priv: Use PRIV_NETINET_RESERVEDPORT
[dragonfly.git] / sys / kern / uipc_usrreq.c
blobb51c9b9a899b452aca3d4abad7dd405f5cb793e3
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34 * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
35 * $DragonFly: src/sys/kern/uipc_usrreq.c,v 1.44 2008/09/06 05:44:58 dillon Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/domain.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
44 #include <sys/proc.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/mbuf.h>
48 #include <sys/nlookup.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/sysctl.h>
56 #include <sys/un.h>
57 #include <sys/unpcb.h>
58 #include <sys/vnode.h>
59 #include <sys/file2.h>
60 #include <sys/spinlock2.h>
63 static MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
64 static unp_gen_t unp_gencnt;
65 static u_int unp_count;
67 static struct unp_head unp_shead, unp_dhead;
70 * Unix communications domain.
72 * TODO:
73 * RDM
74 * rethink name space problems
75 * need a proper out-of-band
76 * lock pushdown
78 static struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
79 static ino_t unp_ino; /* prototype for fake inode numbers */
81 static int unp_attach (struct socket *, struct pru_attach_info *);
82 static void unp_detach (struct unpcb *);
83 static int unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
84 static int unp_connect (struct socket *,struct sockaddr *,
85 struct thread *);
86 static void unp_disconnect (struct unpcb *);
87 static void unp_shutdown (struct unpcb *);
88 static void unp_drop (struct unpcb *, int);
89 static void unp_gc (void);
90 static int unp_gc_clearmarks(struct file *, void *);
91 static int unp_gc_checkmarks(struct file *, void *);
92 static int unp_gc_checkrefs(struct file *, void *);
93 static int unp_revoke_gc_check(struct file *, void *);
94 static void unp_scan (struct mbuf *, void (*)(struct file *, void *),
95 void *data);
96 static void unp_mark (struct file *, void *data);
97 static void unp_discard (struct file *, void *);
98 static int unp_internalize (struct mbuf *, struct thread *);
99 static int unp_listen (struct unpcb *, struct thread *);
100 static void unp_fp_externalize(struct proc *p, struct file *fp, int fd);
102 static int
103 uipc_abort(struct socket *so)
105 struct unpcb *unp = so->so_pcb;
107 if (unp == NULL)
108 return EINVAL;
109 unp_drop(unp, ECONNABORTED);
110 unp_detach(unp);
111 sofree(so);
112 return 0;
115 static int
116 uipc_accept(struct socket *so, struct sockaddr **nam)
118 struct unpcb *unp = so->so_pcb;
120 if (unp == NULL)
121 return EINVAL;
124 * Pass back name of connected socket,
125 * if it was bound and we are still connected
126 * (our peer may have closed already!).
128 if (unp->unp_conn && unp->unp_conn->unp_addr) {
129 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
130 } else {
131 *nam = dup_sockaddr((struct sockaddr *)&sun_noname);
133 return 0;
136 static int
137 uipc_attach(struct socket *so, int proto, struct pru_attach_info *ai)
139 struct unpcb *unp = so->so_pcb;
141 if (unp != NULL)
142 return EISCONN;
143 return unp_attach(so, ai);
146 static int
147 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
149 struct unpcb *unp = so->so_pcb;
151 if (unp == NULL)
152 return EINVAL;
153 return unp_bind(unp, nam, td);
156 static int
157 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
159 struct unpcb *unp = so->so_pcb;
161 if (unp == NULL)
162 return EINVAL;
163 return unp_connect(so, nam, td);
166 static int
167 uipc_connect2(struct socket *so1, struct socket *so2)
169 struct unpcb *unp = so1->so_pcb;
171 if (unp == NULL)
172 return EINVAL;
174 return unp_connect2(so1, so2);
177 /* control is EOPNOTSUPP */
179 static int
180 uipc_detach(struct socket *so)
182 struct unpcb *unp = so->so_pcb;
184 if (unp == NULL)
185 return EINVAL;
187 unp_detach(unp);
188 return 0;
191 static int
192 uipc_disconnect(struct socket *so)
194 struct unpcb *unp = so->so_pcb;
196 if (unp == NULL)
197 return EINVAL;
198 unp_disconnect(unp);
199 return 0;
202 static int
203 uipc_listen(struct socket *so, struct thread *td)
205 struct unpcb *unp = so->so_pcb;
207 if (unp == NULL || unp->unp_vnode == NULL)
208 return EINVAL;
209 return unp_listen(unp, td);
212 static int
213 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
215 struct unpcb *unp = so->so_pcb;
217 if (unp == NULL)
218 return EINVAL;
219 if (unp->unp_conn && unp->unp_conn->unp_addr)
220 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
221 else {
223 * XXX: It seems that this test always fails even when
224 * connection is established. So, this else clause is
225 * added as workaround to return PF_LOCAL sockaddr.
227 *nam = dup_sockaddr((struct sockaddr *)&sun_noname);
229 return 0;
232 static int
233 uipc_rcvd(struct socket *so, int flags)
235 struct unpcb *unp = so->so_pcb;
236 struct socket *so2;
238 if (unp == NULL)
239 return EINVAL;
240 switch (so->so_type) {
241 case SOCK_DGRAM:
242 panic("uipc_rcvd DGRAM?");
243 /*NOTREACHED*/
245 case SOCK_STREAM:
246 case SOCK_SEQPACKET:
247 if (unp->unp_conn == NULL)
248 break;
250 * Because we are transfering mbufs directly to the
251 * peer socket we have to use SSB_STOP on the sender
252 * to prevent it from building up infinite mbufs.
254 so2 = unp->unp_conn->unp_socket;
255 if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
256 so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
258 so2->so_snd.ssb_flags &= ~SSB_STOP;
259 sowwakeup(so2);
261 break;
263 default:
264 panic("uipc_rcvd unknown socktype");
266 return 0;
269 /* pru_rcvoob is EOPNOTSUPP */
271 static int
272 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
273 struct mbuf *control, struct thread *td)
275 int error = 0;
276 struct unpcb *unp = so->so_pcb;
277 struct socket *so2;
279 if (unp == NULL) {
280 error = EINVAL;
281 goto release;
283 if (flags & PRUS_OOB) {
284 error = EOPNOTSUPP;
285 goto release;
288 if (control && (error = unp_internalize(control, td)))
289 goto release;
291 switch (so->so_type) {
292 case SOCK_DGRAM:
294 struct sockaddr *from;
296 if (nam) {
297 if (unp->unp_conn) {
298 error = EISCONN;
299 break;
301 error = unp_connect(so, nam, td);
302 if (error)
303 break;
304 } else {
305 if (unp->unp_conn == NULL) {
306 error = ENOTCONN;
307 break;
310 so2 = unp->unp_conn->unp_socket;
311 if (unp->unp_addr)
312 from = (struct sockaddr *)unp->unp_addr;
313 else
314 from = &sun_noname;
315 if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
316 sorwakeup(so2);
317 m = NULL;
318 control = NULL;
319 } else {
320 error = ENOBUFS;
322 if (nam)
323 unp_disconnect(unp);
324 break;
327 case SOCK_STREAM:
328 case SOCK_SEQPACKET:
329 /* Connect if not connected yet. */
331 * Note: A better implementation would complain
332 * if not equal to the peer's address.
334 if (!(so->so_state & SS_ISCONNECTED)) {
335 if (nam) {
336 error = unp_connect(so, nam, td);
337 if (error)
338 break; /* XXX */
339 } else {
340 error = ENOTCONN;
341 break;
345 if (so->so_state & SS_CANTSENDMORE) {
346 error = EPIPE;
347 break;
349 if (unp->unp_conn == NULL)
350 panic("uipc_send connected but no connection?");
351 so2 = unp->unp_conn->unp_socket;
353 * Send to paired receive port, and then reduce
354 * send buffer hiwater marks to maintain backpressure.
355 * Wake up readers.
357 if (control) {
358 if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
359 control = NULL;
360 m = NULL;
362 } else if (so->so_type == SOCK_SEQPACKET) {
363 sbappendrecord(&so2->so_rcv.sb, m);
364 m = NULL;
365 } else {
366 sbappend(&so2->so_rcv.sb, m);
367 m = NULL;
371 * Because we are transfering mbufs directly to the
372 * peer socket we have to use SSB_STOP on the sender
373 * to prevent it from building up infinite mbufs.
375 if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
376 so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
378 so->so_snd.ssb_flags |= SSB_STOP;
380 sorwakeup(so2);
381 break;
383 default:
384 panic("uipc_send unknown socktype");
388 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
390 if (flags & PRUS_EOF) {
391 socantsendmore(so);
392 unp_shutdown(unp);
395 if (control && error != 0)
396 unp_dispose(control);
398 release:
399 if (control)
400 m_freem(control);
401 if (m)
402 m_freem(m);
403 return error;
406 static int
407 uipc_sense(struct socket *so, struct stat *sb)
409 struct unpcb *unp = so->so_pcb;
411 if (unp == NULL)
412 return EINVAL;
413 sb->st_blksize = so->so_snd.ssb_hiwat;
414 sb->st_dev = NOUDEV;
415 if (unp->unp_ino == 0) /* make up a non-zero inode number */
416 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
417 sb->st_ino = unp->unp_ino;
418 return (0);
421 static int
422 uipc_shutdown(struct socket *so)
424 struct unpcb *unp = so->so_pcb;
426 if (unp == NULL)
427 return EINVAL;
428 socantsendmore(so);
429 unp_shutdown(unp);
430 return 0;
433 static int
434 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
436 struct unpcb *unp = so->so_pcb;
438 if (unp == NULL)
439 return EINVAL;
440 if (unp->unp_addr)
441 *nam = dup_sockaddr((struct sockaddr *)unp->unp_addr);
442 return 0;
445 struct pr_usrreqs uipc_usrreqs = {
446 .pru_abort = uipc_abort,
447 .pru_accept = uipc_accept,
448 .pru_attach = uipc_attach,
449 .pru_bind = uipc_bind,
450 .pru_connect = uipc_connect,
451 .pru_connect2 = uipc_connect2,
452 .pru_control = pru_control_notsupp,
453 .pru_detach = uipc_detach,
454 .pru_disconnect = uipc_disconnect,
455 .pru_listen = uipc_listen,
456 .pru_peeraddr = uipc_peeraddr,
457 .pru_rcvd = uipc_rcvd,
458 .pru_rcvoob = pru_rcvoob_notsupp,
459 .pru_send = uipc_send,
460 .pru_sense = uipc_sense,
461 .pru_shutdown = uipc_shutdown,
462 .pru_sockaddr = uipc_sockaddr,
463 .pru_sosend = sosend,
464 .pru_soreceive = soreceive,
465 .pru_sopoll = sopoll
469 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
471 struct unpcb *unp = so->so_pcb;
472 int error = 0;
474 switch (sopt->sopt_dir) {
475 case SOPT_GET:
476 switch (sopt->sopt_name) {
477 case LOCAL_PEERCRED:
478 if (unp->unp_flags & UNP_HAVEPC)
479 soopt_from_kbuf(sopt, &unp->unp_peercred,
480 sizeof(unp->unp_peercred));
481 else {
482 if (so->so_type == SOCK_STREAM)
483 error = ENOTCONN;
484 else if (so->so_type == SOCK_SEQPACKET)
485 error = ENOTCONN;
486 else
487 error = EINVAL;
489 break;
490 default:
491 error = EOPNOTSUPP;
492 break;
494 break;
495 case SOPT_SET:
496 default:
497 error = EOPNOTSUPP;
498 break;
500 return (error);
504 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
505 * for stream sockets, although the total for sender and receiver is
506 * actually only PIPSIZ.
508 * Datagram sockets really use the sendspace as the maximum datagram size,
509 * and don't really want to reserve the sendspace. Their recvspace should
510 * be large enough for at least one max-size datagram plus address.
512 * We want the local send/recv space to be significant larger then lo0's
513 * mtu of 16384.
515 #ifndef PIPSIZ
516 #define PIPSIZ 57344
517 #endif
518 static u_long unpst_sendspace = PIPSIZ;
519 static u_long unpst_recvspace = PIPSIZ;
520 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
521 static u_long unpdg_recvspace = 4*1024;
523 static int unp_rights; /* file descriptors in flight */
524 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
526 SYSCTL_DECL(_net_local_seqpacket);
527 SYSCTL_DECL(_net_local_stream);
528 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
529 &unpst_sendspace, 0, "");
530 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
531 &unpst_recvspace, 0, "");
533 SYSCTL_DECL(_net_local_dgram);
534 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
535 &unpdg_sendspace, 0, "");
536 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
537 &unpdg_recvspace, 0, "");
539 SYSCTL_DECL(_net_local);
540 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
542 static int
543 unp_attach(struct socket *so, struct pru_attach_info *ai)
545 struct unpcb *unp;
546 int error;
548 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
549 switch (so->so_type) {
551 case SOCK_STREAM:
552 case SOCK_SEQPACKET:
553 error = soreserve(so, unpst_sendspace, unpst_recvspace,
554 ai->sb_rlimit);
555 break;
557 case SOCK_DGRAM:
558 error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
559 ai->sb_rlimit);
560 break;
562 default:
563 panic("unp_attach");
565 if (error)
566 return (error);
568 unp = kmalloc(sizeof(*unp), M_UNPCB, M_NOWAIT|M_ZERO);
569 if (unp == NULL)
570 return (ENOBUFS);
571 unp->unp_gencnt = ++unp_gencnt;
572 unp_count++;
573 LIST_INIT(&unp->unp_refs);
574 unp->unp_socket = so;
575 unp->unp_rvnode = ai->fd_rdir; /* jail cruft XXX JH */
576 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
577 : &unp_shead, unp, unp_link);
578 so->so_pcb = (caddr_t)unp;
579 return (0);
582 static void
583 unp_detach(struct unpcb *unp)
585 LIST_REMOVE(unp, unp_link);
586 unp->unp_gencnt = ++unp_gencnt;
587 --unp_count;
588 if (unp->unp_vnode) {
589 unp->unp_vnode->v_socket = NULL;
590 vrele(unp->unp_vnode);
591 unp->unp_vnode = NULL;
593 if (unp->unp_conn)
594 unp_disconnect(unp);
595 while (!LIST_EMPTY(&unp->unp_refs))
596 unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
597 soisdisconnected(unp->unp_socket);
598 unp->unp_socket->so_pcb = NULL;
599 if (unp_rights) {
601 * Normally the receive buffer is flushed later,
602 * in sofree, but if our receive buffer holds references
603 * to descriptors that are now garbage, we will dispose
604 * of those descriptor references after the garbage collector
605 * gets them (resulting in a "panic: closef: count < 0").
607 sorflush(unp->unp_socket);
608 unp_gc();
610 if (unp->unp_addr)
611 kfree(unp->unp_addr, M_SONAME);
612 kfree(unp, M_UNPCB);
615 static int
616 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
618 struct proc *p = td->td_proc;
619 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
620 struct vnode *vp;
621 struct vattr vattr;
622 int error, namelen;
623 struct nlookupdata nd;
624 char buf[SOCK_MAXADDRLEN];
626 if (unp->unp_vnode != NULL)
627 return (EINVAL);
628 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
629 if (namelen <= 0)
630 return (EINVAL);
631 strncpy(buf, soun->sun_path, namelen);
632 buf[namelen] = 0; /* null-terminate the string */
633 error = nlookup_init(&nd, buf, UIO_SYSSPACE,
634 NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
635 if (error == 0)
636 error = nlookup(&nd);
637 if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
638 error = EADDRINUSE;
639 if (error)
640 goto done;
642 VATTR_NULL(&vattr);
643 vattr.va_type = VSOCK;
644 vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
645 error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
646 if (error == 0) {
647 vp->v_socket = unp->unp_socket;
648 unp->unp_vnode = vp;
649 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
650 vn_unlock(vp);
652 done:
653 nlookup_done(&nd);
654 return (error);
657 static int
658 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
660 struct proc *p = td->td_proc;
661 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
662 struct vnode *vp;
663 struct socket *so2, *so3;
664 struct unpcb *unp, *unp2, *unp3;
665 int error, len;
666 struct nlookupdata nd;
667 char buf[SOCK_MAXADDRLEN];
669 KKASSERT(p);
671 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
672 if (len <= 0)
673 return EINVAL;
674 strncpy(buf, soun->sun_path, len);
675 buf[len] = 0;
677 vp = NULL;
678 error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
679 if (error == 0)
680 error = nlookup(&nd);
681 if (error == 0)
682 error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
683 nlookup_done(&nd);
684 if (error)
685 return (error);
687 if (vp->v_type != VSOCK) {
688 error = ENOTSOCK;
689 goto bad;
691 error = VOP_ACCESS(vp, VWRITE, p->p_ucred);
692 if (error)
693 goto bad;
694 so2 = vp->v_socket;
695 if (so2 == NULL) {
696 error = ECONNREFUSED;
697 goto bad;
699 if (so->so_type != so2->so_type) {
700 error = EPROTOTYPE;
701 goto bad;
703 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
704 if (!(so2->so_options & SO_ACCEPTCONN) ||
705 (so3 = sonewconn(so2, 0)) == NULL) {
706 error = ECONNREFUSED;
707 goto bad;
709 unp = so->so_pcb;
710 unp2 = so2->so_pcb;
711 unp3 = so3->so_pcb;
712 if (unp2->unp_addr)
713 unp3->unp_addr = (struct sockaddr_un *)
714 dup_sockaddr((struct sockaddr *)unp2->unp_addr);
717 * unp_peercred management:
719 * The connecter's (client's) credentials are copied
720 * from its process structure at the time of connect()
721 * (which is now).
723 cru2x(p->p_ucred, &unp3->unp_peercred);
724 unp3->unp_flags |= UNP_HAVEPC;
726 * The receiver's (server's) credentials are copied
727 * from the unp_peercred member of socket on which the
728 * former called listen(); unp_listen() cached that
729 * process's credentials at that time so we can use
730 * them now.
732 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
733 ("unp_connect: listener without cached peercred"));
734 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
735 sizeof(unp->unp_peercred));
736 unp->unp_flags |= UNP_HAVEPC;
738 so2 = so3;
740 error = unp_connect2(so, so2);
741 bad:
742 vput(vp);
743 return (error);
747 unp_connect2(struct socket *so, struct socket *so2)
749 struct unpcb *unp = so->so_pcb;
750 struct unpcb *unp2;
752 if (so2->so_type != so->so_type)
753 return (EPROTOTYPE);
754 unp2 = so2->so_pcb;
755 unp->unp_conn = unp2;
756 switch (so->so_type) {
758 case SOCK_DGRAM:
759 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
760 soisconnected(so);
761 break;
763 case SOCK_STREAM:
764 case SOCK_SEQPACKET:
765 unp2->unp_conn = unp;
766 soisconnected(so);
767 soisconnected(so2);
768 break;
770 default:
771 panic("unp_connect2");
773 return (0);
776 static void
777 unp_disconnect(struct unpcb *unp)
779 struct unpcb *unp2 = unp->unp_conn;
781 if (unp2 == NULL)
782 return;
784 unp->unp_conn = NULL;
786 switch (unp->unp_socket->so_type) {
787 case SOCK_DGRAM:
788 LIST_REMOVE(unp, unp_reflink);
789 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
790 break;
791 case SOCK_STREAM:
792 case SOCK_SEQPACKET:
793 soisdisconnected(unp->unp_socket);
794 unp2->unp_conn = NULL;
795 soisdisconnected(unp2->unp_socket);
796 break;
800 #ifdef notdef
801 void
802 unp_abort(struct unpcb *unp)
805 unp_detach(unp);
807 #endif
809 static int
810 prison_unpcb(struct thread *td, struct unpcb *unp)
812 struct proc *p;
814 if (td == NULL)
815 return (0);
816 if ((p = td->td_proc) == NULL)
817 return (0);
818 if (!p->p_ucred->cr_prison)
819 return (0);
820 if (p->p_fd->fd_rdir == unp->unp_rvnode)
821 return (0);
822 return (1);
825 static int
826 unp_pcblist(SYSCTL_HANDLER_ARGS)
828 int error, i, n;
829 struct unpcb *unp, **unp_list;
830 unp_gen_t gencnt;
831 struct unp_head *head;
833 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
835 KKASSERT(curproc != NULL);
838 * The process of preparing the PCB list is too time-consuming and
839 * resource-intensive to repeat twice on every request.
841 if (req->oldptr == NULL) {
842 n = unp_count;
843 req->oldidx = (n + n/8) * sizeof(struct xunpcb);
844 return 0;
847 if (req->newptr != NULL)
848 return EPERM;
851 * OK, now we're committed to doing something.
853 gencnt = unp_gencnt;
854 n = unp_count;
856 unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
858 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
859 unp = LIST_NEXT(unp, unp_link)) {
860 if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
861 unp_list[i++] = unp;
863 n = i; /* in case we lost some during malloc */
865 error = 0;
866 for (i = 0; i < n; i++) {
867 unp = unp_list[i];
868 if (unp->unp_gencnt <= gencnt) {
869 struct xunpcb xu;
870 xu.xu_len = sizeof xu;
871 xu.xu_unpp = unp;
873 * XXX - need more locking here to protect against
874 * connect/disconnect races for SMP.
876 if (unp->unp_addr)
877 bcopy(unp->unp_addr, &xu.xu_addr,
878 unp->unp_addr->sun_len);
879 if (unp->unp_conn && unp->unp_conn->unp_addr)
880 bcopy(unp->unp_conn->unp_addr,
881 &xu.xu_caddr,
882 unp->unp_conn->unp_addr->sun_len);
883 bcopy(unp, &xu.xu_unp, sizeof *unp);
884 sotoxsocket(unp->unp_socket, &xu.xu_socket);
885 error = SYSCTL_OUT(req, &xu, sizeof xu);
888 kfree(unp_list, M_TEMP);
889 return error;
892 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
893 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
894 "List of active local datagram sockets");
895 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
896 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
897 "List of active local stream sockets");
898 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
899 (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
900 "List of active local seqpacket stream sockets");
902 static void
903 unp_shutdown(struct unpcb *unp)
905 struct socket *so;
907 if ((unp->unp_socket->so_type == SOCK_STREAM ||
908 unp->unp_socket->so_type == SOCK_SEQPACKET) &&
909 unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
910 socantrcvmore(so);
914 static void
915 unp_drop(struct unpcb *unp, int err)
917 struct socket *so = unp->unp_socket;
919 so->so_error = err;
920 unp_disconnect(unp);
923 #ifdef notdef
924 void
925 unp_drain(void)
929 #endif
932 unp_externalize(struct mbuf *rights)
934 struct proc *p = curproc; /* XXX */
935 int i;
936 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
937 int *fdp;
938 struct file **rp;
939 struct file *fp;
940 int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
941 / sizeof (struct file *);
942 int f;
945 * if the new FD's will not fit, then we free them all
947 if (!fdavail(p, newfds)) {
948 rp = (struct file **)CMSG_DATA(cm);
949 for (i = 0; i < newfds; i++) {
950 fp = *rp;
952 * zero the pointer before calling unp_discard,
953 * since it may end up in unp_gc()..
955 *rp++ = 0;
956 unp_discard(fp, NULL);
958 return (EMSGSIZE);
962 * now change each pointer to an fd in the global table to
963 * an integer that is the index to the local fd table entry
964 * that we set up to point to the global one we are transferring.
965 * If sizeof (struct file *) is bigger than or equal to sizeof int,
966 * then do it in forward order. In that case, an integer will
967 * always come in the same place or before its corresponding
968 * struct file pointer.
969 * If sizeof (struct file *) is smaller than sizeof int, then
970 * do it in reverse order.
972 if (sizeof (struct file *) >= sizeof (int)) {
973 fdp = (int *)(cm + 1);
974 rp = (struct file **)CMSG_DATA(cm);
975 for (i = 0; i < newfds; i++) {
976 if (fdalloc(p, 0, &f))
977 panic("unp_externalize");
978 fp = *rp++;
979 unp_fp_externalize(p, fp, f);
980 *fdp++ = f;
982 } else {
983 fdp = (int *)(cm + 1) + newfds - 1;
984 rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
985 for (i = 0; i < newfds; i++) {
986 if (fdalloc(p, 0, &f))
987 panic("unp_externalize");
988 fp = *rp--;
989 unp_fp_externalize(p, fp, f);
990 *fdp-- = f;
995 * Adjust length, in case sizeof(struct file *) and sizeof(int)
996 * differs.
998 cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
999 rights->m_len = cm->cmsg_len;
1000 return (0);
1003 static void
1004 unp_fp_externalize(struct proc *p, struct file *fp, int fd)
1006 struct file *fx;
1007 int error;
1009 if (p) {
1010 KKASSERT(fd >= 0);
1011 if (fp->f_flag & FREVOKED) {
1012 kprintf("Warning: revoked fp exiting unix socket\n");
1013 fx = NULL;
1014 error = falloc(p, &fx, NULL);
1015 if (error == 0)
1016 fsetfd(p, fx, fd);
1017 else
1018 fsetfd(p, NULL, fd);
1019 fdrop(fx);
1020 } else {
1021 fsetfd(p, fp, fd);
1024 spin_lock_wr(&unp_spin);
1025 fp->f_msgcount--;
1026 unp_rights--;
1027 spin_unlock_wr(&unp_spin);
1028 fdrop(fp);
1032 void
1033 unp_init(void)
1035 LIST_INIT(&unp_dhead);
1036 LIST_INIT(&unp_shead);
1037 spin_init(&unp_spin);
1040 static int
1041 unp_internalize(struct mbuf *control, struct thread *td)
1043 struct proc *p = td->td_proc;
1044 struct filedesc *fdescp;
1045 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1046 struct file **rp;
1047 struct file *fp;
1048 int i, fd, *fdp;
1049 struct cmsgcred *cmcred;
1050 int oldfds;
1051 u_int newlen;
1053 KKASSERT(p);
1054 fdescp = p->p_fd;
1055 if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1056 cm->cmsg_level != SOL_SOCKET || cm->cmsg_len != control->m_len)
1057 return (EINVAL);
1060 * Fill in credential information.
1062 if (cm->cmsg_type == SCM_CREDS) {
1063 cmcred = (struct cmsgcred *)(cm + 1);
1064 cmcred->cmcred_pid = p->p_pid;
1065 cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1066 cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1067 cmcred->cmcred_euid = p->p_ucred->cr_uid;
1068 cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1069 CMGROUP_MAX);
1070 for (i = 0; i < cmcred->cmcred_ngroups; i++)
1071 cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1072 return(0);
1075 oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1077 * check that all the FDs passed in refer to legal OPEN files
1078 * If not, reject the entire operation.
1080 fdp = (int *)(cm + 1);
1081 for (i = 0; i < oldfds; i++) {
1082 fd = *fdp++;
1083 if ((unsigned)fd >= fdescp->fd_nfiles ||
1084 fdescp->fd_files[fd].fp == NULL)
1085 return (EBADF);
1086 if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE)
1087 return (EOPNOTSUPP);
1090 * Now replace the integer FDs with pointers to
1091 * the associated global file table entry..
1092 * Allocate a bigger buffer as necessary. But if an cluster is not
1093 * enough, return E2BIG.
1095 newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1096 if (newlen > MCLBYTES)
1097 return (E2BIG);
1098 if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1099 if (control->m_flags & M_EXT)
1100 return (E2BIG);
1101 MCLGET(control, MB_WAIT);
1102 if (!(control->m_flags & M_EXT))
1103 return (ENOBUFS);
1105 /* copy the data to the cluster */
1106 memcpy(mtod(control, char *), cm, cm->cmsg_len);
1107 cm = mtod(control, struct cmsghdr *);
1111 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1112 * differs.
1114 control->m_len = cm->cmsg_len = newlen;
1117 * Transform the file descriptors into struct file pointers.
1118 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1119 * then do it in reverse order so that the int won't get until
1120 * we're done.
1121 * If sizeof (struct file *) is smaller than sizeof int, then
1122 * do it in forward order.
1124 if (sizeof (struct file *) >= sizeof (int)) {
1125 fdp = (int *)(cm + 1) + oldfds - 1;
1126 rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1127 for (i = 0; i < oldfds; i++) {
1128 fp = fdescp->fd_files[*fdp--].fp;
1129 *rp-- = fp;
1130 fhold(fp);
1131 spin_lock_wr(&unp_spin);
1132 fp->f_msgcount++;
1133 unp_rights++;
1134 spin_unlock_wr(&unp_spin);
1136 } else {
1137 fdp = (int *)(cm + 1);
1138 rp = (struct file **)CMSG_DATA(cm);
1139 for (i = 0; i < oldfds; i++) {
1140 fp = fdescp->fd_files[*fdp++].fp;
1141 *rp++ = fp;
1142 fhold(fp);
1143 spin_lock_wr(&unp_spin);
1144 fp->f_msgcount++;
1145 unp_rights++;
1146 spin_unlock_wr(&unp_spin);
1149 return (0);
1153 * Garbage collect in-transit file descriptors that get lost due to
1154 * loops (i.e. when a socket is sent to another process over itself,
1155 * and more complex situations).
1157 * NOT MPSAFE - TODO socket flush code and maybe closef. Rest is MPSAFE.
1160 struct unp_gc_info {
1161 struct file **extra_ref;
1162 struct file *locked_fp;
1163 int defer;
1164 int index;
1165 int maxindex;
1168 static void
1169 unp_gc(void)
1171 struct unp_gc_info info;
1172 static boolean_t unp_gcing;
1173 struct file **fpp;
1174 int i;
1176 spin_lock_wr(&unp_spin);
1177 if (unp_gcing) {
1178 spin_unlock_wr(&unp_spin);
1179 return;
1181 unp_gcing = TRUE;
1182 spin_unlock_wr(&unp_spin);
1185 * before going through all this, set all FDs to
1186 * be NOT defered and NOT externally accessible
1188 info.defer = 0;
1189 allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1190 do {
1191 allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1192 } while (info.defer);
1195 * We grab an extra reference to each of the file table entries
1196 * that are not otherwise accessible and then free the rights
1197 * that are stored in messages on them.
1199 * The bug in the orginal code is a little tricky, so I'll describe
1200 * what's wrong with it here.
1202 * It is incorrect to simply unp_discard each entry for f_msgcount
1203 * times -- consider the case of sockets A and B that contain
1204 * references to each other. On a last close of some other socket,
1205 * we trigger a gc since the number of outstanding rights (unp_rights)
1206 * is non-zero. If during the sweep phase the gc code un_discards,
1207 * we end up doing a (full) closef on the descriptor. A closef on A
1208 * results in the following chain. Closef calls soo_close, which
1209 * calls soclose. Soclose calls first (through the switch
1210 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1211 * returns because the previous instance had set unp_gcing, and
1212 * we return all the way back to soclose, which marks the socket
1213 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1214 * to free up the rights that are queued in messages on the socket A,
1215 * i.e., the reference on B. The sorflush calls via the dom_dispose
1216 * switch unp_dispose, which unp_scans with unp_discard. This second
1217 * instance of unp_discard just calls closef on B.
1219 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1220 * which results in another closef on A. Unfortunately, A is already
1221 * being closed, and the descriptor has already been marked with
1222 * SS_NOFDREF, and soclose panics at this point.
1224 * Here, we first take an extra reference to each inaccessible
1225 * descriptor. Then, we call sorflush ourself, since we know
1226 * it is a Unix domain socket anyhow. After we destroy all the
1227 * rights carried in messages, we do a last closef to get rid
1228 * of our extra reference. This is the last close, and the
1229 * unp_detach etc will shut down the socket.
1231 * 91/09/19, bsy@cs.cmu.edu
1233 info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1234 info.maxindex = 256;
1236 do {
1238 * Look for matches
1240 info.index = 0;
1241 allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1244 * For each FD on our hit list, do the following two things
1246 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1247 struct file *tfp = *fpp;
1248 if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1249 sorflush((struct socket *)(tfp->f_data));
1251 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1252 closef(*fpp, NULL);
1253 } while (info.index == info.maxindex);
1254 kfree((caddr_t)info.extra_ref, M_FILE);
1255 unp_gcing = FALSE;
1259 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1261 static int
1262 unp_gc_checkrefs(struct file *fp, void *data)
1264 struct unp_gc_info *info = data;
1266 if (fp->f_count == 0)
1267 return(0);
1268 if (info->index == info->maxindex)
1269 return(-1);
1272 * If all refs are from msgs, and it's not marked accessible
1273 * then it must be referenced from some unreachable cycle
1274 * of (shut-down) FDs, so include it in our
1275 * list of FDs to remove
1277 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1278 info->extra_ref[info->index++] = fp;
1279 fhold(fp);
1281 return(0);
1285 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1287 static int
1288 unp_gc_clearmarks(struct file *fp, void *data __unused)
1290 atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1291 return(0);
1295 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1297 static int
1298 unp_gc_checkmarks(struct file *fp, void *data)
1300 struct unp_gc_info *info = data;
1301 struct socket *so;
1304 * If the file is not open, skip it
1306 if (fp->f_count == 0)
1307 return(0);
1309 * If we already marked it as 'defer' in a
1310 * previous pass, then try process it this time
1311 * and un-mark it
1313 if (fp->f_flag & FDEFER) {
1314 atomic_clear_int(&fp->f_flag, FDEFER);
1315 --info->defer;
1316 } else {
1318 * if it's not defered, then check if it's
1319 * already marked.. if so skip it
1321 if (fp->f_flag & FMARK)
1322 return(0);
1324 * If all references are from messages
1325 * in transit, then skip it. it's not
1326 * externally accessible.
1328 if (fp->f_count == fp->f_msgcount)
1329 return(0);
1331 * If it got this far then it must be
1332 * externally accessible.
1334 atomic_set_int(&fp->f_flag, FMARK);
1338 * either it was defered, or it is externally
1339 * accessible and not already marked so.
1340 * Now check if it is possibly one of OUR sockets.
1342 if (fp->f_type != DTYPE_SOCKET ||
1343 (so = (struct socket *)fp->f_data) == NULL)
1344 return(0);
1345 if (so->so_proto->pr_domain != &localdomain ||
1346 !(so->so_proto->pr_flags & PR_RIGHTS))
1347 return(0);
1348 #ifdef notdef
1349 if (so->so_rcv.sb_flags & SB_LOCK) {
1351 * This is problematical; it's not clear
1352 * we need to wait for the sockbuf to be
1353 * unlocked (on a uniprocessor, at least),
1354 * and it's also not clear what to do
1355 * if sbwait returns an error due to receipt
1356 * of a signal. If sbwait does return
1357 * an error, we'll go into an infinite
1358 * loop. Delete all of this for now.
1360 sbwait(&so->so_rcv);
1361 goto restart;
1363 #endif
1365 * So, Ok, it's one of our sockets and it IS externally
1366 * accessible (or was defered). Now we look
1367 * to see if we hold any file descriptors in its
1368 * message buffers. Follow those links and mark them
1369 * as accessible too.
1371 info->locked_fp = fp;
1372 /* spin_lock_wr(&so->so_rcv.sb_spin); */
1373 unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1374 /* spin_unlock_wr(&so->so_rcv.sb_spin);*/
1375 return (0);
1379 * Scan all unix domain sockets and replace any revoked file pointers
1380 * found with the dummy file pointer fx. We don't worry about races
1381 * against file pointers being read out as those are handled in the
1382 * externalize code.
1385 #define REVOKE_GC_MAXFILES 32
1387 struct unp_revoke_gc_info {
1388 struct file *fx;
1389 struct file *fary[REVOKE_GC_MAXFILES];
1390 int fcount;
1393 void
1394 unp_revoke_gc(struct file *fx)
1396 struct unp_revoke_gc_info info;
1397 int i;
1399 info.fx = fx;
1400 do {
1401 info.fcount = 0;
1402 allfiles_scan_exclusive(unp_revoke_gc_check, &info);
1403 for (i = 0; i < info.fcount; ++i)
1404 unp_fp_externalize(NULL, info.fary[i], -1);
1405 } while (info.fcount == REVOKE_GC_MAXFILES);
1409 * Check for and replace revoked descriptors.
1411 * WARNING: This routine is not allowed to block.
1413 static int
1414 unp_revoke_gc_check(struct file *fps, void *vinfo)
1416 struct unp_revoke_gc_info *info = vinfo;
1417 struct file *fp;
1418 struct socket *so;
1419 struct mbuf *m0;
1420 struct mbuf *m;
1421 struct file **rp;
1422 struct cmsghdr *cm;
1423 int i;
1424 int qfds;
1427 * Is this a unix domain socket with rights-passing abilities?
1429 if (fps->f_type != DTYPE_SOCKET)
1430 return (0);
1431 if ((so = (struct socket *)fps->f_data) == NULL)
1432 return(0);
1433 if (so->so_proto->pr_domain != &localdomain)
1434 return(0);
1435 if ((so->so_proto->pr_flags & PR_RIGHTS) == 0)
1436 return(0);
1439 * Scan the mbufs for control messages and replace any revoked
1440 * descriptors we find.
1442 m0 = so->so_rcv.ssb_mb;
1443 while (m0) {
1444 for (m = m0; m; m = m->m_next) {
1445 if (m->m_type != MT_CONTROL)
1446 continue;
1447 if (m->m_len < sizeof(*cm))
1448 continue;
1449 cm = mtod(m, struct cmsghdr *);
1450 if (cm->cmsg_level != SOL_SOCKET ||
1451 cm->cmsg_type != SCM_RIGHTS) {
1452 continue;
1454 qfds = (cm->cmsg_len -
1455 (CMSG_DATA(cm) - (u_char *)cm))
1456 / sizeof (struct file *);
1457 rp = (struct file **)CMSG_DATA(cm);
1458 for (i = 0; i < qfds; i++) {
1459 fp = rp[i];
1460 if (fp->f_flag & FREVOKED) {
1461 kprintf("Warning: Removing revoked fp from unix domain socket queue\n");
1462 fhold(info->fx);
1463 info->fx->f_msgcount++;
1464 unp_rights++;
1465 rp[i] = info->fx;
1466 info->fary[info->fcount++] = fp;
1468 if (info->fcount == REVOKE_GC_MAXFILES)
1469 break;
1471 if (info->fcount == REVOKE_GC_MAXFILES)
1472 break;
1474 m0 = m0->m_nextpkt;
1475 if (info->fcount == REVOKE_GC_MAXFILES)
1476 break;
1480 * Stop the scan if we filled up our array.
1482 if (info->fcount == REVOKE_GC_MAXFILES)
1483 return(-1);
1484 return(0);
1487 void
1488 unp_dispose(struct mbuf *m)
1490 if (m)
1491 unp_scan(m, unp_discard, NULL);
1494 static int
1495 unp_listen(struct unpcb *unp, struct thread *td)
1497 struct proc *p = td->td_proc;
1499 KKASSERT(p);
1500 cru2x(p->p_ucred, &unp->unp_peercred);
1501 unp->unp_flags |= UNP_HAVEPCCACHED;
1502 return (0);
1505 static void
1506 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1508 struct mbuf *m;
1509 struct file **rp;
1510 struct cmsghdr *cm;
1511 int i;
1512 int qfds;
1514 while (m0) {
1515 for (m = m0; m; m = m->m_next) {
1516 if (m->m_type == MT_CONTROL &&
1517 m->m_len >= sizeof(*cm)) {
1518 cm = mtod(m, struct cmsghdr *);
1519 if (cm->cmsg_level != SOL_SOCKET ||
1520 cm->cmsg_type != SCM_RIGHTS)
1521 continue;
1522 qfds = (cm->cmsg_len -
1523 (CMSG_DATA(cm) - (u_char *)cm))
1524 / sizeof (struct file *);
1525 rp = (struct file **)CMSG_DATA(cm);
1526 for (i = 0; i < qfds; i++)
1527 (*op)(*rp++, data);
1528 break; /* XXX, but saves time */
1531 m0 = m0->m_nextpkt;
1535 static void
1536 unp_mark(struct file *fp, void *data)
1538 struct unp_gc_info *info = data;
1540 if ((fp->f_flag & FMARK) == 0) {
1541 ++info->defer;
1542 atomic_set_int(&fp->f_flag, FMARK | FDEFER);
1546 static void
1547 unp_discard(struct file *fp, void *data __unused)
1549 spin_lock_wr(&unp_spin);
1550 fp->f_msgcount--;
1551 unp_rights--;
1552 spin_unlock_wr(&unp_spin);
1553 closef(fp, NULL);