mtree/BSD.root.dist: Use spaces.
[dragonfly.git] / sys / kern / kern_exit.c
blobfc2a314d647d84890c6a7e72a31d2d326289d343
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
35 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h> /* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/spinlock2.h>
76 #include <sys/mplock2.h>
78 #include <machine/vmm.h>
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
87 * callout list for things to do at exit time
89 struct exitlist {
90 exitlist_fn function;
91 TAILQ_ENTRY(exitlist) next;
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
98 * LWP reaper data
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
105 * exit --
106 * Death of process.
108 * SYS_EXIT_ARGS(int rval)
111 sys_exit(struct exit_args *uap)
113 exit1(W_EXITCODE(uap->rval, 0));
114 /* NOTREACHED */
118 * Extended exit --
119 * Death of a lwp or process with optional bells and whistles.
122 sys_extexit(struct extexit_args *uap)
124 struct proc *p = curproc;
125 int action, who;
126 int error;
128 action = EXTEXIT_ACTION(uap->how);
129 who = EXTEXIT_WHO(uap->how);
131 /* Check parameters before we might perform some action */
132 switch (who) {
133 case EXTEXIT_PROC:
134 case EXTEXIT_LWP:
135 break;
136 default:
137 return (EINVAL);
140 switch (action) {
141 case EXTEXIT_SIMPLE:
142 break;
143 case EXTEXIT_SETINT:
144 error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 if (error)
146 return (error);
147 break;
148 default:
149 return (EINVAL);
152 lwkt_gettoken(&p->p_token);
154 switch (who) {
155 case EXTEXIT_LWP:
157 * Be sure only to perform a simple lwp exit if there is at
158 * least one more lwp in the proc, which will call exit1()
159 * later, otherwise the proc will be an UNDEAD and not even a
160 * SZOMB!
162 if (p->p_nthreads > 1) {
163 lwp_exit(0, NULL); /* called w/ p_token held */
164 /* NOT REACHED */
166 /* else last lwp in proc: do the real thing */
167 /* FALLTHROUGH */
168 default: /* to help gcc */
169 case EXTEXIT_PROC:
170 lwkt_reltoken(&p->p_token);
171 exit1(W_EXITCODE(uap->status, 0));
172 /* NOTREACHED */
175 /* NOTREACHED */
176 lwkt_reltoken(&p->p_token); /* safety */
180 * Kill all lwps associated with the current process except the
181 * current lwp. Return an error if we race another thread trying to
182 * do the same thing and lose the race.
184 * If forexec is non-zero the current thread and process flags are
185 * cleaned up so they can be reused.
187 * Caller must hold curproc->p_token
190 killalllwps(int forexec)
192 struct lwp *lp = curthread->td_lwp;
193 struct proc *p = lp->lwp_proc;
194 int fakestop;
197 * Interlock against P_WEXIT. Only one of the process's thread
198 * is allowed to do the master exit.
200 if (p->p_flags & P_WEXIT)
201 return (EALREADY);
202 p->p_flags |= P_WEXIT;
205 * Set temporary stopped state in case we are racing a coredump.
206 * Otherwise the coredump may hang forever.
208 if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 fakestop = 0;
210 } else {
211 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 ++p->p_nstopped;
213 fakestop = 1;
214 wakeup(&p->p_nstopped);
218 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
220 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 if (p->p_nthreads > 1)
222 killlwps(lp);
225 * Undo temporary stopped state
227 if (fakestop) {
228 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 --p->p_nstopped;
233 * If doing this for an exec, clean up the remaining thread
234 * (us) for continuing operation after all the other threads
235 * have been killed.
237 if (forexec) {
238 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 p->p_flags &= ~P_WEXIT;
241 return(0);
245 * Kill all LWPs except the current one. Do not try to signal
246 * LWPs which have exited on their own or have already been
247 * signaled.
249 static void
250 killlwps(struct lwp *lp)
252 struct proc *p = lp->lwp_proc;
253 struct lwp *tlp;
256 * Kill the remaining LWPs. We must send the signal before setting
257 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce
258 * races. tlp must be held across the call as it might block and
259 * allow the target lwp to rip itself out from under our loop.
261 FOREACH_LWP_IN_PROC(tlp, p) {
262 LWPHOLD(tlp);
263 lwkt_gettoken(&tlp->lwp_token);
264 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 lwpsignal(p, tlp, SIGKILL);
268 lwkt_reltoken(&tlp->lwp_token);
269 LWPRELE(tlp);
273 * Wait for everything to clear out. Also make sure any tstop()s
274 * are signalled (we are holding p_token for the interlock).
276 wakeup(p);
277 while (p->p_nthreads > 1)
278 tsleep(&p->p_nthreads, 0, "killlwps", 0);
282 * Exit: deallocate address space and other resources, change proc state
283 * to zombie, and unlink proc from allproc and parent's lists. Save exit
284 * status and rusage for wait(). Check for child processes and orphan them.
286 void
287 exit1(int rv)
289 struct thread *td = curthread;
290 struct proc *p = td->td_proc;
291 struct lwp *lp = td->td_lwp;
292 struct proc *q;
293 struct proc *pp;
294 struct proc *reproc;
295 struct sysreaper *reap;
296 struct vmspace *vm;
297 struct vnode *vtmp;
298 struct exitlist *ep;
299 int error;
301 lwkt_gettoken(&p->p_token);
303 if (p->p_pid == 1) {
304 kprintf("init died (signal %d, exit %d)\n",
305 WTERMSIG(rv), WEXITSTATUS(rv));
306 panic("Going nowhere without my init!");
308 varsymset_clean(&p->p_varsymset);
309 lockuninit(&p->p_varsymset.vx_lock);
312 * Kill all lwps associated with the current process, return an
313 * error if we race another thread trying to do the same thing
314 * and lose the race.
316 error = killalllwps(0);
317 if (error) {
318 lwp_exit(0, NULL);
319 /* NOT REACHED */
322 /* are we a task leader? */
323 if (p == p->p_leader) {
324 struct kill_args killArgs;
325 killArgs.signum = SIGKILL;
326 q = p->p_peers;
327 while(q) {
328 killArgs.pid = q->p_pid;
330 * The interface for kill is better
331 * than the internal signal
333 sys_kill(&killArgs);
334 q = q->p_peers;
336 while (p->p_peers)
337 tsleep((caddr_t)p, 0, "exit1", 0);
340 #ifdef PGINPROF
341 vmsizmon();
342 #endif
343 STOPEVENT(p, S_EXIT, rv);
344 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */
347 * Check if any loadable modules need anything done at process exit.
348 * e.g. SYSV IPC stuff
349 * XXX what if one of these generates an error?
351 p->p_xstat = rv;
354 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 * Maybe we should move everything to use eventhandler.
357 TAILQ_FOREACH(ep, &exit_list, next)
358 (*ep->function)(td);
360 if (p->p_flags & P_PROFIL)
361 stopprofclock(p);
363 SIGEMPTYSET(p->p_siglist);
364 SIGEMPTYSET(lp->lwp_siglist);
365 if (timevalisset(&p->p_realtimer.it_value))
366 callout_stop_sync(&p->p_ithandle);
369 * Reset any sigio structures pointing to us as a result of
370 * F_SETOWN with our pid.
372 funsetownlst(&p->p_sigiolst);
375 * Close open files and release open-file table.
376 * This may block!
378 fdfree(p, NULL);
380 if (p->p_leader->p_peers) {
381 q = p->p_leader;
382 while(q->p_peers != p)
383 q = q->p_peers;
384 q->p_peers = p->p_peers;
385 wakeup((caddr_t)p->p_leader);
389 * XXX Shutdown SYSV semaphores
391 semexit(p);
393 /* The next two chunks should probably be moved to vmspace_exit. */
394 vm = p->p_vmspace;
397 * Clean up data related to virtual kernel operation. Clean up
398 * any vkernel context related to the current lwp now so we can
399 * destroy p_vkernel.
401 if (p->p_vkernel) {
402 vkernel_lwp_exit(lp);
403 vkernel_exit(p);
407 * Release the user portion of address space. The exitbump prevents
408 * the vmspace from being completely eradicated (using holdcnt).
409 * This releases references to vnodes, which could cause I/O if the
410 * file has been unlinked. We need to do this early enough that
411 * we can still sleep.
413 * We can't free the entire vmspace as the kernel stack may be mapped
414 * within that space also.
416 * Processes sharing the same vmspace may exit in one order, and
417 * get cleaned up by vmspace_exit() in a different order. The
418 * last exiting process to reach this point releases as much of
419 * the environment as it can, and the last process cleaned up
420 * by vmspace_exit() (which decrements exitingcnt) cleans up the
421 * remainder.
423 * NOTE: Releasing p_token around this call is helpful if the
424 * vmspace had a huge RSS. Otherwise some other process
425 * trying to do an allproc or other scan (like 'ps') may
426 * stall for a long time.
428 lwkt_reltoken(&p->p_token);
429 vmspace_relexit(vm);
430 lwkt_gettoken(&p->p_token);
432 if (SESS_LEADER(p)) {
433 struct session *sp = p->p_session;
435 if (sp->s_ttyvp) {
437 * We are the controlling process. Signal the
438 * foreground process group, drain the controlling
439 * terminal, and revoke access to the controlling
440 * terminal.
442 * NOTE: while waiting for the process group to exit
443 * it is possible that one of the processes in the
444 * group will revoke the tty, so the ttyclosesession()
445 * function will re-check sp->s_ttyvp.
447 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
448 if (sp->s_ttyp->t_pgrp)
449 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
450 ttywait(sp->s_ttyp);
451 ttyclosesession(sp, 1); /* also revoke */
454 * Release the tty. If someone has it open via
455 * /dev/tty then close it (since they no longer can
456 * once we've NULL'd it out).
458 ttyclosesession(sp, 0);
461 * s_ttyp is not zero'd; we use this to indicate
462 * that the session once had a controlling terminal.
463 * (for logging and informational purposes)
466 sp->s_leader = NULL;
468 fixjobc(p, p->p_pgrp, 0);
469 (void)acct_process(p);
470 #ifdef KTRACE
472 * release trace file
474 if (p->p_tracenode)
475 ktrdestroy(&p->p_tracenode);
476 p->p_traceflag = 0;
477 #endif
479 * Release reference to text vnode
481 if ((vtmp = p->p_textvp) != NULL) {
482 p->p_textvp = NULL;
483 vrele(vtmp);
486 /* Release namecache handle to text file */
487 if (p->p_textnch.ncp)
488 cache_drop(&p->p_textnch);
491 * We have to handle PPWAIT here or proc_move_allproc_zombie()
492 * will block on the PHOLD() the parent is doing.
494 * We are using the flag as an interlock so an atomic op is
495 * necessary to synchronize with the parent's cpu.
497 if (p->p_flags & P_PPWAIT) {
498 if (p->p_pptr && p->p_pptr->p_upmap)
499 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
500 atomic_clear_int(&p->p_flags, P_PPWAIT);
501 wakeup(p->p_pptr);
505 * Move the process to the zombie list. This will block
506 * until the process p_lock count reaches 0. The process will
507 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
508 * which is called from cpu_proc_exit().
510 * Interlock against waiters using p_waitgen. We increment
511 * p_waitgen after completing the move of our process to the
512 * zombie list.
514 * WARNING: pp becomes stale when we block, clear it now as a
515 * reminder.
517 proc_move_allproc_zombie(p);
518 pp = p->p_pptr;
519 atomic_add_long(&pp->p_waitgen, 1);
520 pp = NULL;
523 * release controlled reaper for exit if we own it and return the
524 * remaining reaper (the one for us), which we will drop after we
525 * are done.
527 reap = reaper_exit(p);
530 * Reparent all of this process's children to the init process or
531 * to the designated reaper. We must hold the reaper's p_token in
532 * order to safely mess with p_children.
534 * We already hold p->p_token (to remove the children from our list).
536 reproc = NULL;
537 q = LIST_FIRST(&p->p_children);
538 if (q) {
539 reproc = reaper_get(reap);
540 lwkt_gettoken(&reproc->p_token);
541 while ((q = LIST_FIRST(&p->p_children)) != NULL) {
542 PHOLD(q);
543 lwkt_gettoken(&q->p_token);
544 if (q != LIST_FIRST(&p->p_children)) {
545 lwkt_reltoken(&q->p_token);
546 PRELE(q);
547 continue;
549 LIST_REMOVE(q, p_sibling);
550 LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
551 q->p_pptr = reproc;
552 q->p_ppid = reproc->p_pid;
553 q->p_sigparent = SIGCHLD;
556 * Traced processes are killed
557 * since their existence means someone is screwing up.
559 if (q->p_flags & P_TRACED) {
560 q->p_flags &= ~P_TRACED;
561 ksignal(q, SIGKILL);
563 lwkt_reltoken(&q->p_token);
564 PRELE(q);
566 lwkt_reltoken(&reproc->p_token);
567 wakeup(reproc);
571 * Save exit status and final rusage info, adding in child rusage
572 * info and self times.
574 calcru_proc(p, &p->p_ru);
575 ruadd(&p->p_ru, &p->p_cru);
578 * notify interested parties of our demise.
580 KNOTE(&p->p_klist, NOTE_EXIT);
583 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT
584 * flag set, or if the handler is set to SIG_IGN, notify the reaper
585 * instead (it will handle this situation).
587 * NOTE: The reaper can still be the parent process.
589 * (must reload pp)
591 if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
592 if (reproc == NULL)
593 reproc = reaper_get(reap);
594 proc_reparent(p, reproc);
596 if (reproc)
597 PRELE(reproc);
598 if (reap)
599 reaper_drop(reap);
602 * Signal (possibly new) parent.
604 pp = p->p_pptr;
605 PHOLD(pp);
606 if (p->p_sigparent && pp != initproc) {
607 int sig = p->p_sigparent;
609 if (sig != SIGUSR1 && sig != SIGCHLD)
610 sig = SIGCHLD;
611 ksignal(pp, sig);
612 } else {
613 ksignal(pp, SIGCHLD);
615 p->p_flags &= ~P_TRACED;
616 PRELE(pp);
619 * cpu_exit is responsible for clearing curproc, since
620 * it is heavily integrated with the thread/switching sequence.
622 * Other substructures are freed from wait().
624 if (p->p_limit) {
625 struct plimit *rlimit;
627 rlimit = p->p_limit;
628 p->p_limit = NULL;
629 plimit_free(rlimit);
633 * Finally, call machine-dependent code to release as many of the
634 * lwp's resources as we can and halt execution of this thread.
636 * pp is a wild pointer now but still the correct wakeup() target.
637 * lwp_exit() only uses it to send the wakeup() signal to the likely
638 * parent. Any reparenting race that occurs will get a signal
639 * automatically and not be an issue.
641 lwp_exit(1, pp);
645 * Eventually called by every exiting LWP
647 * p->p_token must be held. mplock may be held and will be released.
649 void
650 lwp_exit(int masterexit, void *waddr)
652 struct thread *td = curthread;
653 struct lwp *lp = td->td_lwp;
654 struct proc *p = lp->lwp_proc;
655 int dowake = 0;
658 * Release the current user process designation on the process so
659 * the userland scheduler can work in someone else.
661 p->p_usched->release_curproc(lp);
664 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
665 * make sure it is set here.
667 ASSERT_LWKT_TOKEN_HELD(&p->p_token);
668 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
671 * Clean up any virtualization
673 if (lp->lwp_vkernel)
674 vkernel_lwp_exit(lp);
676 if (td->td_vmm)
677 vmm_vmdestroy();
680 * Clean up select/poll support
682 kqueue_terminate(&lp->lwp_kqueue);
685 * Clean up any syscall-cached ucred or rlimit.
687 if (td->td_ucred) {
688 crfree(td->td_ucred);
689 td->td_ucred = NULL;
691 if (td->td_limit) {
692 struct plimit *rlimit;
694 rlimit = td->td_limit;
695 td->td_limit = NULL;
696 plimit_free(rlimit);
700 * Cleanup any cached descriptors for this thread
702 if (p->p_fd)
703 fexitcache(td);
706 * Nobody actually wakes us when the lock
707 * count reaches zero, so just wait one tick.
709 while (lp->lwp_lock > 0)
710 tsleep(lp, 0, "lwpexit", 1);
712 /* Hand down resource usage to our proc */
713 ruadd(&p->p_ru, &lp->lwp_ru);
716 * If we don't hold the process until the LWP is reaped wait*()
717 * may try to dispose of its vmspace before all the LWPs have
718 * actually terminated.
720 PHOLD(p);
723 * Do any remaining work that might block on us. We should be
724 * coded such that further blocking is ok after decrementing
725 * p_nthreads but don't take the chance.
727 dsched_exit_thread(td);
728 biosched_done(curthread);
731 * We have to use the reaper for all the LWPs except the one doing
732 * the master exit. The LWP doing the master exit can just be
733 * left on p_lwps and the process reaper will deal with it
734 * synchronously, which is much faster.
736 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
738 * The process is left held until the reaper calls lwp_dispose() on
739 * the lp (after calling lwp_wait()).
741 if (masterexit == 0) {
742 int cpu = mycpuid;
744 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
745 --p->p_nthreads;
746 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
747 dowake = 1;
748 lwkt_gettoken(&deadlwp_token[cpu]);
749 LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
750 taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
751 lwkt_reltoken(&deadlwp_token[cpu]);
752 } else {
753 --p->p_nthreads;
754 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
755 dowake = 1;
759 * We no longer need p_token.
761 * Tell the userland scheduler that we are going away
763 lwkt_reltoken(&p->p_token);
764 p->p_usched->heuristic_exiting(lp, p);
767 * Issue late wakeups after releasing our token to give us a chance
768 * to deschedule and switch away before another cpu in a wait*()
769 * reaps us. This is done as late as possible to reduce contention.
771 if (dowake)
772 wakeup(&p->p_nthreads);
773 if (waddr)
774 wakeup(waddr);
776 cpu_lwp_exit();
780 * Wait until a lwp is completely dead. The final interlock in this drama
781 * is when TDF_EXITING is set in cpu_thread_exit() just before the final
782 * switchout.
784 * At the point TDF_EXITING is set a complete exit is accomplished when
785 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear. td_mpflags has two
786 * post-switch interlock flags that can be used to wait for the TDF_
787 * flags to clear.
789 * Returns non-zero on success, and zero if the caller needs to retry
790 * the lwp_wait().
792 static int
793 lwp_wait(struct lwp *lp)
795 struct thread *td = lp->lwp_thread;
796 u_int mpflags;
798 KKASSERT(lwkt_preempted_proc() != lp);
801 * This bit of code uses the thread destruction interlock
802 * managed by lwkt_switch_return() to wait for the lwp's
803 * thread to completely disengage.
805 * It is possible for us to race another cpu core so we
806 * have to do this correctly.
808 for (;;) {
809 mpflags = td->td_mpflags;
810 cpu_ccfence();
811 if (mpflags & TDF_MP_EXITSIG)
812 break;
813 tsleep_interlock(td, 0);
814 if (atomic_cmpset_int(&td->td_mpflags, mpflags,
815 mpflags | TDF_MP_EXITWAIT)) {
816 tsleep(td, PINTERLOCKED, "lwpxt", 0);
821 * We've already waited for the core exit but there can still
822 * be other refs from e.g. process scans and such.
824 if (lp->lwp_lock > 0) {
825 tsleep(lp, 0, "lwpwait1", 1);
826 return(0);
828 if (td->td_refs) {
829 tsleep(td, 0, "lwpwait2", 1);
830 return(0);
834 * Now that we have the thread destruction interlock these flags
835 * really should already be cleaned up, keep a check for safety.
837 * We can't rip its stack out from under it until TDF_EXITING is
838 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
839 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
840 * will be cleared temporarily if a thread gets preempted.
842 while ((td->td_flags & (TDF_RUNNING |
843 TDF_RUNQ |
844 TDF_PREEMPT_LOCK |
845 TDF_EXITING)) != TDF_EXITING) {
846 tsleep(lp, 0, "lwpwait3", 1);
847 return (0);
850 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
851 ("lwp_wait: td %p (%s) still on run or sleep queue",
852 td, td->td_comm));
853 return (1);
857 * Release the resources associated with a lwp.
858 * The lwp must be completely dead.
860 void
861 lwp_dispose(struct lwp *lp)
863 struct thread *td = lp->lwp_thread;
865 KKASSERT(lwkt_preempted_proc() != lp);
866 KKASSERT(lp->lwp_lock == 0);
867 KKASSERT(td->td_refs == 0);
868 KKASSERT((td->td_flags & (TDF_RUNNING |
869 TDF_RUNQ |
870 TDF_PREEMPT_LOCK |
871 TDF_EXITING)) == TDF_EXITING);
873 PRELE(lp->lwp_proc);
874 lp->lwp_proc = NULL;
875 if (td != NULL) {
876 td->td_proc = NULL;
877 td->td_lwp = NULL;
878 lp->lwp_thread = NULL;
879 lwkt_free_thread(td);
881 kfree(lp, M_LWP);
885 sys_wait4(struct wait_args *uap)
887 struct rusage rusage;
888 int error, status;
890 error = kern_wait(uap->pid, (uap->status ? &status : NULL),
891 uap->options, (uap->rusage ? &rusage : NULL),
892 &uap->sysmsg_result);
894 if (error == 0 && uap->status)
895 error = copyout(&status, uap->status, sizeof(*uap->status));
896 if (error == 0 && uap->rusage)
897 error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
898 return (error);
902 * wait1()
904 * wait_args(int pid, int *status, int options, struct rusage *rusage)
907 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
909 struct thread *td = curthread;
910 struct lwp *lp;
911 struct proc *q = td->td_proc;
912 struct proc *p, *t;
913 struct ucred *cr;
914 struct pargs *pa;
915 struct sigacts *ps;
916 int nfound, error;
917 long waitgen;
919 if (pid == 0)
920 pid = -q->p_pgid;
921 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
922 return (EINVAL);
925 * Protect the q->p_children list
927 lwkt_gettoken(&q->p_token);
928 loop:
930 * All sorts of things can change due to blocking so we have to loop
931 * all the way back up here.
933 * The problem is that if a process group is stopped and the parent
934 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
935 * of the child and then stop itself when it tries to return from the
936 * system call. When the process group is resumed the parent will
937 * then get the STOP status even though the child has now resumed
938 * (a followup wait*() will get the CONT status).
940 * Previously the CONT would overwrite the STOP because the tstop
941 * was handled within tsleep(), and the parent would only see
942 * the CONT when both are stopped and continued together. This little
943 * two-line hack restores this effect.
945 if (STOPLWP(q, td->td_lwp))
946 tstop();
948 nfound = 0;
951 * Loop on children.
953 * NOTE: We don't want to break q's p_token in the loop for the
954 * case where no children are found or we risk breaking the
955 * interlock between child and parent.
957 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
958 LIST_FOREACH(p, &q->p_children, p_sibling) {
959 if (pid != WAIT_ANY &&
960 p->p_pid != pid && p->p_pgid != -pid) {
961 continue;
965 * This special case handles a kthread spawned by linux_clone
966 * (see linux_misc.c). The linux_wait4 and linux_waitpid
967 * functions need to be able to distinguish between waiting
968 * on a process and waiting on a thread. It is a thread if
969 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
970 * signifies we want to wait for threads and not processes.
972 if ((p->p_sigparent != SIGCHLD) ^
973 ((options & WLINUXCLONE) != 0)) {
974 continue;
977 nfound++;
978 if (p->p_stat == SZOMB) {
980 * We may go into SZOMB with threads still present.
981 * We must wait for them to exit before we can reap
982 * the master thread, otherwise we may race reaping
983 * non-master threads.
985 * Only this routine can remove a process from
986 * the zombie list and destroy it, use PACQUIREZOMB()
987 * to serialize us and loop if it blocks (interlocked
988 * by the parent's q->p_token).
990 * WARNING! (p) can be invalid when PHOLDZOMB(p)
991 * returns non-zero. Be sure not to
992 * mess with it.
994 if (PHOLDZOMB(p))
995 goto loop;
996 lwkt_gettoken(&p->p_token);
997 if (p->p_pptr != q) {
998 lwkt_reltoken(&p->p_token);
999 PRELEZOMB(p);
1000 goto loop;
1002 while (p->p_nthreads > 0) {
1003 tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1007 * Reap any LWPs left in p->p_lwps. This is usually
1008 * just the last LWP. This must be done before
1009 * we loop on p_lock since the lwps hold a ref on
1010 * it as a vmspace interlock.
1012 * Once that is accomplished p_nthreads had better
1013 * be zero.
1015 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1017 * Make sure no one is using this lwp, before
1018 * it is removed from the tree. If we didn't
1019 * wait it here, lwp tree iteration with
1020 * blocking operation would be broken.
1022 while (lp->lwp_lock > 0)
1023 tsleep(lp, 0, "zomblwp", 1);
1024 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1025 reaplwp(lp);
1027 KKASSERT(p->p_nthreads == 0);
1030 * Don't do anything really bad until all references
1031 * to the process go away. This may include other
1032 * LWPs which are still in the process of being
1033 * reaped. We can't just pull the rug out from under
1034 * them because they may still be using the VM space.
1036 * Certain kernel facilities such as /proc will also
1037 * put a hold on the process for short periods of
1038 * time.
1040 PRELE(p);
1041 PSTALL(p, "reap3", 0);
1043 /* Take care of our return values. */
1044 *res = p->p_pid;
1046 if (status)
1047 *status = p->p_xstat;
1048 if (rusage)
1049 *rusage = p->p_ru;
1052 * If we got the child via a ptrace 'attach',
1053 * we need to give it back to the old parent.
1055 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1056 PHOLD(p);
1057 p->p_oppid = 0;
1058 proc_reparent(p, t);
1059 ksignal(t, SIGCHLD);
1060 wakeup((caddr_t)t);
1061 error = 0;
1062 PRELE(t);
1063 lwkt_reltoken(&p->p_token);
1064 PRELEZOMB(p);
1065 goto done;
1069 * Unlink the proc from its process group so that
1070 * the following operations won't lead to an
1071 * inconsistent state for processes running down
1072 * the zombie list.
1074 proc_remove_zombie(p);
1075 proc_userunmap(p);
1076 lwkt_reltoken(&p->p_token);
1077 leavepgrp(p);
1079 p->p_xstat = 0;
1080 ruadd(&q->p_cru, &p->p_ru);
1083 * Decrement the count of procs running with this uid.
1085 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1088 * Free up credentials. p_spin is required to
1089 * avoid races against allproc scans.
1091 spin_lock(&p->p_spin);
1092 cr = p->p_ucred;
1093 p->p_ucred = NULL;
1094 spin_unlock(&p->p_spin);
1095 crfree(cr);
1098 * Remove unused arguments
1100 pa = p->p_args;
1101 p->p_args = NULL;
1102 if (pa && refcount_release(&pa->ar_ref)) {
1103 kfree(pa, M_PARGS);
1104 pa = NULL;
1107 ps = p->p_sigacts;
1108 p->p_sigacts = NULL;
1109 if (ps && refcount_release(&ps->ps_refcnt)) {
1110 kfree(ps, M_SUBPROC);
1111 ps = NULL;
1115 * Our exitingcount was incremented when the process
1116 * became a zombie, now that the process has been
1117 * removed from (almost) all lists we should be able
1118 * to safely destroy its vmspace. Wait for any current
1119 * holders to go away (so the vmspace remains stable),
1120 * then scrap it.
1122 * NOTE: Releasing the parent process (q) p_token
1123 * across the vmspace_exitfree() call is
1124 * important here to reduce stalls on
1125 * interactions with (q) (such as
1126 * fork/exec/wait or 'ps').
1128 PSTALL(p, "reap4", 0);
1129 lwkt_reltoken(&q->p_token);
1130 vmspace_exitfree(p);
1131 lwkt_gettoken(&q->p_token);
1132 PSTALL(p, "reap5", 0);
1135 * NOTE: We have to officially release ZOMB in order
1136 * to ensure that a racing thread in kern_wait()
1137 * which blocked on ZOMB is woken up.
1139 PHOLD(p);
1140 PRELEZOMB(p);
1141 kfree(p->p_uidpcpu, M_SUBPROC);
1142 kfree(p, M_PROC);
1143 atomic_add_int(&nprocs, -1);
1144 error = 0;
1145 goto done;
1147 if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1148 (p->p_flags & P_WAITED) == 0 &&
1149 ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1150 PHOLD(p);
1151 lwkt_gettoken(&p->p_token);
1152 if (p->p_pptr != q) {
1153 lwkt_reltoken(&p->p_token);
1154 PRELE(p);
1155 goto loop;
1157 if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1158 (p->p_flags & P_WAITED) != 0 ||
1159 ((p->p_flags & P_TRACED) == 0 &&
1160 (options & WUNTRACED) == 0)) {
1161 lwkt_reltoken(&p->p_token);
1162 PRELE(p);
1163 goto loop;
1166 p->p_flags |= P_WAITED;
1168 *res = p->p_pid;
1169 if (status)
1170 *status = W_STOPCODE(p->p_xstat);
1171 /* Zero rusage so we get something consistent. */
1172 if (rusage)
1173 bzero(rusage, sizeof(*rusage));
1174 error = 0;
1175 lwkt_reltoken(&p->p_token);
1176 PRELE(p);
1177 goto done;
1179 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1180 PHOLD(p);
1181 lwkt_gettoken(&p->p_token);
1182 if (p->p_pptr != q) {
1183 lwkt_reltoken(&p->p_token);
1184 PRELE(p);
1185 goto loop;
1187 if ((p->p_flags & P_CONTINUED) == 0) {
1188 lwkt_reltoken(&p->p_token);
1189 PRELE(p);
1190 goto loop;
1193 *res = p->p_pid;
1194 p->p_flags &= ~P_CONTINUED;
1196 if (status)
1197 *status = SIGCONT;
1198 error = 0;
1199 lwkt_reltoken(&p->p_token);
1200 PRELE(p);
1201 goto done;
1204 if (nfound == 0) {
1205 error = ECHILD;
1206 goto done;
1208 if (options & WNOHANG) {
1209 *res = 0;
1210 error = 0;
1211 goto done;
1215 * Wait for signal - interlocked using q->p_waitgen.
1217 error = 0;
1218 while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1219 tsleep_interlock(q, PCATCH);
1220 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1221 if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1222 error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1223 break;
1226 if (error) {
1227 done:
1228 lwkt_reltoken(&q->p_token);
1229 return (error);
1231 goto loop;
1235 * Change child's parent process to parent.
1237 * p_children/p_sibling requires the parent's token, and
1238 * changing pptr requires the child's token, so we have to
1239 * get three tokens to do this operation. We also need to
1240 * hold pointers that might get ripped out from under us to
1241 * preserve structural integrity.
1243 * It is possible to race another reparent or disconnect or other
1244 * similar operation. We must retry when this situation occurs.
1245 * Once we successfully reparent the process we no longer care
1246 * about any races.
1248 void
1249 proc_reparent(struct proc *child, struct proc *parent)
1251 struct proc *opp;
1253 PHOLD(parent);
1254 while ((opp = child->p_pptr) != parent) {
1255 PHOLD(opp);
1256 lwkt_gettoken(&opp->p_token);
1257 lwkt_gettoken(&child->p_token);
1258 lwkt_gettoken(&parent->p_token);
1259 if (child->p_pptr != opp) {
1260 lwkt_reltoken(&parent->p_token);
1261 lwkt_reltoken(&child->p_token);
1262 lwkt_reltoken(&opp->p_token);
1263 PRELE(opp);
1264 continue;
1266 LIST_REMOVE(child, p_sibling);
1267 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1268 child->p_pptr = parent;
1269 child->p_ppid = parent->p_pid;
1270 lwkt_reltoken(&parent->p_token);
1271 lwkt_reltoken(&child->p_token);
1272 lwkt_reltoken(&opp->p_token);
1273 if (LIST_EMPTY(&opp->p_children))
1274 wakeup(opp);
1275 PRELE(opp);
1276 break;
1278 PRELE(parent);
1282 * The next two functions are to handle adding/deleting items on the
1283 * exit callout list
1285 * at_exit():
1286 * Take the arguments given and put them onto the exit callout list,
1287 * However first make sure that it's not already there.
1288 * returns 0 on success.
1292 at_exit(exitlist_fn function)
1294 struct exitlist *ep;
1296 #ifdef INVARIANTS
1297 /* Be noisy if the programmer has lost track of things */
1298 if (rm_at_exit(function))
1299 kprintf("WARNING: exit callout entry (%p) already present\n",
1300 function);
1301 #endif
1302 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1303 if (ep == NULL)
1304 return (ENOMEM);
1305 ep->function = function;
1306 TAILQ_INSERT_TAIL(&exit_list, ep, next);
1307 return (0);
1311 * Scan the exit callout list for the given item and remove it.
1312 * Returns the number of items removed (0 or 1)
1315 rm_at_exit(exitlist_fn function)
1317 struct exitlist *ep;
1319 TAILQ_FOREACH(ep, &exit_list, next) {
1320 if (ep->function == function) {
1321 TAILQ_REMOVE(&exit_list, ep, next);
1322 kfree(ep, M_ATEXIT);
1323 return(1);
1326 return (0);
1330 * LWP reaper related code.
1332 static void
1333 reaplwps(void *context, int dummy)
1335 struct lwplist *lwplist = context;
1336 struct lwp *lp;
1337 int cpu = mycpuid;
1339 lwkt_gettoken(&deadlwp_token[cpu]);
1340 while ((lp = LIST_FIRST(lwplist))) {
1341 LIST_REMOVE(lp, u.lwp_reap_entry);
1342 reaplwp(lp);
1344 lwkt_reltoken(&deadlwp_token[cpu]);
1347 static void
1348 reaplwp(struct lwp *lp)
1350 while (lwp_wait(lp) == 0)
1352 lwp_dispose(lp);
1355 static void
1356 deadlwp_init(void)
1358 int cpu;
1360 for (cpu = 0; cpu < ncpus; cpu++) {
1361 lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1362 LIST_INIT(&deadlwp_list[cpu]);
1363 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1364 M_DEVBUF, M_WAITOK);
1365 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1369 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);