mtree/BSD.root.dist: Use spaces.
[dragonfly.git] / sys / kern / vfs_sync.c
blob1446855f0fcbb59e57643a23edf4a46821bf157e
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
65 #include <machine/limits.h>
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
81 * The workitem queue.
83 #define SYNCER_MAXDELAY 32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30; /* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30; /* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 &filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29; /* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 &dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28; /* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 &metadelay, 0, "VFS metadata synchronization delay");
97 time_t retrydelay = 1; /* retry delay after failure */
98 SYSCTL_INT(_kern, OID_AUTO, retrydelay, CTLFLAG_RW,
99 &retrydelay, 0, "VFS retry synchronization delay");
100 static int rushjob; /* number of slots to run ASAP */
101 static int stat_rush_requests; /* number of times I/O speeded up */
102 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
103 &stat_rush_requests, 0, "");
105 LIST_HEAD(synclist, vnode);
107 #define SC_FLAG_EXIT (0x1) /* request syncer exit */
108 #define SC_FLAG_DONE (0x2) /* syncer confirm exit */
110 struct syncer_ctx {
111 struct mount *sc_mp;
112 struct lwkt_token sc_token;
113 struct thread *sc_thread;
114 int sc_flags;
115 struct synclist *syncer_workitem_pending;
116 long syncer_mask;
117 int syncer_delayno;
118 int syncer_forced;
119 int syncer_rushjob;
120 int syncer_unused01;
121 long syncer_count;
124 static void syncer_thread(void *);
126 static int
127 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
129 int error;
130 int v = syncdelay;
132 error = sysctl_handle_int(oidp, &v, 0, req);
133 if (error || !req->newptr)
134 return (error);
135 if (v < 1)
136 v = 1;
137 if (v > SYNCER_MAXDELAY)
138 v = SYNCER_MAXDELAY;
139 syncdelay = v;
141 return(0);
145 * The workitem queue.
147 * It is useful to delay writes of file data and filesystem metadata
148 * for tens of seconds so that quickly created and deleted files need
149 * not waste disk bandwidth being created and removed. To realize this,
150 * we append vnodes to a "workitem" queue. When running with a soft
151 * updates implementation, most pending metadata dependencies should
152 * not wait for more than a few seconds. Thus, mounted on block devices
153 * are delayed only about a half the time that file data is delayed.
154 * Similarly, directory updates are more critical, so are only delayed
155 * about a third the time that file data is delayed. Thus, there are
156 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
157 * one each second (driven off the filesystem syncer process). The
158 * syncer_delayno variable indicates the next queue that is to be processed.
159 * Items that need to be processed soon are placed in this queue:
161 * syncer_workitem_pending[syncer_delayno]
163 * A delay of fifteen seconds is done by placing the request fifteen
164 * entries later in the queue:
166 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
171 * Return the number of vnodes on the syncer's timed list. This will
172 * include the syncer vnode (mp->mnt_syncer) so if used, a minimum
173 * value of 1 will be returned.
175 long
176 vn_syncer_count(struct mount *mp)
178 struct syncer_ctx *ctx;
180 ctx = mp->mnt_syncer_ctx;
181 if (ctx)
182 return (ctx->syncer_count);
183 return 0;
187 * Add an item to the syncer work queue.
189 * WARNING: Cannot get vp->v_token here if not already held, we must
190 * depend on the syncer_token (which might already be held by
191 * the caller) to protect v_synclist and VONWORKLST.
193 * MPSAFE
195 void
196 vn_syncer_add(struct vnode *vp, int delay)
198 struct syncer_ctx *ctx;
199 int slot;
201 ctx = vp->v_mount->mnt_syncer_ctx;
202 lwkt_gettoken(&ctx->sc_token);
204 if (vp->v_flag & VONWORKLST) {
205 LIST_REMOVE(vp, v_synclist);
206 --ctx->syncer_count;
208 if (delay <= 0) {
209 slot = -delay & ctx->syncer_mask;
210 } else {
211 if (delay > SYNCER_MAXDELAY - 2)
212 delay = SYNCER_MAXDELAY - 2;
213 slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
216 LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
217 vsetflags(vp, VONWORKLST);
218 ++ctx->syncer_count;
220 lwkt_reltoken(&ctx->sc_token);
224 * Removes the vnode from the syncer list. Since we might block while
225 * acquiring the syncer_token we have to [re]check conditions to determine
226 * that it is ok to remove the vnode.
228 * Force removal if force != 0. This can only occur during a forced unmount.
230 * vp->v_token held on call
232 void
233 vn_syncer_remove(struct vnode *vp, int force)
235 struct syncer_ctx *ctx;
237 ctx = vp->v_mount->mnt_syncer_ctx;
238 lwkt_gettoken(&ctx->sc_token);
240 if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
241 RB_EMPTY(&vp->v_rbdirty_tree)) {
242 vclrflags(vp, VONWORKLST);
243 LIST_REMOVE(vp, v_synclist);
244 --ctx->syncer_count;
245 } else if (force && (vp->v_flag & VONWORKLST)) {
246 vclrflags(vp, VONWORKLST);
247 LIST_REMOVE(vp, v_synclist);
248 --ctx->syncer_count;
251 lwkt_reltoken(&ctx->sc_token);
255 * vnode must be locked
257 void
258 vclrisdirty(struct vnode *vp)
260 vclrflags(vp, VISDIRTY);
261 if (vp->v_flag & VONWORKLST)
262 vn_syncer_remove(vp, 0);
265 void
266 vclrobjdirty(struct vnode *vp)
268 vclrflags(vp, VOBJDIRTY);
269 if (vp->v_flag & VONWORKLST)
270 vn_syncer_remove(vp, 0);
274 * vnode must be stable
276 void
277 vsetisdirty(struct vnode *vp)
279 struct syncer_ctx *ctx;
281 if ((vp->v_flag & VISDIRTY) == 0) {
282 ctx = vp->v_mount->mnt_syncer_ctx;
283 vsetflags(vp, VISDIRTY);
284 lwkt_gettoken(&ctx->sc_token);
285 if ((vp->v_flag & VONWORKLST) == 0)
286 vn_syncer_add(vp, syncdelay);
287 lwkt_reltoken(&ctx->sc_token);
291 void
292 vsetobjdirty(struct vnode *vp)
294 struct syncer_ctx *ctx;
296 if ((vp->v_flag & VOBJDIRTY) == 0) {
297 ctx = vp->v_mount->mnt_syncer_ctx;
298 vsetflags(vp, VOBJDIRTY);
299 lwkt_gettoken(&ctx->sc_token);
300 if ((vp->v_flag & VONWORKLST) == 0)
301 vn_syncer_add(vp, syncdelay);
302 lwkt_reltoken(&ctx->sc_token);
307 * Create per-filesystem syncer process
309 void
310 vn_syncer_thr_create(struct mount *mp)
312 struct syncer_ctx *ctx;
313 static int syncalloc = 0;
315 ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
316 ctx->sc_mp = mp;
317 ctx->sc_flags = 0;
318 ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
319 &ctx->syncer_mask);
320 ctx->syncer_delayno = 0;
321 lwkt_token_init(&ctx->sc_token, "syncer");
322 mp->mnt_syncer_ctx = ctx;
323 kthread_create(syncer_thread, ctx, &ctx->sc_thread,
324 "syncer%d", ++syncalloc & 0x7FFFFFFF);
328 * Stop per-filesystem syncer process
330 void
331 vn_syncer_thr_stop(struct mount *mp)
333 struct syncer_ctx *ctx;
335 ctx = mp->mnt_syncer_ctx;
336 if (ctx == NULL)
337 return;
339 lwkt_gettoken(&ctx->sc_token);
341 /* Signal the syncer process to exit */
342 ctx->sc_flags |= SC_FLAG_EXIT;
343 wakeup(ctx);
345 /* Wait till syncer process exits */
346 while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
347 tsleep(&ctx->sc_flags, 0, "syncexit", hz);
349 mp->mnt_syncer_ctx = NULL;
350 lwkt_reltoken(&ctx->sc_token);
352 hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
353 kfree(ctx, M_TEMP);
356 struct thread *updatethread;
359 * System filesystem synchronizer daemon.
361 static void
362 syncer_thread(void *_ctx)
364 struct syncer_ctx *ctx = _ctx;
365 struct synclist *slp;
366 struct vnode *vp;
367 long starttime;
368 int *sc_flagsp;
369 int sc_flags;
370 int vnodes_synced = 0;
371 int delta;
372 int dummy = 0;
374 for (;;) {
375 kproc_suspend_loop();
377 starttime = time_uptime;
378 lwkt_gettoken(&ctx->sc_token);
381 * Push files whose dirty time has expired. Be careful
382 * of interrupt race on slp queue.
384 * Note that vsyncscan() and vn_syncer_one() can pull items
385 * off the same list, so we shift vp's position in the
386 * list immediately.
388 slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
390 while ((vp = LIST_FIRST(slp)) != NULL) {
391 vn_syncer_add(vp, retrydelay);
392 if (ctx->syncer_forced) {
393 if (vget(vp, LK_EXCLUSIVE) == 0) {
394 VOP_FSYNC(vp, MNT_NOWAIT, 0);
395 vput(vp);
396 vnodes_synced++;
398 } else {
399 if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
400 VOP_FSYNC(vp, MNT_LAZY, 0);
401 vput(vp);
402 vnodes_synced++;
408 * Increment the slot upon completion.
410 ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
411 ctx->syncer_mask;
413 sc_flags = ctx->sc_flags;
415 /* Exit on unmount */
416 if (sc_flags & SC_FLAG_EXIT)
417 break;
419 lwkt_reltoken(&ctx->sc_token);
422 * Do sync processing for each mount.
424 if (ctx->sc_mp)
425 bio_ops_sync(ctx->sc_mp);
428 * The variable rushjob allows the kernel to speed up the
429 * processing of the filesystem syncer process. A rushjob
430 * value of N tells the filesystem syncer to process the next
431 * N seconds worth of work on its queue ASAP. Currently rushjob
432 * is used by the soft update code to speed up the filesystem
433 * syncer process when the incore state is getting so far
434 * ahead of the disk that the kernel memory pool is being
435 * threatened with exhaustion.
437 delta = rushjob - ctx->syncer_rushjob;
438 if ((u_int)delta > syncdelay / 2) {
439 ctx->syncer_rushjob = rushjob - syncdelay / 2;
440 tsleep(&dummy, 0, "rush", 1);
441 continue;
443 if (delta) {
444 ++ctx->syncer_rushjob;
445 tsleep(&dummy, 0, "rush", 1);
446 continue;
450 * If it has taken us less than a second to process the
451 * current work, then wait. Otherwise start right over
452 * again. We can still lose time if any single round
453 * takes more than two seconds, but it does not really
454 * matter as we are just trying to generally pace the
455 * filesystem activity.
457 if (time_uptime == starttime)
458 tsleep(ctx, 0, "syncer", hz);
462 * Unmount/exit path for per-filesystem syncers; sc_token held
464 ctx->sc_flags |= SC_FLAG_DONE;
465 sc_flagsp = &ctx->sc_flags;
466 lwkt_reltoken(&ctx->sc_token);
467 wakeup(sc_flagsp);
469 kthread_exit();
473 * This allows a filesystem to pro-actively request that a dirty
474 * vnode be fsync()d. This routine does not guarantee that one
475 * will actually be fsynced.
477 void
478 vn_syncer_one(struct mount *mp)
480 struct syncer_ctx *ctx;
481 struct synclist *slp;
482 struct vnode *vp;
483 int i;
484 int n = syncdelay;
486 ctx = mp->mnt_syncer_ctx;
487 i = ctx->syncer_delayno & ctx->syncer_mask;
488 cpu_ccfence();
490 if (lwkt_trytoken(&ctx->sc_token) == 0)
491 return;
494 * Look ahead on our syncer time array.
496 do {
497 slp = &ctx->syncer_workitem_pending[i];
498 vp = LIST_FIRST(slp);
499 if (vp && vp->v_type == VNON)
500 vp = LIST_NEXT(vp, v_synclist);
501 if (vp)
502 break;
503 i = (i + 1) & ctx->syncer_mask;
504 /* i will be wrong if we stop here but vp is NULL so ok */
505 } while(--n);
508 * Process one vnode, skip the syncer vnode but also stop
509 * if the syncer vnode is the only thing on this list.
511 if (vp) {
512 vn_syncer_add(vp, retrydelay);
513 if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
514 VOP_FSYNC(vp, MNT_LAZY, 0);
515 vput(vp);
518 lwkt_reltoken(&ctx->sc_token);
522 * Request that the syncer daemon for a specific mount speed up its work.
523 * If mp is NULL the caller generally wants to speed up all syncers.
525 void
526 speedup_syncer(struct mount *mp)
529 * Don't bother protecting the test. unsleep_and_wakeup_thread()
530 * will only do something real if the thread is in the right state.
532 atomic_add_int(&rushjob, 1);
533 ++stat_rush_requests;
534 if (mp)
535 wakeup(mp->mnt_syncer_ctx);
539 * Routine to create and manage a filesystem syncer vnode.
541 static int sync_close(struct vop_close_args *);
542 static int sync_fsync(struct vop_fsync_args *);
543 static int sync_inactive(struct vop_inactive_args *);
544 static int sync_reclaim (struct vop_reclaim_args *);
545 static int sync_print(struct vop_print_args *);
547 static struct vop_ops sync_vnode_vops = {
548 .vop_default = vop_eopnotsupp,
549 .vop_close = sync_close,
550 .vop_fsync = sync_fsync,
551 .vop_inactive = sync_inactive,
552 .vop_reclaim = sync_reclaim,
553 .vop_print = sync_print,
556 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
558 VNODEOP_SET(sync_vnode_vops);
561 * Create a new filesystem syncer vnode for the specified mount point.
562 * This vnode is placed on the worklist and is responsible for sync'ing
563 * the filesystem.
565 * NOTE: read-only mounts are also placed on the worklist. The filesystem
566 * sync code is also responsible for cleaning up vnodes.
569 vfs_allocate_syncvnode(struct mount *mp)
571 struct vnode *vp;
572 static long start, incr, next;
573 int error;
575 /* Allocate a new vnode */
576 error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
577 if (error) {
578 mp->mnt_syncer = NULL;
579 return (error);
581 vp->v_type = VNON;
583 * Place the vnode onto the syncer worklist. We attempt to
584 * scatter them about on the list so that they will go off
585 * at evenly distributed times even if all the filesystems
586 * are mounted at once.
588 next += incr;
589 if (next == 0 || next > SYNCER_MAXDELAY) {
590 start /= 2;
591 incr /= 2;
592 if (start == 0) {
593 start = SYNCER_MAXDELAY / 2;
594 incr = SYNCER_MAXDELAY;
596 next = start;
600 * Only put the syncer vnode onto the syncer list if we have a
601 * syncer thread. Some VFS's (aka NULLFS) don't need a syncer
602 * thread.
604 if (mp->mnt_syncer_ctx)
605 vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
608 * The mnt_syncer field inherits the vnode reference, which is
609 * held until later decomissioning.
611 mp->mnt_syncer = vp;
612 vx_unlock(vp);
613 return (0);
616 static int
617 sync_close(struct vop_close_args *ap)
619 return (0);
623 * Do a lazy sync of the filesystem.
625 * sync_fsync { struct vnode *a_vp, int a_waitfor }
627 static int
628 sync_fsync(struct vop_fsync_args *ap)
630 struct vnode *syncvp = ap->a_vp;
631 struct mount *mp = syncvp->v_mount;
632 int asyncflag;
635 * We only need to do something if this is a lazy evaluation.
637 if ((ap->a_waitfor & MNT_LAZY) == 0)
638 return (0);
641 * Move ourselves to the back of the sync list.
643 vn_syncer_add(syncvp, syncdelay);
646 * Walk the list of vnodes pushing all that are dirty and
647 * not already on the sync list, and freeing vnodes which have
648 * no refs and whos VM objects are empty. vfs_msync() handles
649 * the VM issues and must be called whether the mount is readonly
650 * or not.
652 if (vfs_busy(mp, LK_NOWAIT) != 0)
653 return (0);
654 if (mp->mnt_flag & MNT_RDONLY) {
655 vfs_msync(mp, MNT_NOWAIT);
656 } else {
657 asyncflag = mp->mnt_flag & MNT_ASYNC;
658 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
659 vfs_msync(mp, MNT_NOWAIT);
660 VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
661 if (asyncflag)
662 mp->mnt_flag |= MNT_ASYNC;
664 vfs_unbusy(mp);
665 return (0);
669 * The syncer vnode is no longer referenced.
671 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
673 static int
674 sync_inactive(struct vop_inactive_args *ap)
676 vgone_vxlocked(ap->a_vp);
677 return (0);
681 * The syncer vnode is no longer needed and is being decommissioned.
682 * This can only occur when the last reference has been released on
683 * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
685 * Modifications to the worklist must be protected with a critical
686 * section.
688 * sync_reclaim { struct vnode *a_vp }
690 static int
691 sync_reclaim(struct vop_reclaim_args *ap)
693 struct vnode *vp = ap->a_vp;
694 struct syncer_ctx *ctx;
696 ctx = vp->v_mount->mnt_syncer_ctx;
697 if (ctx) {
698 lwkt_gettoken(&ctx->sc_token);
699 KKASSERT(vp->v_mount->mnt_syncer != vp);
700 if (vp->v_flag & VONWORKLST) {
701 LIST_REMOVE(vp, v_synclist);
702 vclrflags(vp, VONWORKLST);
703 --ctx->syncer_count;
705 lwkt_reltoken(&ctx->sc_token);
706 } else {
707 KKASSERT((vp->v_flag & VONWORKLST) == 0);
710 return (0);
714 * This is very similar to vmntvnodescan() but it only scans the
715 * vnodes on the syncer list. VFS's which support faster VFS_SYNC
716 * operations use the VISDIRTY flag on the vnode to ensure that vnodes
717 * with dirty inodes are added to the syncer in addition to vnodes
718 * with dirty buffers, and can use this function instead of nmntvnodescan().
720 * This scan does not issue VOP_FSYNC()s. The supplied callback is intended
721 * to synchronize the file in the manner intended by the VFS using it.
723 * This is important when a system has millions of vnodes.
726 vsyncscan(
727 struct mount *mp,
728 int vmsc_flags,
729 int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
730 void *data
732 struct syncer_ctx *ctx;
733 struct synclist *slp;
734 struct vnode *vp;
735 int i;
736 int count;
737 int lkflags;
739 if (vmsc_flags & VMSC_NOWAIT)
740 lkflags = LK_NOWAIT;
741 else
742 lkflags = 0;
745 * Syncer list context. This API requires a dedicated syncer thread.
746 * (MNTK_THR_SYNC).
748 KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
749 ctx = mp->mnt_syncer_ctx;
750 lwkt_gettoken(&ctx->sc_token);
753 * Setup for loop. Allow races against the syncer thread but
754 * require that the syncer thread no be lazy if we were told
755 * not to be lazy.
757 i = ctx->syncer_delayno & ctx->syncer_mask;
758 if ((vmsc_flags & VMSC_NOWAIT) == 0)
759 ++ctx->syncer_forced;
760 for (count = 0; count <= ctx->syncer_mask; ++count) {
761 slp = &ctx->syncer_workitem_pending[i];
763 while ((vp = LIST_FIRST(slp)) != NULL) {
764 KKASSERT(vp->v_mount == mp);
765 if (vmsc_flags & VMSC_GETVP) {
766 if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
767 slowfunc(mp, vp, data);
768 vput(vp);
770 } else if (vmsc_flags & VMSC_GETVX) {
771 vx_get(vp);
772 slowfunc(mp, vp, data);
773 vx_put(vp);
774 } else {
775 vhold(vp);
776 slowfunc(mp, vp, data);
777 vdrop(vp);
781 * vp could be invalid. However, if vp is still at
782 * the head of the list it is clearly valid and we
783 * can safely move it.
785 if (LIST_FIRST(slp) == vp)
786 vn_syncer_add(vp, -(i + syncdelay));
788 i = (i + 1) & ctx->syncer_mask;
791 if ((vmsc_flags & VMSC_NOWAIT) == 0)
792 --ctx->syncer_forced;
793 lwkt_reltoken(&ctx->sc_token);
794 return(0);
798 * Print out a syncer vnode.
800 * sync_print { struct vnode *a_vp }
802 static int
803 sync_print(struct vop_print_args *ap)
805 struct vnode *vp = ap->a_vp;
807 kprintf("syncer vnode");
808 lockmgr_printinfo(&vp->v_lock);
809 kprintf("\n");
810 return (0);