mtree/BSD.root.dist: Use spaces.
[dragonfly.git] / sys / kern / kern_synch.c
blobd462d9b58a511dcb555aa931f8d00d4f5cdb7af9
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #include <sys/priv.h>
51 #include <sys/kcollect.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
66 #include <vm/vm_extern.h>
68 struct tslpque {
69 TAILQ_HEAD(, thread) queue;
70 const volatile void *ident0;
71 const volatile void *ident1;
72 const volatile void *ident2;
73 const volatile void *ident3;
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
81 int lbolt;
82 void *lbolt_syncer;
83 int ncpus;
84 int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
85 int safepri;
86 int tsleep_now_works;
87 int tsleep_crypto_dump = 0;
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
91 #define __DEALL(ident) __DEQUALIFY(void *, ident)
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
103 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
106 struct loadavg averunnable =
107 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
109 * Constants for averages over 1, 5, and 15 minutes
110 * when sampling at 5 second intervals.
112 static fixpt_t cexp[3] = {
113 0.9200444146293232 * FSCALE, /* exp(-1/12) */
114 0.9834714538216174 * FSCALE, /* exp(-1/60) */
115 0.9944598480048967 * FSCALE, /* exp(-1/180) */
118 static void endtsleep (void *);
119 static void loadav (void *arg);
120 static void schedcpu (void *arg);
122 static int pctcpu_decay = 10;
123 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
124 &pctcpu_decay, 0, "");
127 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
129 int fscale __unused = FSCALE; /* exported to systat */
130 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
133 * Issue a wakeup() from userland (debugging)
135 static int
136 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
138 uint64_t ident = 1;
139 int error = 0;
141 if (req->newptr != NULL) {
142 if (priv_check(curthread, PRIV_ROOT))
143 return (EPERM);
144 error = SYSCTL_IN(req, &ident, sizeof(ident));
145 if (error)
146 return error;
147 kprintf("issue wakeup %016jx\n", ident);
148 wakeup((void *)(intptr_t)ident);
150 if (req->oldptr != NULL) {
151 error = SYSCTL_OUT(req, &ident, sizeof(ident));
153 return error;
156 static int
157 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
159 uint64_t ident = 1;
160 int error = 0;
162 if (req->newptr != NULL) {
163 if (priv_check(curthread, PRIV_ROOT))
164 return (EPERM);
165 error = SYSCTL_IN(req, &ident, sizeof(ident));
166 if (error)
167 return error;
168 kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
169 wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
171 if (req->oldptr != NULL) {
172 error = SYSCTL_OUT(req, &ident, sizeof(ident));
174 return error;
177 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
178 sysctl_wakeup, "Q", "issue wakeup(addr)");
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
183 * Recompute process priorities, once a second.
185 * Since the userland schedulers are typically event oriented, if the
186 * estcpu calculation at wakeup() time is not sufficient to make a
187 * process runnable relative to other processes in the system we have
188 * a 1-second recalc to help out.
190 * This code also allows us to store sysclock_t data in the process structure
191 * without fear of an overrun, since sysclock_t are guarenteed to hold
192 * several seconds worth of count.
194 * WARNING! callouts can preempt normal threads. However, they will not
195 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
197 static int schedcpu_stats(struct proc *p, void *data __unused);
198 static int schedcpu_resource(struct proc *p, void *data __unused);
200 static void
201 schedcpu(void *arg)
203 allproc_scan(schedcpu_stats, NULL, 1);
204 allproc_scan(schedcpu_resource, NULL, 1);
205 if (mycpu->gd_cpuid == 0) {
206 wakeup((caddr_t)&lbolt);
207 wakeup(lbolt_syncer);
209 callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
213 * General process statistics once a second
215 static int
216 schedcpu_stats(struct proc *p, void *data __unused)
218 struct lwp *lp;
221 * Threads may not be completely set up if process in SIDL state.
223 if (p->p_stat == SIDL)
224 return(0);
226 PHOLD(p);
227 if (lwkt_trytoken(&p->p_token) == FALSE) {
228 PRELE(p);
229 return(0);
232 p->p_swtime++;
233 FOREACH_LWP_IN_PROC(lp, p) {
234 if (lp->lwp_stat == LSSLEEP) {
235 ++lp->lwp_slptime;
236 if (lp->lwp_slptime == 1)
237 p->p_usched->uload_update(lp);
241 * Only recalculate processes that are active or have slept
242 * less then 2 seconds. The schedulers understand this.
243 * Otherwise decay by 50% per second.
245 if (lp->lwp_slptime <= 1) {
246 p->p_usched->recalculate(lp);
247 } else {
248 int decay;
250 decay = pctcpu_decay;
251 cpu_ccfence();
252 if (decay <= 1)
253 decay = 1;
254 if (decay > 100)
255 decay = 100;
256 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
259 lwkt_reltoken(&p->p_token);
260 lwkt_yield();
261 PRELE(p);
262 return(0);
266 * Resource checks. XXX break out since ksignal/killproc can block,
267 * limiting us to one process killed per second. There is probably
268 * a better way.
270 static int
271 schedcpu_resource(struct proc *p, void *data __unused)
273 u_int64_t ttime;
274 struct lwp *lp;
276 if (p->p_stat == SIDL)
277 return(0);
279 PHOLD(p);
280 if (lwkt_trytoken(&p->p_token) == FALSE) {
281 PRELE(p);
282 return(0);
285 if (p->p_stat == SZOMB || p->p_limit == NULL) {
286 lwkt_reltoken(&p->p_token);
287 PRELE(p);
288 return(0);
291 ttime = 0;
292 FOREACH_LWP_IN_PROC(lp, p) {
294 * We may have caught an lp in the middle of being
295 * created, lwp_thread can be NULL.
297 if (lp->lwp_thread) {
298 ttime += lp->lwp_thread->td_sticks;
299 ttime += lp->lwp_thread->td_uticks;
303 switch(plimit_testcpulimit(p, ttime)) {
304 case PLIMIT_TESTCPU_KILL:
305 killproc(p, "exceeded maximum CPU limit");
306 break;
307 case PLIMIT_TESTCPU_XCPU:
308 if ((p->p_flags & P_XCPU) == 0) {
309 p->p_flags |= P_XCPU;
310 ksignal(p, SIGXCPU);
312 break;
313 default:
314 break;
316 lwkt_reltoken(&p->p_token);
317 lwkt_yield();
318 PRELE(p);
319 return(0);
323 * This is only used by ps. Generate a cpu percentage use over
324 * a period of one second.
326 void
327 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
329 fixpt_t acc;
330 int remticks;
332 acc = (cpticks << FSHIFT) / ttlticks;
333 if (ttlticks >= ESTCPUFREQ) {
334 lp->lwp_pctcpu = acc;
335 } else {
336 remticks = ESTCPUFREQ - ttlticks;
337 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
338 ESTCPUFREQ;
343 * Handy macros to calculate hash indices. LOOKUP() calculates the
344 * global cpumask hash index, TCHASHSHIFT() converts that into the
345 * pcpu hash index.
347 * By making the pcpu hash arrays smaller we save a significant amount
348 * of memory at very low cost. The real cost is in IPIs, which are handled
349 * by the much larger global cpumask hash table.
351 #define LOOKUP_PRIME 66555444443333333ULL
352 #define LOOKUP(x) ((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^ \
353 LOOKUP_PRIME) % slpque_tablesize)
354 #define TCHASHSHIFT(x) ((x) >> 4)
356 static uint32_t slpque_tablesize;
357 static cpumask_t *slpque_cpumasks;
359 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
360 0, "");
363 * This is a dandy function that allows us to interlock tsleep/wakeup
364 * operations with unspecified upper level locks, such as lockmgr locks,
365 * simply by holding a critical section. The sequence is:
367 * (acquire upper level lock)
368 * tsleep_interlock(blah)
369 * (release upper level lock)
370 * tsleep(blah, ...)
372 * Basically this functions queues us on the tsleep queue without actually
373 * descheduling us. When tsleep() is later called with PINTERLOCK it
374 * assumes the thread was already queued, otherwise it queues it there.
376 * Thus it is possible to receive the wakeup prior to going to sleep and
377 * the race conditions are covered.
379 static __inline void
380 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
382 thread_t td = gd->gd_curthread;
383 struct tslpque *qp;
384 uint32_t cid;
385 uint32_t gid;
387 if (ident == NULL) {
388 kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
389 print_backtrace(5);
392 crit_enter_quick(td);
393 if (td->td_flags & TDF_TSLEEPQ) {
395 * Shortcut if unchanged
397 if (td->td_wchan == ident &&
398 td->td_wdomain == (flags & PDOMAIN_MASK)) {
399 crit_exit_quick(td);
400 return;
404 * Remove current sleepq
406 cid = LOOKUP(td->td_wchan);
407 gid = TCHASHSHIFT(cid);
408 qp = &gd->gd_tsleep_hash[gid];
409 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
410 if (TAILQ_FIRST(&qp->queue) == NULL) {
411 qp->ident0 = NULL;
412 qp->ident1 = NULL;
413 qp->ident2 = NULL;
414 qp->ident3 = NULL;
415 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
416 gd->gd_cpuid);
418 } else {
419 td->td_flags |= TDF_TSLEEPQ;
421 cid = LOOKUP(ident);
422 gid = TCHASHSHIFT(cid);
423 qp = &gd->gd_tsleep_hash[gid];
424 TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
425 if (qp->ident0 != ident && qp->ident1 != ident &&
426 qp->ident2 != ident && qp->ident3 != ident) {
427 if (qp->ident0 == NULL)
428 qp->ident0 = ident;
429 else if (qp->ident1 == NULL)
430 qp->ident1 = ident;
431 else if (qp->ident2 == NULL)
432 qp->ident2 = ident;
433 else if (qp->ident3 == NULL)
434 qp->ident3 = ident;
435 else
436 qp->ident0 = (void *)(intptr_t)-1;
438 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
439 td->td_wchan = ident;
440 td->td_wdomain = flags & PDOMAIN_MASK;
441 crit_exit_quick(td);
444 void
445 tsleep_interlock(const volatile void *ident, int flags)
447 _tsleep_interlock(mycpu, ident, flags);
451 * Remove thread from sleepq. Must be called with a critical section held.
452 * The thread must not be migrating.
454 static __inline void
455 _tsleep_remove(thread_t td)
457 globaldata_t gd = mycpu;
458 struct tslpque *qp;
459 uint32_t cid;
460 uint32_t gid;
462 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
463 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
464 if (td->td_flags & TDF_TSLEEPQ) {
465 td->td_flags &= ~TDF_TSLEEPQ;
466 cid = LOOKUP(td->td_wchan);
467 gid = TCHASHSHIFT(cid);
468 qp = &gd->gd_tsleep_hash[gid];
469 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
470 if (TAILQ_FIRST(&qp->queue) == NULL) {
471 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
472 gd->gd_cpuid);
474 td->td_wchan = NULL;
475 td->td_wdomain = 0;
479 void
480 tsleep_remove(thread_t td)
482 _tsleep_remove(td);
486 * General sleep call. Suspends the current process until a wakeup is
487 * performed on the specified identifier. The process will then be made
488 * runnable with the specified priority. Sleeps at most timo/hz seconds
489 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
490 * before and after sleeping, else signals are not checked. Returns 0 if
491 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
492 * signal needs to be delivered, ERESTART is returned if the current system
493 * call should be restarted if possible, and EINTR is returned if the system
494 * call should be interrupted by the signal (return EINTR).
496 * Note that if we are a process, we release_curproc() before messing with
497 * the LWKT scheduler.
499 * During autoconfiguration or after a panic, a sleep will simply
500 * lower the priority briefly to allow interrupts, then return.
502 * WARNING! This code can't block (short of switching away), or bad things
503 * will happen. No getting tokens, no blocking locks, etc.
506 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
508 struct thread *td = curthread;
509 struct lwp *lp = td->td_lwp;
510 struct proc *p = td->td_proc; /* may be NULL */
511 globaldata_t gd;
512 int sig;
513 int catch;
514 int error;
515 int oldpri;
516 struct callout thandle;
519 * Currently a severe hack. Make sure any delayed wakeups
520 * are flushed before we sleep or we might deadlock on whatever
521 * event we are sleeping on.
523 if (td->td_flags & TDF_DELAYED_WAKEUP)
524 wakeup_end_delayed();
527 * NOTE: removed KTRPOINT, it could cause races due to blocking
528 * even in stable. Just scrap it for now.
530 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
532 * After a panic, or before we actually have an operational
533 * softclock, just give interrupts a chance, then just return;
535 * don't run any other procs or panic below,
536 * in case this is the idle process and already asleep.
538 splz();
539 oldpri = td->td_pri;
540 lwkt_setpri_self(safepri);
541 lwkt_switch();
542 lwkt_setpri_self(oldpri);
543 return (0);
545 logtsleep2(tsleep_beg, ident);
546 gd = td->td_gd;
547 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
548 td->td_wakefromcpu = -1; /* overwritten by _wakeup */
551 * NOTE: all of this occurs on the current cpu, including any
552 * callout-based wakeups, so a critical section is a sufficient
553 * interlock.
555 * The entire sequence through to where we actually sleep must
556 * run without breaking the critical section.
558 catch = flags & PCATCH;
559 error = 0;
560 sig = 0;
562 crit_enter_quick(td);
564 KASSERT(ident != NULL, ("tsleep: no ident"));
565 KASSERT(lp == NULL ||
566 lp->lwp_stat == LSRUN || /* Obvious */
567 lp->lwp_stat == LSSTOP, /* Set in tstop */
568 ("tsleep %p %s %d",
569 ident, wmesg, lp->lwp_stat));
572 * We interlock the sleep queue if the caller has not already done
573 * it for us. This must be done before we potentially acquire any
574 * tokens or we can loose the wakeup.
576 if ((flags & PINTERLOCKED) == 0) {
577 _tsleep_interlock(gd, ident, flags);
581 * Setup for the current process (if this is a process). We must
582 * interlock with lwp_token to avoid remote wakeup races via
583 * setrunnable()
585 if (lp) {
586 lwkt_gettoken(&lp->lwp_token);
589 * If the umbrella process is in the SCORE state then
590 * make sure that the thread is flagged going into a
591 * normal sleep to allow the core dump to proceed, otherwise
592 * the coredump can end up waiting forever. If the normal
593 * sleep is woken up, the thread will enter a stopped state
594 * upon return to userland.
596 * We do not want to interrupt or cause a thread exist at
597 * this juncture because that will mess-up the state the
598 * coredump is trying to save.
600 if (p->p_stat == SCORE &&
601 (lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
602 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
603 ++p->p_nstopped;
607 * PCATCH requested.
609 if (catch) {
611 * Early termination if PCATCH was set and a
612 * signal is pending, interlocked with the
613 * critical section.
615 * Early termination only occurs when tsleep() is
616 * entered while in a normal LSRUN state.
618 if ((sig = CURSIG(lp)) != 0)
619 goto resume;
622 * Causes ksignal to wake us up if a signal is
623 * received (interlocked with lp->lwp_token).
625 lp->lwp_flags |= LWP_SINTR;
627 } else {
628 KKASSERT(p == NULL);
632 * Make sure the current process has been untangled from
633 * the userland scheduler and initialize slptime to start
634 * counting.
636 * NOTE: td->td_wakefromcpu is pre-set by the release function
637 * for the dfly scheduler, and then adjusted by _wakeup()
639 if (lp) {
640 p->p_usched->release_curproc(lp);
641 lp->lwp_slptime = 0;
645 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
646 * a wakeup() was processed before the thread could go to sleep.
648 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
649 * ident. If it does not then the thread slept inbetween the
650 * caller's initial tsleep_interlock() call and the caller's tsleep()
651 * call.
653 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
654 * to process incoming IPIs, thus draining incoming wakeups.
656 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
657 logtsleep2(ilockfail, ident);
658 goto resume;
659 } else if (td->td_wchan != ident ||
660 td->td_wdomain != (flags & PDOMAIN_MASK)) {
661 logtsleep2(ilockfail, ident);
662 goto resume;
666 * scheduling is blocked while in a critical section. Coincide
667 * the descheduled-by-tsleep flag with the descheduling of the
668 * lwkt.
670 * The timer callout is localized on our cpu and interlocked by
671 * our critical section.
673 lwkt_deschedule_self(td);
674 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
675 td->td_wmesg = wmesg;
678 * Setup the timeout, if any. The timeout is only operable while
679 * the thread is flagged descheduled.
681 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
682 if (timo) {
683 callout_init_mp(&thandle);
684 callout_reset(&thandle, timo, endtsleep, td);
688 * Beddy bye bye.
690 if (lp) {
692 * Ok, we are sleeping. Place us in the SSLEEP state.
694 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
697 * tstop() sets LSSTOP, so don't fiddle with that.
699 if (lp->lwp_stat != LSSTOP)
700 lp->lwp_stat = LSSLEEP;
701 lp->lwp_ru.ru_nvcsw++;
702 p->p_usched->uload_update(lp);
703 lwkt_switch();
706 * And when we are woken up, put us back in LSRUN. If we
707 * slept for over a second, recalculate our estcpu.
709 lp->lwp_stat = LSRUN;
710 if (lp->lwp_slptime) {
711 p->p_usched->uload_update(lp);
712 p->p_usched->recalculate(lp);
714 lp->lwp_slptime = 0;
715 } else {
716 lwkt_switch();
720 * Make sure we haven't switched cpus while we were asleep. It's
721 * not supposed to happen. Cleanup our temporary flags.
723 KKASSERT(gd == td->td_gd);
726 * Cleanup the timeout. If the timeout has already occured thandle
727 * has already been stopped, otherwise stop thandle. If the timeout
728 * is running (the callout thread must be blocked trying to get
729 * lwp_token) then wait for us to get scheduled.
731 if (timo) {
732 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
733 /* else we won't get rescheduled! */
734 if (lp->lwp_stat != LSSTOP)
735 lp->lwp_stat = LSSLEEP;
736 lwkt_deschedule_self(td);
737 td->td_wmesg = "tsrace";
738 lwkt_switch();
739 kprintf("td %p %s: timeout race\n", td, td->td_comm);
741 if (td->td_flags & TDF_TIMEOUT) {
742 td->td_flags &= ~TDF_TIMEOUT;
743 error = EWOULDBLOCK;
744 } else {
745 /* does not block when on same cpu */
746 callout_stop(&thandle);
749 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
752 * Make sure we have been removed from the sleepq. In most
753 * cases this will have been done for us already but it is
754 * possible for a scheduling IPI to be in-flight from a
755 * previous tsleep/tsleep_interlock() or due to a straight-out
756 * call to lwkt_schedule() (in the case of an interrupt thread),
757 * causing a spurious wakeup.
759 _tsleep_remove(td);
760 td->td_wmesg = NULL;
763 * Figure out the correct error return. If interrupted by a
764 * signal we want to return EINTR or ERESTART.
766 resume:
767 if (lp) {
768 if (catch && error == 0) {
769 if (sig != 0 || (sig = CURSIG(lp))) {
770 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
771 error = EINTR;
772 else
773 error = ERESTART;
777 lp->lwp_flags &= ~LWP_SINTR;
780 * Unconditionally set us to LSRUN on resume. lwp_stat could
781 * be in a weird state due to the goto resume, particularly
782 * when tsleep() is called from tstop().
784 lp->lwp_stat = LSRUN;
785 lwkt_reltoken(&lp->lwp_token);
787 logtsleep1(tsleep_end);
788 crit_exit_quick(td);
790 return (error);
794 * Interlocked spinlock sleep. An exclusively held spinlock must
795 * be passed to ssleep(). The function will atomically release the
796 * spinlock and tsleep on the ident, then reacquire the spinlock and
797 * return.
799 * This routine is fairly important along the critical path, so optimize it
800 * heavily.
803 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
804 const char *wmesg, int timo)
806 globaldata_t gd = mycpu;
807 int error;
809 _tsleep_interlock(gd, ident, flags);
810 spin_unlock_quick(gd, spin);
811 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
812 KKASSERT(gd == mycpu);
813 _spin_lock_quick(gd, spin, wmesg);
815 return (error);
819 lksleep(const volatile void *ident, struct lock *lock, int flags,
820 const char *wmesg, int timo)
822 globaldata_t gd = mycpu;
823 int error;
825 _tsleep_interlock(gd, ident, flags);
826 lockmgr(lock, LK_RELEASE);
827 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
828 lockmgr(lock, LK_EXCLUSIVE);
830 return (error);
834 * Interlocked mutex sleep. An exclusively held mutex must be passed
835 * to mtxsleep(). The function will atomically release the mutex
836 * and tsleep on the ident, then reacquire the mutex and return.
839 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
840 const char *wmesg, int timo)
842 globaldata_t gd = mycpu;
843 int error;
845 _tsleep_interlock(gd, ident, flags);
846 mtx_unlock(mtx);
847 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
848 mtx_lock_ex_quick(mtx);
850 return (error);
854 * Interlocked serializer sleep. An exclusively held serializer must
855 * be passed to zsleep(). The function will atomically release
856 * the serializer and tsleep on the ident, then reacquire the serializer
857 * and return.
860 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
861 const char *wmesg, int timo)
863 globaldata_t gd = mycpu;
864 int ret;
866 ASSERT_SERIALIZED(slz);
868 _tsleep_interlock(gd, ident, flags);
869 lwkt_serialize_exit(slz);
870 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
871 lwkt_serialize_enter(slz);
873 return ret;
877 * Directly block on the LWKT thread by descheduling it. This
878 * is much faster then tsleep(), but the only legal way to wake
879 * us up is to directly schedule the thread.
881 * Setting TDF_SINTR will cause new signals to directly schedule us.
883 * This routine must be called while in a critical section.
886 lwkt_sleep(const char *wmesg, int flags)
888 thread_t td = curthread;
889 int sig;
891 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
892 td->td_flags |= TDF_BLOCKED;
893 td->td_wmesg = wmesg;
894 lwkt_deschedule_self(td);
895 lwkt_switch();
896 td->td_wmesg = NULL;
897 td->td_flags &= ~TDF_BLOCKED;
898 return(0);
900 if ((sig = CURSIG(td->td_lwp)) != 0) {
901 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
902 return(EINTR);
903 else
904 return(ERESTART);
907 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
908 td->td_wmesg = wmesg;
909 lwkt_deschedule_self(td);
910 lwkt_switch();
911 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
912 td->td_wmesg = NULL;
913 return(0);
917 * Implement the timeout for tsleep.
919 * This type of callout timeout is scheduled on the same cpu the process
920 * is sleeping on. Also, at the moment, the MP lock is held.
922 static void
923 endtsleep(void *arg)
925 thread_t td = arg;
926 struct lwp *lp;
929 * We are going to have to get the lwp_token, which means we might
930 * block. This can race a tsleep getting woken up by other means
931 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
932 * processing to complete (sorry tsleep!).
934 * We can safely set td_flags because td MUST be on the same cpu
935 * as we are.
937 KKASSERT(td->td_gd == mycpu);
938 crit_enter();
939 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
942 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
943 * from exiting the tsleep on us. The flag is interlocked by virtue
944 * of lp being on the same cpu as we are.
946 if ((lp = td->td_lwp) != NULL)
947 lwkt_gettoken(&lp->lwp_token);
949 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
951 if (lp) {
953 * callout timer should normally never be set in tstop()
954 * because it passes a timeout of 0. However, there is a
955 * case during thread exit (which SSTOP's all the threads)
956 * for which tstop() must break out and can (properly) leave
957 * the thread in LSSTOP.
959 KKASSERT(lp->lwp_stat != LSSTOP ||
960 (lp->lwp_mpflags & LWP_MP_WEXIT));
961 setrunnable(lp);
962 lwkt_reltoken(&lp->lwp_token);
963 } else {
964 _tsleep_remove(td);
965 lwkt_schedule(td);
967 KKASSERT(td->td_gd == mycpu);
968 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
969 crit_exit();
973 * Make all processes sleeping on the specified identifier runnable.
974 * count may be zero or one only.
976 * The domain encodes the sleep/wakeup domain, flags, plus the originating
977 * cpu.
979 * This call may run without the MP lock held. We can only manipulate thread
980 * state on the cpu owning the thread. We CANNOT manipulate process state
981 * at all.
983 * _wakeup() can be passed to an IPI so we can't use (const volatile
984 * void *ident).
986 static void
987 _wakeup(void *ident, int domain)
989 struct tslpque *qp;
990 struct thread *td;
991 struct thread *ntd;
992 globaldata_t gd;
993 cpumask_t mask;
994 uint32_t cid;
995 uint32_t gid;
996 int wids = 0;
998 crit_enter();
999 logtsleep2(wakeup_beg, ident);
1000 gd = mycpu;
1001 cid = LOOKUP(ident);
1002 gid = TCHASHSHIFT(cid);
1003 qp = &gd->gd_tsleep_hash[gid];
1004 restart:
1005 for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1006 ntd = TAILQ_NEXT(td, td_sleepq);
1007 if (td->td_wchan == ident &&
1008 td->td_wdomain == (domain & PDOMAIN_MASK)
1010 KKASSERT(td->td_gd == gd);
1011 _tsleep_remove(td);
1012 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1013 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1014 lwkt_schedule(td);
1015 if (domain & PWAKEUP_ONE)
1016 goto done;
1018 goto restart;
1020 if (td->td_wchan == qp->ident0)
1021 wids |= 1;
1022 else if (td->td_wchan == qp->ident1)
1023 wids |= 2;
1024 else if (td->td_wchan == qp->ident2)
1025 wids |= 4;
1026 else if (td->td_wchan == qp->ident3)
1027 wids |= 8;
1028 else
1029 wids |= 16; /* force ident0 to be retained (-1) */
1033 * Because a bunch of cpumask array entries cover the same queue, it
1034 * is possible for our bit to remain set in some of them and cause
1035 * spurious wakeup IPIs later on. Make sure that the bit is cleared
1036 * when a spurious IPI occurs to prevent further spurious IPIs.
1038 if (TAILQ_FIRST(&qp->queue) == NULL) {
1039 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1040 qp->ident0 = NULL;
1041 qp->ident1 = NULL;
1042 qp->ident2 = NULL;
1043 qp->ident3 = NULL;
1044 } else {
1045 if ((wids & 1) == 0) {
1046 if ((wids & 16) == 0) {
1047 qp->ident0 = NULL;
1048 } else {
1049 KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1052 if ((wids & 2) == 0)
1053 qp->ident1 = NULL;
1054 if ((wids & 4) == 0)
1055 qp->ident2 = NULL;
1056 if ((wids & 8) == 0)
1057 qp->ident3 = NULL;
1061 * We finished checking the current cpu but there still may be
1062 * more work to do. Either wakeup_one was requested and no matching
1063 * thread was found, or a normal wakeup was requested and we have
1064 * to continue checking cpus.
1066 * It should be noted that this scheme is actually less expensive then
1067 * the old scheme when waking up multiple threads, since we send
1068 * only one IPI message per target candidate which may then schedule
1069 * multiple threads. Before we could have wound up sending an IPI
1070 * message for each thread on the target cpu (!= current cpu) that
1071 * needed to be woken up.
1073 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
1074 * should be ok since we are passing idents in the IPI rather
1075 * then thread pointers.
1077 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1078 * the cpumask, as another cpu may have written to it in
1079 * a fashion interlocked with whatever the caller did before
1080 * calling wakeup(). Otherwise we might miss the interaction
1081 * (kern_mutex.c can cause this problem).
1083 * lfence is insufficient as it may allow a written state to
1084 * reorder around the cpumask load.
1086 if ((domain & PWAKEUP_MYCPU) == 0) {
1087 globaldata_t tgd;
1088 const volatile void *id0;
1089 int n;
1091 cpu_mfence();
1092 /* cpu_lfence(); */
1093 mask = slpque_cpumasks[cid];
1094 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1095 while (CPUMASK_TESTNZERO(mask)) {
1096 n = BSRCPUMASK(mask);
1097 CPUMASK_NANDBIT(mask, n);
1098 tgd = globaldata_find(n);
1101 * Both ident0 compares must from a single load
1102 * to avoid ident0 update races crossing the two
1103 * compares.
1105 qp = &tgd->gd_tsleep_hash[gid];
1106 id0 = qp->ident0;
1107 cpu_ccfence();
1108 if (id0 == (void *)(intptr_t)-1) {
1109 lwkt_send_ipiq2(tgd, _wakeup, ident,
1110 domain | PWAKEUP_MYCPU);
1111 ++tgd->gd_cnt.v_wakeup_colls;
1112 } else if (id0 == ident ||
1113 qp->ident1 == ident ||
1114 qp->ident2 == ident ||
1115 qp->ident3 == ident) {
1116 lwkt_send_ipiq2(tgd, _wakeup, ident,
1117 domain | PWAKEUP_MYCPU);
1120 #if 0
1121 if (CPUMASK_TESTNZERO(mask)) {
1122 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1123 domain | PWAKEUP_MYCPU);
1125 #endif
1127 done:
1128 logtsleep1(wakeup_end);
1129 crit_exit();
1133 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1135 void
1136 wakeup(const volatile void *ident)
1138 globaldata_t gd = mycpu;
1139 thread_t td = gd->gd_curthread;
1141 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1143 * If we are in a delayed wakeup section, record up to two wakeups in
1144 * a per-CPU queue and issue them when we block or exit the delayed
1145 * wakeup section.
1147 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1148 return;
1149 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1150 return;
1152 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1153 __DEALL(ident));
1154 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1155 __DEALL(ident));
1158 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1162 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1164 void
1165 wakeup_one(const volatile void *ident)
1167 /* XXX potentially round-robin the first responding cpu */
1168 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1169 PWAKEUP_ONE);
1173 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1174 * only.
1176 void
1177 wakeup_mycpu(const volatile void *ident)
1179 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1180 PWAKEUP_MYCPU);
1184 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1185 * only.
1187 void
1188 wakeup_mycpu_one(const volatile void *ident)
1190 /* XXX potentially round-robin the first responding cpu */
1191 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1192 PWAKEUP_MYCPU | PWAKEUP_ONE);
1196 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1197 * only.
1199 void
1200 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1202 globaldata_t mygd = mycpu;
1203 if (gd == mycpu) {
1204 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1205 PWAKEUP_MYCPU);
1206 } else {
1207 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1208 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1209 PWAKEUP_MYCPU);
1214 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1215 * only.
1217 void
1218 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1220 globaldata_t mygd = mycpu;
1221 if (gd == mygd) {
1222 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1223 PWAKEUP_MYCPU | PWAKEUP_ONE);
1224 } else {
1225 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1226 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1227 PWAKEUP_MYCPU | PWAKEUP_ONE);
1232 * Wakeup all threads waiting on the specified ident that slept using
1233 * the specified domain, on all cpus.
1235 void
1236 wakeup_domain(const volatile void *ident, int domain)
1238 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1242 * Wakeup one thread waiting on the specified ident that slept using
1243 * the specified domain, on any cpu.
1245 void
1246 wakeup_domain_one(const volatile void *ident, int domain)
1248 /* XXX potentially round-robin the first responding cpu */
1249 _wakeup(__DEALL(ident),
1250 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1253 void
1254 wakeup_start_delayed(void)
1256 globaldata_t gd = mycpu;
1258 crit_enter();
1259 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1260 crit_exit();
1263 void
1264 wakeup_end_delayed(void)
1266 globaldata_t gd = mycpu;
1268 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1269 crit_enter();
1270 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1271 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1272 if (gd->gd_delayed_wakeup[0]) {
1273 wakeup(gd->gd_delayed_wakeup[0]);
1274 gd->gd_delayed_wakeup[0] = NULL;
1276 if (gd->gd_delayed_wakeup[1]) {
1277 wakeup(gd->gd_delayed_wakeup[1]);
1278 gd->gd_delayed_wakeup[1] = NULL;
1281 crit_exit();
1286 * setrunnable()
1288 * Make a process runnable. lp->lwp_token must be held on call and this
1289 * function must be called from the cpu owning lp.
1291 * This only has an effect if we are in LSSTOP or LSSLEEP.
1293 void
1294 setrunnable(struct lwp *lp)
1296 thread_t td = lp->lwp_thread;
1298 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1299 KKASSERT(td->td_gd == mycpu);
1300 crit_enter();
1301 if (lp->lwp_stat == LSSTOP)
1302 lp->lwp_stat = LSSLEEP;
1303 if (lp->lwp_stat == LSSLEEP) {
1304 _tsleep_remove(td);
1305 lwkt_schedule(td);
1306 } else if (td->td_flags & TDF_SINTR) {
1307 lwkt_schedule(td);
1309 crit_exit();
1313 * The process is stopped due to some condition, usually because p_stat is
1314 * set to SSTOP, but also possibly due to being traced.
1316 * Caller must hold p->p_token
1318 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1319 * because the parent may check the child's status before the child actually
1320 * gets to this routine.
1322 * This routine is called with the current lwp only, typically just
1323 * before returning to userland if the process state is detected as
1324 * possibly being in a stopped state.
1326 void
1327 tstop(void)
1329 struct lwp *lp = curthread->td_lwp;
1330 struct proc *p = lp->lwp_proc;
1331 struct proc *q;
1333 lwkt_gettoken(&lp->lwp_token);
1334 crit_enter();
1337 * If LWP_MP_WSTOP is set, we were sleeping
1338 * while our process was stopped. At this point
1339 * we were already counted as stopped.
1341 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1343 * If we're the last thread to stop, signal
1344 * our parent.
1346 p->p_nstopped++;
1347 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1348 wakeup(&p->p_nstopped);
1349 if (p->p_nstopped == p->p_nthreads) {
1351 * Token required to interlock kern_wait()
1353 q = p->p_pptr;
1354 PHOLD(q);
1355 lwkt_gettoken(&q->p_token);
1356 p->p_flags &= ~P_WAITED;
1357 wakeup(p->p_pptr);
1358 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1359 ksignal(q, SIGCHLD);
1360 lwkt_reltoken(&q->p_token);
1361 PRELE(q);
1366 * Wait here while in a stopped state, interlocked with lwp_token.
1367 * We must break-out if the whole process is trying to exit.
1369 while (STOPLWP(p, lp)) {
1370 lp->lwp_stat = LSSTOP;
1371 tsleep(p, 0, "stop", 0);
1373 p->p_nstopped--;
1374 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1375 crit_exit();
1376 lwkt_reltoken(&lp->lwp_token);
1380 * Compute a tenex style load average of a quantity on
1381 * 1, 5 and 15 minute intervals. This is a pcpu callout.
1383 * We segment the lwp scan on a pcpu basis. This does NOT
1384 * mean the associated lwps are on this cpu, it is done
1385 * just to break the work up.
1387 * The callout on cpu0 rolls up the stats from the other
1388 * cpus.
1390 static int loadav_count_runnable(struct lwp *p, void *data);
1392 static void
1393 loadav(void *arg)
1395 globaldata_t gd = mycpu;
1396 struct loadavg *avg;
1397 int i, nrun;
1399 nrun = 0;
1400 alllwp_scan(loadav_count_runnable, &nrun, 1);
1401 gd->gd_loadav_nrunnable = nrun;
1402 if (gd->gd_cpuid == 0) {
1403 avg = &averunnable;
1404 nrun = 0;
1405 for (i = 0; i < ncpus; ++i)
1406 nrun += globaldata_find(i)->gd_loadav_nrunnable;
1407 for (i = 0; i < 3; i++) {
1408 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1409 (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1414 * Schedule the next update to occur after 5 seconds, but add a
1415 * random variation to avoid synchronisation with processes that
1416 * run at regular intervals.
1418 callout_reset(&gd->gd_loadav_callout,
1419 hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1420 loadav, NULL);
1423 static int
1424 loadav_count_runnable(struct lwp *lp, void *data)
1426 int *nrunp = data;
1427 thread_t td;
1429 switch (lp->lwp_stat) {
1430 case LSRUN:
1431 if ((td = lp->lwp_thread) == NULL)
1432 break;
1433 if (td->td_flags & TDF_BLOCKED)
1434 break;
1435 ++*nrunp;
1436 break;
1437 default:
1438 break;
1440 lwkt_yield();
1441 return(0);
1445 * Regular data collection
1447 static uint64_t
1448 collect_load_callback(int n)
1450 int fscale = averunnable.fscale;
1452 return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1455 static void
1456 sched_setup(void *dummy __unused)
1458 globaldata_t save_gd = mycpu;
1459 globaldata_t gd;
1460 int n;
1462 kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1463 KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1466 * Kick off timeout driven events by calling first time. We
1467 * split the work across available cpus to help scale it,
1468 * it can eat a lot of cpu when there are a lot of processes
1469 * on the system.
1471 for (n = 0; n < ncpus; ++n) {
1472 gd = globaldata_find(n);
1473 lwkt_setcpu_self(gd);
1474 callout_init_mp(&gd->gd_loadav_callout);
1475 callout_init_mp(&gd->gd_schedcpu_callout);
1476 schedcpu(NULL);
1477 loadav(NULL);
1479 lwkt_setcpu_self(save_gd);
1483 * Extremely early initialization, dummy-up the tables so we don't have
1484 * to conditionalize for NULL in _wakeup() and tsleep_interlock(). Even
1485 * though the system isn't blocking this early, these functions still
1486 * try to access the hash table.
1488 * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1489 * is called.
1491 void
1492 sleep_early_gdinit(globaldata_t gd)
1494 static struct tslpque dummy_slpque;
1495 static cpumask_t dummy_cpumasks;
1497 slpque_tablesize = 1;
1498 gd->gd_tsleep_hash = &dummy_slpque;
1499 slpque_cpumasks = &dummy_cpumasks;
1500 TAILQ_INIT(&dummy_slpque.queue);
1504 * PCPU initialization. Called after KMALLOC is operational, by
1505 * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1507 * WARNING! The pcpu hash table is smaller than the global cpumask
1508 * hash table, which can save us a lot of memory when maxproc
1509 * is set high.
1511 void
1512 sleep_gdinit(globaldata_t gd)
1514 struct thread *td;
1515 size_t hash_size;
1516 uint32_t n;
1517 uint32_t i;
1520 * This shouldn't happen, that is there shouldn't be any threads
1521 * waiting on the dummy tsleep queue this early in the boot.
1523 if (gd->gd_cpuid == 0) {
1524 struct tslpque *qp = &gd->gd_tsleep_hash[0];
1525 TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1526 kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1531 * Note that we have to allocate one extra slot because we are
1532 * shifting a modulo value. TCHASHSHIFT(slpque_tablesize - 1) can
1533 * return the same value as TCHASHSHIFT(slpque_tablesize).
1535 n = TCHASHSHIFT(slpque_tablesize) + 1;
1537 hash_size = sizeof(struct tslpque) * n;
1538 gd->gd_tsleep_hash = (void *)kmem_alloc3(&kernel_map, hash_size,
1539 VM_SUBSYS_GD,
1540 KM_CPU(gd->gd_cpuid));
1541 memset(gd->gd_tsleep_hash, 0, hash_size);
1542 for (i = 0; i < n; ++i)
1543 TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1547 * Dynamic initialization after the memory system is operational.
1549 static void
1550 sched_dyninit(void *dummy __unused)
1552 int tblsize;
1553 int tblsize2;
1554 int n;
1557 * Calculate table size for slpque hash. We want a prime number
1558 * large enough to avoid overloading slpque_cpumasks when the
1559 * system has a large number of sleeping processes, which will
1560 * spam IPIs on wakeup().
1562 * While it is true this is really a per-lwp factor, generally
1563 * speaking the maxproc limit is a good metric to go by.
1565 for (tblsize = maxproc | 1; ; tblsize += 2) {
1566 if (tblsize % 3 == 0)
1567 continue;
1568 if (tblsize % 5 == 0)
1569 continue;
1570 tblsize2 = (tblsize / 2) | 1;
1571 for (n = 7; n < tblsize2; n += 2) {
1572 if (tblsize % n == 0)
1573 break;
1575 if (n == tblsize2)
1576 break;
1580 * PIDs are currently limited to 6 digits. Cap the table size
1581 * at double this.
1583 if (tblsize > 2000003)
1584 tblsize = 2000003;
1586 slpque_tablesize = tblsize;
1587 slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1588 M_TSLEEP, M_WAITOK | M_ZERO);
1589 sleep_gdinit(mycpu);