal *ah)
2120 ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);