Remove empty DragonFly CVS IDs.
[dragonfly.git] / sys / dev / netif / alc / if_alc.c
blobde6c34537d489cd9e7ee9004d641e3d965b2469b
1 /*-
2 * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/alc/if_alc.c,v 1.6 2009/09/29 23:03:16 yongari Exp $
30 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/spinlock.h>
42 #include <sys/rman.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_llc.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/ifq_var.h>
58 #include <net/vlan/if_vlan_var.h>
59 #include <net/vlan/if_vlan_ether.h>
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
66 #include <dev/netif/mii_layer/mii.h>
67 #include <dev/netif/mii_layer/miivar.h>
69 #include <bus/pci/pcireg.h>
70 #include <bus/pci/pcivar.h>
72 #include <machine/atomic.h>
74 XXX
75 #include <machine/bus.h>
76 #include <machine/in_cksum.h>
79 #include "if_alcreg.h"
80 #include "if_alcvar.h"
82 /* "device miibus" required. See GENERIC if you get errors here. */
83 #include "miibus_if.h"
84 #undef ALC_USE_CUSTOM_CSUM
86 #ifdef ALC_USE_CUSTOM_CSUM
87 #define ALC_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
88 #else
89 #define ALC_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
90 #endif
91 #ifndef IFCAP_VLAN_HWTSO
92 #define IFCAP_VLAN_HWTSO 0
93 #endif
95 MODULE_DEPEND(alc, pci, 1, 1, 1);
96 MODULE_DEPEND(alc, ether, 1, 1, 1);
97 MODULE_DEPEND(alc, miibus, 1, 1, 1);
99 /* Tunables. */
100 static int msi_disable = 0;
101 static int msix_disable = 0;
102 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
103 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
106 * Devices supported by this driver.
109 static struct alc_ident alc_ident_table[] = {
110 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
111 "Atheros AR8131 PCIe Gigabit Ethernet" },
112 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
113 "Atheros AR8132 PCIe Fast Ethernet" },
114 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
115 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
116 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
117 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
118 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
119 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
120 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
121 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
122 { 0, 0, 0, NULL}
125 static void alc_aspm(struct alc_softc *, int);
126 static int alc_attach(device_t);
127 static int alc_check_boundary(struct alc_softc *);
128 static int alc_detach(device_t);
129 static void alc_disable_l0s_l1(struct alc_softc *);
130 static int alc_dma_alloc(struct alc_softc *);
131 static void alc_dma_free(struct alc_softc *);
132 static void alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
133 static int alc_encap(struct alc_softc *, struct mbuf **);
134 static struct alc_ident *alc_find_ident(device_t);
135 #ifndef __NO_STRICT_ALIGNMENT
136 static struct mbuf *
137 alc_fixup_rx(struct ifnet *, struct mbuf *);
138 #endif
139 static void alc_get_macaddr(struct alc_softc *);
140 static void alc_init(void *);
141 static void alc_init_cmb(struct alc_softc *);
142 static void alc_init_locked(struct alc_softc *);
143 static void alc_init_rr_ring(struct alc_softc *);
144 static int alc_init_rx_ring(struct alc_softc *);
145 static void alc_init_smb(struct alc_softc *);
146 static void alc_init_tx_ring(struct alc_softc *);
147 static void alc_int_task(void *, int);
148 static void alc_intr(void *);
149 static int alc_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
150 static void alc_mac_config(struct alc_softc *);
151 static int alc_miibus_readreg(device_t, int, int);
152 static void alc_miibus_statchg(device_t);
153 static int alc_miibus_writereg(device_t, int, int, int);
154 static int alc_mediachange(struct ifnet *);
155 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
156 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
157 static void alc_phy_down(struct alc_softc *);
158 static void alc_phy_reset(struct alc_softc *);
159 static int alc_probe(device_t);
160 static void alc_reset(struct alc_softc *);
161 static int alc_resume(device_t);
162 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
163 static int alc_rxintr(struct alc_softc *, int);
164 static void alc_rxfilter(struct alc_softc *);
165 static void alc_rxvlan(struct alc_softc *);
166 #if 0
167 static void alc_setlinkspeed(struct alc_softc *);
168 /* XXX: WOL */
169 static void alc_setwol(struct alc_softc *);
170 #endif
171 static int alc_shutdown(device_t);
172 static void alc_start(struct ifnet *);
173 static void alc_start_queue(struct alc_softc *);
174 static void alc_stats_clear(struct alc_softc *);
175 static void alc_stats_update(struct alc_softc *);
176 static void alc_stop(struct alc_softc *);
177 static void alc_stop_mac(struct alc_softc *);
178 static void alc_stop_queue(struct alc_softc *);
179 static int alc_suspend(device_t);
180 static void alc_sysctl_node(struct alc_softc *);
181 static void alc_tick(void *);
182 static void alc_tx_task(void *, int);
183 static void alc_txeof(struct alc_softc *);
184 static void alc_watchdog(struct alc_softc *);
185 static int sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
186 static int sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
188 static device_method_t alc_methods[] = {
189 /* Device interface. */
190 DEVMETHOD(device_probe, alc_probe),
191 DEVMETHOD(device_attach, alc_attach),
192 DEVMETHOD(device_detach, alc_detach),
193 DEVMETHOD(device_shutdown, alc_shutdown),
194 DEVMETHOD(device_suspend, alc_suspend),
195 DEVMETHOD(device_resume, alc_resume),
197 /* MII interface. */
198 DEVMETHOD(miibus_readreg, alc_miibus_readreg),
199 DEVMETHOD(miibus_writereg, alc_miibus_writereg),
200 DEVMETHOD(miibus_statchg, alc_miibus_statchg),
202 { NULL, NULL }
205 static driver_t alc_driver = {
206 "alc",
207 alc_methods,
208 sizeof(struct alc_softc)
211 static devclass_t alc_devclass;
213 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, NULL, NULL);
214 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, NULL, NULL);
216 static struct resource_spec alc_res_spec_mem[] = {
217 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
218 { -1, 0, 0 }
221 static struct resource_spec alc_irq_spec_legacy[] = {
222 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
223 { -1, 0, 0 }
226 #ifdef OLD_MSI
227 static struct resource_spec alc_irq_spec_msi[] = {
228 { SYS_RES_IRQ, 1, RF_ACTIVE },
229 { -1, 0, 0 }
232 static struct resource_spec alc_irq_spec_msix[] = {
233 { SYS_RES_IRQ, 1, RF_ACTIVE },
234 { -1, 0, 0 }
236 #endif
238 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
240 static int
241 alc_miibus_readreg(device_t dev, int phy, int reg)
243 struct alc_softc *sc;
244 uint32_t v;
245 int i;
247 sc = device_get_softc(dev);
249 if (phy != sc->alc_phyaddr)
250 return (0);
253 * For AR8132 fast ethernet controller, do not report 1000baseT
254 * capability to mii(4). Even though AR8132 uses the same
255 * model/revision number of F1 gigabit PHY, the PHY has no
256 * ability to establish 1000baseT link.
258 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
259 reg == MII_EXTSR)
260 return (0);
262 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
263 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
264 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
265 DELAY(5);
266 v = CSR_READ_4(sc, ALC_MDIO);
267 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
268 break;
271 if (i == 0) {
272 device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
273 return (0);
276 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
279 static int
280 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
282 struct alc_softc *sc;
283 uint32_t v;
284 int i;
286 sc = device_get_softc(dev);
288 if (phy != sc->alc_phyaddr)
289 return (0);
291 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
292 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
293 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
294 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
295 DELAY(5);
296 v = CSR_READ_4(sc, ALC_MDIO);
297 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
298 break;
301 if (i == 0)
302 device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
304 return (0);
307 static void
308 alc_miibus_statchg(device_t dev)
310 struct alc_softc *sc;
311 struct mii_data *mii;
312 struct ifnet *ifp;
313 uint32_t reg;
315 sc = device_get_softc(dev);
317 mii = device_get_softc(sc->alc_miibus);
318 ifp = sc->alc_ifp;
319 if (mii == NULL || ifp == NULL ||
320 (ifp->if_flags & IFF_RUNNING) == 0)
321 return;
323 sc->alc_flags &= ~ALC_FLAG_LINK;
324 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
325 (IFM_ACTIVE | IFM_AVALID)) {
326 switch (IFM_SUBTYPE(mii->mii_media_active)) {
327 case IFM_10_T:
328 case IFM_100_TX:
329 sc->alc_flags |= ALC_FLAG_LINK;
330 break;
331 case IFM_1000_T:
332 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
333 sc->alc_flags |= ALC_FLAG_LINK;
334 break;
335 default:
336 break;
339 alc_stop_queue(sc);
340 /* Stop Rx/Tx MACs. */
341 alc_stop_mac(sc);
343 /* Program MACs with resolved speed/duplex/flow-control. */
344 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
345 alc_start_queue(sc);
346 alc_mac_config(sc);
347 /* Re-enable Tx/Rx MACs. */
348 reg = CSR_READ_4(sc, ALC_MAC_CFG);
349 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
350 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
352 alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
355 static void
356 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
358 struct alc_softc *sc;
359 struct mii_data *mii;
361 sc = ifp->if_softc;
362 ALC_LOCK(sc);
363 if ((ifp->if_flags & IFF_UP) == 0) {
364 ALC_UNLOCK(sc);
365 return;
367 mii = device_get_softc(sc->alc_miibus);
369 mii_pollstat(mii);
370 ALC_UNLOCK(sc);
371 ifmr->ifm_status = mii->mii_media_status;
372 ifmr->ifm_active = mii->mii_media_active;
375 static int
376 alc_mediachange(struct ifnet *ifp)
378 struct alc_softc *sc;
379 struct mii_data *mii;
380 struct mii_softc *miisc;
381 int error;
383 sc = ifp->if_softc;
384 ALC_LOCK(sc);
385 mii = device_get_softc(sc->alc_miibus);
386 if (mii->mii_instance != 0) {
387 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
388 mii_phy_reset(miisc);
390 error = mii_mediachg(mii);
391 ALC_UNLOCK(sc);
393 return (error);
396 static struct alc_ident *
397 alc_find_ident(device_t dev)
399 struct alc_ident *ident;
400 uint16_t vendor, devid;
402 vendor = pci_get_vendor(dev);
403 devid = pci_get_device(dev);
404 for (ident = alc_ident_table; ident->name != NULL; ident++) {
405 if (vendor == ident->vendorid && devid == ident->deviceid)
406 return (ident);
408 return (NULL);
411 static int
412 alc_probe(device_t dev)
414 struct alc_ident *ident;
416 ident = alc_find_ident(dev);
417 if (ident != NULL) {
418 device_set_desc(dev, ident->name);
419 return (BUS_PROBE_DEFAULT);
421 return (ENXIO);
424 static void
425 alc_get_macaddr(struct alc_softc *sc)
427 uint32_t ea[2], opt;
428 uint16_t val;
429 int eeprom, i;
431 eeprom = 0;
432 opt = CSR_READ_4(sc, ALC_OPT_CFG);
433 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
434 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
436 * EEPROM found, let TWSI reload EEPROM configuration.
437 * This will set ethernet address of controller.
439 eeprom++;
440 switch (sc->alc_ident->deviceid) {
441 case DEVICEID_ATHEROS_AR8131:
442 case DEVICEID_ATHEROS_AR8132:
443 if ((opt & OPT_CFG_CLK_ENB) == 0) {
444 opt |= OPT_CFG_CLK_ENB;
445 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
446 CSR_READ_4(sc, ALC_OPT_CFG);
447 DELAY(1000);
449 break;
450 case DEVICEID_ATHEROS_AR8151:
451 case DEVICEID_ATHEROS_AR8151_V2:
452 case DEVICEID_ATHEROS_AR8152_B:
453 case DEVICEID_ATHEROS_AR8152_B2:
454 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
455 ALC_MII_DBG_ADDR, 0x00);
456 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
457 ALC_MII_DBG_DATA);
458 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
459 ALC_MII_DBG_DATA, val & 0xFF7F);
460 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
461 ALC_MII_DBG_ADDR, 0x3B);
462 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
463 ALC_MII_DBG_DATA);
464 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
465 ALC_MII_DBG_DATA, val | 0x0008);
466 DELAY(20);
467 break;
470 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
471 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
472 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
473 CSR_READ_4(sc, ALC_WOL_CFG);
475 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
476 TWSI_CFG_SW_LD_START);
478 for (i = 100; i > 0; i--) {
479 DELAY(1000);
480 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
481 TWSI_CFG_SW_LD_START) == 0)
482 break;
484 if (i == 0)
485 device_printf(sc->alc_dev,
486 "reloading EEPROM timeout!\n");
487 } else {
488 if (bootverbose)
489 device_printf(sc->alc_dev, "EEPROM not found!\n");
492 if (eeprom != 0) {
493 switch (sc->alc_ident->deviceid) {
494 case DEVICEID_ATHEROS_AR8131:
495 case DEVICEID_ATHEROS_AR8132:
496 if ((opt & OPT_CFG_CLK_ENB) != 0) {
497 opt &= ~OPT_CFG_CLK_ENB;
498 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
499 CSR_READ_4(sc, ALC_OPT_CFG);
500 DELAY(1000);
502 break;
503 case DEVICEID_ATHEROS_AR8151:
504 case DEVICEID_ATHEROS_AR8151_V2:
505 case DEVICEID_ATHEROS_AR8152_B:
506 case DEVICEID_ATHEROS_AR8152_B2:
507 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
508 ALC_MII_DBG_ADDR, 0x00);
509 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
510 ALC_MII_DBG_DATA);
511 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
512 ALC_MII_DBG_DATA, val | 0x0080);
513 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
514 ALC_MII_DBG_ADDR, 0x3B);
515 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
516 ALC_MII_DBG_DATA);
517 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
518 ALC_MII_DBG_DATA, val & 0xFFF7);
519 DELAY(20);
520 break;
524 ea[0] = CSR_READ_4(sc, ALC_PAR0);
525 ea[1] = CSR_READ_4(sc, ALC_PAR1);
526 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
527 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
528 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
529 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
530 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
531 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
534 static void
535 alc_disable_l0s_l1(struct alc_softc *sc)
537 uint32_t pmcfg;
539 /* Another magic from vendor. */
540 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
541 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
542 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
543 PM_CFG_SERDES_PD_EX_L1);
544 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
545 PM_CFG_SERDES_L1_ENB;
546 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
549 static void
550 alc_phy_reset(struct alc_softc *sc)
552 uint16_t data;
554 /* Reset magic from Linux. */
555 CSR_WRITE_2(sc, ALC_GPHY_CFG,
556 GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
557 CSR_READ_2(sc, ALC_GPHY_CFG);
558 DELAY(10 * 1000);
560 CSR_WRITE_2(sc, ALC_GPHY_CFG,
561 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
562 GPHY_CFG_SEL_ANA_RESET);
563 CSR_READ_2(sc, ALC_GPHY_CFG);
564 DELAY(10 * 1000);
566 /* DSP fixup, Vendor magic. */
567 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
568 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
569 ALC_MII_DBG_ADDR, 0x000A);
570 data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
571 ALC_MII_DBG_DATA);
572 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
573 ALC_MII_DBG_DATA, data & 0xDFFF);
575 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
576 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
577 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
578 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
579 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
580 ALC_MII_DBG_ADDR, 0x003B);
581 data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
582 ALC_MII_DBG_DATA);
583 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
584 ALC_MII_DBG_DATA, data & 0xFFF7);
585 DELAY(20 * 1000);
587 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
588 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
589 ALC_MII_DBG_ADDR, 0x0029);
590 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
591 ALC_MII_DBG_DATA, 0x929D);
593 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
594 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
595 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
596 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
597 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
598 ALC_MII_DBG_ADDR, 0x0029);
599 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
600 ALC_MII_DBG_DATA, 0xB6DD);
603 /* Load DSP codes, vendor magic. */
604 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
605 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
606 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
607 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
608 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
609 ALC_MII_DBG_DATA, data);
611 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
612 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
613 ANA_SERDES_EN_LCKDT;
614 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
615 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
616 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
617 ALC_MII_DBG_DATA, data);
619 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
620 ANA_LONG_CABLE_TH_100_MASK) |
621 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
622 ANA_SHORT_CABLE_TH_100_SHIFT) |
623 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
624 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
625 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
626 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
627 ALC_MII_DBG_DATA, data);
629 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
630 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
631 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
632 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
633 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
634 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
635 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
636 ALC_MII_DBG_DATA, data);
638 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
639 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
640 ANA_OEN_125M;
641 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
642 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
643 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
644 ALC_MII_DBG_DATA, data);
645 DELAY(1000);
648 static void
649 alc_phy_down(struct alc_softc *sc)
651 switch (sc->alc_ident->deviceid) {
652 case DEVICEID_ATHEROS_AR8151:
653 case DEVICEID_ATHEROS_AR8151_V2:
655 * GPHY power down caused more problems on AR8151 v2.0.
656 * When driver is reloaded after GPHY power down,
657 * accesses to PHY/MAC registers hung the system. Only
658 * cold boot recovered from it. I'm not sure whether
659 * AR8151 v1.0 also requires this one though. I don't
660 * have AR8151 v1.0 controller in hand.
661 * The only option left is to isolate the PHY and
662 * initiates power down the PHY which in turn saves
663 * more power when driver is unloaded.
665 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
666 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
667 break;
668 default:
669 /* Force PHY down. */
670 CSR_WRITE_2(sc, ALC_GPHY_CFG,
671 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
672 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
673 GPHY_CFG_PWDOWN_HW);
674 DELAY(1000);
675 break;
680 static void
681 alc_aspm(struct alc_softc *sc, int media)
683 uint32_t pmcfg;
684 uint16_t linkcfg;
686 ALC_LOCK_ASSERT(sc);
688 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
689 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
690 (ALC_FLAG_APS | ALC_FLAG_PCIE)) {
691 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
692 PCIR_EXPRESS_LINK_CTL);
693 } else {
694 linkcfg = 0;
697 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
698 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
699 pmcfg |= PM_CFG_MAC_ASPM_CHK;
700 pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
701 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
703 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
704 /* Disable extended sync except AR8152 B v1.0 */
705 linkcfg &= ~0x80;
706 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
707 sc->alc_rev == ATHEROS_AR8152_B_V10)
708 linkcfg |= 0x80;
709 CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
710 linkcfg);
711 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
712 PM_CFG_HOTRST);
713 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
714 PM_CFG_L1_ENTRY_TIMER_SHIFT);
715 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
716 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
717 PM_CFG_PM_REQ_TIMER_SHIFT);
718 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
721 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
722 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
723 pmcfg |= PM_CFG_ASPM_L0S_ENB;
724 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
725 pmcfg |= PM_CFG_ASPM_L1_ENB;
726 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
727 if (sc->alc_ident->deviceid ==
728 DEVICEID_ATHEROS_AR8152_B) {
729 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
731 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
732 PM_CFG_SERDES_PLL_L1_ENB |
733 PM_CFG_SERDES_BUDS_RX_L1_ENB);
734 pmcfg |= PM_CFG_CLK_SWH_L1;
735 if (media == IFM_100_TX || media == IFM_1000_T) {
736 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
737 switch (sc->alc_ident->deviceid) {
738 case DEVICEID_ATHEROS_AR8152_B:
739 pmcfg |= (7 <<
740 PM_CFG_L1_ENTRY_TIMER_SHIFT);
741 break;
742 case DEVICEID_ATHEROS_AR8152_B2:
743 case DEVICEID_ATHEROS_AR8151_V2:
744 pmcfg |= (4 <<
745 PM_CFG_L1_ENTRY_TIMER_SHIFT);
746 break;
747 default:
748 pmcfg |= (15 <<
749 PM_CFG_L1_ENTRY_TIMER_SHIFT);
750 break;
753 } else {
754 pmcfg |= PM_CFG_SERDES_L1_ENB |
755 PM_CFG_SERDES_PLL_L1_ENB |
756 PM_CFG_SERDES_BUDS_RX_L1_ENB;
757 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
758 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
760 } else {
761 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
762 PM_CFG_SERDES_PLL_L1_ENB);
763 pmcfg |= PM_CFG_CLK_SWH_L1;
764 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
765 pmcfg |= PM_CFG_ASPM_L1_ENB;
767 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
770 static int
771 alc_attach(device_t dev)
773 struct alc_softc *sc;
774 struct ifnet *ifp;
775 char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
776 uint16_t burst;
777 int base, error, i, msic, msixc, state;
778 uint32_t cap, ctl, val;
780 error = 0;
781 sc = device_get_softc(dev);
782 sc->alc_dev = dev;
784 lockinit(&sc->alc_lock, "alc_lock", 0, LK_CANRECURSE);
785 callout_init_mp(&sc->alc_tick_ch);
786 TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
787 sc->alc_ident = alc_find_ident(dev);
789 /* Map the device. */
790 pci_enable_busmaster(dev);
791 sc->alc_res_spec = alc_res_spec_mem;
792 sc->alc_irq_spec = alc_irq_spec_legacy;
793 error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
794 if (error != 0) {
795 device_printf(dev, "cannot allocate memory resources.\n");
796 goto fail;
799 /* Set PHY address. */
800 sc->alc_phyaddr = ALC_PHY_ADDR;
802 /* Initialize DMA parameters. */
803 sc->alc_dma_rd_burst = 0;
804 sc->alc_dma_wr_burst = 0;
805 sc->alc_rcb = DMA_CFG_RCB_64;
806 if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
807 sc->alc_flags |= ALC_FLAG_PCIE;
808 sc->alc_expcap = base;
809 burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
810 sc->alc_dma_rd_burst =
811 (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
812 sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
813 if (bootverbose) {
814 device_printf(dev, "Read request size : %u bytes.\n",
815 alc_dma_burst[sc->alc_dma_rd_burst]);
816 device_printf(dev, "TLP payload size : %u bytes.\n",
817 alc_dma_burst[sc->alc_dma_wr_burst]);
819 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
820 sc->alc_dma_rd_burst = 3;
821 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
822 sc->alc_dma_wr_burst = 3;
823 /* Clear data link and flow-control protocol error. */
824 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
825 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
826 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
827 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
828 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
829 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
830 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
831 PCIE_PHYMISC_FORCE_RCV_DET);
832 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
833 sc->alc_rev == ATHEROS_AR8152_B_V10) {
834 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
835 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
836 PCIE_PHYMISC2_SERDES_TH_MASK);
837 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
838 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
839 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
842 /* Disable ASPM L0S and L1. */
843 cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
844 if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
845 ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
846 if ((ctl & 0x08) != 0)
847 sc->alc_rcb = DMA_CFG_RCB_128;
848 if (bootverbose)
849 device_printf(dev, "RCB %u bytes\n",
850 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
851 state = ctl & 0x03;
852 if (state & 0x01)
853 sc->alc_flags |= ALC_FLAG_L0S;
854 if (state & 0x02)
855 sc->alc_flags |= ALC_FLAG_L1S;
856 if (bootverbose)
857 device_printf(sc->alc_dev, "ASPM %s %s\n",
858 aspm_state[state],
859 state == 0 ? "disabled" : "enabled");
860 alc_disable_l0s_l1(sc);
861 } else {
862 if (bootverbose)
863 device_printf(sc->alc_dev, "no ASPM support\n");
867 /* Reset PHY. */
868 alc_phy_reset(sc);
870 /* Reset the ethernet controller. */
871 alc_reset(sc);
874 * One odd thing is AR8132 uses the same PHY hardware(F1
875 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
876 * the PHY supports 1000Mbps but that's not true. The PHY
877 * used in AR8132 can't establish gigabit link even if it
878 * shows the same PHY model/revision number of AR8131.
880 switch (sc->alc_ident->deviceid) {
881 case DEVICEID_ATHEROS_AR8152_B:
882 case DEVICEID_ATHEROS_AR8152_B2:
883 sc->alc_flags |= ALC_FLAG_APS;
884 /* FALLTHROUGH */
885 case DEVICEID_ATHEROS_AR8132:
886 sc->alc_flags |= ALC_FLAG_FASTETHER;
887 break;
888 case DEVICEID_ATHEROS_AR8151:
889 case DEVICEID_ATHEROS_AR8151_V2:
890 sc->alc_flags |= ALC_FLAG_APS;
891 /* FALLTHROUGH */
892 default:
893 break;
895 sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
898 * It seems that AR813x/AR815x has silicon bug for SMB. In
899 * addition, Atheros said that enabling SMB wouldn't improve
900 * performance. However I think it's bad to access lots of
901 * registers to extract MAC statistics.
903 sc->alc_flags |= ALC_FLAG_SMB_BUG;
906 * Don't use Tx CMB. It is known to have silicon bug.
908 sc->alc_flags |= ALC_FLAG_CMB_BUG;
909 sc->alc_rev = pci_get_revid(dev);
910 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
911 MASTER_CHIP_REV_SHIFT;
912 if (bootverbose) {
913 device_printf(dev, "PCI device revision : 0x%04x\n",
914 sc->alc_rev);
915 device_printf(dev, "Chip id/revision : 0x%04x\n",
916 sc->alc_chip_rev);
918 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
919 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
920 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
922 /* Allocate IRQ resources. */
923 msixc = pci_msix_count(dev);
924 msic = pci_msi_count(dev);
925 if (bootverbose) {
926 device_printf(dev, "MSIX count : %d\n", msixc);
927 device_printf(dev, "MSI count : %d\n", msic);
930 #ifdef OLD_MSI
931 /* Prefer MSIX over MSI. */
932 if (msix_disable == 0 || msi_disable == 0) {
933 if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
934 pci_alloc_msix(dev, &msixc) == 0) {
935 if (msic == ALC_MSIX_MESSAGES) {
936 device_printf(dev,
937 "Using %d MSIX message(s).\n", msixc);
938 sc->alc_flags |= ALC_FLAG_MSIX;
939 sc->alc_irq_spec = alc_irq_spec_msix;
940 } else
941 pci_release_msi(dev);
943 if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
944 msic == ALC_MSI_MESSAGES &&
945 pci_alloc_msi(dev, &msic) == 0) {
946 if (msic == ALC_MSI_MESSAGES) {
947 device_printf(dev,
948 "Using %d MSI message(s).\n", msic);
949 sc->alc_flags |= ALC_FLAG_MSI;
950 sc->alc_irq_spec = alc_irq_spec_msi;
951 } else
952 pci_release_msi(dev);
955 #endif
957 error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
958 if (error != 0) {
959 device_printf(dev, "cannot allocate IRQ resources.\n");
960 goto fail;
963 /* Create device sysctl node. */
964 alc_sysctl_node(sc);
966 if ((error = alc_dma_alloc(sc) != 0))
967 goto fail;
969 /* Load station address. */
970 alc_get_macaddr(sc);
972 ifp = sc->alc_ifp = &sc->arpcom.ac_if;
973 ifp->if_softc = sc;
974 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
975 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
976 ifp->if_ioctl = alc_ioctl;
977 ifp->if_start = alc_start;
978 ifp->if_init = alc_init;
979 ifp->if_snd.ifq_maxlen = ALC_TX_RING_CNT - 1;
980 ifq_set_maxlen(&ifp->if_snd, ifp->if_snd.ifq_maxlen);
981 ifq_set_ready(&ifp->if_snd);
982 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
983 ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
984 #if 0
985 /* XXX: WOL */
986 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
987 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
988 sc->alc_flags |= ALC_FLAG_PM;
989 sc->alc_pmcap = base;
991 #endif
992 ifp->if_capenable = ifp->if_capabilities;
994 /* Set up MII bus. */
995 if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
996 alc_mediastatus)) != 0) {
997 device_printf(dev, "no PHY found!\n");
998 goto fail;
1001 ether_ifattach(ifp, sc->alc_eaddr, NULL);
1003 /* VLAN capability setup. */
1004 ifp->if_capabilities |= IFCAP_VLAN_MTU;
1005 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1006 ifp->if_capenable = ifp->if_capabilities;
1008 * XXX
1009 * It seems enabling Tx checksum offloading makes more trouble.
1010 * Sometimes the controller does not receive any frames when
1011 * Tx checksum offloading is enabled. I'm not sure whether this
1012 * is a bug in Tx checksum offloading logic or I got broken
1013 * sample boards. To safety, don't enable Tx checksum offloading
1014 * by default but give chance to users to toggle it if they know
1015 * their controllers work without problems.
1017 ifp->if_capenable &= ~IFCAP_TXCSUM;
1018 ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1020 /* Tell the upper layer(s) we support long frames. */
1021 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1023 /* Create local taskq. */
1024 TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
1025 sc->alc_tq = taskqueue_create("alc_taskq", M_WAITOK,
1026 taskqueue_thread_enqueue, &sc->alc_tq);
1027 if (sc->alc_tq == NULL) {
1028 device_printf(dev, "could not create taskqueue.\n");
1029 ether_ifdetach(ifp);
1030 error = ENXIO;
1031 goto fail;
1033 taskqueue_start_threads(&sc->alc_tq, 1, TDPRI_KERN_DAEMON, -1, "%s taskq",
1034 device_get_nameunit(sc->alc_dev));
1036 if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1037 msic = ALC_MSIX_MESSAGES;
1038 else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1039 msic = ALC_MSI_MESSAGES;
1040 else
1041 msic = 1;
1042 for (i = 0; i < msic; i++) {
1043 error = bus_setup_intr(dev, sc->alc_irq[i], INTR_MPSAFE,
1044 alc_intr, sc,
1045 &sc->alc_intrhand[i], NULL);
1046 if (error != 0)
1047 break;
1049 if (error != 0) {
1050 device_printf(dev, "could not set up interrupt handler.\n");
1051 taskqueue_free(sc->alc_tq);
1052 sc->alc_tq = NULL;
1053 ether_ifdetach(ifp);
1054 goto fail;
1057 fail:
1058 if (error != 0)
1059 alc_detach(dev);
1061 return (error);
1064 static int
1065 alc_detach(device_t dev)
1067 struct alc_softc *sc;
1068 struct ifnet *ifp;
1069 int i, msic;
1071 sc = device_get_softc(dev);
1073 ifp = sc->alc_ifp;
1074 if (device_is_attached(dev)) {
1075 ALC_LOCK(sc);
1076 sc->alc_flags |= ALC_FLAG_DETACH;
1077 alc_stop(sc);
1078 ALC_UNLOCK(sc);
1079 #if 0
1080 /* XXX */
1081 callout_drain(&sc->alc_tick_ch);
1082 #endif
1083 taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1084 taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
1085 ether_ifdetach(ifp);
1088 if (sc->alc_tq != NULL) {
1089 taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1090 taskqueue_free(sc->alc_tq);
1091 sc->alc_tq = NULL;
1094 if (sc->alc_miibus != NULL) {
1095 device_delete_child(dev, sc->alc_miibus);
1096 sc->alc_miibus = NULL;
1098 bus_generic_detach(dev);
1099 alc_dma_free(sc);
1101 if (ifp != NULL) {
1102 // XXX? if_free(ifp);
1103 sc->alc_ifp = NULL;
1106 if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1107 msic = ALC_MSIX_MESSAGES;
1108 else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1109 msic = ALC_MSI_MESSAGES;
1110 else
1111 msic = 1;
1112 for (i = 0; i < msic; i++) {
1113 if (sc->alc_intrhand[i] != NULL) {
1114 bus_teardown_intr(dev, sc->alc_irq[i],
1115 sc->alc_intrhand[i]);
1116 sc->alc_intrhand[i] = NULL;
1119 if (sc->alc_res[0] != NULL)
1120 alc_phy_down(sc);
1121 bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1122 if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1123 pci_release_msi(dev);
1124 bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1125 lockuninit(&sc->alc_lock);
1127 return (0);
1130 #define ALC_SYSCTL_STAT_ADD32(c, h, n, p, d) \
1131 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1132 #define ALC_SYSCTL_STAT_ADD64(c, h, n, p, d) \
1133 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1135 static void
1136 alc_sysctl_node(struct alc_softc *sc)
1138 struct sysctl_ctx_list *ctx;
1139 struct sysctl_oid *tree;
1140 struct sysctl_oid_list *child, *parent;
1141 struct alc_hw_stats *stats;
1142 int error;
1144 stats = &sc->alc_stats;
1145 ctx = &sc->alc_sysctl_ctx;
1146 sysctl_ctx_init(ctx);
1148 tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
1149 OID_AUTO,
1150 device_get_nameunit(sc->alc_dev),
1151 CTLFLAG_RD, 0, "");
1152 if (tree == NULL) {
1153 device_printf(sc->alc_dev, "can't add sysctl node\n");
1154 return;
1156 child = SYSCTL_CHILDREN(tree);
1158 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1159 CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1160 sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1161 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1162 CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1163 sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1164 /* Pull in device tunables. */
1165 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1166 error = resource_int_value(device_get_name(sc->alc_dev),
1167 device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1168 if (error == 0) {
1169 if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1170 sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1171 device_printf(sc->alc_dev, "int_rx_mod value out of "
1172 "range; using default: %d\n",
1173 ALC_IM_RX_TIMER_DEFAULT);
1174 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1177 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1178 error = resource_int_value(device_get_name(sc->alc_dev),
1179 device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1180 if (error == 0) {
1181 if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1182 sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1183 device_printf(sc->alc_dev, "int_tx_mod value out of "
1184 "range; using default: %d\n",
1185 ALC_IM_TX_TIMER_DEFAULT);
1186 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1189 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1190 CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1191 sysctl_hw_alc_proc_limit, "I",
1192 "max number of Rx events to process");
1193 /* Pull in device tunables. */
1194 sc->alc_process_limit = ALC_PROC_DEFAULT;
1195 error = resource_int_value(device_get_name(sc->alc_dev),
1196 device_get_unit(sc->alc_dev), "process_limit",
1197 &sc->alc_process_limit);
1198 if (error == 0) {
1199 if (sc->alc_process_limit < ALC_PROC_MIN ||
1200 sc->alc_process_limit > ALC_PROC_MAX) {
1201 device_printf(sc->alc_dev,
1202 "process_limit value out of range; "
1203 "using default: %d\n", ALC_PROC_DEFAULT);
1204 sc->alc_process_limit = ALC_PROC_DEFAULT;
1208 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1209 NULL, "ALC statistics");
1210 parent = SYSCTL_CHILDREN(tree);
1212 /* Rx statistics. */
1213 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1214 NULL, "Rx MAC statistics");
1215 child = SYSCTL_CHILDREN(tree);
1216 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1217 &stats->rx_frames, "Good frames");
1218 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1219 &stats->rx_bcast_frames, "Good broadcast frames");
1220 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1221 &stats->rx_mcast_frames, "Good multicast frames");
1222 ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1223 &stats->rx_pause_frames, "Pause control frames");
1224 ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1225 &stats->rx_control_frames, "Control frames");
1226 ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1227 &stats->rx_crcerrs, "CRC errors");
1228 ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1229 &stats->rx_lenerrs, "Frames with length mismatched");
1230 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1231 &stats->rx_bytes, "Good octets");
1232 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1233 &stats->rx_bcast_bytes, "Good broadcast octets");
1234 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1235 &stats->rx_mcast_bytes, "Good multicast octets");
1236 ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1237 &stats->rx_runts, "Too short frames");
1238 ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1239 &stats->rx_fragments, "Fragmented frames");
1240 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1241 &stats->rx_pkts_64, "64 bytes frames");
1242 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1243 &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1244 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1245 &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1246 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1247 &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1248 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1249 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1250 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1251 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1252 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1253 &stats->rx_pkts_1519_max, "1519 to max frames");
1254 ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1255 &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1256 ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1257 &stats->rx_fifo_oflows, "FIFO overflows");
1258 ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1259 &stats->rx_rrs_errs, "Return status write-back errors");
1260 ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1261 &stats->rx_alignerrs, "Alignment errors");
1262 ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1263 &stats->rx_pkts_filtered,
1264 "Frames dropped due to address filtering");
1266 /* Tx statistics. */
1267 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1268 NULL, "Tx MAC statistics");
1269 child = SYSCTL_CHILDREN(tree);
1270 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1271 &stats->tx_frames, "Good frames");
1272 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1273 &stats->tx_bcast_frames, "Good broadcast frames");
1274 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1275 &stats->tx_mcast_frames, "Good multicast frames");
1276 ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1277 &stats->tx_pause_frames, "Pause control frames");
1278 ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1279 &stats->tx_control_frames, "Control frames");
1280 ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1281 &stats->tx_excess_defer, "Frames with excessive derferrals");
1282 ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1283 &stats->tx_excess_defer, "Frames with derferrals");
1284 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1285 &stats->tx_bytes, "Good octets");
1286 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1287 &stats->tx_bcast_bytes, "Good broadcast octets");
1288 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1289 &stats->tx_mcast_bytes, "Good multicast octets");
1290 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1291 &stats->tx_pkts_64, "64 bytes frames");
1292 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1293 &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1294 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1295 &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1296 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1297 &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1298 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1299 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1300 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1301 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1302 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1303 &stats->tx_pkts_1519_max, "1519 to max frames");
1304 ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1305 &stats->tx_single_colls, "Single collisions");
1306 ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1307 &stats->tx_multi_colls, "Multiple collisions");
1308 ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1309 &stats->tx_late_colls, "Late collisions");
1310 ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1311 &stats->tx_excess_colls, "Excessive collisions");
1312 ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1313 &stats->tx_abort, "Aborted frames due to Excessive collisions");
1314 ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1315 &stats->tx_underrun, "FIFO underruns");
1316 ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1317 &stats->tx_desc_underrun, "Descriptor write-back errors");
1318 ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1319 &stats->tx_lenerrs, "Frames with length mismatched");
1320 ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1321 &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1324 #undef ALC_SYSCTL_STAT_ADD32
1325 #undef ALC_SYSCTL_STAT_ADD64
1327 struct alc_dmamap_arg {
1328 bus_addr_t alc_busaddr;
1331 static void
1332 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1334 struct alc_dmamap_arg *ctx;
1336 if (error != 0)
1337 return;
1339 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1341 ctx = (struct alc_dmamap_arg *)arg;
1342 ctx->alc_busaddr = segs[0].ds_addr;
1346 * Normal and high Tx descriptors shares single Tx high address.
1347 * Four Rx descriptor/return rings and CMB shares the same Rx
1348 * high address.
1350 static int
1351 alc_check_boundary(struct alc_softc *sc)
1353 bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1355 rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1356 rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1357 cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1358 tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1360 /* 4GB boundary crossing is not allowed. */
1361 if ((ALC_ADDR_HI(rx_ring_end) !=
1362 ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1363 (ALC_ADDR_HI(rr_ring_end) !=
1364 ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1365 (ALC_ADDR_HI(cmb_end) !=
1366 ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1367 (ALC_ADDR_HI(tx_ring_end) !=
1368 ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1369 return (EFBIG);
1371 * Make sure Rx return descriptor/Rx descriptor/CMB use
1372 * the same high address.
1374 if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1375 (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1376 return (EFBIG);
1378 return (0);
1381 static int
1382 alc_dma_alloc(struct alc_softc *sc)
1384 struct alc_txdesc *txd;
1385 struct alc_rxdesc *rxd;
1386 bus_addr_t lowaddr;
1387 struct alc_dmamap_arg ctx;
1388 int error, i;
1390 lowaddr = BUS_SPACE_MAXADDR;
1391 again:
1392 /* Create parent DMA tag. */
1393 error = bus_dma_tag_create(
1394 sc->alc_cdata.alc_parent_tag, /* parent */
1395 1, 0, /* alignment, boundary */
1396 lowaddr, /* lowaddr */
1397 BUS_SPACE_MAXADDR, /* highaddr */
1398 NULL, NULL, /* filter, filterarg */
1399 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1400 0, /* nsegments */
1401 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1402 0, /* flags */
1403 &sc->alc_cdata.alc_parent_tag);
1404 if (error != 0) {
1405 device_printf(sc->alc_dev,
1406 "could not create parent DMA tag.\n");
1407 goto fail;
1410 /* Create DMA tag for Tx descriptor ring. */
1411 error = bus_dma_tag_create(
1412 sc->alc_cdata.alc_parent_tag, /* parent */
1413 ALC_TX_RING_ALIGN, 0, /* alignment, boundary */
1414 BUS_SPACE_MAXADDR, /* lowaddr */
1415 BUS_SPACE_MAXADDR, /* highaddr */
1416 NULL, NULL, /* filter, filterarg */
1417 ALC_TX_RING_SZ, /* maxsize */
1418 1, /* nsegments */
1419 ALC_TX_RING_SZ, /* maxsegsize */
1420 0, /* flags */
1421 &sc->alc_cdata.alc_tx_ring_tag);
1422 if (error != 0) {
1423 device_printf(sc->alc_dev,
1424 "could not create Tx ring DMA tag.\n");
1425 goto fail;
1428 /* Create DMA tag for Rx free descriptor ring. */
1429 error = bus_dma_tag_create(
1430 sc->alc_cdata.alc_parent_tag, /* parent */
1431 ALC_RX_RING_ALIGN, 0, /* alignment, boundary */
1432 BUS_SPACE_MAXADDR, /* lowaddr */
1433 BUS_SPACE_MAXADDR, /* highaddr */
1434 NULL, NULL, /* filter, filterarg */
1435 ALC_RX_RING_SZ, /* maxsize */
1436 1, /* nsegments */
1437 ALC_RX_RING_SZ, /* maxsegsize */
1438 0, /* flags */
1439 &sc->alc_cdata.alc_rx_ring_tag);
1440 if (error != 0) {
1441 device_printf(sc->alc_dev,
1442 "could not create Rx ring DMA tag.\n");
1443 goto fail;
1445 /* Create DMA tag for Rx return descriptor ring. */
1446 error = bus_dma_tag_create(
1447 sc->alc_cdata.alc_parent_tag, /* parent */
1448 ALC_RR_RING_ALIGN, 0, /* alignment, boundary */
1449 BUS_SPACE_MAXADDR, /* lowaddr */
1450 BUS_SPACE_MAXADDR, /* highaddr */
1451 NULL, NULL, /* filter, filterarg */
1452 ALC_RR_RING_SZ, /* maxsize */
1453 1, /* nsegments */
1454 ALC_RR_RING_SZ, /* maxsegsize */
1455 0, /* flags */
1456 &sc->alc_cdata.alc_rr_ring_tag);
1457 if (error != 0) {
1458 device_printf(sc->alc_dev,
1459 "could not create Rx return ring DMA tag.\n");
1460 goto fail;
1463 /* Create DMA tag for coalescing message block. */
1464 error = bus_dma_tag_create(
1465 sc->alc_cdata.alc_parent_tag, /* parent */
1466 ALC_CMB_ALIGN, 0, /* alignment, boundary */
1467 BUS_SPACE_MAXADDR, /* lowaddr */
1468 BUS_SPACE_MAXADDR, /* highaddr */
1469 NULL, NULL, /* filter, filterarg */
1470 ALC_CMB_SZ, /* maxsize */
1471 1, /* nsegments */
1472 ALC_CMB_SZ, /* maxsegsize */
1473 0, /* flags */
1474 &sc->alc_cdata.alc_cmb_tag);
1475 if (error != 0) {
1476 device_printf(sc->alc_dev,
1477 "could not create CMB DMA tag.\n");
1478 goto fail;
1480 /* Create DMA tag for status message block. */
1481 error = bus_dma_tag_create(
1482 sc->alc_cdata.alc_parent_tag, /* parent */
1483 ALC_SMB_ALIGN, 0, /* alignment, boundary */
1484 BUS_SPACE_MAXADDR, /* lowaddr */
1485 BUS_SPACE_MAXADDR, /* highaddr */
1486 NULL, NULL, /* filter, filterarg */
1487 ALC_SMB_SZ, /* maxsize */
1488 1, /* nsegments */
1489 ALC_SMB_SZ, /* maxsegsize */
1490 0, /* flags */
1491 &sc->alc_cdata.alc_smb_tag);
1492 if (error != 0) {
1493 device_printf(sc->alc_dev,
1494 "could not create SMB DMA tag.\n");
1495 goto fail;
1498 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
1499 error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1500 (void **)&sc->alc_rdata.alc_tx_ring,
1501 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1502 &sc->alc_cdata.alc_tx_ring_map);
1503 if (error != 0) {
1504 device_printf(sc->alc_dev,
1505 "could not allocate DMA'able memory for Tx ring.\n");
1506 goto fail;
1508 ctx.alc_busaddr = 0;
1509 error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1510 sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1511 ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1512 if (error != 0 || ctx.alc_busaddr == 0) {
1513 device_printf(sc->alc_dev,
1514 "could not load DMA'able memory for Tx ring.\n");
1515 goto fail;
1517 sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1519 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
1520 error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1521 (void **)&sc->alc_rdata.alc_rx_ring,
1522 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1523 &sc->alc_cdata.alc_rx_ring_map);
1524 if (error != 0) {
1525 device_printf(sc->alc_dev,
1526 "could not allocate DMA'able memory for Rx ring.\n");
1527 goto fail;
1529 ctx.alc_busaddr = 0;
1530 error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1531 sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1532 ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1533 if (error != 0 || ctx.alc_busaddr == 0) {
1534 device_printf(sc->alc_dev,
1535 "could not load DMA'able memory for Rx ring.\n");
1536 goto fail;
1538 sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1540 /* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1541 error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1542 (void **)&sc->alc_rdata.alc_rr_ring,
1543 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1544 &sc->alc_cdata.alc_rr_ring_map);
1545 if (error != 0) {
1546 device_printf(sc->alc_dev,
1547 "could not allocate DMA'able memory for Rx return ring.\n");
1548 goto fail;
1550 ctx.alc_busaddr = 0;
1551 error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1552 sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1553 ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1554 if (error != 0 || ctx.alc_busaddr == 0) {
1555 device_printf(sc->alc_dev,
1556 "could not load DMA'able memory for Tx ring.\n");
1557 goto fail;
1559 sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1561 /* Allocate DMA'able memory and load the DMA map for CMB. */
1562 error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1563 (void **)&sc->alc_rdata.alc_cmb,
1564 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1565 &sc->alc_cdata.alc_cmb_map);
1566 if (error != 0) {
1567 device_printf(sc->alc_dev,
1568 "could not allocate DMA'able memory for CMB.\n");
1569 goto fail;
1571 ctx.alc_busaddr = 0;
1572 error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1573 sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1574 ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1575 if (error != 0 || ctx.alc_busaddr == 0) {
1576 device_printf(sc->alc_dev,
1577 "could not load DMA'able memory for CMB.\n");
1578 goto fail;
1580 sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1582 /* Allocate DMA'able memory and load the DMA map for SMB. */
1583 error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1584 (void **)&sc->alc_rdata.alc_smb,
1585 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1586 &sc->alc_cdata.alc_smb_map);
1587 if (error != 0) {
1588 device_printf(sc->alc_dev,
1589 "could not allocate DMA'able memory for SMB.\n");
1590 goto fail;
1592 ctx.alc_busaddr = 0;
1593 error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1594 sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1595 ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1596 if (error != 0 || ctx.alc_busaddr == 0) {
1597 device_printf(sc->alc_dev,
1598 "could not load DMA'able memory for CMB.\n");
1599 goto fail;
1601 sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1603 /* Make sure we've not crossed 4GB boundary. */
1604 if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1605 (error = alc_check_boundary(sc)) != 0) {
1606 device_printf(sc->alc_dev, "4GB boundary crossed, "
1607 "switching to 32bit DMA addressing mode.\n");
1608 alc_dma_free(sc);
1610 * Limit max allowable DMA address space to 32bit
1611 * and try again.
1613 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1614 goto again;
1618 * Create Tx buffer parent tag.
1619 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1620 * so it needs separate parent DMA tag as parent DMA address
1621 * space could be restricted to be within 32bit address space
1622 * by 4GB boundary crossing.
1624 error = bus_dma_tag_create(
1625 sc->alc_cdata.alc_parent_tag, /* parent */
1626 1, 0, /* alignment, boundary */
1627 BUS_SPACE_MAXADDR, /* lowaddr */
1628 BUS_SPACE_MAXADDR, /* highaddr */
1629 NULL, NULL, /* filter, filterarg */
1630 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1631 0, /* nsegments */
1632 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1633 0, /* flags */
1634 &sc->alc_cdata.alc_buffer_tag);
1635 if (error != 0) {
1636 device_printf(sc->alc_dev,
1637 "could not create parent buffer DMA tag.\n");
1638 goto fail;
1641 /* Create DMA tag for Tx buffers. */
1642 error = bus_dma_tag_create(
1643 sc->alc_cdata.alc_buffer_tag, /* parent */
1644 1, 0, /* alignment, boundary */
1645 BUS_SPACE_MAXADDR, /* lowaddr */
1646 BUS_SPACE_MAXADDR, /* highaddr */
1647 NULL, NULL, /* filter, filterarg */
1648 ALC_TSO_MAXSIZE, /* maxsize */
1649 ALC_MAXTXSEGS, /* nsegments */
1650 ALC_TSO_MAXSEGSIZE, /* maxsegsize */
1651 0, /* flags */
1652 &sc->alc_cdata.alc_tx_tag);
1653 if (error != 0) {
1654 device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1655 goto fail;
1658 /* Create DMA tag for Rx buffers. */
1659 error = bus_dma_tag_create(
1660 sc->alc_cdata.alc_buffer_tag, /* parent */
1661 ALC_RX_BUF_ALIGN, 0, /* alignment, boundary */
1662 BUS_SPACE_MAXADDR, /* lowaddr */
1663 BUS_SPACE_MAXADDR, /* highaddr */
1664 NULL, NULL, /* filter, filterarg */
1665 MCLBYTES, /* maxsize */
1666 1, /* nsegments */
1667 MCLBYTES, /* maxsegsize */
1668 0, /* flags */
1669 &sc->alc_cdata.alc_rx_tag);
1670 if (error != 0) {
1671 device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1672 goto fail;
1674 /* Create DMA maps for Tx buffers. */
1675 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1676 txd = &sc->alc_cdata.alc_txdesc[i];
1677 txd->tx_m = NULL;
1678 txd->tx_dmamap = NULL;
1679 error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag,
1680 BUS_DMA_WAITOK, &txd->tx_dmamap);
1681 if (error != 0) {
1682 device_printf(sc->alc_dev,
1683 "could not create Tx dmamap.\n");
1684 goto fail;
1687 /* Create DMA maps for Rx buffers. */
1688 error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1689 BUS_DMA_WAITOK,
1690 &sc->alc_cdata.alc_rx_sparemap);
1691 if (error) {
1692 device_printf(sc->alc_dev,
1693 "could not create spare Rx dmamap.\n");
1694 goto fail;
1696 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1697 rxd = &sc->alc_cdata.alc_rxdesc[i];
1698 rxd->rx_m = NULL;
1699 rxd->rx_dmamap = NULL;
1700 error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1701 BUS_DMA_WAITOK,
1702 &rxd->rx_dmamap);
1703 if (error != 0) {
1704 device_printf(sc->alc_dev,
1705 "could not create Rx dmamap.\n");
1706 goto fail;
1710 fail:
1711 return (error);
1714 static void
1715 alc_dma_free(struct alc_softc *sc)
1717 struct alc_txdesc *txd;
1718 struct alc_rxdesc *rxd;
1719 int i;
1721 /* Tx buffers. */
1722 if (sc->alc_cdata.alc_tx_tag != NULL) {
1723 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1724 txd = &sc->alc_cdata.alc_txdesc[i];
1725 if (txd->tx_dmamap != NULL) {
1726 bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1727 txd->tx_dmamap);
1728 txd->tx_dmamap = NULL;
1731 bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1732 sc->alc_cdata.alc_tx_tag = NULL;
1734 /* Rx buffers */
1735 if (sc->alc_cdata.alc_rx_tag != NULL) {
1736 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1737 rxd = &sc->alc_cdata.alc_rxdesc[i];
1738 if (rxd->rx_dmamap != NULL) {
1739 bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1740 rxd->rx_dmamap);
1741 rxd->rx_dmamap = NULL;
1744 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1745 bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1746 sc->alc_cdata.alc_rx_sparemap);
1747 sc->alc_cdata.alc_rx_sparemap = NULL;
1749 bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1750 sc->alc_cdata.alc_rx_tag = NULL;
1752 /* Tx descriptor ring. */
1753 if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1754 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1755 bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1756 sc->alc_cdata.alc_tx_ring_map);
1757 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1758 sc->alc_rdata.alc_tx_ring != NULL)
1759 bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1760 sc->alc_rdata.alc_tx_ring,
1761 sc->alc_cdata.alc_tx_ring_map);
1762 sc->alc_rdata.alc_tx_ring = NULL;
1763 sc->alc_cdata.alc_tx_ring_map = NULL;
1764 bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1765 sc->alc_cdata.alc_tx_ring_tag = NULL;
1767 /* Rx ring. */
1768 if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1769 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1770 bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1771 sc->alc_cdata.alc_rx_ring_map);
1772 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1773 sc->alc_rdata.alc_rx_ring != NULL)
1774 bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1775 sc->alc_rdata.alc_rx_ring,
1776 sc->alc_cdata.alc_rx_ring_map);
1777 sc->alc_rdata.alc_rx_ring = NULL;
1778 sc->alc_cdata.alc_rx_ring_map = NULL;
1779 bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1780 sc->alc_cdata.alc_rx_ring_tag = NULL;
1782 /* Rx return ring. */
1783 if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1784 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1785 bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1786 sc->alc_cdata.alc_rr_ring_map);
1787 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1788 sc->alc_rdata.alc_rr_ring != NULL)
1789 bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1790 sc->alc_rdata.alc_rr_ring,
1791 sc->alc_cdata.alc_rr_ring_map);
1792 sc->alc_rdata.alc_rr_ring = NULL;
1793 sc->alc_cdata.alc_rr_ring_map = NULL;
1794 bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1795 sc->alc_cdata.alc_rr_ring_tag = NULL;
1797 /* CMB block */
1798 if (sc->alc_cdata.alc_cmb_tag != NULL) {
1799 if (sc->alc_cdata.alc_cmb_map != NULL)
1800 bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1801 sc->alc_cdata.alc_cmb_map);
1802 if (sc->alc_cdata.alc_cmb_map != NULL &&
1803 sc->alc_rdata.alc_cmb != NULL)
1804 bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1805 sc->alc_rdata.alc_cmb,
1806 sc->alc_cdata.alc_cmb_map);
1807 sc->alc_rdata.alc_cmb = NULL;
1808 sc->alc_cdata.alc_cmb_map = NULL;
1809 bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1810 sc->alc_cdata.alc_cmb_tag = NULL;
1812 /* SMB block */
1813 if (sc->alc_cdata.alc_smb_tag != NULL) {
1814 if (sc->alc_cdata.alc_smb_map != NULL)
1815 bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1816 sc->alc_cdata.alc_smb_map);
1817 if (sc->alc_cdata.alc_smb_map != NULL &&
1818 sc->alc_rdata.alc_smb != NULL)
1819 bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1820 sc->alc_rdata.alc_smb,
1821 sc->alc_cdata.alc_smb_map);
1822 sc->alc_rdata.alc_smb = NULL;
1823 sc->alc_cdata.alc_smb_map = NULL;
1824 bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1825 sc->alc_cdata.alc_smb_tag = NULL;
1827 if (sc->alc_cdata.alc_buffer_tag != NULL) {
1828 bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1829 sc->alc_cdata.alc_buffer_tag = NULL;
1831 if (sc->alc_cdata.alc_parent_tag != NULL) {
1832 bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1833 sc->alc_cdata.alc_parent_tag = NULL;
1837 static int
1838 alc_shutdown(device_t dev)
1841 return (alc_suspend(dev));
1844 #if 0
1845 /* XXX: LINK SPEED */
1847 * Note, this driver resets the link speed to 10/100Mbps by
1848 * restarting auto-negotiation in suspend/shutdown phase but we
1849 * don't know whether that auto-negotiation would succeed or not
1850 * as driver has no control after powering off/suspend operation.
1851 * If the renegotiation fail WOL may not work. Running at 1Gbps
1852 * will draw more power than 375mA at 3.3V which is specified in
1853 * PCI specification and that would result in complete
1854 * shutdowning power to ethernet controller.
1856 * TODO
1857 * Save current negotiated media speed/duplex/flow-control to
1858 * softc and restore the same link again after resuming. PHY
1859 * handling such as power down/resetting to 100Mbps may be better
1860 * handled in suspend method in phy driver.
1862 static void
1863 alc_setlinkspeed(struct alc_softc *sc)
1865 struct mii_data *mii;
1866 int aneg, i;
1868 mii = device_get_softc(sc->alc_miibus);
1869 mii_pollstat(mii);
1870 aneg = 0;
1871 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1872 (IFM_ACTIVE | IFM_AVALID)) {
1873 switch IFM_SUBTYPE(mii->mii_media_active) {
1874 case IFM_10_T:
1875 case IFM_100_TX:
1876 return;
1877 case IFM_1000_T:
1878 aneg++;
1879 break;
1880 default:
1881 break;
1884 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1885 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1886 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1887 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1888 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1889 DELAY(1000);
1890 if (aneg != 0) {
1892 * Poll link state until alc(4) get a 10/100Mbps link.
1894 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1895 mii_pollstat(mii);
1896 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1897 == (IFM_ACTIVE | IFM_AVALID)) {
1898 switch (IFM_SUBTYPE(
1899 mii->mii_media_active)) {
1900 case IFM_10_T:
1901 case IFM_100_TX:
1902 alc_mac_config(sc);
1903 return;
1904 default:
1905 break;
1908 ALC_UNLOCK(sc);
1909 pause("alclnk", hz);
1910 ALC_LOCK(sc);
1912 if (i == MII_ANEGTICKS_GIGE)
1913 device_printf(sc->alc_dev,
1914 "establishing a link failed, WOL may not work!");
1917 * No link, force MAC to have 100Mbps, full-duplex link.
1918 * This is the last resort and may/may not work.
1920 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1921 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1922 alc_mac_config(sc);
1924 #endif
1926 #if 0
1927 /* XXX: WOL */
1928 static void
1929 alc_setwol(struct alc_softc *sc)
1931 struct ifnet *ifp;
1932 uint32_t reg, pmcs;
1933 uint16_t pmstat;
1935 ALC_LOCK_ASSERT(sc);
1937 alc_disable_l0s_l1(sc);
1938 ifp = sc->alc_ifp;
1939 if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1940 /* Disable WOL. */
1941 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1942 reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1943 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1944 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1945 /* Force PHY power down. */
1946 alc_phy_down(sc);
1947 CSR_WRITE_4(sc, ALC_MASTER_CFG,
1948 CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1949 return;
1952 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1953 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1954 alc_setlinkspeed(sc);
1955 CSR_WRITE_4(sc, ALC_MASTER_CFG,
1956 CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1959 pmcs = 0;
1960 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1961 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1962 CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1963 reg = CSR_READ_4(sc, ALC_MAC_CFG);
1964 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1965 MAC_CFG_BCAST);
1966 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1967 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1968 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1969 reg |= MAC_CFG_RX_ENB;
1970 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1972 reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1973 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1974 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1975 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1976 /* WOL disabled, PHY power down. */
1977 alc_phy_down(sc);
1978 CSR_WRITE_4(sc, ALC_MASTER_CFG,
1979 CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1982 /* Request PME. */
1983 pmstat = pci_read_config(sc->alc_dev,
1984 sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1985 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1986 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1987 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1988 pci_write_config(sc->alc_dev,
1989 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1991 #endif
1993 static int
1994 alc_suspend(device_t dev)
1996 struct alc_softc *sc;
1998 sc = device_get_softc(dev);
2000 ALC_LOCK(sc);
2001 alc_stop(sc);
2002 #if 0
2003 /* XXX: WOL */
2004 alc_setwol(sc);
2005 #endif
2006 ALC_UNLOCK(sc);
2008 return (0);
2011 static int
2012 alc_resume(device_t dev)
2014 struct alc_softc *sc;
2015 struct ifnet *ifp;
2016 uint16_t pmstat;
2018 sc = device_get_softc(dev);
2020 ALC_LOCK(sc);
2021 if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
2022 /* Disable PME and clear PME status. */
2023 pmstat = pci_read_config(sc->alc_dev,
2024 sc->alc_pmcap + PCIR_POWER_STATUS, 2);
2025 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2026 pmstat &= ~PCIM_PSTAT_PMEENABLE;
2027 pci_write_config(sc->alc_dev,
2028 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2031 /* Reset PHY. */
2032 alc_phy_reset(sc);
2033 ifp = sc->alc_ifp;
2034 if ((ifp->if_flags & IFF_UP) != 0) {
2035 ifp->if_flags &= ~IFF_RUNNING;
2036 alc_init_locked(sc);
2038 ALC_UNLOCK(sc);
2040 return (0);
2043 static int
2044 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2046 struct alc_txdesc *txd, *txd_last;
2047 struct tx_desc *desc;
2048 struct mbuf *m;
2049 struct ip *ip;
2050 struct tcphdr *tcp;
2051 bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2052 bus_dmamap_t map;
2053 uint32_t cflags, hdrlen, ip_off, poff, vtag;
2054 int error, idx, nsegs, prod;
2056 ALC_LOCK_ASSERT(sc);
2058 M_ASSERTPKTHDR((*m_head));
2060 m = *m_head;
2061 ip = NULL;
2062 tcp = NULL;
2063 ip_off = poff = 0;
2064 #if 0
2065 /* XXX: TSO */
2066 if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2068 * AR813x/AR815x requires offset of TCP/UDP header in its
2069 * Tx descriptor to perform Tx checksum offloading. TSO
2070 * also requires TCP header offset and modification of
2071 * IP/TCP header. This kind of operation takes many CPU
2072 * cycles on FreeBSD so fast host CPU is required to get
2073 * smooth TSO performance.
2075 struct ether_header *eh;
2077 if (M_WRITABLE(m) == 0) {
2078 /* Get a writable copy. */
2079 m = m_dup(*m_head, MB_DONTWAIT);
2080 /* Release original mbufs. */
2081 m_freem(*m_head);
2082 if (m == NULL) {
2083 *m_head = NULL;
2084 return (ENOBUFS);
2086 *m_head = m;
2089 ip_off = sizeof(struct ether_header);
2090 m = m_pullup(m, ip_off + sizeof(struct ip));
2091 if (m == NULL) {
2092 *m_head = NULL;
2093 return (ENOBUFS);
2095 eh = mtod(m, struct ether_header *);
2097 * Check if hardware VLAN insertion is off.
2098 * Additional check for LLC/SNAP frame?
2100 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2101 ip_off = sizeof(struct ether_vlan_header);
2102 m = m_pullup(m, ip_off);
2103 if (m == NULL) {
2104 *m_head = NULL;
2105 return (ENOBUFS);
2108 m = m_pullup(m, ip_off + sizeof(struct ip));
2109 if (m == NULL) {
2110 *m_head = NULL;
2111 return (ENOBUFS);
2113 ip = (struct ip *)(mtod(m, char *) + ip_off);
2114 poff = ip_off + (ip->ip_hl << 2);
2116 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2117 m = m_pullup(m, poff + sizeof(struct tcphdr));
2118 if (m == NULL) {
2119 *m_head = NULL;
2120 return (ENOBUFS);
2122 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2123 m = m_pullup(m, poff + (tcp->th_off << 2));
2124 if (m == NULL) {
2125 *m_head = NULL;
2126 return (ENOBUFS);
2129 * Due to strict adherence of Microsoft NDIS
2130 * Large Send specification, hardware expects
2131 * a pseudo TCP checksum inserted by upper
2132 * stack. Unfortunately the pseudo TCP
2133 * checksum that NDIS refers to does not include
2134 * TCP payload length so driver should recompute
2135 * the pseudo checksum here. Hopefully this
2136 * wouldn't be much burden on modern CPUs.
2138 * Reset IP checksum and recompute TCP pseudo
2139 * checksum as NDIS specification said.
2141 ip->ip_sum = 0;
2142 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2143 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2145 *m_head = m;
2147 #endif /* TSO */
2149 prod = sc->alc_cdata.alc_tx_prod;
2150 txd = &sc->alc_cdata.alc_txdesc[prod];
2151 txd_last = txd;
2152 map = txd->tx_dmamap;
2154 error = bus_dmamap_load_mbuf_defrag(
2155 sc->alc_cdata.alc_tx_tag, map, m_head,
2156 txsegs, ALC_MAXTXSEGS, &nsegs, BUS_DMA_NOWAIT);
2157 if (error) {
2158 m_freem(*m_head);
2159 *m_head = NULL;
2160 return (error);
2162 if (nsegs == 0) {
2163 m_freem(*m_head);
2164 *m_head = NULL;
2165 return (EIO);
2168 /* Check descriptor overrun. */
2169 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2170 bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2171 return (ENOBUFS);
2173 bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2175 m = *m_head;
2176 cflags = TD_ETHERNET;
2177 vtag = 0;
2178 desc = NULL;
2179 idx = 0;
2180 /* Configure VLAN hardware tag insertion. */
2181 if ((m->m_flags & M_VLANTAG) != 0) {
2182 vtag = htons(m->m_pkthdr.ether_vlantag);
2183 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2184 cflags |= TD_INS_VLAN_TAG;
2186 /* Configure Tx checksum offload. */
2187 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2188 #ifdef ALC_USE_CUSTOM_CSUM
2189 cflags |= TD_CUSTOM_CSUM;
2190 /* Set checksum start offset. */
2191 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2192 TD_PLOAD_OFFSET_MASK;
2193 /* Set checksum insertion position of TCP/UDP. */
2194 cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2195 TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2196 #else
2197 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2198 cflags |= TD_IPCSUM;
2199 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2200 cflags |= TD_TCPCSUM;
2201 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2202 cflags |= TD_UDPCSUM;
2203 /* Set TCP/UDP header offset. */
2204 cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2205 TD_L4HDR_OFFSET_MASK;
2206 #endif
2207 } else if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2208 /* Request TSO and set MSS. */
2209 cflags |= TD_TSO | TD_TSO_DESCV1;
2210 #if 0
2211 /* XXX: TSO */
2212 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2213 TD_MSS_MASK;
2214 /* Set TCP header offset. */
2215 #endif
2216 cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2217 TD_TCPHDR_OFFSET_MASK;
2219 * AR813x/AR815x requires the first buffer should
2220 * only hold IP/TCP header data. Payload should
2221 * be handled in other descriptors.
2223 hdrlen = poff + (tcp->th_off << 2);
2224 desc = &sc->alc_rdata.alc_tx_ring[prod];
2225 desc->len = htole32(TX_BYTES(hdrlen | vtag));
2226 desc->flags = htole32(cflags);
2227 desc->addr = htole64(txsegs[0].ds_addr);
2228 sc->alc_cdata.alc_tx_cnt++;
2229 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2230 if (m->m_len - hdrlen > 0) {
2231 /* Handle remaining payload of the first fragment. */
2232 desc = &sc->alc_rdata.alc_tx_ring[prod];
2233 desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2234 vtag));
2235 desc->flags = htole32(cflags);
2236 desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2237 sc->alc_cdata.alc_tx_cnt++;
2238 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2240 /* Handle remaining fragments. */
2241 idx = 1;
2243 for (; idx < nsegs; idx++) {
2244 desc = &sc->alc_rdata.alc_tx_ring[prod];
2245 desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2246 desc->flags = htole32(cflags);
2247 desc->addr = htole64(txsegs[idx].ds_addr);
2248 sc->alc_cdata.alc_tx_cnt++;
2249 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2251 /* Update producer index. */
2252 sc->alc_cdata.alc_tx_prod = prod;
2254 /* Finally set EOP on the last descriptor. */
2255 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2256 desc = &sc->alc_rdata.alc_tx_ring[prod];
2257 desc->flags |= htole32(TD_EOP);
2259 /* Swap dmamap of the first and the last. */
2260 txd = &sc->alc_cdata.alc_txdesc[prod];
2261 map = txd_last->tx_dmamap;
2262 txd_last->tx_dmamap = txd->tx_dmamap;
2263 txd->tx_dmamap = map;
2264 txd->tx_m = m;
2266 return (0);
2269 static void
2270 alc_tx_task(void *arg, int pending)
2272 struct ifnet *ifp;
2274 ifp = (struct ifnet *)arg;
2275 alc_start(ifp);
2278 static void
2279 alc_start(struct ifnet *ifp)
2281 struct alc_softc *sc;
2282 struct mbuf *m_head;
2283 int enq;
2285 sc = ifp->if_softc;
2287 ALC_LOCK(sc);
2289 /* Reclaim transmitted frames. */
2290 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2291 alc_txeof(sc);
2293 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
2294 ALC_UNLOCK(sc);
2295 return;
2297 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2298 ifq_purge(&ifp->if_snd);
2299 ALC_UNLOCK(sc);
2300 return;
2303 for (enq = 0; !ifq_is_empty(&ifp->if_snd); ) {
2304 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2305 if (m_head == NULL)
2306 break;
2308 * Pack the data into the transmit ring. If we
2309 * don't have room, set the OACTIVE flag and wait
2310 * for the NIC to drain the ring.
2312 if (alc_encap(sc, &m_head)) {
2313 if (m_head == NULL)
2314 break;
2315 ifq_prepend(&ifp->if_snd, m_head);
2316 ifp->if_flags |= IFF_OACTIVE;
2317 break;
2320 enq++;
2322 * If there's a BPF listener, bounce a copy of this frame
2323 * to him.
2325 ETHER_BPF_MTAP(ifp, m_head);
2328 if (enq > 0) {
2329 /* Sync descriptors. */
2330 bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2331 sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2332 /* Kick. Assume we're using normal Tx priority queue. */
2333 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2334 (sc->alc_cdata.alc_tx_prod <<
2335 MBOX_TD_PROD_LO_IDX_SHIFT) &
2336 MBOX_TD_PROD_LO_IDX_MASK);
2337 /* Set a timeout in case the chip goes out to lunch. */
2338 sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2341 ALC_UNLOCK(sc);
2344 static void
2345 alc_watchdog(struct alc_softc *sc)
2347 struct ifnet *ifp;
2349 ALC_LOCK_ASSERT(sc);
2351 if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2352 return;
2354 ifp = sc->alc_ifp;
2355 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2356 if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2357 ifp->if_oerrors++;
2358 ifp->if_flags &= ~IFF_RUNNING;
2359 alc_init_locked(sc);
2360 return;
2362 if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2363 ifp->if_oerrors++;
2364 ifp->if_flags &= ~IFF_RUNNING;
2365 alc_init_locked(sc);
2366 if (!ifq_is_empty(&ifp->if_snd))
2367 taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2370 static int
2371 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2373 struct alc_softc *sc;
2374 struct ifreq *ifr;
2375 struct mii_data *mii;
2376 int error, mask;
2378 (void)cr;
2379 sc = ifp->if_softc;
2380 ifr = (struct ifreq *)data;
2381 error = 0;
2382 switch (cmd) {
2383 case SIOCSIFMTU:
2384 if (ifr->ifr_mtu < ETHERMIN ||
2385 ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2386 sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2387 ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2388 ifr->ifr_mtu > ETHERMTU)) {
2389 error = EINVAL;
2390 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2391 ALC_LOCK(sc);
2392 ifp->if_mtu = ifr->ifr_mtu;
2393 /* AR813x/AR815x has 13 bits MSS field. */
2394 if (ifp->if_mtu > ALC_TSO_MTU &&
2395 (ifp->if_capenable & IFCAP_TSO4) != 0) {
2396 ifp->if_capenable &= ~IFCAP_TSO4;
2397 ifp->if_hwassist &= ~CSUM_TSO;
2399 ALC_UNLOCK(sc);
2401 break;
2402 case SIOCSIFFLAGS:
2403 ALC_LOCK(sc);
2404 if ((ifp->if_flags & IFF_UP) != 0) {
2405 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2406 ((ifp->if_flags ^ sc->alc_if_flags) &
2407 (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2408 alc_rxfilter(sc);
2409 else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2410 alc_init_locked(sc);
2411 } else if ((ifp->if_flags & IFF_RUNNING) != 0)
2412 alc_stop(sc);
2413 sc->alc_if_flags = ifp->if_flags;
2414 ALC_UNLOCK(sc);
2415 break;
2416 case SIOCADDMULTI:
2417 case SIOCDELMULTI:
2418 ALC_LOCK(sc);
2419 if ((ifp->if_flags & IFF_RUNNING) != 0)
2420 alc_rxfilter(sc);
2421 ALC_UNLOCK(sc);
2422 break;
2423 case SIOCSIFMEDIA:
2424 case SIOCGIFMEDIA:
2425 mii = device_get_softc(sc->alc_miibus);
2426 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2427 break;
2428 case SIOCSIFCAP:
2429 ALC_LOCK(sc);
2430 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2431 if ((mask & IFCAP_TXCSUM) != 0 &&
2432 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2433 ifp->if_capenable ^= IFCAP_TXCSUM;
2434 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2435 ifp->if_hwassist |= ALC_CSUM_FEATURES;
2436 else
2437 ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2439 if ((mask & IFCAP_TSO4) != 0 &&
2440 (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2441 ifp->if_capenable ^= IFCAP_TSO4;
2442 if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2443 /* AR813x/AR815x has 13 bits MSS field. */
2444 if (ifp->if_mtu > ALC_TSO_MTU) {
2445 ifp->if_capenable &= ~IFCAP_TSO4;
2446 ifp->if_hwassist &= ~CSUM_TSO;
2447 } else
2448 ifp->if_hwassist |= CSUM_TSO;
2449 } else
2450 ifp->if_hwassist &= ~CSUM_TSO;
2452 #if 0
2453 /* XXX: WOL */
2454 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2455 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2456 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2457 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2458 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2459 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2460 #endif
2461 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2462 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2463 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2464 alc_rxvlan(sc);
2466 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2467 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2468 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2469 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2470 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2471 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2473 * VLAN hardware tagging is required to do checksum
2474 * offload or TSO on VLAN interface. Checksum offload
2475 * on VLAN interface also requires hardware checksum
2476 * offload of parent interface.
2478 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2479 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2480 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2481 ifp->if_capenable &=
2482 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2483 ALC_UNLOCK(sc);
2484 // XXX VLAN_CAPABILITIES(ifp);
2485 break;
2486 default:
2487 error = ether_ioctl(ifp, cmd, data);
2488 break;
2491 return (error);
2494 static void
2495 alc_mac_config(struct alc_softc *sc)
2497 struct mii_data *mii;
2498 uint32_t reg;
2500 ALC_LOCK_ASSERT(sc);
2502 mii = device_get_softc(sc->alc_miibus);
2503 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2504 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2505 MAC_CFG_SPEED_MASK);
2506 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2507 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2508 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
2509 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2511 /* Reprogram MAC with resolved speed/duplex. */
2512 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2513 case IFM_10_T:
2514 case IFM_100_TX:
2515 reg |= MAC_CFG_SPEED_10_100;
2516 break;
2517 case IFM_1000_T:
2518 reg |= MAC_CFG_SPEED_1000;
2519 break;
2521 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2522 reg |= MAC_CFG_FULL_DUPLEX;
2523 #ifdef notyet
2524 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2525 reg |= MAC_CFG_TX_FC;
2526 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2527 reg |= MAC_CFG_RX_FC;
2528 #endif
2530 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2533 static void
2534 alc_stats_clear(struct alc_softc *sc)
2536 struct smb sb, *smb;
2537 uint32_t *reg;
2538 int i;
2540 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2541 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2542 sc->alc_cdata.alc_smb_map,
2543 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2544 smb = sc->alc_rdata.alc_smb;
2545 /* Update done, clear. */
2546 smb->updated = 0;
2547 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2548 sc->alc_cdata.alc_smb_map,
2549 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2550 } else {
2551 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2552 reg++) {
2553 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2554 i += sizeof(uint32_t);
2556 /* Read Tx statistics. */
2557 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2558 reg++) {
2559 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2560 i += sizeof(uint32_t);
2565 static void
2566 alc_stats_update(struct alc_softc *sc)
2568 struct alc_hw_stats *stat;
2569 struct smb sb, *smb;
2570 struct ifnet *ifp;
2571 uint32_t *reg;
2572 int i;
2574 ALC_LOCK_ASSERT(sc);
2576 ifp = sc->alc_ifp;
2577 stat = &sc->alc_stats;
2578 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2579 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2580 sc->alc_cdata.alc_smb_map,
2581 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2582 smb = sc->alc_rdata.alc_smb;
2583 if (smb->updated == 0)
2584 return;
2585 } else {
2586 smb = &sb;
2587 /* Read Rx statistics. */
2588 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2589 reg++) {
2590 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2591 i += sizeof(uint32_t);
2593 /* Read Tx statistics. */
2594 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2595 reg++) {
2596 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2597 i += sizeof(uint32_t);
2601 /* Rx stats. */
2602 stat->rx_frames += smb->rx_frames;
2603 stat->rx_bcast_frames += smb->rx_bcast_frames;
2604 stat->rx_mcast_frames += smb->rx_mcast_frames;
2605 stat->rx_pause_frames += smb->rx_pause_frames;
2606 stat->rx_control_frames += smb->rx_control_frames;
2607 stat->rx_crcerrs += smb->rx_crcerrs;
2608 stat->rx_lenerrs += smb->rx_lenerrs;
2609 stat->rx_bytes += smb->rx_bytes;
2610 stat->rx_runts += smb->rx_runts;
2611 stat->rx_fragments += smb->rx_fragments;
2612 stat->rx_pkts_64 += smb->rx_pkts_64;
2613 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2614 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2615 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2616 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2617 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2618 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2619 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2620 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2621 stat->rx_rrs_errs += smb->rx_rrs_errs;
2622 stat->rx_alignerrs += smb->rx_alignerrs;
2623 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2624 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2625 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2627 /* Tx stats. */
2628 stat->tx_frames += smb->tx_frames;
2629 stat->tx_bcast_frames += smb->tx_bcast_frames;
2630 stat->tx_mcast_frames += smb->tx_mcast_frames;
2631 stat->tx_pause_frames += smb->tx_pause_frames;
2632 stat->tx_excess_defer += smb->tx_excess_defer;
2633 stat->tx_control_frames += smb->tx_control_frames;
2634 stat->tx_deferred += smb->tx_deferred;
2635 stat->tx_bytes += smb->tx_bytes;
2636 stat->tx_pkts_64 += smb->tx_pkts_64;
2637 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2638 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2639 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2640 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2641 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2642 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2643 stat->tx_single_colls += smb->tx_single_colls;
2644 stat->tx_multi_colls += smb->tx_multi_colls;
2645 stat->tx_late_colls += smb->tx_late_colls;
2646 stat->tx_excess_colls += smb->tx_excess_colls;
2647 stat->tx_abort += smb->tx_abort;
2648 stat->tx_underrun += smb->tx_underrun;
2649 stat->tx_desc_underrun += smb->tx_desc_underrun;
2650 stat->tx_lenerrs += smb->tx_lenerrs;
2651 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2652 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2653 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2655 /* Update counters in ifnet. */
2656 ifp->if_opackets += smb->tx_frames;
2658 ifp->if_collisions += smb->tx_single_colls +
2659 smb->tx_multi_colls * 2 + smb->tx_late_colls +
2660 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2663 * XXX
2664 * tx_pkts_truncated counter looks suspicious. It constantly
2665 * increments with no sign of Tx errors. This may indicate
2666 * the counter name is not correct one so I've removed the
2667 * counter in output errors.
2669 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2670 smb->tx_underrun;
2672 ifp->if_ipackets += smb->rx_frames;
2674 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2675 smb->rx_runts + smb->rx_pkts_truncated +
2676 smb->rx_fifo_oflows + smb->rx_rrs_errs +
2677 smb->rx_alignerrs;
2679 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2680 /* Update done, clear. */
2681 smb->updated = 0;
2682 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2683 sc->alc_cdata.alc_smb_map,
2684 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2688 static void
2689 alc_intr(void *arg)
2691 struct alc_softc *sc;
2692 uint32_t status;
2694 sc = (struct alc_softc *)arg;
2696 status = CSR_READ_4(sc, ALC_INTR_STATUS);
2697 if ((status & ALC_INTRS) == 0) {
2698 return;
2700 /* Disable interrupts. */
2701 CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2702 taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2704 return;
2707 static void
2708 alc_int_task(void *arg, int pending)
2710 struct alc_softc *sc;
2711 struct ifnet *ifp;
2712 uint32_t status;
2713 int more;
2715 sc = (struct alc_softc *)arg;
2716 ifp = sc->alc_ifp;
2718 status = CSR_READ_4(sc, ALC_INTR_STATUS);
2719 more = atomic_readandclear_32(&sc->alc_morework);
2720 if (more != 0)
2721 status |= INTR_RX_PKT;
2722 if ((status & ALC_INTRS) == 0)
2723 goto done;
2725 /* Acknowledge interrupts but still disable interrupts. */
2726 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2728 more = 0;
2729 if ((ifp->if_flags & IFF_RUNNING) != 0) {
2730 if ((status & INTR_RX_PKT) != 0) {
2731 more = alc_rxintr(sc, sc->alc_process_limit);
2732 if (more == EAGAIN)
2733 atomic_set_int(&sc->alc_morework, 1);
2734 else if (more == EIO) {
2735 ALC_LOCK(sc);
2736 ifp->if_flags &= ~IFF_RUNNING;
2737 alc_init_locked(sc);
2738 ALC_UNLOCK(sc);
2739 return;
2742 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2743 INTR_TXQ_TO_RST)) != 0) {
2744 if ((status & INTR_DMA_RD_TO_RST) != 0)
2745 device_printf(sc->alc_dev,
2746 "DMA read error! -- resetting\n");
2747 if ((status & INTR_DMA_WR_TO_RST) != 0)
2748 device_printf(sc->alc_dev,
2749 "DMA write error! -- resetting\n");
2750 if ((status & INTR_TXQ_TO_RST) != 0)
2751 device_printf(sc->alc_dev,
2752 "TxQ reset! -- resetting\n");
2753 ALC_LOCK(sc);
2754 ifp->if_flags &= ~IFF_RUNNING;
2755 alc_init_locked(sc);
2756 ALC_UNLOCK(sc);
2757 return;
2759 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2760 !ifq_is_empty(&ifp->if_snd))
2761 taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2764 if (more == EAGAIN ||
2765 (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2766 taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2767 return;
2770 done:
2771 if ((ifp->if_flags & IFF_RUNNING) != 0) {
2772 /* Re-enable interrupts if we're running. */
2773 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2777 static void
2778 alc_txeof(struct alc_softc *sc)
2780 struct ifnet *ifp;
2781 struct alc_txdesc *txd;
2782 uint32_t cons, prod;
2783 int prog;
2785 ALC_LOCK_ASSERT(sc);
2787 ifp = sc->alc_ifp;
2789 if (sc->alc_cdata.alc_tx_cnt == 0)
2790 return;
2791 bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2792 sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2793 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2794 bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2795 sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2796 prod = sc->alc_rdata.alc_cmb->cons;
2797 } else
2798 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2799 /* Assume we're using normal Tx priority queue. */
2800 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2801 MBOX_TD_CONS_LO_IDX_SHIFT;
2802 cons = sc->alc_cdata.alc_tx_cons;
2804 * Go through our Tx list and free mbufs for those
2805 * frames which have been transmitted.
2807 for (prog = 0; cons != prod; prog++,
2808 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2809 if (sc->alc_cdata.alc_tx_cnt <= 0)
2810 break;
2811 prog++;
2812 ifp->if_flags &= ~IFF_OACTIVE;
2813 sc->alc_cdata.alc_tx_cnt--;
2814 txd = &sc->alc_cdata.alc_txdesc[cons];
2815 if (txd->tx_m != NULL) {
2816 /* Reclaim transmitted mbufs. */
2817 bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2818 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2819 bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2820 txd->tx_dmamap);
2821 m_freem(txd->tx_m);
2822 txd->tx_m = NULL;
2826 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2827 bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2828 sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2829 sc->alc_cdata.alc_tx_cons = cons;
2831 * Unarm watchdog timer only when there is no pending
2832 * frames in Tx queue.
2834 if (sc->alc_cdata.alc_tx_cnt == 0)
2835 sc->alc_watchdog_timer = 0;
2838 static int
2839 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2841 struct mbuf *m;
2842 bus_dma_segment_t segs[1];
2843 bus_dmamap_t map;
2844 int nsegs;
2845 int error;
2847 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2848 if (m == NULL)
2849 return (ENOBUFS);
2850 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2851 #ifndef __NO_STRICT_ALIGNMENT
2852 m_adj(m, sizeof(uint64_t));
2853 #endif
2855 error = bus_dmamap_load_mbuf_segment(
2856 sc->alc_cdata.alc_rx_tag,
2857 sc->alc_cdata.alc_rx_sparemap,
2858 m, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2859 if (error) {
2860 m_freem(m);
2861 return (ENOBUFS);
2863 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2865 if (rxd->rx_m != NULL) {
2866 bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2867 BUS_DMASYNC_POSTREAD);
2868 bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2870 map = rxd->rx_dmamap;
2871 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2872 sc->alc_cdata.alc_rx_sparemap = map;
2873 bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2874 BUS_DMASYNC_PREREAD);
2875 rxd->rx_m = m;
2876 rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2877 return (0);
2880 static int
2881 alc_rxintr(struct alc_softc *sc, int count)
2883 struct ifnet *ifp;
2884 struct rx_rdesc *rrd;
2885 uint32_t nsegs, status;
2886 int rr_cons, prog;
2888 bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2889 sc->alc_cdata.alc_rr_ring_map,
2890 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2891 bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2892 sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2893 rr_cons = sc->alc_cdata.alc_rr_cons;
2894 ifp = sc->alc_ifp;
2895 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2896 if (count-- <= 0)
2897 break;
2898 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2899 status = le32toh(rrd->status);
2900 if ((status & RRD_VALID) == 0)
2901 break;
2902 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2903 if (nsegs == 0) {
2904 /* This should not happen! */
2905 device_printf(sc->alc_dev,
2906 "unexpected segment count -- resetting\n");
2907 return (EIO);
2909 alc_rxeof(sc, rrd);
2910 /* Clear Rx return status. */
2911 rrd->status = 0;
2912 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2913 sc->alc_cdata.alc_rx_cons += nsegs;
2914 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2915 prog += nsegs;
2918 if (prog > 0) {
2919 /* Update the consumer index. */
2920 sc->alc_cdata.alc_rr_cons = rr_cons;
2921 /* Sync Rx return descriptors. */
2922 bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2923 sc->alc_cdata.alc_rr_ring_map,
2924 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2926 * Sync updated Rx descriptors such that controller see
2927 * modified buffer addresses.
2929 bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2930 sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2932 * Let controller know availability of new Rx buffers.
2933 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2934 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2935 * only when Rx buffer pre-fetching is required. In
2936 * addition we already set ALC_RX_RD_FREE_THRESH to
2937 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2938 * it still seems that pre-fetching needs more
2939 * experimentation.
2941 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2942 sc->alc_cdata.alc_rx_cons);
2945 return (count > 0 ? 0 : EAGAIN);
2948 #ifndef __NO_STRICT_ALIGNMENT
2949 static struct mbuf *
2950 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2952 struct mbuf *n;
2953 int i;
2954 uint16_t *src, *dst;
2956 src = mtod(m, uint16_t *);
2957 dst = src - 3;
2959 if (m->m_next == NULL) {
2960 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2961 *dst++ = *src++;
2962 m->m_data -= 6;
2963 return (m);
2966 * Append a new mbuf to received mbuf chain and copy ethernet
2967 * header from the mbuf chain. This can save lots of CPU
2968 * cycles for jumbo frame.
2970 MGETHDR(n, MB_DONTWAIT, MT_DATA);
2971 if (n == NULL) {
2972 ifp->if_iqdrops++;
2973 m_freem(m);
2974 return (NULL);
2976 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2977 m->m_data += ETHER_HDR_LEN;
2978 m->m_len -= ETHER_HDR_LEN;
2979 n->m_len = ETHER_HDR_LEN;
2980 M_MOVE_PKTHDR(n, m);
2981 n->m_next = m;
2982 return (n);
2984 #endif
2986 /* Receive a frame. */
2987 static void
2988 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2990 struct alc_rxdesc *rxd;
2991 struct ifnet *ifp;
2992 struct mbuf *mp, *m;
2993 uint32_t rdinfo, status, vtag;
2994 int count, nsegs, rx_cons;
2996 ifp = sc->alc_ifp;
2997 status = le32toh(rrd->status);
2998 rdinfo = le32toh(rrd->rdinfo);
2999 rx_cons = RRD_RD_IDX(rdinfo);
3000 nsegs = RRD_RD_CNT(rdinfo);
3002 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
3003 if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
3005 * We want to pass the following frames to upper
3006 * layer regardless of error status of Rx return
3007 * ring.
3009 * o IP/TCP/UDP checksum is bad.
3010 * o frame length and protocol specific length
3011 * does not match.
3013 * Force network stack compute checksum for
3014 * errored frames.
3016 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
3017 if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
3018 RRD_ERR_RUNT) != 0)
3019 return;
3022 for (count = 0; count < nsegs; count++,
3023 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
3024 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
3025 mp = rxd->rx_m;
3026 /* Add a new receive buffer to the ring. */
3027 if (alc_newbuf(sc, rxd) != 0) {
3028 ifp->if_iqdrops++;
3029 /* Reuse Rx buffers. */
3030 if (sc->alc_cdata.alc_rxhead != NULL)
3031 m_freem(sc->alc_cdata.alc_rxhead);
3032 break;
3036 * Assume we've received a full sized frame.
3037 * Actual size is fixed when we encounter the end of
3038 * multi-segmented frame.
3040 mp->m_len = sc->alc_buf_size;
3042 /* Chain received mbufs. */
3043 if (sc->alc_cdata.alc_rxhead == NULL) {
3044 sc->alc_cdata.alc_rxhead = mp;
3045 sc->alc_cdata.alc_rxtail = mp;
3046 } else {
3047 mp->m_flags &= ~M_PKTHDR;
3048 sc->alc_cdata.alc_rxprev_tail =
3049 sc->alc_cdata.alc_rxtail;
3050 sc->alc_cdata.alc_rxtail->m_next = mp;
3051 sc->alc_cdata.alc_rxtail = mp;
3054 if (count == nsegs - 1) {
3055 /* Last desc. for this frame. */
3056 m = sc->alc_cdata.alc_rxhead;
3057 m->m_flags |= M_PKTHDR;
3059 * It seems that L1C/L2C controller has no way
3060 * to tell hardware to strip CRC bytes.
3062 m->m_pkthdr.len =
3063 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
3064 if (nsegs > 1) {
3065 /* Set last mbuf size. */
3066 mp->m_len = sc->alc_cdata.alc_rxlen -
3067 (nsegs - 1) * sc->alc_buf_size;
3068 /* Remove the CRC bytes in chained mbufs. */
3069 if (mp->m_len <= ETHER_CRC_LEN) {
3070 sc->alc_cdata.alc_rxtail =
3071 sc->alc_cdata.alc_rxprev_tail;
3072 sc->alc_cdata.alc_rxtail->m_len -=
3073 (ETHER_CRC_LEN - mp->m_len);
3074 sc->alc_cdata.alc_rxtail->m_next = NULL;
3075 m_freem(mp);
3076 } else {
3077 mp->m_len -= ETHER_CRC_LEN;
3079 } else
3080 m->m_len = m->m_pkthdr.len;
3081 m->m_pkthdr.rcvif = ifp;
3083 * Due to hardware bugs, Rx checksum offloading
3084 * was intentionally disabled.
3086 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3087 (status & RRD_VLAN_TAG) != 0) {
3088 vtag = RRD_VLAN(le32toh(rrd->vtag));
3089 m->m_pkthdr.ether_vlantag = ntohs(vtag);
3090 m->m_flags |= M_VLANTAG;
3092 #ifndef __NO_STRICT_ALIGNMENT
3093 m = alc_fixup_rx(ifp, m);
3094 if (m != NULL)
3095 #endif
3097 /* Pass it on. */
3098 (*ifp->if_input)(ifp, m);
3102 /* Reset mbuf chains. */
3103 ALC_RXCHAIN_RESET(sc);
3106 static void
3107 alc_tick(void *arg)
3109 struct alc_softc *sc;
3110 struct mii_data *mii;
3112 sc = (struct alc_softc *)arg;
3114 ALC_LOCK(sc);
3116 mii = device_get_softc(sc->alc_miibus);
3117 mii_tick(mii);
3118 alc_stats_update(sc);
3120 * alc(4) does not rely on Tx completion interrupts to reclaim
3121 * transferred buffers. Instead Tx completion interrupts are
3122 * used to hint for scheduling Tx task. So it's necessary to
3123 * release transmitted buffers by kicking Tx completion
3124 * handler. This limits the maximum reclamation delay to a hz.
3126 alc_txeof(sc);
3127 alc_watchdog(sc);
3128 callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3129 ALC_UNLOCK(sc);
3132 static void
3133 alc_reset(struct alc_softc *sc)
3135 uint32_t reg;
3136 int i;
3138 reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3139 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3140 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3142 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3143 DELAY(10);
3144 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3145 break;
3147 if (i == 0)
3148 device_printf(sc->alc_dev, "master reset timeout!\n");
3150 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3151 if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3152 break;
3153 DELAY(10);
3156 if (i == 0)
3157 device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3160 static void
3161 alc_init(void *xsc)
3163 struct alc_softc *sc;
3165 sc = (struct alc_softc *)xsc;
3166 ALC_LOCK(sc);
3167 alc_init_locked(sc);
3168 ALC_UNLOCK(sc);
3171 static void
3172 alc_init_locked(struct alc_softc *sc)
3174 struct ifnet *ifp;
3175 struct mii_data *mii;
3176 uint8_t eaddr[ETHER_ADDR_LEN];
3177 bus_addr_t paddr;
3178 uint32_t reg, rxf_hi, rxf_lo;
3180 ALC_LOCK_ASSERT(sc);
3182 ifp = sc->alc_ifp;
3183 mii = device_get_softc(sc->alc_miibus);
3185 if ((ifp->if_flags & IFF_RUNNING) != 0)
3186 return;
3188 * Cancel any pending I/O.
3190 alc_stop(sc);
3192 * Reset the chip to a known state.
3194 alc_reset(sc);
3196 /* Initialize Rx descriptors. */
3197 if (alc_init_rx_ring(sc) != 0) {
3198 device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3199 alc_stop(sc);
3200 return;
3202 alc_init_rr_ring(sc);
3203 alc_init_tx_ring(sc);
3204 alc_init_cmb(sc);
3205 alc_init_smb(sc);
3207 /* Reprogram the station address. */
3208 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3209 CSR_WRITE_4(sc, ALC_PAR0,
3210 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3211 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3213 * Clear WOL status and disable all WOL feature as WOL
3214 * would interfere Rx operation under normal environments.
3216 CSR_READ_4(sc, ALC_WOL_CFG);
3217 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3218 /* Set Tx descriptor base addresses. */
3219 paddr = sc->alc_rdata.alc_tx_ring_paddr;
3220 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3221 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3222 /* We don't use high priority ring. */
3223 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3224 /* Set Tx descriptor counter. */
3225 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3226 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3227 /* Set Rx descriptor base addresses. */
3228 paddr = sc->alc_rdata.alc_rx_ring_paddr;
3229 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3230 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3231 /* We use one Rx ring. */
3232 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3233 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3234 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3235 /* Set Rx descriptor counter. */
3236 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3237 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3240 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3241 * if it do not fit the buffer size. Rx return descriptor holds
3242 * a counter that indicates how many fragments were made by the
3243 * hardware. The buffer size should be multiple of 8 bytes.
3244 * Since hardware has limit on the size of buffer size, always
3245 * use the maximum value.
3246 * For strict-alignment architectures make sure to reduce buffer
3247 * size by 8 bytes to make room for alignment fixup.
3249 #ifndef __NO_STRICT_ALIGNMENT
3250 sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3251 #else
3252 sc->alc_buf_size = RX_BUF_SIZE_MAX;
3253 #endif
3254 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3256 paddr = sc->alc_rdata.alc_rr_ring_paddr;
3257 /* Set Rx return descriptor base addresses. */
3258 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3259 /* We use one Rx return ring. */
3260 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3261 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3262 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3263 /* Set Rx return descriptor counter. */
3264 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3265 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3266 paddr = sc->alc_rdata.alc_cmb_paddr;
3267 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3268 paddr = sc->alc_rdata.alc_smb_paddr;
3269 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3270 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3272 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3273 /* Reconfigure SRAM - Vendor magic. */
3274 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3275 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3276 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3277 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3278 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3279 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3280 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3281 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3284 /* Tell hardware that we're ready to load DMA blocks. */
3285 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3287 /* Configure interrupt moderation timer. */
3288 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3289 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3290 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3292 * We don't want to automatic interrupt clear as task queue
3293 * for the interrupt should know interrupt status.
3295 reg = MASTER_SA_TIMER_ENB;
3296 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3297 reg |= MASTER_IM_RX_TIMER_ENB;
3298 if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3299 reg |= MASTER_IM_TX_TIMER_ENB;
3300 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3302 * Disable interrupt re-trigger timer. We don't want automatic
3303 * re-triggering of un-ACKed interrupts.
3305 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3306 /* Configure CMB. */
3307 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3308 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3309 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3310 } else {
3311 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3314 * Hardware can be configured to issue SMB interrupt based
3315 * on programmed interval. Since there is a callout that is
3316 * invoked for every hz in driver we use that instead of
3317 * relying on periodic SMB interrupt.
3319 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3320 /* Clear MAC statistics. */
3321 alc_stats_clear(sc);
3324 * Always use maximum frame size that controller can support.
3325 * Otherwise received frames that has larger frame length
3326 * than alc(4) MTU would be silently dropped in hardware. This
3327 * would make path-MTU discovery hard as sender wouldn't get
3328 * any responses from receiver. alc(4) supports
3329 * multi-fragmented frames on Rx path so it has no issue on
3330 * assembling fragmented frames. Using maximum frame size also
3331 * removes the need to reinitialize hardware when interface
3332 * MTU configuration was changed.
3334 * Be conservative in what you do, be liberal in what you
3335 * accept from others - RFC 793.
3337 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3339 /* Disable header split(?) */
3340 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3342 /* Configure IPG/IFG parameters. */
3343 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3344 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3345 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3346 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3347 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3348 /* Set parameters for half-duplex media. */
3349 CSR_WRITE_4(sc, ALC_HDPX_CFG,
3350 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3351 HDPX_CFG_LCOL_MASK) |
3352 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3353 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3354 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3355 HDPX_CFG_ABEBT_MASK) |
3356 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3357 HDPX_CFG_JAMIPG_MASK));
3359 * Set TSO/checksum offload threshold. For frames that is
3360 * larger than this threshold, hardware wouldn't do
3361 * TSO/checksum offloading.
3363 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3364 (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3365 TSO_OFFLOAD_THRESH_MASK);
3366 /* Configure TxQ. */
3367 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3368 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3369 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3370 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3371 reg >>= 1;
3373 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3374 TXQ_CFG_TD_BURST_MASK;
3375 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3377 /* Configure Rx free descriptor pre-fetching. */
3378 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3379 ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3380 RX_RD_FREE_THRESH_HI_MASK) |
3381 ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3382 RX_RD_FREE_THRESH_LO_MASK));
3385 * Configure flow control parameters.
3386 * XON : 80% of Rx FIFO
3387 * XOFF : 30% of Rx FIFO
3389 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3390 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3391 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3392 rxf_hi = (reg * 8) / 10;
3393 rxf_lo = (reg * 3) / 10;
3394 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3395 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3396 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3397 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3398 RX_FIFO_PAUSE_THRESH_HI_MASK));
3401 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3402 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2) {
3403 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3404 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3405 SERDES_PHY_CLK_SLOWDOWN);
3408 /* Disable RSS until I understand L1C/L2C's RSS logic. */
3409 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3410 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3412 /* Configure RxQ. */
3413 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3414 RXQ_CFG_RD_BURST_MASK;
3415 reg |= RXQ_CFG_RSS_MODE_DIS;
3416 if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3417 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3418 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3420 /* Configure DMA parameters. */
3421 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3422 reg |= sc->alc_rcb;
3423 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3424 reg |= DMA_CFG_CMB_ENB;
3425 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3426 reg |= DMA_CFG_SMB_ENB;
3427 else
3428 reg |= DMA_CFG_SMB_DIS;
3429 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3430 DMA_CFG_RD_BURST_SHIFT;
3431 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3432 DMA_CFG_WR_BURST_SHIFT;
3433 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3434 DMA_CFG_RD_DELAY_CNT_MASK;
3435 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3436 DMA_CFG_WR_DELAY_CNT_MASK;
3437 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3440 * Configure Tx/Rx MACs.
3441 * - Auto-padding for short frames.
3442 * - Enable CRC generation.
3443 * Actual reconfiguration of MAC for resolved speed/duplex
3444 * is followed after detection of link establishment.
3445 * AR813x/AR815x always does checksum computation regardless
3446 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3447 * have bug in protocol field in Rx return structure so
3448 * these controllers can't handle fragmented frames. Disable
3449 * Rx checksum offloading until there is a newer controller
3450 * that has sane implementation.
3452 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3453 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3454 MAC_CFG_PREAMBLE_MASK);
3455 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3456 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3457 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3458 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3460 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3461 reg |= MAC_CFG_SPEED_10_100;
3462 else
3463 reg |= MAC_CFG_SPEED_1000;
3464 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3466 /* Set up the receive filter. */
3467 alc_rxfilter(sc);
3468 alc_rxvlan(sc);
3470 /* Acknowledge all pending interrupts and clear it. */
3471 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3472 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3473 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3475 sc->alc_flags &= ~ALC_FLAG_LINK;
3476 /* Switch to the current media. */
3477 mii_mediachg(mii);
3479 callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3481 ifp->if_flags |= IFF_RUNNING;
3482 ifp->if_flags &= ~IFF_OACTIVE;
3485 static void
3486 alc_stop(struct alc_softc *sc)
3488 struct ifnet *ifp;
3489 struct alc_txdesc *txd;
3490 struct alc_rxdesc *rxd;
3491 uint32_t reg;
3492 int i;
3494 ALC_LOCK_ASSERT(sc);
3496 * Mark the interface down and cancel the watchdog timer.
3498 ifp = sc->alc_ifp;
3499 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3500 sc->alc_flags &= ~ALC_FLAG_LINK;
3501 callout_stop(&sc->alc_tick_ch);
3502 sc->alc_watchdog_timer = 0;
3503 alc_stats_update(sc);
3504 /* Disable interrupts. */
3505 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3506 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3507 alc_stop_queue(sc);
3508 /* Disable DMA. */
3509 reg = CSR_READ_4(sc, ALC_DMA_CFG);
3510 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3511 reg |= DMA_CFG_SMB_DIS;
3512 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3513 DELAY(1000);
3514 /* Stop Rx/Tx MACs. */
3515 alc_stop_mac(sc);
3516 /* Disable interrupts which might be touched in taskq handler. */
3517 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3519 /* Reclaim Rx buffers that have been processed. */
3520 if (sc->alc_cdata.alc_rxhead != NULL)
3521 m_freem(sc->alc_cdata.alc_rxhead);
3522 ALC_RXCHAIN_RESET(sc);
3524 * Free Tx/Rx mbufs still in the queues.
3526 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3527 rxd = &sc->alc_cdata.alc_rxdesc[i];
3528 if (rxd->rx_m != NULL) {
3529 bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3530 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3531 bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3532 rxd->rx_dmamap);
3533 m_freem(rxd->rx_m);
3534 rxd->rx_m = NULL;
3537 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3538 txd = &sc->alc_cdata.alc_txdesc[i];
3539 if (txd->tx_m != NULL) {
3540 bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3541 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3542 bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3543 txd->tx_dmamap);
3544 m_freem(txd->tx_m);
3545 txd->tx_m = NULL;
3550 static void
3551 alc_stop_mac(struct alc_softc *sc)
3553 uint32_t reg;
3554 int i;
3556 ALC_LOCK_ASSERT(sc);
3558 /* Disable Rx/Tx MAC. */
3559 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3560 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3561 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3562 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3564 for (i = ALC_TIMEOUT; i > 0; i--) {
3565 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3566 if (reg == 0)
3567 break;
3568 DELAY(10);
3570 if (i == 0)
3571 device_printf(sc->alc_dev,
3572 "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3575 static void
3576 alc_start_queue(struct alc_softc *sc)
3578 uint32_t qcfg[] = {
3580 RXQ_CFG_QUEUE0_ENB,
3581 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3582 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3583 RXQ_CFG_ENB
3585 uint32_t cfg;
3587 ALC_LOCK_ASSERT(sc);
3589 /* Enable RxQ. */
3590 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3591 cfg &= ~RXQ_CFG_ENB;
3592 cfg |= qcfg[1];
3593 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3594 /* Enable TxQ. */
3595 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3596 cfg |= TXQ_CFG_ENB;
3597 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3600 static void
3601 alc_stop_queue(struct alc_softc *sc)
3603 uint32_t reg;
3604 int i;
3606 ALC_LOCK_ASSERT(sc);
3608 /* Disable RxQ. */
3609 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3610 if ((reg & RXQ_CFG_ENB) != 0) {
3611 reg &= ~RXQ_CFG_ENB;
3612 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3614 /* Disable TxQ. */
3615 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3616 if ((reg & TXQ_CFG_ENB) == 0) {
3617 reg &= ~TXQ_CFG_ENB;
3618 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3620 for (i = ALC_TIMEOUT; i > 0; i--) {
3621 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3622 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3623 break;
3624 DELAY(10);
3626 if (i == 0)
3627 device_printf(sc->alc_dev,
3628 "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3631 static void
3632 alc_init_tx_ring(struct alc_softc *sc)
3634 struct alc_ring_data *rd;
3635 struct alc_txdesc *txd;
3636 int i;
3638 ALC_LOCK_ASSERT(sc);
3640 sc->alc_cdata.alc_tx_prod = 0;
3641 sc->alc_cdata.alc_tx_cons = 0;
3642 sc->alc_cdata.alc_tx_cnt = 0;
3644 rd = &sc->alc_rdata;
3645 bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3646 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3647 txd = &sc->alc_cdata.alc_txdesc[i];
3648 txd->tx_m = NULL;
3651 bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3652 sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3655 static int
3656 alc_init_rx_ring(struct alc_softc *sc)
3658 struct alc_ring_data *rd;
3659 struct alc_rxdesc *rxd;
3660 int i;
3662 ALC_LOCK_ASSERT(sc);
3664 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3665 sc->alc_morework = 0;
3666 rd = &sc->alc_rdata;
3667 bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3668 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3669 rxd = &sc->alc_cdata.alc_rxdesc[i];
3670 rxd->rx_m = NULL;
3671 rxd->rx_desc = &rd->alc_rx_ring[i];
3672 if (alc_newbuf(sc, rxd) != 0)
3673 return (ENOBUFS);
3677 * Since controller does not update Rx descriptors, driver
3678 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3679 * is enough to ensure coherence.
3681 bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3682 sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3683 /* Let controller know availability of new Rx buffers. */
3684 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3686 return (0);
3689 static void
3690 alc_init_rr_ring(struct alc_softc *sc)
3692 struct alc_ring_data *rd;
3694 ALC_LOCK_ASSERT(sc);
3696 sc->alc_cdata.alc_rr_cons = 0;
3697 ALC_RXCHAIN_RESET(sc);
3699 rd = &sc->alc_rdata;
3700 bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3701 bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3702 sc->alc_cdata.alc_rr_ring_map,
3703 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3706 static void
3707 alc_init_cmb(struct alc_softc *sc)
3709 struct alc_ring_data *rd;
3711 ALC_LOCK_ASSERT(sc);
3713 rd = &sc->alc_rdata;
3714 bzero(rd->alc_cmb, ALC_CMB_SZ);
3715 bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3716 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3719 static void
3720 alc_init_smb(struct alc_softc *sc)
3722 struct alc_ring_data *rd;
3724 ALC_LOCK_ASSERT(sc);
3726 rd = &sc->alc_rdata;
3727 bzero(rd->alc_smb, ALC_SMB_SZ);
3728 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3729 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3732 static void
3733 alc_rxvlan(struct alc_softc *sc)
3735 struct ifnet *ifp;
3736 uint32_t reg;
3738 ALC_LOCK_ASSERT(sc);
3740 ifp = sc->alc_ifp;
3741 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3742 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3743 reg |= MAC_CFG_VLAN_TAG_STRIP;
3744 else
3745 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3746 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3749 static void
3750 alc_rxfilter(struct alc_softc *sc)
3752 struct ifnet *ifp;
3753 struct ifmultiaddr *ifma;
3754 uint32_t crc;
3755 uint32_t mchash[2];
3756 uint32_t rxcfg;
3758 ALC_LOCK_ASSERT(sc);
3760 ifp = sc->alc_ifp;
3762 bzero(mchash, sizeof(mchash));
3763 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3764 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3765 if ((ifp->if_flags & IFF_BROADCAST) != 0)
3766 rxcfg |= MAC_CFG_BCAST;
3767 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3768 if ((ifp->if_flags & IFF_PROMISC) != 0)
3769 rxcfg |= MAC_CFG_PROMISC;
3770 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3771 rxcfg |= MAC_CFG_ALLMULTI;
3772 mchash[0] = 0xFFFFFFFF;
3773 mchash[1] = 0xFFFFFFFF;
3774 goto chipit;
3777 #if 0
3778 /* XXX */
3779 if_maddr_rlock(ifp);
3780 #endif
3781 TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3782 if (ifma->ifma_addr->sa_family != AF_LINK)
3783 continue;
3784 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3785 ifma->ifma_addr), ETHER_ADDR_LEN);
3786 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3788 #if 0
3789 /* XXX */
3790 if_maddr_runlock(ifp);
3791 #endif
3793 chipit:
3794 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3795 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3796 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3799 static int
3800 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3802 return (sysctl_int_range(oidp, arg1, arg2, req,
3803 ALC_PROC_MIN, ALC_PROC_MAX));
3806 static int
3807 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3810 return (sysctl_int_range(oidp, arg1, arg2, req,
3811 ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));