mtree/BSD.root.dist: Use spaces.
[dragonfly.git] / sys / kern / kern_systimer.c
blobc1656160f43153c040773768aa5b756323b272ce
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * WARNING! THE SYSTIMER MODULE DOES NOT OPERATE OR DISPATCH WITH THE
37 * MP LOCK HELD. ALL CODE USING THIS MODULE MUST BE MP-SAFE.
39 * This code implements a fine-grained per-cpu system timer which is
40 * ultimately based on a hardware timer. The hardware timer abstraction
41 * is sufficiently disconnected from this code to support both per-cpu
42 * hardware timers or a single system-wide hardware timer.
44 * WARNING! During early boot if a new system timer is selected, existing
45 * timeouts will not be effected and will thus occur slower or faster.
46 * periodic timers will be adjusted at the next periodic load.
48 * Notes on machine-dependant code (in arch/arch/systimer.c)
50 * cputimer_intr_reload() Reload the one-shot (per-cpu basis)
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/thread.h>
57 #include <sys/globaldata.h>
58 #include <sys/systimer.h>
59 #include <sys/thread2.h>
62 * Execute ready systimers. Called directly from the platform-specific
63 * one-shot timer clock interrupt (e.g. clkintr()) or via an IPI. May
64 * be called simultaniously on multiple cpus and always operations on
65 * the current cpu's queue. Systimer functions are responsible for calling
66 * hardclock, statclock, and other finely-timed routines.
68 void
69 systimer_intr(sysclock_t *timep, int in_ipi, struct intrframe *frame)
71 globaldata_t gd = mycpu;
72 sysclock_t time = *timep;
73 systimer_t info;
75 if (gd->gd_syst_nest)
76 return;
78 crit_enter();
79 ++gd->gd_syst_nest;
80 while ((info = TAILQ_FIRST(&gd->gd_systimerq)) != NULL) {
82 * If we haven't reached the requested time, tell the cputimer
83 * how much is left and break out.
85 if ((int)(info->time - time) > 0) {
86 cputimer_intr_reload(info->time - time);
87 break;
91 * Dequeue and execute, detect a loss of the systimer. Note
92 * that the in-progress systimer pointer can only be used to
93 * detect a loss of the systimer, it is only useful within
94 * this code sequence and becomes stale otherwise.
96 info->flags &= ~SYSTF_ONQUEUE;
97 TAILQ_REMOVE(info->queue, info, node);
98 gd->gd_systimer_inprog = info;
99 crit_exit();
100 info->func(info, in_ipi, frame);
101 crit_enter();
104 * The caller may deleted or even re-queue the systimer itself
105 * with a delete/add sequence. If the caller does not mess with
106 * the systimer we will requeue the periodic interval automatically.
108 * If this is a non-queued periodic interrupt, do not allow multiple
109 * events to build up (used for things like the callout timer to
110 * prevent premature timeouts due to long interrupt disablements,
111 * BIOS 8254 glitching, and so forth). However, we still want to
112 * keep things synchronized between cpus for efficient handling of
113 * the timer interrupt so jump in multiples of the periodic rate.
115 if (gd->gd_systimer_inprog == info && info->periodic) {
116 if (info->which != sys_cputimer) {
117 info->periodic = sys_cputimer->fromhz(info->freq);
118 info->which = sys_cputimer;
120 info->time += info->periodic;
121 if ((info->flags & SYSTF_NONQUEUED) &&
122 (int)(info->time - time) <= 0
124 info->time += roundup(time - info->time, info->periodic);
126 systimer_add(info);
128 gd->gd_systimer_inprog = NULL;
130 --gd->gd_syst_nest;
131 crit_exit();
134 void
135 systimer_intr_enable(void)
137 cputimer_intr_enable();
141 * MPSAFE
143 void
144 systimer_add(systimer_t info)
146 struct globaldata *gd = mycpu;
148 KKASSERT((info->flags & SYSTF_ONQUEUE) == 0);
149 crit_enter();
150 if (info->gd == gd) {
151 systimer_t scan1;
152 systimer_t scan2;
153 scan1 = TAILQ_FIRST(&gd->gd_systimerq);
154 if (scan1 == NULL || (int)(scan1->time - info->time) > 0) {
155 cputimer_intr_reload(info->time - sys_cputimer->count());
156 TAILQ_INSERT_HEAD(&gd->gd_systimerq, info, node);
157 } else {
158 scan2 = TAILQ_LAST(&gd->gd_systimerq, systimerq);
159 for (;;) {
160 if (scan1 == NULL) {
161 TAILQ_INSERT_TAIL(&gd->gd_systimerq, info, node);
162 break;
164 if (info->flags & SYSTF_FIRST) {
166 * When coincident events occur, the event being
167 * added wants to be placed before the others.
169 if ((int)(scan1->time - info->time) >= 0) {
170 TAILQ_INSERT_BEFORE(scan1, info, node);
171 break;
173 if ((int)(scan2->time - info->time) < 0) {
174 TAILQ_INSERT_AFTER(&gd->gd_systimerq, scan2,
175 info, node);
176 break;
178 } else {
180 * When coincident events occur, the event being
181 * added should be placed after the others. This
182 * is the default.
184 if ((int)(scan1->time - info->time) > 0) {
185 TAILQ_INSERT_BEFORE(scan1, info, node);
186 break;
188 if ((int)(scan2->time - info->time) <= 0) {
189 TAILQ_INSERT_AFTER(&gd->gd_systimerq, scan2,
190 info, node);
191 break;
194 scan1 = TAILQ_NEXT(scan1, node);
195 scan2 = TAILQ_PREV(scan2, systimerq, node);
198 info->flags = (info->flags | SYSTF_ONQUEUE) & ~SYSTF_IPIRUNNING;
199 info->queue = &gd->gd_systimerq;
200 } else {
201 KKASSERT((info->flags & SYSTF_IPIRUNNING) == 0);
202 info->flags |= SYSTF_IPIRUNNING;
203 lwkt_send_ipiq(info->gd, (ipifunc1_t)systimer_add, info);
205 crit_exit();
209 * systimer_del()
211 * Delete a system timer. Only the owning cpu can delete a timer.
213 * MPSAFE
215 void
216 systimer_del(systimer_t info)
218 struct globaldata *gd = info->gd;
220 KKASSERT(gd == mycpu && (info->flags & SYSTF_IPIRUNNING) == 0);
222 crit_enter();
224 if (info->flags & SYSTF_ONQUEUE) {
225 TAILQ_REMOVE(info->queue, info, node);
226 info->flags &= ~SYSTF_ONQUEUE;
230 * Deal with dispatch races by clearing the in-progress systimer
231 * pointer. Only a direct pointer comparison can be used, the
232 * actual contents of the structure gd_systimer_inprog points to,
233 * if not equal to info, may be stale.
235 if (gd->gd_systimer_inprog == info)
236 gd->gd_systimer_inprog = NULL;
238 crit_exit();
242 * systimer_init_periodic*()
244 * Initialize a periodic timer at the specified frequency and add
245 * it to the system. The frequency is uncompensated and approximate.
247 * Try to synchronize multiple registrations of the same or similar
248 * frequencies so the hardware interrupt is able to dispatch several
249 * together. We do this by adjusting the phase of the initial timeout.
250 * This helps SMP. Note that we are not attempting to synchronize to
251 * the realtime clock.
253 * This synchronization is also depended upon for statclock, hardclock,
254 * and schedclock.
256 static __inline
257 void
258 _systimer_init_periodic(systimer_t info, systimer_func_t func, void *data,
259 int freq, int flags)
261 sysclock_t base_count;
263 if (sys_cputimer->sync_base == 0)
264 sys_cputimer->sync_base = sys_cputimer->count();
266 bzero(info, sizeof(struct systimer));
268 if ((flags & SYSTF_100KHZSYNC) && freq <= 100000)
269 info->periodic = sys_cputimer->fromhz(100000) * (100000 / freq);
270 if ((flags & SYSTF_MSSYNC) && freq <= 1000)
271 info->periodic = sys_cputimer->fromhz(1000) * (1000 / freq);
272 else
273 info->periodic = sys_cputimer->fromhz(freq);
275 base_count = sys_cputimer->count();
276 base_count = base_count -
277 (base_count - sys_cputimer->sync_base) % info->periodic;
278 info->time = base_count + info->periodic;
279 info->func = func;
280 info->data = data;
281 info->freq = freq;
282 info->which = sys_cputimer;
283 info->gd = mycpu;
284 info->flags |= flags;
285 systimer_add(info);
288 void
289 systimer_init_periodic(systimer_t info, systimer_func_t func, void *data,
290 int freq)
292 _systimer_init_periodic(info, func, data, freq, 0);
295 void
296 systimer_init_periodic_nq(systimer_t info, systimer_func_t func, void *data,
297 int freq)
299 _systimer_init_periodic(info, func, data, freq, SYSTF_NONQUEUED);
303 * These provide systimers whos periods are in perfect multiples of 1ms
304 * or 0.1uS. This is used in situations where the caller wants to gang
305 * multiple systimers together whos periods may have some coincident events,
306 * in order for those coincident events to generate only one interrupt.
308 * This also allows the caller to make event ordering assumptions for
309 * said coincident events.
311 void
312 systimer_init_periodic_nq1khz(systimer_t info, systimer_func_t func,
313 void *data, int freq)
315 _systimer_init_periodic(info, func, data, freq,
316 SYSTF_NONQUEUED | SYSTF_MSSYNC);
319 void
320 systimer_init_periodic_nq100khz(systimer_t info, systimer_func_t func,
321 void *data, int freq)
323 _systimer_init_periodic(info, func, data, freq,
324 SYSTF_NONQUEUED | SYSTF_100KHZSYNC);
327 void
328 systimer_init_periodic_flags(systimer_t info, systimer_func_t func,
329 void *data, int freq, int flags)
331 _systimer_init_periodic(info, func, data, freq, flags);
336 * Adjust the periodic interval for a periodic timer which is already
337 * running. The current timeout is not effected.
339 void
340 systimer_adjust_periodic(systimer_t info, int freq)
342 crit_enter();
343 info->periodic = sys_cputimer->fromhz(freq);
344 info->freq = freq;
345 info->which = sys_cputimer;
346 crit_exit();
350 * systimer_init_oneshot()
352 * Initialize a periodic timer at the specified frequency and add
353 * it to the system. The frequency is uncompensated and approximate.
355 void
356 systimer_init_oneshot(systimer_t info, systimer_func_t func, void *data, int us)
358 bzero(info, sizeof(struct systimer));
359 info->time = sys_cputimer->count() + sys_cputimer->fromus(us);
360 info->func = func;
361 info->data = data;
362 info->which = sys_cputimer;
363 info->gd = mycpu;
364 systimer_add(info);