mtree/BSD.root.dist: Use spaces.
[dragonfly.git] / sys / kern / kern_spinlock.c
blob70202d57861b85d093e5ac2ef4bb98bd7da5de8b
1 /*
2 * Copyright (c) 2005 Jeffrey M. Hsu. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Jeffrey M. Hsu. and Matthew Dillon
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of The DragonFly Project nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific, prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
23 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
34 * The implementation is designed to avoid looping when compatible operations
35 * are executed.
37 * To acquire a spinlock we first increment counta. Then we check if counta
38 * meets our requirements. For an exclusive spinlock it must be 1, of a
39 * shared spinlock it must either be 1 or the SHARED_SPINLOCK bit must be set.
41 * Shared spinlock failure case: Decrement the count, loop until we can
42 * transition from 0 to SHARED_SPINLOCK|1, or until we find SHARED_SPINLOCK
43 * is set and increment the count.
45 * Exclusive spinlock failure case: While maintaining the count, clear the
46 * SHARED_SPINLOCK flag unconditionally. Then use an atomic add to transfer
47 * the count from the low bits to the high bits of counta. Then loop until
48 * all low bits are 0. Once the low bits drop to 0 we can transfer the
49 * count back with an atomic_cmpset_int(), atomically, and return.
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/types.h>
54 #include <sys/kernel.h>
55 #include <sys/sysctl.h>
56 #ifdef INVARIANTS
57 #include <sys/proc.h>
58 #endif
59 #include <sys/priv.h>
60 #include <machine/atomic.h>
61 #include <machine/cpu.h>
62 #include <machine/cpufunc.h>
63 #include <machine/specialreg.h>
64 #include <machine/clock.h>
65 #include <sys/indefinite2.h>
66 #include <sys/spinlock.h>
67 #include <sys/spinlock2.h>
68 #include <sys/ktr.h>
70 #ifdef _KERNEL_VIRTUAL
71 #include <pthread.h>
72 #endif
74 struct spinlock pmap_spin = SPINLOCK_INITIALIZER(pmap_spin, "pmap_spin");
77 * Kernal Trace
79 #if !defined(KTR_SPIN_CONTENTION)
80 #define KTR_SPIN_CONTENTION KTR_ALL
81 #endif
82 #define SPIN_STRING "spin=%p type=%c"
83 #define SPIN_ARG_SIZE (sizeof(void *) + sizeof(int))
85 KTR_INFO_MASTER(spin);
86 #if 0
87 KTR_INFO(KTR_SPIN_CONTENTION, spin, beg, 0, SPIN_STRING, SPIN_ARG_SIZE);
88 KTR_INFO(KTR_SPIN_CONTENTION, spin, end, 1, SPIN_STRING, SPIN_ARG_SIZE);
89 #endif
91 #define logspin(name, spin, type) \
92 KTR_LOG(spin_ ## name, spin, type)
94 #ifdef INVARIANTS
95 static int spin_lock_test_mode;
96 #endif
98 #ifdef DEBUG_LOCKS_LATENCY
100 static long spinlocks_add_latency;
101 SYSCTL_LONG(_debug, OID_AUTO, spinlocks_add_latency, CTLFLAG_RW,
102 &spinlocks_add_latency, 0,
103 "Add spinlock latency");
105 #endif
107 static long spin_backoff_max = 4096;
108 SYSCTL_LONG(_debug, OID_AUTO, spin_backoff_max, CTLFLAG_RW,
109 &spin_backoff_max, 0,
110 "Spinlock exponential backoff limit");
111 static long spin_window_shift = 8; /* 1 << n clock cycles, approx */
112 SYSCTL_LONG(_debug, OID_AUTO, spin_window_shift, CTLFLAG_RW,
113 &spin_window_shift, 0,
114 "Spinlock TSC windowing");
117 * We contested due to another exclusive lock holder. We lose.
119 * We have to unwind the attempt and may acquire the spinlock
120 * anyway while doing so.
123 spin_trylock_contested(struct spinlock *spin)
125 globaldata_t gd = mycpu;
128 * Handle degenerate case, else fail.
130 if (atomic_cmpset_int(&spin->counta, SPINLOCK_SHARED|0, 1))
131 return TRUE;
132 /*atomic_add_int(&spin->counta, -1);*/
133 --gd->gd_spinlocks;
134 crit_exit_raw(gd->gd_curthread);
136 return (FALSE);
140 * The spin_lock() inline was unable to acquire the lock and calls this
141 * function with spin->counta already incremented, passing (spin->counta - 1)
142 * to the function (the result of the inline's fetchadd).
144 * Note that we implement both exclusive and shared spinlocks, so we cannot
145 * use atomic_swap_int(). Instead, we try to use atomic_fetchadd_int()
146 * to put most of the burden on the cpu. Atomic_cmpset_int() (cmpxchg)
147 * can cause a lot of unnecessary looping in situations where it is just
148 * trying to increment the count.
150 * Similarly, we leave the SHARED flag intact and incur slightly more
151 * overhead when switching from shared to exclusive. This allows us to
152 * use atomic_fetchadd_int() for both spinlock types in the critical
153 * path.
155 * The exponential (n^1.5) backoff algorithm is designed to both reduce
156 * cache bus contention between cpu cores and sockets, and to allow some
157 * bursting of exclusive locks in heavily contended situations to improve
158 * performance.
160 * The exclusive lock priority mechanism prevents even heavily contended
161 * exclusive locks from being starved by shared locks
163 void
164 _spin_lock_contested(struct spinlock *spin, const char *ident, int value)
166 indefinite_info_t info;
167 uint32_t ovalue;
168 long expbackoff;
169 long loop;
172 * WARNING! Caller has already incremented the lock. We must
173 * increment the count value (from the inline's fetch-add)
174 * to match.
176 * Handle the degenerate case where the spinlock is flagged SHARED
177 * with only our reference. We can convert it to EXCLUSIVE.
179 if (value == (SPINLOCK_SHARED | 1) - 1) {
180 if (atomic_cmpset_int(&spin->counta, SPINLOCK_SHARED | 1, 1))
181 return;
183 /* ++value; value not used after this */
184 info.type = 0; /* avoid improper gcc warning */
185 info.ident = NULL; /* avoid improper gcc warning */
186 expbackoff = 0;
189 * Transfer our exclusive request to the high bits and clear the
190 * SPINLOCK_SHARED bit if it was set. This makes the spinlock
191 * appear exclusive, preventing any NEW shared or exclusive
192 * spinlocks from being obtained while we wait for existing
193 * shared or exclusive holders to unlock.
195 * Don't tread on earlier exclusive waiters by stealing the lock
196 * away early if the low bits happen to now be 1.
198 * The shared unlock understands that this may occur.
200 ovalue = atomic_fetchadd_int(&spin->counta, SPINLOCK_EXCLWAIT - 1);
201 ovalue += SPINLOCK_EXCLWAIT - 1;
202 if (ovalue & SPINLOCK_SHARED) {
203 atomic_clear_int(&spin->counta, SPINLOCK_SHARED);
204 ovalue &= ~SPINLOCK_SHARED;
207 for (;;) {
208 expbackoff = (expbackoff + 1) * 3 / 2;
209 if (expbackoff == 6) /* 1, 3, 6, 10, ... */
210 indefinite_init(&info, ident, 0, 'S');
211 if ((rdtsc() >> spin_window_shift) % ncpus != mycpuid) {
212 for (loop = expbackoff; loop; --loop)
213 cpu_pause();
215 /*cpu_lfence();*/
218 * If the low bits are zero, try to acquire the exclusive lock
219 * by transfering our high bit reservation to the low bits.
221 * NOTE: Avoid unconditional atomic op by testing ovalue,
222 * otherwise we get cache bus armageddon.
224 * NOTE: We must also ensure that the SHARED bit is cleared.
225 * It is possible for it to wind up being set on a
226 * shared lock override of the EXCLWAIT bits.
228 ovalue = spin->counta;
229 cpu_ccfence();
230 if ((ovalue & (SPINLOCK_EXCLWAIT - 1)) == 0) {
231 uint32_t nvalue;
233 nvalue= ((ovalue - SPINLOCK_EXCLWAIT) | 1) &
234 ~SPINLOCK_SHARED;
235 if (atomic_fcmpset_int(&spin->counta, &ovalue, nvalue))
236 break;
237 continue;
239 if (expbackoff > 6 + spin_backoff_max)
240 expbackoff = 6 + spin_backoff_max;
241 if (expbackoff >= 6) {
242 if (indefinite_check(&info))
243 break;
246 if (expbackoff >= 6)
247 indefinite_done(&info);
251 * The spin_lock_shared() inline was unable to acquire the lock and calls
252 * this function with spin->counta already incremented.
254 * This is not in the critical path unless there is contention between
255 * shared and exclusive holders.
257 * Exclusive locks have priority over shared locks. However, this can
258 * cause shared locks to be starved when large numbers of threads are
259 * competing for exclusive locks so the shared lock code uses TSC-windowing
260 * to selectively ignore the exclusive priority mechanism. This has the
261 * effect of allowing a limited number of shared locks to compete against
262 * exclusive waiters at any given moment.
264 * Note that shared locks do not implement exponential backoff. Instead,
265 * the shared lock simply polls the lock value. One cpu_pause() is built
266 * into indefinite_check().
268 void
269 _spin_lock_shared_contested(struct spinlock *spin, const char *ident)
271 indefinite_info_t info;
272 uint32_t ovalue;
275 * Undo the inline's increment.
277 ovalue = atomic_fetchadd_int(&spin->counta, -1) - 1;
279 indefinite_init(&info, ident, 0, 's');
280 cpu_pause();
282 #ifdef DEBUG_LOCKS_LATENCY
283 long j;
284 for (j = spinlocks_add_latency; j > 0; --j)
285 cpu_ccfence();
286 #endif
288 for (;;) {
290 * Loop until we can acquire the shared spinlock. Note that
291 * the low bits can be zero while the high EXCLWAIT bits are
292 * non-zero. In this situation exclusive requesters have
293 * priority (otherwise shared users on multiple cpus can hog
294 * the spinlnock).
296 * NOTE: Reading spin->counta prior to the swap is extremely
297 * important on multi-chip/many-core boxes. On 48-core
298 * this one change improves fully concurrent all-cores
299 * compiles by 100% or better.
301 * I can't emphasize enough how important the pre-read
302 * is in preventing hw cache bus armageddon on
303 * multi-chip systems. And on single-chip/multi-core
304 * systems it just doesn't hurt.
306 cpu_ccfence();
309 * Ignore the EXCLWAIT bits if we are inside our window.
311 if ((ovalue & (SPINLOCK_EXCLWAIT - 1)) == 0 &&
312 (rdtsc() >> spin_window_shift) % ncpus == mycpuid) {
313 if (atomic_fcmpset_int(&spin->counta, &ovalue,
314 ovalue | SPINLOCK_SHARED | 1)) {
315 break;
317 continue;
321 * Check ovalue tightly (no exponential backoff for shared
322 * locks, that would result in horrible performance. Instead,
323 * shared locks depend on the exclusive priority mechanism
324 * to avoid starving exclusive locks).
326 if (ovalue == 0) {
327 if (atomic_fcmpset_int(&spin->counta, &ovalue,
328 SPINLOCK_SHARED | 1)) {
329 break;
331 continue;
335 * If SHARED is already set, go for the increment, improving
336 * the exclusive to multiple-readers transition.
338 if (ovalue & SPINLOCK_SHARED) {
339 ovalue = atomic_fetchadd_int(&spin->counta, 1);
340 /* ovalue += 1; NOT NEEDED */
341 if (ovalue & SPINLOCK_SHARED)
342 break;
343 ovalue = atomic_fetchadd_int(&spin->counta, -1);
344 ovalue += -1;
345 continue;
347 if (indefinite_check(&info))
348 break;
350 * ovalue was wrong anyway, just reload
352 ovalue = spin->counta;
354 indefinite_done(&info);
358 * If INVARIANTS is enabled various spinlock timing tests can be run
359 * by setting debug.spin_lock_test:
361 * 1 Test the indefinite wait code
362 * 2 Time the best-case exclusive lock overhead (spin_test_count)
363 * 3 Time the best-case shared lock overhead (spin_test_count)
366 #ifdef INVARIANTS
368 static int spin_test_count = 10000000;
369 SYSCTL_INT(_debug, OID_AUTO, spin_test_count, CTLFLAG_RW, &spin_test_count, 0,
370 "Number of iterations to use for spinlock wait code test");
372 static int
373 sysctl_spin_lock_test(SYSCTL_HANDLER_ARGS)
375 struct spinlock spin;
376 int error;
377 int value = 0;
378 int i;
380 if ((error = priv_check(curthread, PRIV_ROOT)) != 0)
381 return (error);
382 if ((error = SYSCTL_IN(req, &value, sizeof(value))) != 0)
383 return (error);
386 * Indefinite wait test
388 if (value == 1) {
389 spin_init(&spin, "sysctllock");
390 spin_lock(&spin); /* force an indefinite wait */
391 spin_lock_test_mode = 1;
392 spin_lock(&spin);
393 spin_unlock(&spin); /* Clean up the spinlock count */
394 spin_unlock(&spin);
395 spin_lock_test_mode = 0;
399 * Time best-case exclusive spinlocks
401 if (value == 2) {
402 globaldata_t gd = mycpu;
404 spin_init(&spin, "sysctllocktest");
405 for (i = spin_test_count; i > 0; --i) {
406 _spin_lock_quick(gd, &spin, "test");
407 spin_unlock_quick(gd, &spin);
411 return (0);
414 SYSCTL_PROC(_debug, KERN_PROC_ALL, spin_lock_test, CTLFLAG_RW|CTLTYPE_INT,
415 0, 0, sysctl_spin_lock_test, "I", "Test spinlock wait code");
417 #endif /* INVARIANTS */