mtree/BSD.root.dist: Use spaces.
[dragonfly.git] / sys / kern / vfs_bio.c
blob7ef914c7db0805f1b83173a2ed9badf4166a2137
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <vm/vm_page2.h>
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
71 * Buffer queues.
73 enum bufq_type {
74 BQUEUE_NONE, /* not on any queue */
75 BQUEUE_LOCKED, /* locked buffers */
76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTY, /* empty buffer headers */
81 BUFFER_QUEUES /* number of buffer queues */
84 typedef enum bufq_type bufq_type_t;
86 #define BD_WAKE_SIZE 16384
87 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
89 TAILQ_HEAD(bqueues, buf);
91 struct bufpcpu {
92 struct spinlock spin;
93 struct bqueues bufqueues[BUFFER_QUEUES];
94 } __cachealign;
96 struct bufpcpu bufpcpu[MAXCPU];
98 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 struct buf *buf; /* buffer header pool */
102 static void vfs_clean_pages(struct buf *bp);
103 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
104 #if 0
105 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
106 #endif
107 static void vfs_vmio_release(struct buf *bp);
108 static int flushbufqueues(struct buf *marker, bufq_type_t q);
109 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
110 vm_pindex_t pg, int deficit);
112 static void bd_signal(long totalspace);
113 static void buf_daemon(void);
114 static void buf_daemon_hw(void);
117 * bogus page -- for I/O to/from partially complete buffers
118 * this is a temporary solution to the problem, but it is not
119 * really that bad. it would be better to split the buffer
120 * for input in the case of buffers partially already in memory,
121 * but the code is intricate enough already.
123 vm_page_t bogus_page;
126 * These are all static, but make the ones we export globals so we do
127 * not need to use compiler magic.
129 long bufspace; /* atomic ops */
130 long maxbufspace;
131 long maxbufmallocspace, lobufspace, hibufspace;
132 static long lorunningspace;
133 static long hirunningspace;
134 static long dirtykvaspace; /* atomic */
135 long dirtybufspace; /* atomic (global for systat) */
136 static long dirtybufcount; /* atomic */
137 static long dirtybufspacehw; /* atomic */
138 static long dirtybufcounthw; /* atomic */
139 static long runningbufspace; /* atomic */
140 static long runningbufcount; /* atomic */
141 long lodirtybufspace;
142 long hidirtybufspace;
143 static int getnewbufcalls;
144 static int needsbuffer; /* atomic */
145 static int runningbufreq; /* atomic */
146 static int bd_request; /* atomic */
147 static int bd_request_hw; /* atomic */
148 static u_int bd_wake_ary[BD_WAKE_SIZE];
149 static u_int bd_wake_index;
150 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
151 static int debug_commit;
152 static int debug_bufbio;
153 static int debug_kvabio;
154 static long bufcache_bw = 200 * 1024 * 1024;
156 static struct thread *bufdaemon_td;
157 static struct thread *bufdaemonhw_td;
158 static u_int lowmempgallocs;
159 static u_int flushperqueue = 1024;
162 * Sysctls for operational control of the buffer cache.
164 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
165 "Number of buffers to flush from each per-cpu queue");
166 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
167 "Number of dirty buffers to flush before bufdaemon becomes inactive");
168 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
169 "High watermark used to trigger explicit flushing of dirty buffers");
170 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
171 "Minimum amount of buffer space required for active I/O");
172 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
173 "Maximum amount of buffer space to usable for active I/O");
174 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
175 "Buffer-cache -> VM page cache transfer bandwidth");
176 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
177 "Page allocations done during periods of very low free memory");
178 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
179 "Recycle pages to active or inactive queue transition pt 0-64");
181 * Sysctls determining current state of the buffer cache.
183 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
184 "Total number of buffers in buffer cache");
185 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
186 "KVA reserved by dirty buffers (all)");
187 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
188 "Pending bytes of dirty buffers (all)");
189 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
190 "Pending bytes of dirty buffers (heavy weight)");
191 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
192 "Pending number of dirty buffers");
193 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
194 "Pending number of dirty buffers (heavy weight)");
195 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
196 "I/O bytes currently in progress due to asynchronous writes");
197 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
198 "I/O buffers currently in progress due to asynchronous writes");
199 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
200 "Hard limit on maximum amount of memory usable for buffer space");
201 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
202 "Soft limit on maximum amount of memory usable for buffer space");
203 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
204 "Minimum amount of memory to reserve for system buffer space");
205 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
206 "Amount of memory available for buffers");
207 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
208 0, "Maximum amount of memory reserved for buffers using malloc");
209 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
210 "New buffer header acquisition requests");
211 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
212 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
213 SYSCTL_INT(_vfs, OID_AUTO, debug_kvabio, CTLFLAG_RW, &debug_kvabio, 0, "");
214 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
215 "sizeof(struct buf)");
217 char *buf_wmesg = BUF_WMESG;
219 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
220 #define VFS_BIO_NEED_UNUSED02 0x02
221 #define VFS_BIO_NEED_UNUSED04 0x04
222 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
225 * Called when buffer space is potentially available for recovery.
226 * getnewbuf() will block on this flag when it is unable to free
227 * sufficient buffer space. Buffer space becomes recoverable when
228 * bp's get placed back in the queues.
230 static __inline void
231 bufspacewakeup(void)
234 * If someone is waiting for BUF space, wake them up. Even
235 * though we haven't freed the kva space yet, the waiting
236 * process will be able to now.
238 for (;;) {
239 int flags = needsbuffer;
240 cpu_ccfence();
241 if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
242 break;
243 if (atomic_cmpset_int(&needsbuffer, flags,
244 flags & ~VFS_BIO_NEED_BUFSPACE)) {
245 wakeup(&needsbuffer);
246 break;
248 /* retry */
253 * runningbufwakeup:
255 * Accounting for I/O in progress.
258 static __inline void
259 runningbufwakeup(struct buf *bp)
261 long totalspace;
262 long flags;
264 if ((totalspace = bp->b_runningbufspace) != 0) {
265 atomic_add_long(&runningbufspace, -totalspace);
266 atomic_add_long(&runningbufcount, -1);
267 bp->b_runningbufspace = 0;
270 * see waitrunningbufspace() for limit test.
272 for (;;) {
273 flags = runningbufreq;
274 cpu_ccfence();
275 if (flags == 0)
276 break;
277 if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
278 wakeup(&runningbufreq);
279 break;
281 /* retry */
283 bd_signal(totalspace);
288 * bufcountwakeup:
290 * Called when a buffer has been added to one of the free queues to
291 * account for the buffer and to wakeup anyone waiting for free buffers.
292 * This typically occurs when large amounts of metadata are being handled
293 * by the buffer cache ( else buffer space runs out first, usually ).
295 static __inline void
296 bufcountwakeup(void)
298 long flags;
300 for (;;) {
301 flags = needsbuffer;
302 if (flags == 0)
303 break;
304 if (atomic_cmpset_int(&needsbuffer, flags,
305 (flags & ~VFS_BIO_NEED_ANY))) {
306 wakeup(&needsbuffer);
307 break;
309 /* retry */
314 * waitrunningbufspace()
316 * If runningbufspace exceeds 4/6 hirunningspace we block until
317 * runningbufspace drops to 3/6 hirunningspace. We also block if another
318 * thread blocked here in order to be fair, even if runningbufspace
319 * is now lower than the limit.
321 * The caller may be using this function to block in a tight loop, we
322 * must block while runningbufspace is greater than at least
323 * hirunningspace * 3 / 6.
325 void
326 waitrunningbufspace(void)
328 long limit = hirunningspace * 4 / 6;
329 long flags;
331 while (runningbufspace > limit || runningbufreq) {
332 tsleep_interlock(&runningbufreq, 0);
333 flags = atomic_fetchadd_int(&runningbufreq, 1);
334 if (runningbufspace > limit || flags)
335 tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
340 * buf_dirty_count_severe:
342 * Return true if we have too many dirty buffers.
345 buf_dirty_count_severe(void)
347 return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
348 dirtybufcount >= nbuf / 2);
352 * Return true if the amount of running I/O is severe and BIOQ should
353 * start bursting.
356 buf_runningbufspace_severe(void)
358 return (runningbufspace >= hirunningspace * 4 / 6);
362 * vfs_buf_test_cache:
364 * Called when a buffer is extended. This function clears the B_CACHE
365 * bit if the newly extended portion of the buffer does not contain
366 * valid data.
368 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
369 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
370 * them while a clean buffer was present.
372 static __inline__
373 void
374 vfs_buf_test_cache(struct buf *bp,
375 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
376 vm_page_t m)
378 if (bp->b_flags & B_CACHE) {
379 int base = (foff + off) & PAGE_MASK;
380 if (vm_page_is_valid(m, base, size) == 0)
381 bp->b_flags &= ~B_CACHE;
386 * bd_speedup()
388 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
389 * low water mark.
391 static __inline__
392 void
393 bd_speedup(void)
395 if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
396 return;
398 if (bd_request == 0 &&
399 (dirtykvaspace > lodirtybufspace / 2 ||
400 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
401 if (atomic_fetchadd_int(&bd_request, 1) == 0)
402 wakeup(&bd_request);
404 if (bd_request_hw == 0 &&
405 (dirtykvaspace > lodirtybufspace / 2 ||
406 dirtybufcounthw >= nbuf / 2)) {
407 if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
408 wakeup(&bd_request_hw);
413 * bd_heatup()
415 * Get the buf_daemon heated up when the number of running and dirty
416 * buffers exceeds the mid-point.
418 * Return the total number of dirty bytes past the second mid point
419 * as a measure of how much excess dirty data there is in the system.
421 long
422 bd_heatup(void)
424 long mid1;
425 long mid2;
426 long totalspace;
428 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
430 totalspace = runningbufspace + dirtykvaspace;
431 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
432 bd_speedup();
433 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
434 if (totalspace >= mid2)
435 return(totalspace - mid2);
437 return(0);
441 * bd_wait()
443 * Wait for the buffer cache to flush (totalspace) bytes worth of
444 * buffers, then return.
446 * Regardless this function blocks while the number of dirty buffers
447 * exceeds hidirtybufspace.
449 void
450 bd_wait(long totalspace)
452 u_int i;
453 u_int j;
454 u_int mi;
455 int count;
457 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
458 return;
460 while (totalspace > 0) {
461 bd_heatup();
464 * Order is important. Suppliers adjust bd_wake_index after
465 * updating runningbufspace/dirtykvaspace. We want to fetch
466 * bd_wake_index before accessing. Any error should thus
467 * be in our favor.
469 i = atomic_fetchadd_int(&bd_wake_index, 0);
470 if (totalspace > runningbufspace + dirtykvaspace)
471 totalspace = runningbufspace + dirtykvaspace;
472 count = totalspace / MAXBSIZE;
473 if (count >= BD_WAKE_SIZE / 2)
474 count = BD_WAKE_SIZE / 2;
475 i = i + count;
476 mi = i & BD_WAKE_MASK;
479 * This is not a strict interlock, so we play a bit loose
480 * with locking access to dirtybufspace*. We have to re-check
481 * bd_wake_index to ensure that it hasn't passed us.
483 tsleep_interlock(&bd_wake_ary[mi], 0);
484 atomic_add_int(&bd_wake_ary[mi], 1);
485 j = atomic_fetchadd_int(&bd_wake_index, 0);
486 if ((int)(i - j) >= 0)
487 tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
489 totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
494 * bd_signal()
496 * This function is called whenever runningbufspace or dirtykvaspace
497 * is reduced. Track threads waiting for run+dirty buffer I/O
498 * complete.
500 static void
501 bd_signal(long totalspace)
503 u_int i;
505 if (totalspace > 0) {
506 if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
507 totalspace = MAXBSIZE * BD_WAKE_SIZE;
508 while (totalspace > 0) {
509 i = atomic_fetchadd_int(&bd_wake_index, 1);
510 i &= BD_WAKE_MASK;
511 if (atomic_readandclear_int(&bd_wake_ary[i]))
512 wakeup(&bd_wake_ary[i]);
513 totalspace -= MAXBSIZE;
519 * BIO tracking support routines.
521 * Release a ref on a bio_track. Wakeup requests are atomically released
522 * along with the last reference so bk_active will never wind up set to
523 * only 0x80000000.
525 static
526 void
527 bio_track_rel(struct bio_track *track)
529 int active;
530 int desired;
533 * Shortcut
535 active = track->bk_active;
536 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
537 return;
540 * Full-on. Note that the wait flag is only atomically released on
541 * the 1->0 count transition.
543 * We check for a negative count transition using bit 30 since bit 31
544 * has a different meaning.
546 for (;;) {
547 desired = (active & 0x7FFFFFFF) - 1;
548 if (desired)
549 desired |= active & 0x80000000;
550 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
551 if (desired & 0x40000000)
552 panic("bio_track_rel: bad count: %p", track);
553 if (active & 0x80000000)
554 wakeup(track);
555 break;
557 active = track->bk_active;
562 * Wait for the tracking count to reach 0.
564 * Use atomic ops such that the wait flag is only set atomically when
565 * bk_active is non-zero.
568 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
570 int active;
571 int desired;
572 int error;
575 * Shortcut
577 if (track->bk_active == 0)
578 return(0);
581 * Full-on. Note that the wait flag may only be atomically set if
582 * the active count is non-zero.
584 * NOTE: We cannot optimize active == desired since a wakeup could
585 * clear active prior to our tsleep_interlock().
587 error = 0;
588 while ((active = track->bk_active) != 0) {
589 cpu_ccfence();
590 desired = active | 0x80000000;
591 tsleep_interlock(track, slp_flags);
592 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
593 error = tsleep(track, slp_flags | PINTERLOCKED,
594 "trwait", slp_timo);
595 if (error)
596 break;
599 return (error);
603 * bufinit:
605 * Load time initialisation of the buffer cache, called from machine
606 * dependant initialization code.
608 static
609 void
610 bufinit(void *dummy __unused)
612 struct bufpcpu *pcpu;
613 struct buf *bp;
614 vm_offset_t bogus_offset;
615 int i;
616 int j;
617 long n;
619 /* next, make a null set of free lists */
620 for (i = 0; i < ncpus; ++i) {
621 pcpu = &bufpcpu[i];
622 spin_init(&pcpu->spin, "bufinit");
623 for (j = 0; j < BUFFER_QUEUES; j++)
624 TAILQ_INIT(&pcpu->bufqueues[j]);
628 * Finally, initialize each buffer header and stick on empty q.
629 * Each buffer gets its own KVA reservation.
631 i = 0;
632 pcpu = &bufpcpu[i];
634 for (n = 0; n < nbuf; n++) {
635 bp = &buf[n];
636 bzero(bp, sizeof *bp);
637 bp->b_flags = B_INVAL; /* we're just an empty header */
638 bp->b_cmd = BUF_CMD_DONE;
639 bp->b_qindex = BQUEUE_EMPTY;
640 bp->b_qcpu = i;
641 bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
642 MAXBSIZE * n);
643 bp->b_kvasize = MAXBSIZE;
644 initbufbio(bp);
645 xio_init(&bp->b_xio);
646 buf_dep_init(bp);
647 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
648 bp, b_freelist);
650 i = (i + 1) % ncpus;
651 pcpu = &bufpcpu[i];
655 * maxbufspace is the absolute maximum amount of buffer space we are
656 * allowed to reserve in KVM and in real terms. The absolute maximum
657 * is nominally used by buf_daemon. hibufspace is the nominal maximum
658 * used by most other processes. The differential is required to
659 * ensure that buf_daemon is able to run when other processes might
660 * be blocked waiting for buffer space.
662 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
663 * too large or we might lockup a cpu for too long a period of
664 * time in our tight loop.
666 maxbufspace = nbuf * NBUFCALCSIZE;
667 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
668 lobufspace = hibufspace * 7 / 8;
669 if (hibufspace - lobufspace > 64 * 1024 * 1024)
670 lobufspace = hibufspace - 64 * 1024 * 1024;
671 if (lobufspace > hibufspace - MAXBSIZE)
672 lobufspace = hibufspace - MAXBSIZE;
674 lorunningspace = 512 * 1024;
675 /* hirunningspace -- see below */
678 * Limit the amount of malloc memory since it is wired permanently
679 * into the kernel space. Even though this is accounted for in
680 * the buffer allocation, we don't want the malloced region to grow
681 * uncontrolled. The malloc scheme improves memory utilization
682 * significantly on average (small) directories.
684 maxbufmallocspace = hibufspace / 20;
687 * Reduce the chance of a deadlock occuring by limiting the number
688 * of delayed-write dirty buffers we allow to stack up.
690 * We don't want too much actually queued to the device at once
691 * (XXX this needs to be per-mount!), because the buffers will
692 * wind up locked for a very long period of time while the I/O
693 * drains.
695 hidirtybufspace = hibufspace / 2; /* dirty + running */
696 hirunningspace = hibufspace / 16; /* locked & queued to device */
697 if (hirunningspace < 1024 * 1024)
698 hirunningspace = 1024 * 1024;
700 dirtykvaspace = 0;
701 dirtybufspace = 0;
702 dirtybufspacehw = 0;
704 lodirtybufspace = hidirtybufspace / 2;
707 * Maximum number of async ops initiated per buf_daemon loop. This is
708 * somewhat of a hack at the moment, we really need to limit ourselves
709 * based on the number of bytes of I/O in-transit that were initiated
710 * from buf_daemon.
713 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
714 VM_SUBSYS_BOGUS);
715 vm_object_hold(&kernel_object);
716 bogus_page = vm_page_alloc(&kernel_object,
717 (bogus_offset >> PAGE_SHIFT),
718 VM_ALLOC_NORMAL);
719 vm_object_drop(&kernel_object);
720 vmstats.v_wire_count++;
724 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
727 * Initialize the embedded bio structures, typically used by
728 * deprecated code which tries to allocate its own struct bufs.
730 void
731 initbufbio(struct buf *bp)
733 bp->b_bio1.bio_buf = bp;
734 bp->b_bio1.bio_prev = NULL;
735 bp->b_bio1.bio_offset = NOOFFSET;
736 bp->b_bio1.bio_next = &bp->b_bio2;
737 bp->b_bio1.bio_done = NULL;
738 bp->b_bio1.bio_flags = 0;
740 bp->b_bio2.bio_buf = bp;
741 bp->b_bio2.bio_prev = &bp->b_bio1;
742 bp->b_bio2.bio_offset = NOOFFSET;
743 bp->b_bio2.bio_next = NULL;
744 bp->b_bio2.bio_done = NULL;
745 bp->b_bio2.bio_flags = 0;
747 BUF_LOCKINIT(bp);
751 * Reinitialize the embedded bio structures as well as any additional
752 * translation cache layers.
754 void
755 reinitbufbio(struct buf *bp)
757 struct bio *bio;
759 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
760 bio->bio_done = NULL;
761 bio->bio_offset = NOOFFSET;
766 * Undo the effects of an initbufbio().
768 void
769 uninitbufbio(struct buf *bp)
771 dsched_buf_exit(bp);
772 BUF_LOCKFREE(bp);
776 * Push another BIO layer onto an existing BIO and return it. The new
777 * BIO layer may already exist, holding cached translation data.
779 struct bio *
780 push_bio(struct bio *bio)
782 struct bio *nbio;
784 if ((nbio = bio->bio_next) == NULL) {
785 int index = bio - &bio->bio_buf->b_bio_array[0];
786 if (index >= NBUF_BIO - 1) {
787 panic("push_bio: too many layers %d for bp %p",
788 index, bio->bio_buf);
790 nbio = &bio->bio_buf->b_bio_array[index + 1];
791 bio->bio_next = nbio;
792 nbio->bio_prev = bio;
793 nbio->bio_buf = bio->bio_buf;
794 nbio->bio_offset = NOOFFSET;
795 nbio->bio_done = NULL;
796 nbio->bio_next = NULL;
798 KKASSERT(nbio->bio_done == NULL);
799 return(nbio);
803 * Pop a BIO translation layer, returning the previous layer. The
804 * must have been previously pushed.
806 struct bio *
807 pop_bio(struct bio *bio)
809 return(bio->bio_prev);
812 void
813 clearbiocache(struct bio *bio)
815 while (bio) {
816 bio->bio_offset = NOOFFSET;
817 bio = bio->bio_next;
822 * Remove the buffer from the appropriate free list.
823 * (caller must be locked)
825 static __inline void
826 _bremfree(struct buf *bp)
828 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
830 if (bp->b_qindex != BQUEUE_NONE) {
831 KASSERT(BUF_LOCKINUSE(bp), ("bremfree: bp %p not locked", bp));
832 TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
833 bp->b_qindex = BQUEUE_NONE;
834 } else {
835 if (!BUF_LOCKINUSE(bp))
836 panic("bremfree: removing a buffer not on a queue");
841 * bremfree() - must be called with a locked buffer
843 void
844 bremfree(struct buf *bp)
846 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
848 spin_lock(&pcpu->spin);
849 _bremfree(bp);
850 spin_unlock(&pcpu->spin);
854 * bremfree_locked - must be called with pcpu->spin locked
856 static void
857 bremfree_locked(struct buf *bp)
859 _bremfree(bp);
863 * This version of bread issues any required I/O asyncnronously and
864 * makes a callback on completion.
866 * The callback must check whether BIO_DONE is set in the bio and issue
867 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
868 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
870 void
871 breadcb(struct vnode *vp, off_t loffset, int size, int bflags,
872 void (*func)(struct bio *), void *arg)
874 struct buf *bp;
876 bp = getblk(vp, loffset, size, 0, 0);
878 /* if not found in cache, do some I/O */
879 if ((bp->b_flags & B_CACHE) == 0) {
880 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
881 bp->b_flags |= bflags;
882 bp->b_cmd = BUF_CMD_READ;
883 bp->b_bio1.bio_done = func;
884 bp->b_bio1.bio_caller_info1.ptr = arg;
885 vfs_busy_pages(vp, bp);
886 BUF_KERNPROC(bp);
887 vn_strategy(vp, &bp->b_bio1);
888 } else if (func) {
890 * Since we are issuing the callback synchronously it cannot
891 * race the BIO_DONE, so no need for atomic ops here.
893 /*bp->b_bio1.bio_done = func;*/
894 bp->b_bio1.bio_caller_info1.ptr = arg;
895 bp->b_bio1.bio_flags |= BIO_DONE;
896 func(&bp->b_bio1);
897 } else {
898 bqrelse(bp);
903 * breadnx() - Terminal function for bread() and breadn().
905 * This function will start asynchronous I/O on read-ahead blocks as well
906 * as satisfy the primary request.
908 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
909 * set, the buffer is valid and we do not have to do anything.
912 breadnx(struct vnode *vp, off_t loffset, int size, int bflags,
913 off_t *raoffset, int *rabsize,
914 int cnt, struct buf **bpp)
916 struct buf *bp, *rabp;
917 int i;
918 int rv = 0, readwait = 0;
919 int blkflags = (bflags & B_KVABIO) ? GETBLK_KVABIO : 0;
921 if (*bpp)
922 bp = *bpp;
923 else
924 *bpp = bp = getblk(vp, loffset, size, blkflags, 0);
926 /* if not found in cache, do some I/O */
927 if ((bp->b_flags & B_CACHE) == 0) {
928 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
929 bp->b_flags |= bflags;
930 bp->b_cmd = BUF_CMD_READ;
931 bp->b_bio1.bio_done = biodone_sync;
932 bp->b_bio1.bio_flags |= BIO_SYNC;
933 vfs_busy_pages(vp, bp);
934 vn_strategy(vp, &bp->b_bio1);
935 ++readwait;
938 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
939 if (inmem(vp, *raoffset))
940 continue;
941 rabp = getblk(vp, *raoffset, *rabsize, GETBLK_KVABIO, 0);
943 if ((rabp->b_flags & B_CACHE) == 0) {
944 rabp->b_flags &= ~(B_ERROR | B_EINTR |
945 B_INVAL | B_NOTMETA);
946 rabp->b_flags |= (bflags & ~B_KVABIO);
947 rabp->b_cmd = BUF_CMD_READ;
948 vfs_busy_pages(vp, rabp);
949 BUF_KERNPROC(rabp);
950 vn_strategy(vp, &rabp->b_bio1);
951 } else {
952 brelse(rabp);
955 if (readwait)
956 rv = biowait(&bp->b_bio1, "biord");
957 return (rv);
961 * bwrite:
963 * Synchronous write, waits for completion.
965 * Write, release buffer on completion. (Done by iodone
966 * if async). Do not bother writing anything if the buffer
967 * is invalid.
969 * Note that we set B_CACHE here, indicating that buffer is
970 * fully valid and thus cacheable. This is true even of NFS
971 * now so we set it generally. This could be set either here
972 * or in biodone() since the I/O is synchronous. We put it
973 * here.
976 bwrite(struct buf *bp)
978 int error;
980 if (bp->b_flags & B_INVAL) {
981 brelse(bp);
982 return (0);
984 if (BUF_LOCKINUSE(bp) == 0)
985 panic("bwrite: buffer is not busy???");
988 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
989 * call because it will remove the buffer from the vnode's
990 * dirty buffer list prematurely and possibly cause filesystem
991 * checks to race buffer flushes. This is now handled in
992 * bpdone().
994 * bundirty(bp); REMOVED
997 bp->b_flags &= ~(B_ERROR | B_EINTR);
998 bp->b_flags |= B_CACHE;
999 bp->b_cmd = BUF_CMD_WRITE;
1000 bp->b_bio1.bio_done = biodone_sync;
1001 bp->b_bio1.bio_flags |= BIO_SYNC;
1002 vfs_busy_pages(bp->b_vp, bp);
1005 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1006 * valid for vnode-backed buffers.
1008 bsetrunningbufspace(bp, bp->b_bufsize);
1009 vn_strategy(bp->b_vp, &bp->b_bio1);
1010 error = biowait(&bp->b_bio1, "biows");
1011 brelse(bp);
1013 return (error);
1017 * bawrite:
1019 * Asynchronous write. Start output on a buffer, but do not wait for
1020 * it to complete. The buffer is released when the output completes.
1022 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1023 * B_INVAL buffers. Not us.
1025 void
1026 bawrite(struct buf *bp)
1028 if (bp->b_flags & B_INVAL) {
1029 brelse(bp);
1030 return;
1032 if (BUF_LOCKINUSE(bp) == 0)
1033 panic("bawrite: buffer is not busy???");
1036 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1037 * call because it will remove the buffer from the vnode's
1038 * dirty buffer list prematurely and possibly cause filesystem
1039 * checks to race buffer flushes. This is now handled in
1040 * bpdone().
1042 * bundirty(bp); REMOVED
1044 bp->b_flags &= ~(B_ERROR | B_EINTR);
1045 bp->b_flags |= B_CACHE;
1046 bp->b_cmd = BUF_CMD_WRITE;
1047 KKASSERT(bp->b_bio1.bio_done == NULL);
1048 vfs_busy_pages(bp->b_vp, bp);
1051 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1052 * valid for vnode-backed buffers.
1054 bsetrunningbufspace(bp, bp->b_bufsize);
1055 BUF_KERNPROC(bp);
1056 vn_strategy(bp->b_vp, &bp->b_bio1);
1060 * bdwrite:
1062 * Delayed write. (Buffer is marked dirty). Do not bother writing
1063 * anything if the buffer is marked invalid.
1065 * Note that since the buffer must be completely valid, we can safely
1066 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1067 * biodone() in order to prevent getblk from writing the buffer
1068 * out synchronously.
1070 void
1071 bdwrite(struct buf *bp)
1073 if (BUF_LOCKINUSE(bp) == 0)
1074 panic("bdwrite: buffer is not busy");
1076 if (bp->b_flags & B_INVAL) {
1077 brelse(bp);
1078 return;
1080 bdirty(bp);
1082 dsched_buf_enter(bp); /* might stack */
1085 * Set B_CACHE, indicating that the buffer is fully valid. This is
1086 * true even of NFS now.
1088 bp->b_flags |= B_CACHE;
1091 * This bmap keeps the system from needing to do the bmap later,
1092 * perhaps when the system is attempting to do a sync. Since it
1093 * is likely that the indirect block -- or whatever other datastructure
1094 * that the filesystem needs is still in memory now, it is a good
1095 * thing to do this. Note also, that if the pageout daemon is
1096 * requesting a sync -- there might not be enough memory to do
1097 * the bmap then... So, this is important to do.
1099 if (bp->b_bio2.bio_offset == NOOFFSET) {
1100 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1101 NULL, NULL, BUF_CMD_WRITE);
1105 * Because the underlying pages may still be mapped and
1106 * writable trying to set the dirty buffer (b_dirtyoff/end)
1107 * range here will be inaccurate.
1109 * However, we must still clean the pages to satisfy the
1110 * vnode_pager and pageout daemon, so they think the pages
1111 * have been "cleaned". What has really occured is that
1112 * they've been earmarked for later writing by the buffer
1113 * cache.
1115 * So we get the b_dirtyoff/end update but will not actually
1116 * depend on it (NFS that is) until the pages are busied for
1117 * writing later on.
1119 vfs_clean_pages(bp);
1120 bqrelse(bp);
1123 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1124 * due to the softdep code.
1129 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1130 * This is used by tmpfs.
1132 * It is important for any VFS using this routine to NOT use it for
1133 * IO_SYNC or IO_ASYNC operations which occur when the system really
1134 * wants to flush VM pages to backing store.
1136 void
1137 buwrite(struct buf *bp)
1139 vm_page_t m;
1140 int i;
1143 * Only works for VMIO buffers. If the buffer is already
1144 * marked for delayed-write we can't avoid the bdwrite().
1146 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1147 bdwrite(bp);
1148 return;
1152 * Mark as needing a commit.
1154 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1155 m = bp->b_xio.xio_pages[i];
1156 vm_page_need_commit(m);
1158 bqrelse(bp);
1162 * bdirty:
1164 * Turn buffer into delayed write request by marking it B_DELWRI.
1165 * B_RELBUF and B_NOCACHE must be cleared.
1167 * We reassign the buffer to itself to properly update it in the
1168 * dirty/clean lists.
1170 * Must be called from a critical section.
1171 * The buffer must be on BQUEUE_NONE.
1173 void
1174 bdirty(struct buf *bp)
1176 KASSERT(bp->b_qindex == BQUEUE_NONE,
1177 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1178 if (bp->b_flags & B_NOCACHE) {
1179 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1180 bp->b_flags &= ~B_NOCACHE;
1182 if (bp->b_flags & B_INVAL) {
1183 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1185 bp->b_flags &= ~B_RELBUF;
1187 if ((bp->b_flags & B_DELWRI) == 0) {
1188 lwkt_gettoken(&bp->b_vp->v_token);
1189 bp->b_flags |= B_DELWRI;
1190 reassignbuf(bp);
1191 lwkt_reltoken(&bp->b_vp->v_token);
1193 atomic_add_long(&dirtybufcount, 1);
1194 atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1195 atomic_add_long(&dirtybufspace, bp->b_bufsize);
1196 if (bp->b_flags & B_HEAVY) {
1197 atomic_add_long(&dirtybufcounthw, 1);
1198 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1200 bd_heatup();
1205 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1206 * needs to be flushed with a different buf_daemon thread to avoid
1207 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1209 void
1210 bheavy(struct buf *bp)
1212 if ((bp->b_flags & B_HEAVY) == 0) {
1213 bp->b_flags |= B_HEAVY;
1214 if (bp->b_flags & B_DELWRI) {
1215 atomic_add_long(&dirtybufcounthw, 1);
1216 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1222 * bundirty:
1224 * Clear B_DELWRI for buffer.
1226 * Must be called from a critical section.
1228 * The buffer is typically on BQUEUE_NONE but there is one case in
1229 * brelse() that calls this function after placing the buffer on
1230 * a different queue.
1232 void
1233 bundirty(struct buf *bp)
1235 if (bp->b_flags & B_DELWRI) {
1236 lwkt_gettoken(&bp->b_vp->v_token);
1237 bp->b_flags &= ~B_DELWRI;
1238 reassignbuf(bp);
1239 lwkt_reltoken(&bp->b_vp->v_token);
1241 atomic_add_long(&dirtybufcount, -1);
1242 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1243 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1244 if (bp->b_flags & B_HEAVY) {
1245 atomic_add_long(&dirtybufcounthw, -1);
1246 atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1248 bd_signal(bp->b_bufsize);
1251 * Since it is now being written, we can clear its deferred write flag.
1253 bp->b_flags &= ~B_DEFERRED;
1257 * Set the b_runningbufspace field, used to track how much I/O is
1258 * in progress at any given moment.
1260 void
1261 bsetrunningbufspace(struct buf *bp, int bytes)
1263 bp->b_runningbufspace = bytes;
1264 if (bytes) {
1265 atomic_add_long(&runningbufspace, bytes);
1266 atomic_add_long(&runningbufcount, 1);
1271 * brelse:
1273 * Release a busy buffer and, if requested, free its resources. The
1274 * buffer will be stashed in the appropriate bufqueue[] allowing it
1275 * to be accessed later as a cache entity or reused for other purposes.
1277 void
1278 brelse(struct buf *bp)
1280 struct bufpcpu *pcpu;
1281 #ifdef INVARIANTS
1282 int saved_flags = bp->b_flags;
1283 #endif
1285 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1286 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1289 * If B_NOCACHE is set we are being asked to destroy the buffer and
1290 * its backing store. Clear B_DELWRI.
1292 * B_NOCACHE is set in two cases: (1) when the caller really wants
1293 * to destroy the buffer and backing store and (2) when the caller
1294 * wants to destroy the buffer and backing store after a write
1295 * completes.
1297 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1298 bundirty(bp);
1301 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1303 * A re-dirtied buffer is only subject to destruction
1304 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1306 /* leave buffer intact */
1307 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1308 (bp->b_bufsize <= 0)) {
1310 * Either a failed read or we were asked to free or not
1311 * cache the buffer. This path is reached with B_DELWRI
1312 * set only if B_INVAL is already set. B_NOCACHE governs
1313 * backing store destruction.
1315 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1316 * buffer cannot be immediately freed.
1318 bp->b_flags |= B_INVAL;
1319 if (LIST_FIRST(&bp->b_dep) != NULL)
1320 buf_deallocate(bp);
1321 if (bp->b_flags & B_DELWRI) {
1322 atomic_add_long(&dirtybufcount, -1);
1323 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1324 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1325 if (bp->b_flags & B_HEAVY) {
1326 atomic_add_long(&dirtybufcounthw, -1);
1327 atomic_add_long(&dirtybufspacehw,
1328 -bp->b_bufsize);
1330 bd_signal(bp->b_bufsize);
1332 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1336 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1337 * or if b_refs is non-zero.
1339 * If vfs_vmio_release() is called with either bit set, the
1340 * underlying pages may wind up getting freed causing a previous
1341 * write (bdwrite()) to get 'lost' because pages associated with
1342 * a B_DELWRI bp are marked clean. Pages associated with a
1343 * B_LOCKED buffer may be mapped by the filesystem.
1345 * If we want to release the buffer ourselves (rather then the
1346 * originator asking us to release it), give the originator a
1347 * chance to countermand the release by setting B_LOCKED.
1349 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1350 * if B_DELWRI is set.
1352 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1353 * on pages to return pages to the VM page queues.
1355 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1356 bp->b_flags &= ~B_RELBUF;
1357 } else if (vm_page_count_min(0)) {
1358 if (LIST_FIRST(&bp->b_dep) != NULL)
1359 buf_deallocate(bp); /* can set B_LOCKED */
1360 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1361 bp->b_flags &= ~B_RELBUF;
1362 else
1363 bp->b_flags |= B_RELBUF;
1367 * Make sure b_cmd is clear. It may have already been cleared by
1368 * biodone().
1370 * At this point destroying the buffer is governed by the B_INVAL
1371 * or B_RELBUF flags.
1373 bp->b_cmd = BUF_CMD_DONE;
1374 dsched_buf_exit(bp);
1377 * VMIO buffer rundown. Make sure the VM page array is restored
1378 * after an I/O may have replaces some of the pages with bogus pages
1379 * in order to not destroy dirty pages in a fill-in read.
1381 * Note that due to the code above, if a buffer is marked B_DELWRI
1382 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1383 * B_INVAL may still be set, however.
1385 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1386 * but not the backing store. B_NOCACHE will destroy the backing
1387 * store.
1389 * Note that dirty NFS buffers contain byte-granular write ranges
1390 * and should not be destroyed w/ B_INVAL even if the backing store
1391 * is left intact.
1393 if (bp->b_flags & B_VMIO) {
1395 * Rundown for VMIO buffers which are not dirty NFS buffers.
1397 int i, j, resid;
1398 vm_page_t m;
1399 off_t foff;
1400 vm_pindex_t poff;
1401 vm_object_t obj;
1402 struct vnode *vp;
1404 vp = bp->b_vp;
1407 * Get the base offset and length of the buffer. Note that
1408 * in the VMIO case if the buffer block size is not
1409 * page-aligned then b_data pointer may not be page-aligned.
1410 * But our b_xio.xio_pages array *IS* page aligned.
1412 * block sizes less then DEV_BSIZE (usually 512) are not
1413 * supported due to the page granularity bits (m->valid,
1414 * m->dirty, etc...).
1416 * See man buf(9) for more information
1419 resid = bp->b_bufsize;
1420 foff = bp->b_loffset;
1422 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1423 m = bp->b_xio.xio_pages[i];
1426 * If we hit a bogus page, fixup *all* of them
1427 * now. Note that we left these pages wired
1428 * when we removed them so they had better exist,
1429 * and they cannot be ripped out from under us so
1430 * no critical section protection is necessary.
1432 if (m == bogus_page) {
1433 obj = vp->v_object;
1434 poff = OFF_TO_IDX(bp->b_loffset);
1436 vm_object_hold(obj);
1437 for (j = i; j < bp->b_xio.xio_npages; j++) {
1438 vm_page_t mtmp;
1440 mtmp = bp->b_xio.xio_pages[j];
1441 if (mtmp == bogus_page) {
1442 if ((bp->b_flags & B_HASBOGUS) == 0)
1443 panic("brelse: bp %p corrupt bogus", bp);
1444 mtmp = vm_page_lookup(obj, poff + j);
1445 if (!mtmp)
1446 panic("brelse: bp %p page %d missing", bp, j);
1447 bp->b_xio.xio_pages[j] = mtmp;
1450 vm_object_drop(obj);
1452 if ((bp->b_flags & B_HASBOGUS) ||
1453 (bp->b_flags & B_INVAL) == 0) {
1454 pmap_qenter_noinval(
1455 trunc_page((vm_offset_t)bp->b_data),
1456 bp->b_xio.xio_pages,
1457 bp->b_xio.xio_npages);
1458 bp->b_flags &= ~B_HASBOGUS;
1459 bp->b_flags |= B_KVABIO;
1460 bkvareset(bp);
1462 m = bp->b_xio.xio_pages[i];
1466 * Invalidate the backing store if B_NOCACHE is set
1467 * (e.g. used with vinvalbuf()). If this is NFS
1468 * we impose a requirement that the block size be
1469 * a multiple of PAGE_SIZE and create a temporary
1470 * hack to basically invalidate the whole page. The
1471 * problem is that NFS uses really odd buffer sizes
1472 * especially when tracking piecemeal writes and
1473 * it also vinvalbuf()'s a lot, which would result
1474 * in only partial page validation and invalidation
1475 * here. If the file page is mmap()'d, however,
1476 * all the valid bits get set so after we invalidate
1477 * here we would end up with weird m->valid values
1478 * like 0xfc. nfs_getpages() can't handle this so
1479 * we clear all the valid bits for the NFS case
1480 * instead of just some of them.
1482 * The real bug is the VM system having to set m->valid
1483 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1484 * itself is an artifact of the whole 512-byte
1485 * granular mess that exists to support odd block
1486 * sizes and UFS meta-data block sizes (e.g. 6144).
1487 * A complete rewrite is required.
1489 * XXX
1491 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1492 int poffset = foff & PAGE_MASK;
1493 int presid;
1495 presid = PAGE_SIZE - poffset;
1496 if (bp->b_vp->v_tag == VT_NFS &&
1497 bp->b_vp->v_type == VREG) {
1498 ; /* entire page */
1499 } else if (presid > resid) {
1500 presid = resid;
1502 KASSERT(presid >= 0, ("brelse: extra page"));
1503 vm_page_set_invalid(m, poffset, presid);
1506 * Also make sure any swap cache is removed
1507 * as it is now stale (HAMMER in particular
1508 * uses B_NOCACHE to deal with buffer
1509 * aliasing).
1511 swap_pager_unswapped(m);
1513 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1514 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1516 if (bp->b_flags & (B_INVAL | B_RELBUF))
1517 vfs_vmio_release(bp);
1518 } else {
1520 * Rundown for non-VMIO buffers.
1522 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1523 if (bp->b_bufsize)
1524 allocbuf(bp, 0);
1525 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1526 if (bp->b_vp)
1527 brelvp(bp);
1531 if (bp->b_qindex != BQUEUE_NONE)
1532 panic("brelse: free buffer onto another queue???");
1535 * Figure out the correct queue to place the cleaned up buffer on.
1536 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1537 * disassociated from their vnode.
1539 * Return the buffer to its original pcpu area
1541 pcpu = &bufpcpu[bp->b_qcpu];
1542 spin_lock(&pcpu->spin);
1544 if (bp->b_flags & B_LOCKED) {
1546 * Buffers that are locked are placed in the locked queue
1547 * immediately, regardless of their state.
1549 bp->b_qindex = BQUEUE_LOCKED;
1550 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1551 bp, b_freelist);
1552 } else if (bp->b_bufsize == 0) {
1554 * Buffers with no memory. Due to conditionals near the top
1555 * of brelse() such buffers should probably already be
1556 * marked B_INVAL and disassociated from their vnode.
1558 bp->b_flags |= B_INVAL;
1559 KASSERT(bp->b_vp == NULL,
1560 ("bp1 %p flags %08x/%08x vnode %p "
1561 "unexpectededly still associated!",
1562 bp, saved_flags, bp->b_flags, bp->b_vp));
1563 KKASSERT((bp->b_flags & B_HASHED) == 0);
1564 bp->b_qindex = BQUEUE_EMPTY;
1565 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1566 bp, b_freelist);
1567 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1569 * Buffers with junk contents. Again these buffers had better
1570 * already be disassociated from their vnode.
1572 KASSERT(bp->b_vp == NULL,
1573 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1574 "still associated!",
1575 bp, saved_flags, bp->b_flags, bp->b_vp));
1576 KKASSERT((bp->b_flags & B_HASHED) == 0);
1577 bp->b_flags |= B_INVAL;
1578 bp->b_qindex = BQUEUE_CLEAN;
1579 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1580 bp, b_freelist);
1581 } else {
1583 * Remaining buffers. These buffers are still associated with
1584 * their vnode.
1586 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1587 case B_DELWRI:
1588 bp->b_qindex = BQUEUE_DIRTY;
1589 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1590 bp, b_freelist);
1591 break;
1592 case B_DELWRI | B_HEAVY:
1593 bp->b_qindex = BQUEUE_DIRTY_HW;
1594 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1595 bp, b_freelist);
1596 break;
1597 default:
1599 * NOTE: Buffers are always placed at the end of the
1600 * queue. If B_AGE is not set the buffer will cycle
1601 * through the queue twice.
1603 bp->b_qindex = BQUEUE_CLEAN;
1604 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1605 bp, b_freelist);
1606 break;
1609 spin_unlock(&pcpu->spin);
1612 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1613 * on the correct queue but we have not yet unlocked it.
1615 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1616 bundirty(bp);
1619 * The bp is on an appropriate queue unless locked. If it is not
1620 * locked or dirty we can wakeup threads waiting for buffer space.
1622 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1623 * if B_INVAL is set ).
1625 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1626 bufcountwakeup();
1629 * Something we can maybe free or reuse
1631 if (bp->b_bufsize || bp->b_kvasize)
1632 bufspacewakeup();
1635 * Clean up temporary flags and unlock the buffer.
1637 bp->b_flags &= ~(B_NOCACHE | B_RELBUF | B_DIRECT);
1638 BUF_UNLOCK(bp);
1642 * bqrelse:
1644 * Release a buffer back to the appropriate queue but do not try to free
1645 * it. The buffer is expected to be used again soon.
1647 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1648 * biodone() to requeue an async I/O on completion. It is also used when
1649 * known good buffers need to be requeued but we think we may need the data
1650 * again soon.
1652 * XXX we should be able to leave the B_RELBUF hint set on completion.
1654 void
1655 bqrelse(struct buf *bp)
1657 struct bufpcpu *pcpu;
1659 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1660 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1662 if (bp->b_qindex != BQUEUE_NONE)
1663 panic("bqrelse: free buffer onto another queue???");
1665 buf_act_advance(bp);
1667 pcpu = &bufpcpu[bp->b_qcpu];
1668 spin_lock(&pcpu->spin);
1670 if (bp->b_flags & B_LOCKED) {
1672 * Locked buffers are released to the locked queue. However,
1673 * if the buffer is dirty it will first go into the dirty
1674 * queue and later on after the I/O completes successfully it
1675 * will be released to the locked queue.
1677 bp->b_qindex = BQUEUE_LOCKED;
1678 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1679 bp, b_freelist);
1680 } else if (bp->b_flags & B_DELWRI) {
1681 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1682 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1683 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1684 bp, b_freelist);
1685 } else if (vm_page_count_min(0)) {
1687 * We are too low on memory, we have to try to free the
1688 * buffer (most importantly: the wired pages making up its
1689 * backing store) *now*.
1691 spin_unlock(&pcpu->spin);
1692 brelse(bp);
1693 return;
1694 } else {
1695 bp->b_qindex = BQUEUE_CLEAN;
1696 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1697 bp, b_freelist);
1699 spin_unlock(&pcpu->spin);
1702 * We have now placed the buffer on the proper queue, but have yet
1703 * to unlock it.
1705 if ((bp->b_flags & B_LOCKED) == 0 &&
1706 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1707 bufcountwakeup();
1711 * Something we can maybe free or reuse.
1713 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1714 bufspacewakeup();
1717 * Final cleanup and unlock. Clear bits that are only used while a
1718 * buffer is actively locked.
1720 bp->b_flags &= ~(B_NOCACHE | B_RELBUF);
1721 dsched_buf_exit(bp);
1722 BUF_UNLOCK(bp);
1726 * Hold a buffer, preventing it from being reused. This will prevent
1727 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1728 * operations. If a B_INVAL operation occurs the buffer will remain held
1729 * but the underlying pages may get ripped out.
1731 * These functions are typically used in VOP_READ/VOP_WRITE functions
1732 * to hold a buffer during a copyin or copyout, preventing deadlocks
1733 * or recursive lock panics when read()/write() is used over mmap()'d
1734 * space.
1736 * NOTE: bqhold() requires that the buffer be locked at the time of the
1737 * hold. bqdrop() has no requirements other than the buffer having
1738 * previously been held.
1740 void
1741 bqhold(struct buf *bp)
1743 atomic_add_int(&bp->b_refs, 1);
1746 void
1747 bqdrop(struct buf *bp)
1749 KKASSERT(bp->b_refs > 0);
1750 atomic_add_int(&bp->b_refs, -1);
1754 * Return backing pages held by the buffer 'bp' back to the VM system.
1755 * This routine is called when the bp is invalidated, released, or
1756 * reused.
1758 * The KVA mapping (b_data) for the underlying pages is removed by
1759 * this function.
1761 * WARNING! This routine is integral to the low memory critical path
1762 * when a buffer is B_RELBUF'd. If the system has a severe page
1763 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1764 * queues so they can be reused in the current pageout daemon
1765 * pass.
1767 static void
1768 vfs_vmio_release(struct buf *bp)
1770 int i;
1771 vm_page_t m;
1773 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1774 m = bp->b_xio.xio_pages[i];
1775 bp->b_xio.xio_pages[i] = NULL;
1778 * We need to own the page in order to safely unwire it.
1780 vm_page_busy_wait(m, FALSE, "vmiopg");
1783 * The VFS is telling us this is not a meta-data buffer
1784 * even if it is backed by a block device.
1786 if (bp->b_flags & B_NOTMETA)
1787 vm_page_flag_set(m, PG_NOTMETA);
1790 * This is a very important bit of code. We try to track
1791 * VM page use whether the pages are wired into the buffer
1792 * cache or not. While wired into the buffer cache the
1793 * bp tracks the act_count.
1795 * We can choose to place unwired pages on the inactive
1796 * queue (0) or active queue (1). If we place too many
1797 * on the active queue the queue will cycle the act_count
1798 * on pages we'd like to keep, just from single-use pages
1799 * (such as when doing a tar-up or file scan).
1801 if (bp->b_act_count < vm_cycle_point)
1802 vm_page_unwire(m, 0);
1803 else
1804 vm_page_unwire(m, 1);
1807 * If the wire_count has dropped to 0 we may need to take
1808 * further action before unbusying the page.
1810 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1812 if (m->wire_count == 0) {
1813 if (bp->b_flags & B_DIRECT) {
1815 * Attempt to free the page if B_DIRECT is
1816 * set, the caller does not desire the page
1817 * to be cached.
1819 vm_page_wakeup(m);
1820 vm_page_try_to_free(m);
1821 } else if ((bp->b_flags & B_NOTMETA) ||
1822 vm_page_count_min(0)) {
1824 * Attempt to move the page to PQ_CACHE
1825 * if B_NOTMETA is set. This flag is set
1826 * by HAMMER to remove one of the two pages
1827 * present when double buffering is enabled.
1829 * Attempt to move the page to PQ_CACHE
1830 * If we have a severe page deficit. This
1831 * will cause buffer cache operations related
1832 * to pageouts to recycle the related pages
1833 * in order to avoid a low memory deadlock.
1835 m->act_count = bp->b_act_count;
1836 vm_page_try_to_cache(m);
1837 } else {
1839 * Nominal case, leave the page on the
1840 * queue the original unwiring placed it on
1841 * (active or inactive).
1843 m->act_count = bp->b_act_count;
1844 vm_page_wakeup(m);
1846 } else {
1847 vm_page_wakeup(m);
1852 * Zero out the pmap pte's for the mapping, but don't bother
1853 * invalidating the TLB. The range will be properly invalidating
1854 * when new pages are entered into the mapping.
1856 * This in particular reduces tmpfs tear-down overhead and reduces
1857 * buffer cache re-use overhead (one invalidation sequence instead
1858 * of two per re-use).
1860 pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1861 bp->b_xio.xio_npages);
1862 CPUMASK_ASSZERO(bp->b_cpumask);
1863 if (bp->b_bufsize) {
1864 atomic_add_long(&bufspace, -bp->b_bufsize);
1865 bp->b_bufsize = 0;
1866 bufspacewakeup();
1868 bp->b_xio.xio_npages = 0;
1869 bp->b_flags &= ~B_VMIO;
1870 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1871 if (bp->b_vp)
1872 brelvp(bp);
1876 * Find and initialize a new buffer header, freeing up existing buffers
1877 * in the bufqueues as necessary. The new buffer is returned locked.
1879 * Important: B_INVAL is not set. If the caller wishes to throw the
1880 * buffer away, the caller must set B_INVAL prior to calling brelse().
1882 * We block if:
1883 * We have insufficient buffer headers
1884 * We have insufficient buffer space
1886 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1887 * Instead we ask the buf daemon to do it for us. We attempt to
1888 * avoid piecemeal wakeups of the pageout daemon.
1890 struct buf *
1891 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1893 struct bufpcpu *pcpu;
1894 struct buf *bp;
1895 struct buf *nbp;
1896 int nqindex;
1897 int nqcpu;
1898 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1899 int maxloops = 200000;
1900 int restart_reason = 0;
1901 struct buf *restart_bp = NULL;
1902 static char flushingbufs[MAXCPU];
1903 char *flushingp;
1906 * We can't afford to block since we might be holding a vnode lock,
1907 * which may prevent system daemons from running. We deal with
1908 * low-memory situations by proactively returning memory and running
1909 * async I/O rather then sync I/O.
1912 ++getnewbufcalls;
1913 nqcpu = mycpu->gd_cpuid;
1914 flushingp = &flushingbufs[nqcpu];
1915 restart:
1916 if (bufspace < lobufspace)
1917 *flushingp = 0;
1919 if (debug_bufbio && --maxloops == 0)
1920 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1921 mycpu->gd_cpuid, restart_reason, restart_bp);
1924 * Setup for scan. If we do not have enough free buffers,
1925 * we setup a degenerate case that immediately fails. Note
1926 * that if we are specially marked process, we are allowed to
1927 * dip into our reserves.
1929 * The scanning sequence is nominally: EMPTY->CLEAN
1931 pcpu = &bufpcpu[nqcpu];
1932 spin_lock(&pcpu->spin);
1935 * Prime the scan for this cpu. Locate the first buffer to
1936 * check. If we are flushing buffers we must skip the
1937 * EMPTY queue.
1939 nqindex = BQUEUE_EMPTY;
1940 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
1941 if (nbp == NULL || *flushingp) {
1942 nqindex = BQUEUE_CLEAN;
1943 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
1947 * Run scan, possibly freeing data and/or kva mappings on the fly,
1948 * depending.
1950 * WARNING! spin is held!
1952 while ((bp = nbp) != NULL) {
1953 int qindex = nqindex;
1955 nbp = TAILQ_NEXT(bp, b_freelist);
1958 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1959 * cycles through the queue twice before being selected.
1961 if (qindex == BQUEUE_CLEAN &&
1962 (bp->b_flags & B_AGE) == 0 && nbp) {
1963 bp->b_flags |= B_AGE;
1964 TAILQ_REMOVE(&pcpu->bufqueues[qindex],
1965 bp, b_freelist);
1966 TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
1967 bp, b_freelist);
1968 continue;
1972 * Calculate next bp ( we can only use it if we do not block
1973 * or do other fancy things ).
1975 if (nbp == NULL) {
1976 switch(qindex) {
1977 case BQUEUE_EMPTY:
1978 nqindex = BQUEUE_CLEAN;
1979 if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
1980 break;
1981 /* fall through */
1982 case BQUEUE_CLEAN:
1984 * nbp is NULL.
1986 break;
1991 * Sanity Checks
1993 KASSERT(bp->b_qindex == qindex,
1994 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1997 * Note: we no longer distinguish between VMIO and non-VMIO
1998 * buffers.
2000 KASSERT((bp->b_flags & B_DELWRI) == 0,
2001 ("delwri buffer %p found in queue %d", bp, qindex));
2004 * Do not try to reuse a buffer with a non-zero b_refs.
2005 * This is an unsynchronized test. A synchronized test
2006 * is also performed after we lock the buffer.
2008 if (bp->b_refs)
2009 continue;
2012 * Start freeing the bp. This is somewhat involved. nbp
2013 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2014 * on the clean list must be disassociated from their
2015 * current vnode. Buffers on the empty lists have
2016 * already been disassociated.
2018 * b_refs is checked after locking along with queue changes.
2019 * We must check here to deal with zero->nonzero transitions
2020 * made by the owner of the buffer lock, which is used by
2021 * VFS's to hold the buffer while issuing an unlocked
2022 * uiomove()s. We cannot invalidate the buffer's pages
2023 * for this case. Once we successfully lock a buffer the
2024 * only 0->1 transitions of b_refs will occur via findblk().
2026 * We must also check for queue changes after successful
2027 * locking as the current lock holder may dispose of the
2028 * buffer and change its queue.
2030 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2031 spin_unlock(&pcpu->spin);
2032 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2033 restart_reason = 1;
2034 restart_bp = bp;
2035 goto restart;
2037 if (bp->b_qindex != qindex || bp->b_refs) {
2038 spin_unlock(&pcpu->spin);
2039 BUF_UNLOCK(bp);
2040 restart_reason = 2;
2041 restart_bp = bp;
2042 goto restart;
2044 bremfree_locked(bp);
2045 spin_unlock(&pcpu->spin);
2048 * Dependancies must be handled before we disassociate the
2049 * vnode.
2051 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2052 * be immediately disassociated. HAMMER then becomes
2053 * responsible for releasing the buffer.
2055 * NOTE: spin is UNLOCKED now.
2057 if (LIST_FIRST(&bp->b_dep) != NULL) {
2058 buf_deallocate(bp);
2059 if (bp->b_flags & B_LOCKED) {
2060 bqrelse(bp);
2061 restart_reason = 3;
2062 restart_bp = bp;
2063 goto restart;
2065 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2069 * CLEAN buffers have content or associations that must be
2070 * cleaned out if not repurposing.
2072 if (qindex == BQUEUE_CLEAN) {
2073 if (bp->b_flags & B_VMIO)
2074 vfs_vmio_release(bp);
2075 if (bp->b_vp)
2076 brelvp(bp);
2080 * NOTE: nbp is now entirely invalid. We can only restart
2081 * the scan from this point on.
2083 * Get the rest of the buffer freed up. b_kva* is still
2084 * valid after this operation.
2086 KASSERT(bp->b_vp == NULL,
2087 ("bp3 %p flags %08x vnode %p qindex %d "
2088 "unexpectededly still associated!",
2089 bp, bp->b_flags, bp->b_vp, qindex));
2090 KKASSERT((bp->b_flags & B_HASHED) == 0);
2092 if (bp->b_bufsize)
2093 allocbuf(bp, 0);
2095 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2096 kprintf("getnewbuf: caught bug vp queue "
2097 "%p/%08x qidx %d\n",
2098 bp, bp->b_flags, qindex);
2099 brelvp(bp);
2101 bp->b_flags = B_BNOCLIP;
2102 bp->b_cmd = BUF_CMD_DONE;
2103 bp->b_vp = NULL;
2104 bp->b_error = 0;
2105 bp->b_resid = 0;
2106 bp->b_bcount = 0;
2107 bp->b_xio.xio_npages = 0;
2108 bp->b_dirtyoff = bp->b_dirtyend = 0;
2109 bp->b_act_count = ACT_INIT;
2110 reinitbufbio(bp);
2111 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2112 buf_dep_init(bp);
2113 if (blkflags & GETBLK_BHEAVY)
2114 bp->b_flags |= B_HEAVY;
2116 if (bufspace >= hibufspace)
2117 *flushingp = 1;
2118 if (bufspace < lobufspace)
2119 *flushingp = 0;
2120 if (*flushingp) {
2121 bp->b_flags |= B_INVAL;
2122 brelse(bp);
2123 restart_reason = 5;
2124 restart_bp = bp;
2125 goto restart;
2129 * b_refs can transition to a non-zero value while we hold
2130 * the buffer locked due to a findblk(). Our brelvp() above
2131 * interlocked any future possible transitions due to
2132 * findblk()s.
2134 * If we find b_refs to be non-zero we can destroy the
2135 * buffer's contents but we cannot yet reuse the buffer.
2137 if (bp->b_refs) {
2138 bp->b_flags |= B_INVAL;
2139 brelse(bp);
2140 restart_reason = 6;
2141 restart_bp = bp;
2143 goto restart;
2147 * We found our buffer!
2149 break;
2153 * If we exhausted our list, iterate other cpus. If that fails,
2154 * sleep as appropriate. We may have to wakeup various daemons
2155 * and write out some dirty buffers.
2157 * Generally we are sleeping due to insufficient buffer space.
2159 * NOTE: spin is held if bp is NULL, else it is not held.
2161 if (bp == NULL) {
2162 int flags;
2163 char *waitmsg;
2165 spin_unlock(&pcpu->spin);
2167 nqcpu = (nqcpu + 1) % ncpus;
2168 if (nqcpu != mycpu->gd_cpuid) {
2169 restart_reason = 7;
2170 restart_bp = bp;
2171 goto restart;
2174 if (bufspace >= hibufspace) {
2175 waitmsg = "bufspc";
2176 flags = VFS_BIO_NEED_BUFSPACE;
2177 } else {
2178 waitmsg = "newbuf";
2179 flags = VFS_BIO_NEED_ANY;
2182 bd_speedup(); /* heeeelp */
2183 atomic_set_int(&needsbuffer, flags);
2184 while (needsbuffer & flags) {
2185 int value;
2187 tsleep_interlock(&needsbuffer, 0);
2188 value = atomic_fetchadd_int(&needsbuffer, 0);
2189 if (value & flags) {
2190 if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2191 waitmsg, slptimeo)) {
2192 return (NULL);
2196 } else {
2198 * We finally have a valid bp. Reset b_data.
2200 * (spin is not held)
2202 bp->b_data = bp->b_kvabase;
2204 return(bp);
2208 * buf_daemon:
2210 * Buffer flushing daemon. Buffers are normally flushed by the
2211 * update daemon but if it cannot keep up this process starts to
2212 * take the load in an attempt to prevent getnewbuf() from blocking.
2214 * Once a flush is initiated it does not stop until the number
2215 * of buffers falls below lodirtybuffers, but we will wake up anyone
2216 * waiting at the mid-point.
2218 static struct kproc_desc buf_kp = {
2219 "bufdaemon",
2220 buf_daemon,
2221 &bufdaemon_td
2223 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2224 kproc_start, &buf_kp);
2226 static struct kproc_desc bufhw_kp = {
2227 "bufdaemon_hw",
2228 buf_daemon_hw,
2229 &bufdaemonhw_td
2231 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2232 kproc_start, &bufhw_kp);
2234 static void
2235 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2236 int *bd_req)
2238 long limit;
2239 struct buf *marker;
2241 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2242 marker->b_flags |= B_MARKER;
2243 marker->b_qindex = BQUEUE_NONE;
2244 marker->b_qcpu = 0;
2247 * This process needs to be suspended prior to shutdown sync.
2249 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2250 td, SHUTDOWN_PRI_LAST);
2251 curthread->td_flags |= TDF_SYSTHREAD;
2254 * This process is allowed to take the buffer cache to the limit
2256 for (;;) {
2257 kproc_suspend_loop();
2260 * Do the flush as long as the number of dirty buffers
2261 * (including those running) exceeds lodirtybufspace.
2263 * When flushing limit running I/O to hirunningspace
2264 * Do the flush. Limit the amount of in-transit I/O we
2265 * allow to build up, otherwise we would completely saturate
2266 * the I/O system. Wakeup any waiting processes before we
2267 * normally would so they can run in parallel with our drain.
2269 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2270 * but because we split the operation into two threads we
2271 * have to cut it in half for each thread.
2273 waitrunningbufspace();
2274 limit = lodirtybufspace / 2;
2275 while (buf_limit_fn(limit)) {
2276 if (flushbufqueues(marker, queue) == 0)
2277 break;
2278 if (runningbufspace < hirunningspace)
2279 continue;
2280 waitrunningbufspace();
2284 * We reached our low water mark, reset the
2285 * request and sleep until we are needed again.
2286 * The sleep is just so the suspend code works.
2288 tsleep_interlock(bd_req, 0);
2289 if (atomic_swap_int(bd_req, 0) == 0)
2290 tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2292 /* NOT REACHED */
2293 /*kfree(marker, M_BIOBUF);*/
2296 static int
2297 buf_daemon_limit(long limit)
2299 return (runningbufspace + dirtykvaspace > limit ||
2300 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2303 static int
2304 buf_daemon_hw_limit(long limit)
2306 return (runningbufspace + dirtykvaspace > limit ||
2307 dirtybufcounthw >= nbuf / 2);
2310 static void
2311 buf_daemon(void)
2313 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2314 &bd_request);
2317 static void
2318 buf_daemon_hw(void)
2320 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2321 &bd_request_hw);
2325 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2326 * localized version of the queue. Each call made to this function iterates
2327 * to another cpu. It is desireable to flush several buffers from the same
2328 * cpu's queue at once, as these are likely going to be linear.
2330 * We must be careful to free up B_INVAL buffers instead of write them, which
2331 * NFS is particularly sensitive to.
2333 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2334 * really want to try to get the buffer out and reuse it due to the write
2335 * load on the machine.
2337 * We must lock the buffer in order to check its validity before we can mess
2338 * with its contents. spin isn't enough.
2340 static int
2341 flushbufqueues(struct buf *marker, bufq_type_t q)
2343 struct bufpcpu *pcpu;
2344 struct buf *bp;
2345 int r = 0;
2346 u_int loops = flushperqueue;
2347 int lcpu = marker->b_qcpu;
2349 KKASSERT(marker->b_qindex == BQUEUE_NONE);
2350 KKASSERT(marker->b_flags & B_MARKER);
2352 again:
2354 * Spinlock needed to perform operations on the queue and may be
2355 * held through a non-blocking BUF_LOCK(), but cannot be held when
2356 * BUF_UNLOCK()ing or through any other major operation.
2358 pcpu = &bufpcpu[marker->b_qcpu];
2359 spin_lock(&pcpu->spin);
2360 marker->b_qindex = q;
2361 TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2362 bp = marker;
2364 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2366 * NOTE: spinlock is always held at the top of the loop
2368 if (bp->b_flags & B_MARKER)
2369 continue;
2370 if ((bp->b_flags & B_DELWRI) == 0) {
2371 kprintf("Unexpected clean buffer %p\n", bp);
2372 continue;
2374 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2375 continue;
2376 KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2379 * Once the buffer is locked we will have no choice but to
2380 * unlock the spinlock around a later BUF_UNLOCK and re-set
2381 * bp = marker when looping. Move the marker now to make
2382 * things easier.
2384 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2385 TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2388 * Must recheck B_DELWRI after successfully locking
2389 * the buffer.
2391 if ((bp->b_flags & B_DELWRI) == 0) {
2392 spin_unlock(&pcpu->spin);
2393 BUF_UNLOCK(bp);
2394 spin_lock(&pcpu->spin);
2395 bp = marker;
2396 continue;
2400 * Remove the buffer from its queue. We still own the
2401 * spinlock here.
2403 _bremfree(bp);
2406 * Disposing of an invalid buffer counts as a flush op
2408 if (bp->b_flags & B_INVAL) {
2409 spin_unlock(&pcpu->spin);
2410 brelse(bp);
2411 goto doloop;
2415 * Release the spinlock for the more complex ops we
2416 * are now going to do.
2418 spin_unlock(&pcpu->spin);
2419 lwkt_yield();
2422 * This is a bit messy
2424 if (LIST_FIRST(&bp->b_dep) != NULL &&
2425 (bp->b_flags & B_DEFERRED) == 0 &&
2426 buf_countdeps(bp, 0)) {
2427 spin_lock(&pcpu->spin);
2428 TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2429 bp->b_qindex = q;
2430 bp->b_flags |= B_DEFERRED;
2431 spin_unlock(&pcpu->spin);
2432 BUF_UNLOCK(bp);
2433 spin_lock(&pcpu->spin);
2434 bp = marker;
2435 continue;
2439 * spinlock not held here.
2441 * If the buffer has a dependancy, buf_checkwrite() must
2442 * also return 0 for us to be able to initate the write.
2444 * If the buffer is flagged B_ERROR it may be requeued
2445 * over and over again, we try to avoid a live lock.
2447 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2448 brelse(bp);
2449 } else if (bp->b_flags & B_ERROR) {
2450 tsleep(bp, 0, "bioer", 1);
2451 bp->b_flags &= ~B_AGE;
2452 cluster_awrite(bp);
2453 } else {
2454 bp->b_flags |= B_AGE | B_KVABIO;
2455 cluster_awrite(bp);
2457 /* bp invalid but needs to be NULL-tested if we break out */
2458 doloop:
2459 spin_lock(&pcpu->spin);
2460 ++r;
2461 if (--loops == 0)
2462 break;
2463 bp = marker;
2465 /* bp is invalid here but can be NULL-tested to advance */
2467 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2468 marker->b_qindex = BQUEUE_NONE;
2469 spin_unlock(&pcpu->spin);
2472 * Advance the marker to be fair.
2474 marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2475 if (bp == NULL) {
2476 if (marker->b_qcpu != lcpu)
2477 goto again;
2480 return (r);
2484 * inmem:
2486 * Returns true if no I/O is needed to access the associated VM object.
2487 * This is like findblk except it also hunts around in the VM system for
2488 * the data.
2490 * Note that we ignore vm_page_free() races from interrupts against our
2491 * lookup, since if the caller is not protected our return value will not
2492 * be any more valid then otherwise once we exit the critical section.
2495 inmem(struct vnode *vp, off_t loffset)
2497 vm_object_t obj;
2498 vm_offset_t toff, tinc, size;
2499 vm_page_t m;
2500 int res = 1;
2502 if (findblk(vp, loffset, FINDBLK_TEST))
2503 return 1;
2504 if (vp->v_mount == NULL)
2505 return 0;
2506 if ((obj = vp->v_object) == NULL)
2507 return 0;
2509 size = PAGE_SIZE;
2510 if (size > vp->v_mount->mnt_stat.f_iosize)
2511 size = vp->v_mount->mnt_stat.f_iosize;
2513 vm_object_hold(obj);
2514 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2515 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2516 if (m == NULL) {
2517 res = 0;
2518 break;
2520 tinc = size;
2521 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2522 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2523 if (vm_page_is_valid(m,
2524 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2525 res = 0;
2526 break;
2529 vm_object_drop(obj);
2530 return (res);
2534 * findblk:
2536 * Locate and return the specified buffer. Unless flagged otherwise,
2537 * a locked buffer will be returned if it exists or NULL if it does not.
2539 * findblk()'d buffers are still on the bufqueues and if you intend
2540 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2541 * and possibly do other stuff to it.
2543 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2544 * for locking the buffer and ensuring that it remains
2545 * the desired buffer after locking.
2547 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2548 * to acquire the lock we return NULL, even if the
2549 * buffer exists.
2551 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2552 * reuse by getnewbuf() but does not prevent
2553 * disassociation (B_INVAL). Used to avoid deadlocks
2554 * against random (vp,loffset)s due to reassignment.
2556 * FINDBLK_KVABIO - Only applicable when returning a locked buffer.
2557 * Indicates that the caller supports B_KVABIO.
2559 * (0) - Lock the buffer blocking.
2561 struct buf *
2562 findblk(struct vnode *vp, off_t loffset, int flags)
2564 struct buf *bp;
2565 int lkflags;
2567 lkflags = LK_EXCLUSIVE;
2568 if (flags & FINDBLK_NBLOCK)
2569 lkflags |= LK_NOWAIT;
2571 for (;;) {
2573 * Lookup. Ref the buf while holding v_token to prevent
2574 * reuse (but does not prevent diassociation).
2576 lwkt_gettoken_shared(&vp->v_token);
2577 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2578 if (bp == NULL) {
2579 lwkt_reltoken(&vp->v_token);
2580 return(NULL);
2582 bqhold(bp);
2583 lwkt_reltoken(&vp->v_token);
2586 * If testing only break and return bp, do not lock.
2588 if (flags & FINDBLK_TEST)
2589 break;
2592 * Lock the buffer, return an error if the lock fails.
2593 * (only FINDBLK_NBLOCK can cause the lock to fail).
2595 if (BUF_LOCK(bp, lkflags)) {
2596 atomic_subtract_int(&bp->b_refs, 1);
2597 /* bp = NULL; not needed */
2598 return(NULL);
2602 * Revalidate the locked buf before allowing it to be
2603 * returned.
2605 * B_KVABIO is only set/cleared when locking. When
2606 * clearing B_KVABIO, we must ensure that the buffer
2607 * is synchronized to all cpus.
2609 if (bp->b_vp == vp && bp->b_loffset == loffset) {
2610 if (flags & FINDBLK_KVABIO)
2611 bp->b_flags |= B_KVABIO;
2612 else
2613 bkvasync_all(bp);
2614 break;
2616 atomic_subtract_int(&bp->b_refs, 1);
2617 BUF_UNLOCK(bp);
2621 * Success
2623 if ((flags & FINDBLK_REF) == 0)
2624 atomic_subtract_int(&bp->b_refs, 1);
2625 return(bp);
2629 * getcacheblk:
2631 * Similar to getblk() except only returns the buffer if it is
2632 * B_CACHE and requires no other manipulation. Otherwise NULL
2633 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2634 * and the getblk() would block.
2636 * If B_RAM is set the buffer might be just fine, but we return
2637 * NULL anyway because we want the code to fall through to the
2638 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2640 * If blksize is 0 the buffer cache buffer must already be fully
2641 * cached.
2643 * If blksize is non-zero getblk() will be used, allowing a buffer
2644 * to be reinstantiated from its VM backing store. The buffer must
2645 * still be fully cached after reinstantiation to be returned.
2647 struct buf *
2648 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2650 struct buf *bp;
2651 int fndflags = 0;
2653 if (blkflags & GETBLK_NOWAIT)
2654 fndflags |= FINDBLK_NBLOCK;
2655 if (blkflags & GETBLK_KVABIO)
2656 fndflags |= FINDBLK_KVABIO;
2658 if (blksize) {
2659 bp = getblk(vp, loffset, blksize, blkflags, 0);
2660 if (bp) {
2661 if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2662 bp->b_flags &= ~B_AGE;
2663 if (bp->b_flags & B_RAM) {
2664 bqrelse(bp);
2665 bp = NULL;
2667 } else {
2668 brelse(bp);
2669 bp = NULL;
2672 } else {
2673 bp = findblk(vp, loffset, fndflags);
2674 if (bp) {
2675 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2676 B_CACHE) {
2677 bp->b_flags &= ~B_AGE;
2678 bremfree(bp);
2679 } else {
2680 BUF_UNLOCK(bp);
2681 bp = NULL;
2685 return (bp);
2689 * getblk:
2691 * Get a block given a specified block and offset into a file/device.
2692 * B_INVAL may or may not be set on return. The caller should clear
2693 * B_INVAL prior to initiating a READ.
2695 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2696 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2697 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2698 * without doing any of those things the system will likely believe
2699 * the buffer to be valid (especially if it is not B_VMIO), and the
2700 * next getblk() will return the buffer with B_CACHE set.
2702 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2703 * an existing buffer.
2705 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2706 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2707 * and then cleared based on the backing VM. If the previous buffer is
2708 * non-0-sized but invalid, B_CACHE will be cleared.
2710 * If getblk() must create a new buffer, the new buffer is returned with
2711 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2712 * case it is returned with B_INVAL clear and B_CACHE set based on the
2713 * backing VM.
2715 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2716 * B_CACHE bit is clear.
2718 * What this means, basically, is that the caller should use B_CACHE to
2719 * determine whether the buffer is fully valid or not and should clear
2720 * B_INVAL prior to issuing a read. If the caller intends to validate
2721 * the buffer by loading its data area with something, the caller needs
2722 * to clear B_INVAL. If the caller does this without issuing an I/O,
2723 * the caller should set B_CACHE ( as an optimization ), else the caller
2724 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2725 * a write attempt or if it was a successfull read. If the caller
2726 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2727 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2729 * getblk flags:
2731 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2732 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2734 struct buf *
2735 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2737 struct buf *bp;
2738 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2739 int error;
2740 int lkflags;
2742 if (size > MAXBSIZE)
2743 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2744 if (vp->v_object == NULL)
2745 panic("getblk: vnode %p has no object!", vp);
2748 * NOTE: findblk does not try to resolve KVABIO in REF-only mode.
2749 * we still have to handle that ourselves.
2751 loop:
2752 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2754 * The buffer was found in the cache, but we need to lock it.
2755 * We must acquire a ref on the bp to prevent reuse, but
2756 * this will not prevent disassociation (brelvp()) so we
2757 * must recheck (vp,loffset) after acquiring the lock.
2759 * Without the ref the buffer could potentially be reused
2760 * before we acquire the lock and create a deadlock
2761 * situation between the thread trying to reuse the buffer
2762 * and us due to the fact that we would wind up blocking
2763 * on a random (vp,loffset).
2765 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2766 if (blkflags & GETBLK_NOWAIT) {
2767 bqdrop(bp);
2768 return(NULL);
2770 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2771 if (blkflags & GETBLK_PCATCH)
2772 lkflags |= LK_PCATCH;
2773 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2774 if (error) {
2775 bqdrop(bp);
2776 if (error == ENOLCK)
2777 goto loop;
2778 return (NULL);
2780 /* buffer may have changed on us */
2782 bqdrop(bp);
2785 * Once the buffer has been locked, make sure we didn't race
2786 * a buffer recyclement. Buffers that are no longer hashed
2787 * will have b_vp == NULL, so this takes care of that check
2788 * as well.
2790 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2791 #if 0
2792 kprintf("Warning buffer %p (vp %p loffset %lld) "
2793 "was recycled\n",
2794 bp, vp, (long long)loffset);
2795 #endif
2796 BUF_UNLOCK(bp);
2797 goto loop;
2801 * If SZMATCH any pre-existing buffer must be of the requested
2802 * size or NULL is returned. The caller absolutely does not
2803 * want getblk() to bwrite() the buffer on a size mismatch.
2805 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2806 BUF_UNLOCK(bp);
2807 return(NULL);
2811 * All vnode-based buffers must be backed by a VM object.
2813 * Set B_KVABIO for any incidental work, we will fix it
2814 * up later.
2816 KKASSERT(bp->b_flags & B_VMIO);
2817 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2818 bp->b_flags &= ~B_AGE;
2819 bp->b_flags |= B_KVABIO;
2822 * Make sure that B_INVAL buffers do not have a cached
2823 * block number translation.
2825 if ((bp->b_flags & B_INVAL) &&
2826 (bp->b_bio2.bio_offset != NOOFFSET)) {
2827 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2828 " did not have cleared bio_offset cache\n",
2829 bp, vp, (long long)loffset);
2830 clearbiocache(&bp->b_bio2);
2834 * The buffer is locked. B_CACHE is cleared if the buffer is
2835 * invalid.
2837 * After the bremfree(), disposals must use b[q]relse().
2839 if (bp->b_flags & B_INVAL)
2840 bp->b_flags &= ~B_CACHE;
2841 bremfree(bp);
2844 * Any size inconsistancy with a dirty buffer or a buffer
2845 * with a softupdates dependancy must be resolved. Resizing
2846 * the buffer in such circumstances can lead to problems.
2848 * Dirty or dependant buffers are written synchronously.
2849 * Other types of buffers are simply released and
2850 * reconstituted as they may be backed by valid, dirty VM
2851 * pages (but not marked B_DELWRI).
2853 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2854 * and may be left over from a prior truncation (and thus
2855 * no longer represent the actual EOF point), so we
2856 * definitely do not want to B_NOCACHE the backing store.
2858 if (size != bp->b_bcount) {
2859 if (bp->b_flags & B_DELWRI) {
2860 bp->b_flags |= B_RELBUF;
2861 bwrite(bp);
2862 } else if (LIST_FIRST(&bp->b_dep)) {
2863 bp->b_flags |= B_RELBUF;
2864 bwrite(bp);
2865 } else {
2866 bp->b_flags |= B_RELBUF;
2867 brelse(bp);
2869 goto loop;
2871 KKASSERT(size <= bp->b_kvasize);
2872 KASSERT(bp->b_loffset != NOOFFSET,
2873 ("getblk: no buffer offset"));
2876 * A buffer with B_DELWRI set and B_CACHE clear must
2877 * be committed before we can return the buffer in
2878 * order to prevent the caller from issuing a read
2879 * ( due to B_CACHE not being set ) and overwriting
2880 * it.
2882 * Most callers, including NFS and FFS, need this to
2883 * operate properly either because they assume they
2884 * can issue a read if B_CACHE is not set, or because
2885 * ( for example ) an uncached B_DELWRI might loop due
2886 * to softupdates re-dirtying the buffer. In the latter
2887 * case, B_CACHE is set after the first write completes,
2888 * preventing further loops.
2890 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2891 * above while extending the buffer, we cannot allow the
2892 * buffer to remain with B_CACHE set after the write
2893 * completes or it will represent a corrupt state. To
2894 * deal with this we set B_NOCACHE to scrap the buffer
2895 * after the write.
2897 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2898 * I'm not even sure this state is still possible
2899 * now that getblk() writes out any dirty buffers
2900 * on size changes.
2902 * We might be able to do something fancy, like setting
2903 * B_CACHE in bwrite() except if B_DELWRI is already set,
2904 * so the below call doesn't set B_CACHE, but that gets real
2905 * confusing. This is much easier.
2907 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2908 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2909 "and CACHE clear, b_flags %08x\n",
2910 bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2911 bp->b_flags |= B_NOCACHE;
2912 bwrite(bp);
2913 goto loop;
2915 } else {
2917 * Buffer is not in-core, create new buffer. The buffer
2918 * returned by getnewbuf() is locked. Note that the returned
2919 * buffer is also considered valid (not marked B_INVAL).
2921 * Calculating the offset for the I/O requires figuring out
2922 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2923 * the mount's f_iosize otherwise. If the vnode does not
2924 * have an associated mount we assume that the passed size is
2925 * the block size.
2927 * Note that vn_isdisk() cannot be used here since it may
2928 * return a failure for numerous reasons. Note that the
2929 * buffer size may be larger then the block size (the caller
2930 * will use block numbers with the proper multiple). Beware
2931 * of using any v_* fields which are part of unions. In
2932 * particular, in DragonFly the mount point overloading
2933 * mechanism uses the namecache only and the underlying
2934 * directory vnode is not a special case.
2936 int bsize, maxsize;
2938 if (vp->v_type == VBLK || vp->v_type == VCHR)
2939 bsize = DEV_BSIZE;
2940 else if (vp->v_mount)
2941 bsize = vp->v_mount->mnt_stat.f_iosize;
2942 else
2943 bsize = size;
2945 maxsize = size + (loffset & PAGE_MASK);
2946 maxsize = imax(maxsize, bsize);
2948 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2949 if (bp == NULL) {
2950 if (slpflags || slptimeo)
2951 return NULL;
2952 goto loop;
2956 * Atomically insert the buffer into the hash, so that it can
2957 * be found by findblk().
2959 * If bgetvp() returns non-zero a collision occured, and the
2960 * bp will not be associated with the vnode.
2962 * Make sure the translation layer has been cleared.
2964 bp->b_loffset = loffset;
2965 bp->b_bio2.bio_offset = NOOFFSET;
2966 /* bp->b_bio2.bio_next = NULL; */
2968 if (bgetvp(vp, bp, size)) {
2969 bp->b_flags |= B_INVAL;
2970 brelse(bp);
2971 goto loop;
2975 * All vnode-based buffers must be backed by a VM object.
2977 * Set B_KVABIO for incidental work
2979 KKASSERT(vp->v_object != NULL);
2980 bp->b_flags |= B_VMIO | B_KVABIO;
2981 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2983 allocbuf(bp, size);
2987 * Do the nasty smp broadcast (if the buffer needs it) when KVABIO
2988 * is not supported.
2990 if (bp && (blkflags & GETBLK_KVABIO) == 0) {
2991 bkvasync_all(bp);
2993 return (bp);
2997 * regetblk(bp)
2999 * Reacquire a buffer that was previously released to the locked queue,
3000 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3001 * set B_LOCKED (which handles the acquisition race).
3003 * To this end, either B_LOCKED must be set or the dependancy list must be
3004 * non-empty.
3006 void
3007 regetblk(struct buf *bp)
3009 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3010 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3011 bremfree(bp);
3015 * allocbuf:
3017 * This code constitutes the buffer memory from either anonymous system
3018 * memory (in the case of non-VMIO operations) or from an associated
3019 * VM object (in the case of VMIO operations). This code is able to
3020 * resize a buffer up or down.
3022 * Note that this code is tricky, and has many complications to resolve
3023 * deadlock or inconsistant data situations. Tread lightly!!!
3024 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3025 * the caller. Calling this code willy nilly can result in the loss of
3026 * data.
3028 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3029 * B_CACHE for the non-VMIO case.
3031 * This routine does not need to be called from a critical section but you
3032 * must own the buffer.
3034 void
3035 allocbuf(struct buf *bp, int size)
3037 vm_page_t m;
3038 int newbsize;
3039 int desiredpages;
3040 int i;
3042 if (BUF_LOCKINUSE(bp) == 0)
3043 panic("allocbuf: buffer not busy");
3045 if (bp->b_kvasize < size)
3046 panic("allocbuf: buffer too small");
3048 KKASSERT(bp->b_flags & B_VMIO);
3050 newbsize = roundup2(size, DEV_BSIZE);
3051 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3052 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3053 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3056 * Set B_CACHE initially if buffer is 0 length or will become
3057 * 0-length.
3059 if (size == 0 || bp->b_bufsize == 0)
3060 bp->b_flags |= B_CACHE;
3062 if (newbsize < bp->b_bufsize) {
3064 * DEV_BSIZE aligned new buffer size is less then the
3065 * DEV_BSIZE aligned existing buffer size. Figure out
3066 * if we have to remove any pages.
3068 if (desiredpages < bp->b_xio.xio_npages) {
3069 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3071 * the page is not freed here -- it
3072 * is the responsibility of
3073 * vnode_pager_setsize
3075 m = bp->b_xio.xio_pages[i];
3076 KASSERT(m != bogus_page,
3077 ("allocbuf: bogus page found"));
3078 vm_page_busy_wait(m, TRUE, "biodep");
3079 bp->b_xio.xio_pages[i] = NULL;
3080 vm_page_unwire(m, 0);
3081 vm_page_wakeup(m);
3083 pmap_qremove_noinval((vm_offset_t)
3084 trunc_page((vm_offset_t)bp->b_data) +
3085 (desiredpages << PAGE_SHIFT),
3086 (bp->b_xio.xio_npages - desiredpages));
3087 bp->b_xio.xio_npages = desiredpages;
3090 * Don't bother invalidating the pmap changes
3091 * (which wastes global SMP invalidation IPIs)
3092 * when setting the size to 0. This case occurs
3093 * when called via getnewbuf() during buffer
3094 * recyclement.
3096 if (desiredpages == 0) {
3097 CPUMASK_ASSZERO(bp->b_cpumask);
3098 } else {
3099 bkvareset(bp);
3102 } else if (size > bp->b_bcount) {
3104 * We are growing the buffer, possibly in a
3105 * byte-granular fashion.
3107 struct vnode *vp;
3108 vm_object_t obj;
3109 vm_offset_t toff;
3110 vm_offset_t tinc;
3113 * Step 1, bring in the VM pages from the object,
3114 * allocating them if necessary. We must clear
3115 * B_CACHE if these pages are not valid for the
3116 * range covered by the buffer.
3118 vp = bp->b_vp;
3119 obj = vp->v_object;
3121 vm_object_hold(obj);
3122 while (bp->b_xio.xio_npages < desiredpages) {
3123 vm_page_t m;
3124 vm_pindex_t pi;
3125 int error;
3127 pi = OFF_TO_IDX(bp->b_loffset) +
3128 bp->b_xio.xio_npages;
3131 * Blocking on m->busy_count might lead to a
3132 * deadlock:
3134 * vm_fault->getpages->cluster_read->allocbuf
3136 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3137 &error);
3138 if (error) {
3139 vm_page_sleep_busy(m, FALSE, "pgtblk");
3140 continue;
3142 if (m == NULL) {
3144 * note: must allocate system pages
3145 * since blocking here could intefere
3146 * with paging I/O, no matter which
3147 * process we are.
3149 m = bio_page_alloc(bp, obj, pi,
3150 desiredpages -
3151 bp->b_xio.xio_npages);
3152 if (m) {
3153 vm_page_wire(m);
3154 vm_page_wakeup(m);
3155 bp->b_flags &= ~B_CACHE;
3156 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3157 ++bp->b_xio.xio_npages;
3159 continue;
3163 * We found a page and were able to busy it.
3165 vm_page_wire(m);
3166 vm_page_wakeup(m);
3167 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3168 ++bp->b_xio.xio_npages;
3169 if (bp->b_act_count < m->act_count)
3170 bp->b_act_count = m->act_count;
3172 vm_object_drop(obj);
3175 * Step 2. We've loaded the pages into the buffer,
3176 * we have to figure out if we can still have B_CACHE
3177 * set. Note that B_CACHE is set according to the
3178 * byte-granular range ( bcount and size ), not the
3179 * aligned range ( newbsize ).
3181 * The VM test is against m->valid, which is DEV_BSIZE
3182 * aligned. Needless to say, the validity of the data
3183 * needs to also be DEV_BSIZE aligned. Note that this
3184 * fails with NFS if the server or some other client
3185 * extends the file's EOF. If our buffer is resized,
3186 * B_CACHE may remain set! XXX
3189 toff = bp->b_bcount;
3190 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3192 while ((bp->b_flags & B_CACHE) && toff < size) {
3193 vm_pindex_t pi;
3195 if (tinc > (size - toff))
3196 tinc = size - toff;
3198 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3199 PAGE_SHIFT;
3201 vfs_buf_test_cache(
3203 bp->b_loffset,
3204 toff,
3205 tinc,
3206 bp->b_xio.xio_pages[pi]
3208 toff += tinc;
3209 tinc = PAGE_SIZE;
3213 * Step 3, fixup the KVM pmap. Remember that
3214 * bp->b_data is relative to bp->b_loffset, but
3215 * bp->b_loffset may be offset into the first page.
3217 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3218 pmap_qenter_noinval((vm_offset_t)bp->b_data,
3219 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3220 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3221 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3222 bkvareset(bp);
3224 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3226 /* adjust space use on already-dirty buffer */
3227 if (bp->b_flags & B_DELWRI) {
3228 /* dirtykvaspace unchanged */
3229 atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3230 if (bp->b_flags & B_HEAVY) {
3231 atomic_add_long(&dirtybufspacehw,
3232 newbsize - bp->b_bufsize);
3235 bp->b_bufsize = newbsize; /* actual buffer allocation */
3236 bp->b_bcount = size; /* requested buffer size */
3237 bufspacewakeup();
3241 * biowait:
3243 * Wait for buffer I/O completion, returning error status. B_EINTR
3244 * is converted into an EINTR error but not cleared (since a chain
3245 * of biowait() calls may occur).
3247 * On return bpdone() will have been called but the buffer will remain
3248 * locked and will not have been brelse()'d.
3250 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3251 * likely still in progress on return.
3253 * NOTE! This operation is on a BIO, not a BUF.
3255 * NOTE! BIO_DONE is cleared by vn_strategy()
3257 static __inline int
3258 _biowait(struct bio *bio, const char *wmesg, int to)
3260 struct buf *bp = bio->bio_buf;
3261 u_int32_t flags;
3262 u_int32_t nflags;
3263 int error;
3265 KKASSERT(bio == &bp->b_bio1);
3266 for (;;) {
3267 flags = bio->bio_flags;
3268 if (flags & BIO_DONE)
3269 break;
3270 nflags = flags | BIO_WANT;
3271 tsleep_interlock(bio, 0);
3272 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3273 if (wmesg)
3274 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3275 else if (bp->b_cmd == BUF_CMD_READ)
3276 error = tsleep(bio, PINTERLOCKED, "biord", to);
3277 else
3278 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3279 if (error) {
3280 kprintf("tsleep error biowait %d\n", error);
3281 return (error);
3287 * Finish up.
3289 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3290 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3291 if (bp->b_flags & B_EINTR)
3292 return (EINTR);
3293 if (bp->b_flags & B_ERROR)
3294 return (bp->b_error ? bp->b_error : EIO);
3295 return (0);
3299 biowait(struct bio *bio, const char *wmesg)
3301 return(_biowait(bio, wmesg, 0));
3305 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3307 return(_biowait(bio, wmesg, to));
3311 * This associates a tracking count with an I/O. vn_strategy() and
3312 * dev_dstrategy() do this automatically but there are a few cases
3313 * where a vnode or device layer is bypassed when a block translation
3314 * is cached. In such cases bio_start_transaction() may be called on
3315 * the bypassed layers so the system gets an I/O in progress indication
3316 * for those higher layers.
3318 void
3319 bio_start_transaction(struct bio *bio, struct bio_track *track)
3321 bio->bio_track = track;
3322 bio_track_ref(track);
3323 dsched_buf_enter(bio->bio_buf); /* might stack */
3327 * Initiate I/O on a vnode.
3329 * SWAPCACHE OPERATION:
3331 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3332 * devfs also uses b_vp for fake buffers so we also have to check
3333 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3334 * underlying block device. The swap assignments are related to the
3335 * buffer cache buffer's b_vp, not the passed vp.
3337 * The passed vp == bp->b_vp only in the case where the strategy call
3338 * is made on the vp itself for its own buffers (a regular file or
3339 * block device vp). The filesystem usually then re-calls vn_strategy()
3340 * after translating the request to an underlying device.
3342 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3343 * underlying buffer cache buffers.
3345 * We can only deal with page-aligned buffers at the moment, because
3346 * we can't tell what the real dirty state for pages straddling a buffer
3347 * are.
3349 * In order to call swap_pager_strategy() we must provide the VM object
3350 * and base offset for the underlying buffer cache pages so it can find
3351 * the swap blocks.
3353 void
3354 vn_strategy(struct vnode *vp, struct bio *bio)
3356 struct bio_track *track;
3357 struct buf *bp = bio->bio_buf;
3359 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3362 * Set when an I/O is issued on the bp. Cleared by consumers
3363 * (aka HAMMER), allowing the consumer to determine if I/O had
3364 * actually occurred.
3366 bp->b_flags |= B_IOISSUED;
3369 * Handle the swapcache intercept.
3371 * NOTE: The swapcache itself always supports KVABIO and will
3372 * do the right thing if its underlying devices do not.
3374 if (vn_cache_strategy(vp, bio))
3375 return;
3378 * If the vnode does not support KVABIO and the buffer is using
3379 * KVABIO, we must synchronize b_data to all cpus before dispatching.
3381 if ((vp->v_flag & VKVABIO) == 0 && (bp->b_flags & B_KVABIO))
3382 bkvasync_all(bp);
3385 * Otherwise do the operation through the filesystem
3387 if (bp->b_cmd == BUF_CMD_READ)
3388 track = &vp->v_track_read;
3389 else
3390 track = &vp->v_track_write;
3391 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3392 bio->bio_track = track;
3393 bio_track_ref(track);
3394 dsched_buf_enter(bp); /* might stack */
3395 vop_strategy(*vp->v_ops, vp, bio);
3399 * vn_cache_strategy()
3401 * Returns 1 if the interrupt was successful, 0 if not.
3403 * NOTE: This function supports the KVABIO API wherein b_data might not
3404 * be synchronized to the current cpu.
3406 static void vn_cache_strategy_callback(struct bio *bio);
3409 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3411 struct buf *bp = bio->bio_buf;
3412 struct bio *nbio;
3413 vm_object_t object;
3414 vm_page_t m;
3415 int i;
3418 * Stop using swapcache if paniced, dumping, or dumped
3420 if (panicstr || dumping)
3421 return(0);
3424 * Is this buffer cache buffer suitable for reading from
3425 * the swap cache?
3427 if (vm_swapcache_read_enable == 0 ||
3428 bp->b_cmd != BUF_CMD_READ ||
3429 ((bp->b_flags & B_CLUSTER) == 0 &&
3430 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3431 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3432 (bp->b_bcount & PAGE_MASK) != 0) {
3433 return(0);
3437 * Figure out the original VM object (it will match the underlying
3438 * VM pages). Note that swap cached data uses page indices relative
3439 * to that object, not relative to bio->bio_offset.
3441 if (bp->b_flags & B_CLUSTER)
3442 object = vp->v_object;
3443 else
3444 object = bp->b_vp->v_object;
3447 * In order to be able to use the swap cache all underlying VM
3448 * pages must be marked as such, and we can't have any bogus pages.
3450 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3451 m = bp->b_xio.xio_pages[i];
3452 if ((m->flags & PG_SWAPPED) == 0)
3453 break;
3454 if (m == bogus_page)
3455 break;
3459 * If we are good then issue the I/O using swap_pager_strategy().
3461 * We can only do this if the buffer actually supports object-backed
3462 * I/O. If it doesn't npages will be 0.
3464 if (i && i == bp->b_xio.xio_npages) {
3465 m = bp->b_xio.xio_pages[0];
3466 nbio = push_bio(bio);
3467 nbio->bio_done = vn_cache_strategy_callback;
3468 nbio->bio_offset = ptoa(m->pindex);
3469 KKASSERT(m->object == object);
3470 swap_pager_strategy(object, nbio);
3471 return(1);
3473 return(0);
3477 * This is a bit of a hack but since the vn_cache_strategy() function can
3478 * override a VFS's strategy function we must make sure that the bio, which
3479 * is probably bio2, doesn't leak an unexpected offset value back to the
3480 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3481 * bio went through its own file strategy function and the the bio2 offset
3482 * is a cached disk offset when, in fact, it isn't.
3484 static void
3485 vn_cache_strategy_callback(struct bio *bio)
3487 bio->bio_offset = NOOFFSET;
3488 biodone(pop_bio(bio));
3492 * bpdone:
3494 * Finish I/O on a buffer after all BIOs have been processed.
3495 * Called when the bio chain is exhausted or by biowait. If called
3496 * by biowait, elseit is typically 0.
3498 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3499 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3500 * assuming B_INVAL is clear.
3502 * For the VMIO case, we set B_CACHE if the op was a read and no
3503 * read error occured, or if the op was a write. B_CACHE is never
3504 * set if the buffer is invalid or otherwise uncacheable.
3506 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3507 * initiator to leave B_INVAL set to brelse the buffer out of existance
3508 * in the biodone routine.
3510 * bpdone is responsible for calling bundirty() on the buffer after a
3511 * successful write. We previously did this prior to initiating the
3512 * write under the assumption that the buffer might be dirtied again
3513 * while the write was in progress, however doing it before-hand creates
3514 * a race condition prior to the call to vn_strategy() where the
3515 * filesystem may not be aware that a dirty buffer is present.
3516 * It should not be possible for the buffer or its underlying pages to
3517 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3518 * pages.
3520 void
3521 bpdone(struct buf *bp, int elseit)
3523 buf_cmd_t cmd;
3525 KASSERT(BUF_LOCKINUSE(bp), ("bpdone: bp %p not busy", bp));
3526 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3527 ("bpdone: bp %p already done!", bp));
3530 * No more BIOs are left. All completion functions have been dealt
3531 * with, now we clean up the buffer.
3533 cmd = bp->b_cmd;
3534 bp->b_cmd = BUF_CMD_DONE;
3537 * Only reads and writes are processed past this point.
3539 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3540 if (cmd == BUF_CMD_FREEBLKS)
3541 bp->b_flags |= B_NOCACHE;
3542 if (elseit)
3543 brelse(bp);
3544 return;
3548 * A failed write must re-dirty the buffer unless B_INVAL
3549 * was set.
3551 * A successful write must clear the dirty flag. This is done after
3552 * the write to ensure that the buffer remains on the vnode's dirty
3553 * list for filesystem interlocks / checks until the write is actually
3554 * complete. HAMMER2 is sensitive to this issue.
3556 * Only applicable to normal buffers (with VPs). vinum buffers may
3557 * not have a vp.
3559 * Must be done prior to calling buf_complete() as the callback might
3560 * re-dirty the buffer.
3562 if (cmd == BUF_CMD_WRITE) {
3563 if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3564 bp->b_flags &= ~B_NOCACHE;
3565 if (bp->b_vp)
3566 bdirty(bp);
3567 } else {
3568 if (bp->b_vp)
3569 bundirty(bp);
3574 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3575 * a lot worse. XXX - move this above the clearing of b_cmd
3577 if (LIST_FIRST(&bp->b_dep) != NULL)
3578 buf_complete(bp);
3580 if (bp->b_flags & B_VMIO) {
3581 int i;
3582 vm_ooffset_t foff;
3583 vm_page_t m;
3584 vm_object_t obj;
3585 int iosize;
3586 struct vnode *vp = bp->b_vp;
3588 obj = vp->v_object;
3590 #if defined(VFS_BIO_DEBUG)
3591 if (vp->v_auxrefs == 0)
3592 panic("bpdone: zero vnode hold count");
3593 if ((vp->v_flag & VOBJBUF) == 0)
3594 panic("bpdone: vnode is not setup for merged cache");
3595 #endif
3597 foff = bp->b_loffset;
3598 KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3599 KASSERT(obj != NULL, ("bpdone: missing VM object"));
3601 #if defined(VFS_BIO_DEBUG)
3602 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3603 kprintf("bpdone: paging in progress(%d) < "
3604 "bp->b_xio.xio_npages(%d)\n",
3605 obj->paging_in_progress,
3606 bp->b_xio.xio_npages);
3608 #endif
3611 * Set B_CACHE if the op was a normal read and no error
3612 * occured. B_CACHE is set for writes in the b*write()
3613 * routines.
3615 iosize = bp->b_bcount - bp->b_resid;
3616 if (cmd == BUF_CMD_READ &&
3617 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3618 bp->b_flags |= B_CACHE;
3621 vm_object_hold(obj);
3622 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3623 int resid;
3624 int isbogus;
3626 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3627 if (resid > iosize)
3628 resid = iosize;
3631 * cleanup bogus pages, restoring the originals. Since
3632 * the originals should still be wired, we don't have
3633 * to worry about interrupt/freeing races destroying
3634 * the VM object association.
3636 m = bp->b_xio.xio_pages[i];
3637 if (m == bogus_page) {
3638 if ((bp->b_flags & B_HASBOGUS) == 0)
3639 panic("bpdone: bp %p corrupt bogus", bp);
3640 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3641 if (m == NULL)
3642 panic("bpdone: page disappeared");
3643 bp->b_xio.xio_pages[i] = m;
3644 isbogus = 1;
3645 } else {
3646 isbogus = 0;
3648 #if defined(VFS_BIO_DEBUG)
3649 if (OFF_TO_IDX(foff) != m->pindex) {
3650 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3651 "mismatch\n",
3652 (unsigned long)foff, (long)m->pindex);
3654 #endif
3657 * In the write case, the valid and clean bits are
3658 * already changed correctly (see bdwrite()), so we
3659 * only need to do this here in the read case.
3661 vm_page_busy_wait(m, FALSE, "bpdpgw");
3662 if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
3663 vfs_clean_one_page(bp, i, m);
3666 * when debugging new filesystems or buffer I/O
3667 * methods, this is the most common error that pops
3668 * up. if you see this, you have not set the page
3669 * busy flag correctly!!!
3671 if ((m->busy_count & PBUSY_MASK) == 0) {
3672 kprintf("bpdone: page busy < 0, "
3673 "pindex: %d, foff: 0x(%x,%x), "
3674 "resid: %d, index: %d\n",
3675 (int) m->pindex, (int)(foff >> 32),
3676 (int) foff & 0xffffffff, resid, i);
3677 if (!vn_isdisk(vp, NULL))
3678 kprintf(" iosize: %ld, loffset: %lld, "
3679 "flags: 0x%08x, npages: %d\n",
3680 bp->b_vp->v_mount->mnt_stat.f_iosize,
3681 (long long)bp->b_loffset,
3682 bp->b_flags, bp->b_xio.xio_npages);
3683 else
3684 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3685 (long long)bp->b_loffset,
3686 bp->b_flags, bp->b_xio.xio_npages);
3687 kprintf(" valid: 0x%x, dirty: 0x%x, "
3688 "wired: %d\n",
3689 m->valid, m->dirty,
3690 m->wire_count);
3691 panic("bpdone: page busy < 0");
3693 vm_page_io_finish(m);
3694 vm_page_wakeup(m);
3695 vm_object_pip_wakeup(obj);
3696 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3697 iosize -= resid;
3699 if (bp->b_flags & B_HASBOGUS) {
3700 pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data),
3701 bp->b_xio.xio_pages,
3702 bp->b_xio.xio_npages);
3703 bp->b_flags &= ~B_HASBOGUS;
3704 bkvareset(bp);
3706 vm_object_drop(obj);
3710 * Finish up by releasing the buffer. There are no more synchronous
3711 * or asynchronous completions, those were handled by bio_done
3712 * callbacks.
3714 if (elseit) {
3715 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3716 brelse(bp);
3717 else
3718 bqrelse(bp);
3723 * Normal biodone.
3725 void
3726 biodone(struct bio *bio)
3728 struct buf *bp = bio->bio_buf;
3730 runningbufwakeup(bp);
3733 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3735 while (bio) {
3736 biodone_t *done_func;
3737 struct bio_track *track;
3740 * BIO tracking. Most but not all BIOs are tracked.
3742 if ((track = bio->bio_track) != NULL) {
3743 bio_track_rel(track);
3744 bio->bio_track = NULL;
3748 * A bio_done function terminates the loop. The function
3749 * will be responsible for any further chaining and/or
3750 * buffer management.
3752 * WARNING! The done function can deallocate the buffer!
3754 if ((done_func = bio->bio_done) != NULL) {
3755 bio->bio_done = NULL;
3756 done_func(bio);
3757 return;
3759 bio = bio->bio_prev;
3763 * If we've run out of bio's do normal [a]synchronous completion.
3765 bpdone(bp, 1);
3769 * Synchronous biodone - this terminates a synchronous BIO.
3771 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3772 * but still locked. The caller must brelse() the buffer after waiting
3773 * for completion.
3775 void
3776 biodone_sync(struct bio *bio)
3778 struct buf *bp = bio->bio_buf;
3779 int flags;
3780 int nflags;
3782 KKASSERT(bio == &bp->b_bio1);
3783 bpdone(bp, 0);
3785 for (;;) {
3786 flags = bio->bio_flags;
3787 nflags = (flags | BIO_DONE) & ~BIO_WANT;
3789 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3790 if (flags & BIO_WANT)
3791 wakeup(bio);
3792 break;
3798 * vfs_unbusy_pages:
3800 * This routine is called in lieu of iodone in the case of
3801 * incomplete I/O. This keeps the busy status for pages
3802 * consistant.
3804 void
3805 vfs_unbusy_pages(struct buf *bp)
3807 int i;
3809 runningbufwakeup(bp);
3811 if (bp->b_flags & B_VMIO) {
3812 struct vnode *vp = bp->b_vp;
3813 vm_object_t obj;
3815 obj = vp->v_object;
3816 vm_object_hold(obj);
3818 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3819 vm_page_t m = bp->b_xio.xio_pages[i];
3822 * When restoring bogus changes the original pages
3823 * should still be wired, so we are in no danger of
3824 * losing the object association and do not need
3825 * critical section protection particularly.
3827 if (m == bogus_page) {
3828 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3829 if (!m) {
3830 panic("vfs_unbusy_pages: page missing");
3832 bp->b_xio.xio_pages[i] = m;
3834 vm_page_busy_wait(m, FALSE, "bpdpgw");
3835 vm_page_io_finish(m);
3836 vm_page_wakeup(m);
3837 vm_object_pip_wakeup(obj);
3839 if (bp->b_flags & B_HASBOGUS) {
3840 pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data),
3841 bp->b_xio.xio_pages,
3842 bp->b_xio.xio_npages);
3843 bp->b_flags &= ~B_HASBOGUS;
3844 bkvareset(bp);
3846 vm_object_drop(obj);
3851 * vfs_busy_pages:
3853 * This routine is called before a device strategy routine.
3854 * It is used to tell the VM system that paging I/O is in
3855 * progress, and treat the pages associated with the buffer
3856 * almost as being PBUSY_LOCKED. Also the object 'paging_in_progress'
3857 * flag is handled to make sure that the object doesn't become
3858 * inconsistant.
3860 * Since I/O has not been initiated yet, certain buffer flags
3861 * such as B_ERROR or B_INVAL may be in an inconsistant state
3862 * and should be ignored.
3864 void
3865 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3867 int i, bogus;
3868 struct lwp *lp = curthread->td_lwp;
3871 * The buffer's I/O command must already be set. If reading,
3872 * B_CACHE must be 0 (double check against callers only doing
3873 * I/O when B_CACHE is 0).
3875 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3876 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3878 if (bp->b_flags & B_VMIO) {
3879 vm_object_t obj;
3881 obj = vp->v_object;
3882 KASSERT(bp->b_loffset != NOOFFSET,
3883 ("vfs_busy_pages: no buffer offset"));
3886 * Busy all the pages. We have to busy them all at once
3887 * to avoid deadlocks.
3889 retry:
3890 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3891 vm_page_t m = bp->b_xio.xio_pages[i];
3893 if (vm_page_busy_try(m, FALSE)) {
3894 vm_page_sleep_busy(m, FALSE, "vbpage");
3895 while (--i >= 0)
3896 vm_page_wakeup(bp->b_xio.xio_pages[i]);
3897 goto retry;
3902 * Setup for I/O, soft-busy the page right now because
3903 * the next loop may block.
3905 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3906 vm_page_t m = bp->b_xio.xio_pages[i];
3908 if ((bp->b_flags & B_CLUSTER) == 0) {
3909 vm_object_pip_add(obj, 1);
3910 vm_page_io_start(m);
3915 * Adjust protections for I/O and do bogus-page mapping.
3916 * Assume that vm_page_protect() can block (it can block
3917 * if VM_PROT_NONE, don't take any chances regardless).
3919 * In particular note that for writes we must incorporate
3920 * page dirtyness from the VM system into the buffer's
3921 * dirty range.
3923 * For reads we theoretically must incorporate page dirtyness
3924 * from the VM system to determine if the page needs bogus
3925 * replacement, but we shortcut the test by simply checking
3926 * that all m->valid bits are set, indicating that the page
3927 * is fully valid and does not need to be re-read. For any
3928 * VM system dirtyness the page will also be fully valid
3929 * since it was mapped at one point.
3931 bogus = 0;
3932 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3933 vm_page_t m = bp->b_xio.xio_pages[i];
3935 if (bp->b_cmd == BUF_CMD_WRITE) {
3937 * When readying a vnode-backed buffer for
3938 * a write we must zero-fill any invalid
3939 * portions of the backing VM pages, mark
3940 * it valid and clear related dirty bits.
3942 * vfs_clean_one_page() incorporates any
3943 * VM dirtyness and updates the b_dirtyoff
3944 * range (after we've made the page RO).
3946 * It is also expected that the pmap modified
3947 * bit has already been cleared by the
3948 * vm_page_protect(). We may not be able
3949 * to clear all dirty bits for a page if it
3950 * was also memory mapped (NFS).
3952 * Finally be sure to unassign any swap-cache
3953 * backing store as it is now stale.
3955 vm_page_protect(m, VM_PROT_READ);
3956 vfs_clean_one_page(bp, i, m);
3957 swap_pager_unswapped(m);
3958 } else if (m->valid == VM_PAGE_BITS_ALL) {
3960 * When readying a vnode-backed buffer for
3961 * read we must replace any dirty pages with
3962 * a bogus page so dirty data is not destroyed
3963 * when filling gaps.
3965 * To avoid testing whether the page is
3966 * dirty we instead test that the page was
3967 * at some point mapped (m->valid fully
3968 * valid) with the understanding that
3969 * this also covers the dirty case.
3971 bp->b_xio.xio_pages[i] = bogus_page;
3972 bp->b_flags |= B_HASBOGUS;
3973 bogus++;
3974 } else if (m->valid & m->dirty) {
3976 * This case should not occur as partial
3977 * dirtyment can only happen if the buffer
3978 * is B_CACHE, and this code is not entered
3979 * if the buffer is B_CACHE.
3981 kprintf("Warning: vfs_busy_pages - page not "
3982 "fully valid! loff=%jx bpf=%08x "
3983 "idx=%d val=%02x dir=%02x\n",
3984 (uintmax_t)bp->b_loffset, bp->b_flags,
3985 i, m->valid, m->dirty);
3986 vm_page_protect(m, VM_PROT_NONE);
3987 } else {
3989 * The page is not valid and can be made
3990 * part of the read.
3992 vm_page_protect(m, VM_PROT_NONE);
3994 vm_page_wakeup(m);
3996 if (bogus) {
3997 pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data),
3998 bp->b_xio.xio_pages,
3999 bp->b_xio.xio_npages);
4000 bkvareset(bp);
4005 * This is the easiest place to put the process accounting for the I/O
4006 * for now.
4008 if (lp != NULL) {
4009 if (bp->b_cmd == BUF_CMD_READ)
4010 lp->lwp_ru.ru_inblock++;
4011 else
4012 lp->lwp_ru.ru_oublock++;
4017 * Tell the VM system that the pages associated with this buffer
4018 * are clean. This is used for delayed writes where the data is
4019 * going to go to disk eventually without additional VM intevention.
4021 * NOTE: While we only really need to clean through to b_bcount, we
4022 * just go ahead and clean through to b_bufsize.
4024 static void
4025 vfs_clean_pages(struct buf *bp)
4027 vm_page_t m;
4028 int i;
4030 if ((bp->b_flags & B_VMIO) == 0)
4031 return;
4033 KASSERT(bp->b_loffset != NOOFFSET,
4034 ("vfs_clean_pages: no buffer offset"));
4036 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4037 m = bp->b_xio.xio_pages[i];
4038 vfs_clean_one_page(bp, i, m);
4043 * vfs_clean_one_page:
4045 * Set the valid bits and clear the dirty bits in a page within a
4046 * buffer. The range is restricted to the buffer's size and the
4047 * buffer's logical offset might index into the first page.
4049 * The caller has busied or soft-busied the page and it is not mapped,
4050 * test and incorporate the dirty bits into b_dirtyoff/end before
4051 * clearing them. Note that we need to clear the pmap modified bits
4052 * after determining the the page was dirty, vm_page_set_validclean()
4053 * does not do it for us.
4055 * This routine is typically called after a read completes (dirty should
4056 * be zero in that case as we are not called on bogus-replace pages),
4057 * or before a write is initiated.
4059 static void
4060 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4062 int bcount;
4063 int xoff;
4064 int soff;
4065 int eoff;
4068 * Calculate offset range within the page but relative to buffer's
4069 * loffset. loffset might be offset into the first page.
4071 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4072 bcount = bp->b_bcount + xoff; /* offset adjusted */
4074 if (pageno == 0) {
4075 soff = xoff;
4076 eoff = PAGE_SIZE;
4077 } else {
4078 soff = (pageno << PAGE_SHIFT);
4079 eoff = soff + PAGE_SIZE;
4081 if (eoff > bcount)
4082 eoff = bcount;
4083 if (soff >= eoff)
4084 return;
4087 * Test dirty bits and adjust b_dirtyoff/end.
4089 * If dirty pages are incorporated into the bp any prior
4090 * B_NEEDCOMMIT state (NFS) must be cleared because the
4091 * caller has not taken into account the new dirty data.
4093 * If the page was memory mapped the dirty bits might go beyond the
4094 * end of the buffer, but we can't really make the assumption that
4095 * a file EOF straddles the buffer (even though this is the case for
4096 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4097 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4098 * This also saves some console spam.
4100 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4101 * NFS can handle huge commits but not huge writes.
4103 vm_page_test_dirty(m);
4104 if (m->dirty) {
4105 if ((bp->b_flags & B_NEEDCOMMIT) &&
4106 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4107 if (debug_commit)
4108 kprintf("Warning: vfs_clean_one_page: bp %p "
4109 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4110 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4111 "doff/end %d %d\n",
4112 bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4113 bp->b_flags, bp->b_cmd,
4114 m->valid, m->dirty, xoff, soff, eoff,
4115 bp->b_dirtyoff, bp->b_dirtyend);
4116 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4117 if (debug_commit)
4118 print_backtrace(-1);
4121 * Only clear the pmap modified bits if ALL the dirty bits
4122 * are set, otherwise the system might mis-clear portions
4123 * of a page.
4125 if (m->dirty == VM_PAGE_BITS_ALL &&
4126 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4127 pmap_clear_modify(m);
4129 if (bp->b_dirtyoff > soff - xoff)
4130 bp->b_dirtyoff = soff - xoff;
4131 if (bp->b_dirtyend < eoff - xoff)
4132 bp->b_dirtyend = eoff - xoff;
4136 * Set related valid bits, clear related dirty bits.
4137 * Does not mess with the pmap modified bit.
4139 * WARNING! We cannot just clear all of m->dirty here as the
4140 * buffer cache buffers may use a DEV_BSIZE'd aligned
4141 * block size, or have an odd size (e.g. NFS at file EOF).
4142 * The putpages code can clear m->dirty to 0.
4144 * If a VOP_WRITE generates a buffer cache buffer which
4145 * covers the same space as mapped writable pages the
4146 * buffer flush might not be able to clear all the dirty
4147 * bits and still require a putpages from the VM system
4148 * to finish it off.
4150 * WARNING! vm_page_set_validclean() currently assumes vm_token
4151 * is held. The page might not be busied (bdwrite() case).
4152 * XXX remove this comment once we've validated that this
4153 * is no longer an issue.
4155 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4158 #if 0
4160 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4161 * The page data is assumed to be valid (there is no zeroing here).
4163 static void
4164 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4166 int bcount;
4167 int xoff;
4168 int soff;
4169 int eoff;
4172 * Calculate offset range within the page but relative to buffer's
4173 * loffset. loffset might be offset into the first page.
4175 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4176 bcount = bp->b_bcount + xoff; /* offset adjusted */
4178 if (pageno == 0) {
4179 soff = xoff;
4180 eoff = PAGE_SIZE;
4181 } else {
4182 soff = (pageno << PAGE_SHIFT);
4183 eoff = soff + PAGE_SIZE;
4185 if (eoff > bcount)
4186 eoff = bcount;
4187 if (soff >= eoff)
4188 return;
4189 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4191 #endif
4194 * vfs_bio_clrbuf:
4196 * Clear a buffer. This routine essentially fakes an I/O, so we need
4197 * to clear B_ERROR and B_INVAL.
4199 * Note that while we only theoretically need to clear through b_bcount,
4200 * we go ahead and clear through b_bufsize.
4202 void
4203 vfs_bio_clrbuf(struct buf *bp)
4205 int i, mask = 0;
4206 caddr_t sa, ea;
4207 KKASSERT(bp->b_flags & B_VMIO);
4209 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4210 bkvasync(bp);
4212 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4213 (bp->b_loffset & PAGE_MASK) == 0) {
4214 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4215 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4216 bp->b_resid = 0;
4217 return;
4219 if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4220 bzero(bp->b_data, bp->b_bufsize);
4221 bp->b_xio.xio_pages[0]->valid |= mask;
4222 bp->b_resid = 0;
4223 return;
4226 sa = bp->b_data;
4227 for(i = 0; i < bp->b_xio.xio_npages; i++, sa=ea) {
4228 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4229 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4230 ea = (caddr_t)(vm_offset_t)ulmin(
4231 (u_long)(vm_offset_t)ea,
4232 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4233 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4234 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4235 continue;
4236 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4237 bzero(sa, ea - sa);
4238 } else {
4239 for (; sa < ea; sa += DEV_BSIZE, j++) {
4240 if ((bp->b_xio.xio_pages[i]->valid &
4241 (1<<j)) == 0) {
4242 bzero(sa, DEV_BSIZE);
4246 bp->b_xio.xio_pages[i]->valid |= mask;
4248 bp->b_resid = 0;
4252 * Allocate a page for a buffer cache buffer.
4254 * If NULL is returned the caller is expected to retry (typically check if
4255 * the page already exists on retry before trying to allocate one).
4257 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4258 * function will use the system reserve with the hope that the page
4259 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4260 * is done with the buffer.
4262 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4263 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4264 * is capable of retiring pages (to swap). For TMPFS we don't dig
4265 * into the system reserve because doing so could stall out pretty
4266 * much every process running on the system.
4268 static
4269 vm_page_t
4270 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4272 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4273 vm_page_t p;
4275 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4278 * Try a normal allocation first.
4280 p = vm_page_alloc(obj, pg, vmflags);
4281 if (p)
4282 return(p);
4283 if (vm_page_lookup(obj, pg))
4284 return(NULL);
4285 vm_pageout_deficit += deficit;
4288 * Try again, digging into the system reserve.
4290 * Trying to recover pages from the buffer cache here can deadlock
4291 * against other threads trying to busy underlying pages so we
4292 * depend on the code in brelse() and bqrelse() to free/cache the
4293 * underlying buffer cache pages when memory is low.
4295 if (curthread->td_flags & TDF_SYSTHREAD)
4296 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4297 else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4298 vmflags |= 0;
4299 else
4300 vmflags |= VM_ALLOC_SYSTEM;
4302 /*recoverbufpages();*/
4303 p = vm_page_alloc(obj, pg, vmflags);
4304 if (p)
4305 return(p);
4306 if (vm_page_lookup(obj, pg))
4307 return(NULL);
4310 * Wait for memory to free up and try again
4312 if (vm_page_count_severe())
4313 ++lowmempgallocs;
4314 vm_wait(hz / 20 + 1);
4316 p = vm_page_alloc(obj, pg, vmflags);
4317 if (p)
4318 return(p);
4319 if (vm_page_lookup(obj, pg))
4320 return(NULL);
4323 * Ok, now we are really in trouble.
4325 if (bootverbose) {
4326 static struct krate biokrate = { .freq = 1 };
4327 krateprintf(&biokrate,
4328 "Warning: bio_page_alloc: memory exhausted "
4329 "during buffer cache page allocation from %s\n",
4330 curthread->td_comm);
4332 if (curthread->td_flags & TDF_SYSTHREAD)
4333 vm_wait(hz / 20 + 1);
4334 else
4335 vm_wait(hz / 2 + 1);
4336 return (NULL);
4340 * The buffer's mapping has changed. Adjust the buffer's memory
4341 * synchronization. The caller is the exclusive holder of the buffer
4342 * and has set or cleared B_KVABIO according to preference.
4344 * WARNING! If the caller is using B_KVABIO mode, this function will
4345 * not map the data to the current cpu. The caller must also
4346 * call bkvasync(bp).
4348 void
4349 bkvareset(struct buf *bp)
4351 if (bp->b_flags & B_KVABIO) {
4352 CPUMASK_ASSZERO(bp->b_cpumask);
4353 } else {
4354 CPUMASK_ORMASK(bp->b_cpumask, smp_active_mask);
4355 smp_invltlb();
4356 cpu_invltlb();
4361 * The buffer will be used by the caller on the caller's cpu, synchronize
4362 * its data to the current cpu. Caller must control the buffer by holding
4363 * its lock, but calling cpu does not necessarily have to be the owner of
4364 * the lock (i.e. HAMMER2's concurrent I/O accessors).
4366 * If B_KVABIO is not set, the buffer is already fully synchronized.
4368 void
4369 bkvasync(struct buf *bp)
4371 int cpuid = mycpu->gd_cpuid;
4372 char *bdata;
4374 if ((bp->b_flags & B_KVABIO) &&
4375 CPUMASK_TESTBIT(bp->b_cpumask, cpuid) == 0) {
4376 bdata = bp->b_data;
4377 while (bdata < bp->b_data + bp->b_bufsize) {
4378 cpu_invlpg(bdata);
4379 bdata += PAGE_SIZE -
4380 ((intptr_t)bdata & PAGE_MASK);
4382 ATOMIC_CPUMASK_ORBIT(bp->b_cpumask, cpuid);
4387 * The buffer will be used by a subsystem that does not understand
4388 * the KVABIO API. Make sure its data is synchronized to all cpus.
4390 * If B_KVABIO is not set, the buffer is already fully synchronized.
4392 * NOTE! This is the only safe way to clear B_KVABIO on a buffer.
4394 void
4395 bkvasync_all(struct buf *bp)
4397 if (debug_kvabio > 0) {
4398 --debug_kvabio;
4399 print_backtrace(10);
4402 if ((bp->b_flags & B_KVABIO) &&
4403 CPUMASK_CMPMASKNEQ(bp->b_cpumask, smp_active_mask)) {
4404 smp_invltlb();
4405 cpu_invltlb();
4406 ATOMIC_CPUMASK_ORMASK(bp->b_cpumask, smp_active_mask);
4408 bp->b_flags &= ~B_KVABIO;
4412 * Scan all buffers in the system and issue the callback.
4415 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4417 int count = 0;
4418 int error;
4419 long n;
4421 for (n = 0; n < nbuf; ++n) {
4422 if ((error = callback(&buf[n], info)) < 0) {
4423 count = error;
4424 break;
4426 count += error;
4428 return (count);
4432 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4433 * completion to the master buffer.
4435 static void
4436 nestiobuf_iodone(struct bio *bio)
4438 struct bio *mbio;
4439 struct buf *mbp, *bp;
4440 struct devstat *stats;
4441 int error;
4442 int donebytes;
4444 bp = bio->bio_buf;
4445 mbio = bio->bio_caller_info1.ptr;
4446 stats = bio->bio_caller_info2.ptr;
4447 mbp = mbio->bio_buf;
4449 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4450 KKASSERT(mbp != bp);
4452 error = bp->b_error;
4453 if (bp->b_error == 0 &&
4454 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4456 * Not all got transfered, raise an error. We have no way to
4457 * propagate these conditions to mbp.
4459 error = EIO;
4462 donebytes = bp->b_bufsize;
4464 relpbuf(bp, NULL);
4466 nestiobuf_done(mbio, donebytes, error, stats);
4469 void
4470 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4472 struct buf *mbp;
4474 mbp = mbio->bio_buf;
4476 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4479 * If an error occured, propagate it to the master buffer.
4481 * Several biodone()s may wind up running concurrently so
4482 * use an atomic op to adjust b_flags.
4484 if (error) {
4485 mbp->b_error = error;
4486 atomic_set_int(&mbp->b_flags, B_ERROR);
4490 * Decrement the operations in progress counter and terminate the
4491 * I/O if this was the last bit.
4493 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4494 mbp->b_resid = 0;
4495 if (stats)
4496 devstat_end_transaction_buf(stats, mbp);
4497 biodone(mbio);
4502 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4503 * the mbio from being biodone()'d while we are still adding sub-bios to
4504 * it.
4506 void
4507 nestiobuf_init(struct bio *bio)
4509 bio->bio_driver_info = (void *)1;
4513 * The BIOs added to the nestedio have already been started, remove the
4514 * count that placeheld our mbio and biodone() it if the count would
4515 * transition to 0.
4517 void
4518 nestiobuf_start(struct bio *mbio)
4520 struct buf *mbp = mbio->bio_buf;
4523 * Decrement the operations in progress counter and terminate the
4524 * I/O if this was the last bit.
4526 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4527 if (mbp->b_flags & B_ERROR)
4528 mbp->b_resid = mbp->b_bcount;
4529 else
4530 mbp->b_resid = 0;
4531 biodone(mbio);
4536 * Set an intermediate error prior to calling nestiobuf_start()
4538 void
4539 nestiobuf_error(struct bio *mbio, int error)
4541 struct buf *mbp = mbio->bio_buf;
4543 if (error) {
4544 mbp->b_error = error;
4545 atomic_set_int(&mbp->b_flags, B_ERROR);
4550 * nestiobuf_add: setup a "nested" buffer.
4552 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4553 * => 'bp' should be a buffer allocated by getiobuf.
4554 * => 'offset' is a byte offset in the master buffer.
4555 * => 'size' is a size in bytes of this nested buffer.
4557 void
4558 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4560 struct buf *mbp = mbio->bio_buf;
4561 struct vnode *vp = mbp->b_vp;
4563 KKASSERT(mbp->b_bcount >= offset + size);
4565 atomic_add_int((int *)&mbio->bio_driver_info, 1);
4567 /* kernel needs to own the lock for it to be released in biodone */
4568 BUF_KERNPROC(bp);
4569 bp->b_vp = vp;
4570 bp->b_cmd = mbp->b_cmd;
4571 bp->b_bio1.bio_done = nestiobuf_iodone;
4572 bp->b_data = (char *)mbp->b_data + offset;
4573 bp->b_resid = bp->b_bcount = size;
4574 bp->b_bufsize = bp->b_bcount;
4576 bp->b_bio1.bio_track = NULL;
4577 bp->b_bio1.bio_caller_info1.ptr = mbio;
4578 bp->b_bio1.bio_caller_info2.ptr = stats;
4581 #ifdef DDB
4583 DB_SHOW_COMMAND(buffer, db_show_buffer)
4585 /* get args */
4586 struct buf *bp = (struct buf *)addr;
4588 if (!have_addr) {
4589 db_printf("usage: show buffer <addr>\n");
4590 return;
4593 db_printf("b_flags = 0x%pb%i\n", PRINT_BUF_FLAGS, bp->b_flags);
4594 db_printf("b_cmd = %d\n", bp->b_cmd);
4595 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4596 "b_resid = %d\n, b_data = %p, "
4597 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4598 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4599 bp->b_data,
4600 (long long)bp->b_bio2.bio_offset,
4601 (long long)(bp->b_bio2.bio_next ?
4602 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4603 if (bp->b_xio.xio_npages) {
4604 int i;
4605 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4606 bp->b_xio.xio_npages);
4607 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4608 vm_page_t m;
4609 m = bp->b_xio.xio_pages[i];
4610 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4611 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4612 if ((i + 1) < bp->b_xio.xio_npages)
4613 db_printf(",");
4615 db_printf("\n");
4618 #endif /* DDB */