sbin/hammer: Use uuid_compare(3) instead of bcmp(3)
[dragonfly.git] / sys / vm / vm_page.c
blob08ce9dc747ce25127b2949929ca91b3ed1da3802
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
33 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
63 * Resident memory management module. The module manipulates 'VM pages'.
64 * A VM page is the core building block for memory management.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
99 * SET - Minimum required set associative size, must be a power of 2. We
100 * want this to match or exceed the set-associativeness of the cpu.
102 * GRP - A larger set that allows bleed-over into the domains of other
103 * nearby cpus. Also must be a power of 2. Used by the page zeroing
104 * code to smooth things out a bit.
106 #define PQ_SET_ASSOC 16
107 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
109 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
110 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
112 static void vm_page_queue_init(void);
113 static void vm_page_free_wakeup(void);
114 static vm_page_t vm_page_select_cache(u_short pg_color);
115 static vm_page_t _vm_page_list_find2(int basequeue, int index);
116 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
118 MALLOC_DEFINE(M_ACTIONHASH, "acthash", "vmpage action hash");
121 * Array of tailq lists
123 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
125 LIST_HEAD(vm_page_action_list, vm_page_action);
128 * Action hash for user umtx support. Contention is governed by both
129 * tsleep/wakeup handling (kern/kern_synch.c) and action_hash[] below.
130 * Because action_hash[] represents active table locks, a modest fixed
131 * value well in excess of MAXCPU works here.
133 * There is also scan overhead depending on the number of threads in
134 * umtx*() calls, so we also size the hash table based on maxproc.
136 struct vm_page_action_hash {
137 struct vm_page_action_list list;
138 struct lock lk;
139 } __cachealign;
141 #define VMACTION_MINHSIZE 256
143 struct vm_page_action_hash *action_hash;
144 static int vmaction_hsize;
145 static int vmaction_hmask;
147 static volatile int vm_pages_waiting;
148 static struct alist vm_contig_alist;
149 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
150 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
152 static u_long vm_dma_reserved = 0;
153 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
154 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
155 "Memory reserved for DMA");
156 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
157 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
159 static int vm_contig_verbose = 0;
160 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
162 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
163 vm_pindex_t, pindex);
165 static void
166 vm_page_queue_init(void)
168 int i;
170 for (i = 0; i < PQ_L2_SIZE; i++)
171 vm_page_queues[PQ_FREE+i].cnt_offset =
172 offsetof(struct vmstats, v_free_count);
173 for (i = 0; i < PQ_L2_SIZE; i++)
174 vm_page_queues[PQ_CACHE+i].cnt_offset =
175 offsetof(struct vmstats, v_cache_count);
176 for (i = 0; i < PQ_L2_SIZE; i++)
177 vm_page_queues[PQ_INACTIVE+i].cnt_offset =
178 offsetof(struct vmstats, v_inactive_count);
179 for (i = 0; i < PQ_L2_SIZE; i++)
180 vm_page_queues[PQ_ACTIVE+i].cnt_offset =
181 offsetof(struct vmstats, v_active_count);
182 for (i = 0; i < PQ_L2_SIZE; i++)
183 vm_page_queues[PQ_HOLD+i].cnt_offset =
184 offsetof(struct vmstats, v_active_count);
185 /* PQ_NONE has no queue */
187 for (i = 0; i < PQ_COUNT; i++) {
188 TAILQ_INIT(&vm_page_queues[i].pl);
189 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
194 * note: place in initialized data section? Is this necessary?
196 long first_page = 0;
197 int vm_page_array_size = 0;
198 vm_page_t vm_page_array = NULL;
199 vm_paddr_t vm_low_phys_reserved;
202 * (low level boot)
204 * Sets the page size, perhaps based upon the memory size.
205 * Must be called before any use of page-size dependent functions.
207 void
208 vm_set_page_size(void)
210 if (vmstats.v_page_size == 0)
211 vmstats.v_page_size = PAGE_SIZE;
212 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
213 panic("vm_set_page_size: page size not a power of two");
217 * (low level boot)
219 * Add a new page to the freelist for use by the system. New pages
220 * are added to both the head and tail of the associated free page
221 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
222 * requests pull 'recent' adds (higher physical addresses) first.
224 * Beware that the page zeroing daemon will also be running soon after
225 * boot, moving pages from the head to the tail of the PQ_FREE queues.
227 * Must be called in a critical section.
229 static void
230 vm_add_new_page(vm_paddr_t pa)
232 struct vpgqueues *vpq;
233 vm_page_t m;
235 m = PHYS_TO_VM_PAGE(pa);
236 m->phys_addr = pa;
237 m->flags = 0;
238 m->pat_mode = PAT_WRITE_BACK;
239 m->pc = (pa >> PAGE_SHIFT);
242 * Twist for cpu localization in addition to page coloring, so
243 * different cpus selecting by m->queue get different page colors.
245 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
246 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
247 m->pc &= PQ_L2_MASK;
250 * Reserve a certain number of contiguous low memory pages for
251 * contigmalloc() to use.
253 if (pa < vm_low_phys_reserved) {
254 atomic_add_int(&vmstats.v_page_count, 1);
255 atomic_add_int(&vmstats.v_dma_pages, 1);
256 m->queue = PQ_NONE;
257 m->wire_count = 1;
258 atomic_add_int(&vmstats.v_wire_count, 1);
259 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
260 return;
264 * General page
266 m->queue = m->pc + PQ_FREE;
267 KKASSERT(m->dirty == 0);
269 atomic_add_int(&vmstats.v_page_count, 1);
270 atomic_add_int(&vmstats.v_free_count, 1);
271 vpq = &vm_page_queues[m->queue];
272 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
273 ++vpq->lcnt;
277 * (low level boot)
279 * Initializes the resident memory module.
281 * Preallocates memory for critical VM structures and arrays prior to
282 * kernel_map becoming available.
284 * Memory is allocated from (virtual2_start, virtual2_end) if available,
285 * otherwise memory is allocated from (virtual_start, virtual_end).
287 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
288 * large enough to hold vm_page_array & other structures for machines with
289 * large amounts of ram, so we want to use virtual2* when available.
291 void
292 vm_page_startup(void)
294 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
295 vm_offset_t mapped;
296 vm_size_t npages;
297 vm_paddr_t page_range;
298 vm_paddr_t new_end;
299 int i;
300 vm_paddr_t pa;
301 vm_paddr_t last_pa;
302 vm_paddr_t end;
303 vm_paddr_t biggestone, biggestsize;
304 vm_paddr_t total;
305 vm_page_t m;
307 total = 0;
308 biggestsize = 0;
309 biggestone = 0;
310 vaddr = round_page(vaddr);
313 * Make sure ranges are page-aligned.
315 for (i = 0; phys_avail[i].phys_end; ++i) {
316 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
317 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
318 if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
319 phys_avail[i].phys_end = phys_avail[i].phys_beg;
323 * Locate largest block
325 for (i = 0; phys_avail[i].phys_end; ++i) {
326 vm_paddr_t size = phys_avail[i].phys_end -
327 phys_avail[i].phys_beg;
329 if (size > biggestsize) {
330 biggestone = i;
331 biggestsize = size;
333 total += size;
335 --i; /* adjust to last entry for use down below */
337 end = phys_avail[biggestone].phys_end;
338 end = trunc_page(end);
341 * Initialize the queue headers for the free queue, the active queue
342 * and the inactive queue.
344 vm_page_queue_init();
346 #if !defined(_KERNEL_VIRTUAL)
348 * VKERNELs don't support minidumps and as such don't need
349 * vm_page_dump
351 * Allocate a bitmap to indicate that a random physical page
352 * needs to be included in a minidump.
354 * The amd64 port needs this to indicate which direct map pages
355 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
357 * However, i386 still needs this workspace internally within the
358 * minidump code. In theory, they are not needed on i386, but are
359 * included should the sf_buf code decide to use them.
361 page_range = phys_avail[i].phys_end / PAGE_SIZE;
362 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
363 end -= vm_page_dump_size;
364 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
365 VM_PROT_READ | VM_PROT_WRITE);
366 bzero((void *)vm_page_dump, vm_page_dump_size);
367 #endif
369 * Compute the number of pages of memory that will be available for
370 * use (taking into account the overhead of a page structure per
371 * page).
373 first_page = phys_avail[0].phys_beg / PAGE_SIZE;
374 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
375 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
377 #ifndef _KERNEL_VIRTUAL
379 * (only applies to real kernels)
381 * Reserve a large amount of low memory for potential 32-bit DMA
382 * space allocations. Once device initialization is complete we
383 * release most of it, but keep (vm_dma_reserved) memory reserved
384 * for later use. Typically for X / graphics. Through trial and
385 * error we find that GPUs usually requires ~60-100MB or so.
387 * By default, 128M is left in reserve on machines with 2G+ of ram.
389 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
390 if (vm_low_phys_reserved > total / 4)
391 vm_low_phys_reserved = total / 4;
392 if (vm_dma_reserved == 0) {
393 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
394 if (vm_dma_reserved > total / 16)
395 vm_dma_reserved = total / 16;
397 #endif
398 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
399 ALIST_RECORDS_65536);
402 * Initialize the mem entry structures now, and put them in the free
403 * queue.
405 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
406 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
407 vm_page_array = (vm_page_t)mapped;
409 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
411 * since pmap_map on amd64 returns stuff out of a direct-map region,
412 * we have to manually add these pages to the minidump tracking so
413 * that they can be dumped, including the vm_page_array.
415 for (pa = new_end;
416 pa < phys_avail[biggestone].phys_end;
417 pa += PAGE_SIZE) {
418 dump_add_page(pa);
420 #endif
423 * Clear all of the page structures, run basic initialization so
424 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
425 * map.
427 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
428 vm_page_array_size = page_range;
430 m = &vm_page_array[0];
431 pa = ptoa(first_page);
432 for (i = 0; i < page_range; ++i) {
433 spin_init(&m->spin, "vm_page");
434 m->phys_addr = pa;
435 pa += PAGE_SIZE;
436 ++m;
440 * Construct the free queue(s) in ascending order (by physical
441 * address) so that the first 16MB of physical memory is allocated
442 * last rather than first. On large-memory machines, this avoids
443 * the exhaustion of low physical memory before isa_dmainit has run.
445 vmstats.v_page_count = 0;
446 vmstats.v_free_count = 0;
447 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
448 pa = phys_avail[i].phys_beg;
449 if (i == biggestone)
450 last_pa = new_end;
451 else
452 last_pa = phys_avail[i].phys_end;
453 while (pa < last_pa && npages-- > 0) {
454 vm_add_new_page(pa);
455 pa += PAGE_SIZE;
458 if (virtual2_start)
459 virtual2_start = vaddr;
460 else
461 virtual_start = vaddr;
462 mycpu->gd_vmstats = vmstats;
466 * Reorganize VM pages based on numa data. May be called as many times as
467 * necessary. Will reorganize the vm_page_t page color and related queue(s)
468 * to allow vm_page_alloc() to choose pages based on socket affinity.
470 * NOTE: This function is only called while we are still in UP mode, so
471 * we only need a critical section to protect the queues (which
472 * saves a lot of time, there are likely a ton of pages).
474 void
475 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
477 vm_paddr_t scan_beg;
478 vm_paddr_t scan_end;
479 vm_paddr_t ran_end;
480 struct vpgqueues *vpq;
481 vm_page_t m;
482 vm_page_t mend;
483 int i;
484 int socket_mod;
485 int socket_value;
488 * Check if no physical information, or there was only one socket
489 * (so don't waste time doing nothing!).
491 if (cpu_topology_phys_ids <= 1 ||
492 cpu_topology_core_ids == 0) {
493 return;
497 * Setup for our iteration. Note that ACPI may iterate CPU
498 * sockets starting at 0 or 1 or some other number. The
499 * cpu_topology code mod's it against the socket count.
501 ran_end = ran_beg + bytes;
502 physid %= cpu_topology_phys_ids;
504 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
505 socket_value = physid * socket_mod;
506 mend = &vm_page_array[vm_page_array_size];
508 crit_enter();
511 * Adjust vm_page->pc and requeue all affected pages. The
512 * allocator will then be able to localize memory allocations
513 * to some degree.
515 for (i = 0; phys_avail[i].phys_end; ++i) {
516 scan_beg = phys_avail[i].phys_beg;
517 scan_end = phys_avail[i].phys_end;
518 if (scan_end <= ran_beg)
519 continue;
520 if (scan_beg >= ran_end)
521 continue;
522 if (scan_beg < ran_beg)
523 scan_beg = ran_beg;
524 if (scan_end > ran_end)
525 scan_end = ran_end;
526 if (atop(scan_end) > first_page + vm_page_array_size)
527 scan_end = ptoa(first_page + vm_page_array_size);
529 m = PHYS_TO_VM_PAGE(scan_beg);
530 while (scan_beg < scan_end) {
531 KKASSERT(m < mend);
532 if (m->queue != PQ_NONE) {
533 vpq = &vm_page_queues[m->queue];
534 TAILQ_REMOVE(&vpq->pl, m, pageq);
535 --vpq->lcnt;
536 /* queue doesn't change, no need to adj cnt */
537 m->queue -= m->pc;
538 m->pc %= socket_mod;
539 m->pc += socket_value;
540 m->pc &= PQ_L2_MASK;
541 m->queue += m->pc;
542 vpq = &vm_page_queues[m->queue];
543 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
544 ++vpq->lcnt;
545 /* queue doesn't change, no need to adj cnt */
546 } else {
547 m->pc %= socket_mod;
548 m->pc += socket_value;
549 m->pc &= PQ_L2_MASK;
551 scan_beg += PAGE_SIZE;
552 ++m;
555 crit_exit();
559 * We tended to reserve a ton of memory for contigmalloc(). Now that most
560 * drivers have initialized we want to return most the remaining free
561 * reserve back to the VM page queues so they can be used for normal
562 * allocations.
564 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
566 * Also setup the action_hash[] table here (which is only used by userland)
568 static void
569 vm_page_startup_finish(void *dummy __unused)
571 alist_blk_t blk;
572 alist_blk_t rblk;
573 alist_blk_t count;
574 alist_blk_t xcount;
575 alist_blk_t bfree;
576 vm_page_t m;
577 int i;
579 spin_lock(&vm_contig_spin);
580 for (;;) {
581 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
582 if (bfree <= vm_dma_reserved / PAGE_SIZE)
583 break;
584 if (count == 0)
585 break;
588 * Figure out how much of the initial reserve we have to
589 * free in order to reach our target.
591 bfree -= vm_dma_reserved / PAGE_SIZE;
592 if (count > bfree) {
593 blk += count - bfree;
594 count = bfree;
598 * Calculate the nearest power of 2 <= count.
600 for (xcount = 1; xcount <= count; xcount <<= 1)
602 xcount >>= 1;
603 blk += count - xcount;
604 count = xcount;
607 * Allocate the pages from the alist, then free them to
608 * the normal VM page queues.
610 * Pages allocated from the alist are wired. We have to
611 * busy, unwire, and free them. We must also adjust
612 * vm_low_phys_reserved before freeing any pages to prevent
613 * confusion.
615 rblk = alist_alloc(&vm_contig_alist, blk, count);
616 if (rblk != blk) {
617 kprintf("vm_page_startup_finish: Unable to return "
618 "dma space @0x%08x/%d -> 0x%08x\n",
619 blk, count, rblk);
620 break;
622 atomic_add_int(&vmstats.v_dma_pages, -count);
623 spin_unlock(&vm_contig_spin);
625 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
626 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
627 while (count) {
628 vm_page_busy_wait(m, FALSE, "cpgfr");
629 vm_page_unwire(m, 0);
630 vm_page_free(m);
631 --count;
632 ++m;
634 spin_lock(&vm_contig_spin);
636 spin_unlock(&vm_contig_spin);
639 * Print out how much DMA space drivers have already allocated and
640 * how much is left over.
642 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
643 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
644 (PAGE_SIZE / 1024),
645 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
648 * Scale the action_hash[] array. Primary contention occurs due
649 * to cpu locks, scaled to ncpus, and scan overhead may be incurred
650 * depending on the number of threads, which we scale to maxproc.
652 * NOTE: Action lock might recurse due to callback, so allow
653 * recursion.
655 vmaction_hsize = VMACTION_MINHSIZE;
656 if (vmaction_hsize < ncpus * 2)
657 vmaction_hsize = ncpus * 2;
658 if (vmaction_hsize < maxproc / 16)
659 vmaction_hsize = maxproc / 16;
660 vmaction_hmask = 1;
661 while (vmaction_hmask < vmaction_hsize)
662 vmaction_hmask = (vmaction_hmask << 1) | 1;
663 vmaction_hsize = vmaction_hmask + 1;
665 action_hash = kmalloc(sizeof(action_hash[0]) * vmaction_hsize,
666 M_ACTIONHASH,
667 M_WAITOK | M_ZERO);
669 for (i = 0; i < vmaction_hsize; i++) {
670 LIST_INIT(&action_hash[i].list);
671 lockinit(&action_hash[i].lk, "actlk", 0, LK_CANRECURSE);
674 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
675 vm_page_startup_finish, NULL);
679 * Scan comparison function for Red-Black tree scans. An inclusive
680 * (start,end) is expected. Other fields are not used.
683 rb_vm_page_scancmp(struct vm_page *p, void *data)
685 struct rb_vm_page_scan_info *info = data;
687 if (p->pindex < info->start_pindex)
688 return(-1);
689 if (p->pindex > info->end_pindex)
690 return(1);
691 return(0);
695 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
697 if (p1->pindex < p2->pindex)
698 return(-1);
699 if (p1->pindex > p2->pindex)
700 return(1);
701 return(0);
704 void
705 vm_page_init(vm_page_t m)
707 /* do nothing for now. Called from pmap_page_init() */
711 * Each page queue has its own spin lock, which is fairly optimal for
712 * allocating and freeing pages at least.
714 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
715 * queue spinlock via this function. Also note that m->queue cannot change
716 * unless both the page and queue are locked.
718 static __inline
719 void
720 _vm_page_queue_spin_lock(vm_page_t m)
722 u_short queue;
724 queue = m->queue;
725 if (queue != PQ_NONE) {
726 spin_lock(&vm_page_queues[queue].spin);
727 KKASSERT(queue == m->queue);
731 static __inline
732 void
733 _vm_page_queue_spin_unlock(vm_page_t m)
735 u_short queue;
737 queue = m->queue;
738 cpu_ccfence();
739 if (queue != PQ_NONE)
740 spin_unlock(&vm_page_queues[queue].spin);
743 static __inline
744 void
745 _vm_page_queues_spin_lock(u_short queue)
747 cpu_ccfence();
748 if (queue != PQ_NONE)
749 spin_lock(&vm_page_queues[queue].spin);
753 static __inline
754 void
755 _vm_page_queues_spin_unlock(u_short queue)
757 cpu_ccfence();
758 if (queue != PQ_NONE)
759 spin_unlock(&vm_page_queues[queue].spin);
762 void
763 vm_page_queue_spin_lock(vm_page_t m)
765 _vm_page_queue_spin_lock(m);
768 void
769 vm_page_queues_spin_lock(u_short queue)
771 _vm_page_queues_spin_lock(queue);
774 void
775 vm_page_queue_spin_unlock(vm_page_t m)
777 _vm_page_queue_spin_unlock(m);
780 void
781 vm_page_queues_spin_unlock(u_short queue)
783 _vm_page_queues_spin_unlock(queue);
787 * This locks the specified vm_page and its queue in the proper order
788 * (page first, then queue). The queue may change so the caller must
789 * recheck on return.
791 static __inline
792 void
793 _vm_page_and_queue_spin_lock(vm_page_t m)
795 vm_page_spin_lock(m);
796 _vm_page_queue_spin_lock(m);
799 static __inline
800 void
801 _vm_page_and_queue_spin_unlock(vm_page_t m)
803 _vm_page_queues_spin_unlock(m->queue);
804 vm_page_spin_unlock(m);
807 void
808 vm_page_and_queue_spin_unlock(vm_page_t m)
810 _vm_page_and_queue_spin_unlock(m);
813 void
814 vm_page_and_queue_spin_lock(vm_page_t m)
816 _vm_page_and_queue_spin_lock(m);
820 * Helper function removes vm_page from its current queue.
821 * Returns the base queue the page used to be on.
823 * The vm_page and the queue must be spinlocked.
824 * This function will unlock the queue but leave the page spinlocked.
826 static __inline u_short
827 _vm_page_rem_queue_spinlocked(vm_page_t m)
829 struct vpgqueues *pq;
830 u_short queue;
831 u_short oqueue;
832 int *cnt;
834 queue = m->queue;
835 if (queue != PQ_NONE) {
836 pq = &vm_page_queues[queue];
837 TAILQ_REMOVE(&pq->pl, m, pageq);
840 * Adjust our pcpu stats. In order for the nominal low-memory
841 * algorithms to work properly we don't let any pcpu stat get
842 * too negative before we force it to be rolled-up into the
843 * global stats. Otherwise our pageout and vm_wait tests
844 * will fail badly.
846 * The idea here is to reduce unnecessary SMP cache
847 * mastership changes in the global vmstats, which can be
848 * particularly bad in multi-socket systems.
850 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
851 atomic_add_int(cnt, -1);
852 if (*cnt < -VMMETER_SLOP_COUNT) {
853 u_int copy = atomic_swap_int(cnt, 0);
854 cnt = (int *)((char *)&vmstats + pq->cnt_offset);
855 atomic_add_int(cnt, copy);
856 cnt = (int *)((char *)&mycpu->gd_vmstats +
857 pq->cnt_offset);
858 atomic_add_int(cnt, copy);
860 pq->lcnt--;
861 m->queue = PQ_NONE;
862 oqueue = queue;
863 queue -= m->pc;
864 vm_page_queues_spin_unlock(oqueue); /* intended */
866 return queue;
870 * Helper function places the vm_page on the specified queue. Generally
871 * speaking only PQ_FREE pages are placed at the head, to allow them to
872 * be allocated sooner rather than later on the assumption that they
873 * are cache-hot.
875 * The vm_page must be spinlocked.
876 * This function will return with both the page and the queue locked.
878 static __inline void
879 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
881 struct vpgqueues *pq;
882 u_int *cnt;
884 KKASSERT(m->queue == PQ_NONE);
886 if (queue != PQ_NONE) {
887 vm_page_queues_spin_lock(queue);
888 pq = &vm_page_queues[queue];
889 ++pq->lcnt;
892 * Adjust our pcpu stats. If a system entity really needs
893 * to incorporate the count it will call vmstats_rollup()
894 * to roll it all up into the global vmstats strufture.
896 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
897 atomic_add_int(cnt, 1);
900 * PQ_FREE is always handled LIFO style to try to provide
901 * cache-hot pages to programs.
903 m->queue = queue;
904 if (queue - m->pc == PQ_FREE) {
905 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
906 } else if (athead) {
907 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
908 } else {
909 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
911 /* leave the queue spinlocked */
916 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
917 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
918 * did not. Only one sleep call will be made before returning.
920 * This function does NOT busy the page and on return the page is not
921 * guaranteed to be available.
923 void
924 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
926 u_int32_t flags;
928 for (;;) {
929 flags = m->flags;
930 cpu_ccfence();
932 if ((flags & PG_BUSY) == 0 &&
933 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
934 break;
936 tsleep_interlock(m, 0);
937 if (atomic_cmpset_int(&m->flags, flags,
938 flags | PG_WANTED | PG_REFERENCED)) {
939 tsleep(m, PINTERLOCKED, msg, 0);
940 break;
946 * This calculates and returns a page color given an optional VM object and
947 * either a pindex or an iterator. We attempt to return a cpu-localized
948 * pg_color that is still roughly 16-way set-associative. The CPU topology
949 * is used if it was probed.
951 * The caller may use the returned value to index into e.g. PQ_FREE when
952 * allocating a page in order to nominally obtain pages that are hopefully
953 * already localized to the requesting cpu. This function is not able to
954 * provide any sort of guarantee of this, but does its best to improve
955 * hardware cache management performance.
957 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
959 u_short
960 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
962 u_short pg_color;
963 int phys_id;
964 int core_id;
965 int object_pg_color;
967 phys_id = get_cpu_phys_id(cpuid);
968 core_id = get_cpu_core_id(cpuid);
969 object_pg_color = object ? object->pg_color : 0;
971 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
972 int grpsize;
975 * Break us down by socket and cpu
977 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
978 pg_color += core_id * PQ_L2_SIZE /
979 (cpu_topology_core_ids * cpu_topology_phys_ids);
982 * Calculate remaining component for object/queue color
984 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
985 cpu_topology_phys_ids);
986 if (grpsize >= 8) {
987 pg_color += (pindex + object_pg_color) % grpsize;
988 } else {
989 if (grpsize <= 2) {
990 grpsize = 8;
991 } else {
992 /* 3->9, 4->8, 5->10, 6->12, 7->14 */
993 grpsize += grpsize;
994 if (grpsize < 8)
995 grpsize += grpsize;
997 pg_color += (pindex + object_pg_color) % grpsize;
999 } else {
1001 * Unknown topology, distribute things evenly.
1003 pg_color = cpuid * PQ_L2_SIZE / ncpus;
1004 pg_color += pindex + object_pg_color;
1006 return (pg_color & PQ_L2_MASK);
1010 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
1011 * also wait for m->busy to become 0 before setting PG_BUSY.
1013 void
1014 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1015 int also_m_busy, const char *msg
1016 VM_PAGE_DEBUG_ARGS)
1018 u_int32_t flags;
1020 for (;;) {
1021 flags = m->flags;
1022 cpu_ccfence();
1023 if (flags & PG_BUSY) {
1024 tsleep_interlock(m, 0);
1025 if (atomic_cmpset_int(&m->flags, flags,
1026 flags | PG_WANTED | PG_REFERENCED)) {
1027 tsleep(m, PINTERLOCKED, msg, 0);
1029 } else if (also_m_busy && (flags & PG_SBUSY)) {
1030 tsleep_interlock(m, 0);
1031 if (atomic_cmpset_int(&m->flags, flags,
1032 flags | PG_WANTED | PG_REFERENCED)) {
1033 tsleep(m, PINTERLOCKED, msg, 0);
1035 } else {
1036 if (atomic_cmpset_int(&m->flags, flags,
1037 flags | PG_BUSY)) {
1038 #ifdef VM_PAGE_DEBUG
1039 m->busy_func = func;
1040 m->busy_line = lineno;
1041 #endif
1042 break;
1049 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
1050 * is also 0.
1052 * Returns non-zero on failure.
1055 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1056 VM_PAGE_DEBUG_ARGS)
1058 u_int32_t flags;
1060 for (;;) {
1061 flags = m->flags;
1062 cpu_ccfence();
1063 if (flags & PG_BUSY)
1064 return TRUE;
1065 if (also_m_busy && (flags & PG_SBUSY))
1066 return TRUE;
1067 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1068 #ifdef VM_PAGE_DEBUG
1069 m->busy_func = func;
1070 m->busy_line = lineno;
1071 #endif
1072 return FALSE;
1078 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
1079 * that a wakeup() should be performed.
1081 * The vm_page must be spinlocked and will remain spinlocked on return.
1082 * The related queue must NOT be spinlocked (which could deadlock us).
1084 * (inline version)
1086 static __inline
1088 _vm_page_wakeup(vm_page_t m)
1090 u_int32_t flags;
1092 for (;;) {
1093 flags = m->flags;
1094 cpu_ccfence();
1095 if (atomic_cmpset_int(&m->flags, flags,
1096 flags & ~(PG_BUSY | PG_WANTED))) {
1097 break;
1100 return(flags & PG_WANTED);
1104 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
1105 * is typically the last call you make on a page before moving onto
1106 * other things.
1108 void
1109 vm_page_wakeup(vm_page_t m)
1111 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
1112 vm_page_spin_lock(m);
1113 if (_vm_page_wakeup(m)) {
1114 vm_page_spin_unlock(m);
1115 wakeup(m);
1116 } else {
1117 vm_page_spin_unlock(m);
1122 * Holding a page keeps it from being reused. Other parts of the system
1123 * can still disassociate the page from its current object and free it, or
1124 * perform read or write I/O on it and/or otherwise manipulate the page,
1125 * but if the page is held the VM system will leave the page and its data
1126 * intact and not reuse the page for other purposes until the last hold
1127 * reference is released. (see vm_page_wire() if you want to prevent the
1128 * page from being disassociated from its object too).
1130 * The caller must still validate the contents of the page and, if necessary,
1131 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1132 * before manipulating the page.
1134 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1136 void
1137 vm_page_hold(vm_page_t m)
1139 vm_page_spin_lock(m);
1140 atomic_add_int(&m->hold_count, 1);
1141 if (m->queue - m->pc == PQ_FREE) {
1142 _vm_page_queue_spin_lock(m);
1143 _vm_page_rem_queue_spinlocked(m);
1144 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1145 _vm_page_queue_spin_unlock(m);
1147 vm_page_spin_unlock(m);
1151 * The opposite of vm_page_hold(). If the page is on the HOLD queue
1152 * it was freed while held and must be moved back to the FREE queue.
1154 void
1155 vm_page_unhold(vm_page_t m)
1157 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1158 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1159 m, m->hold_count, m->queue - m->pc));
1160 vm_page_spin_lock(m);
1161 atomic_add_int(&m->hold_count, -1);
1162 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1163 _vm_page_queue_spin_lock(m);
1164 _vm_page_rem_queue_spinlocked(m);
1165 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1166 _vm_page_queue_spin_unlock(m);
1168 vm_page_spin_unlock(m);
1172 * vm_page_getfake:
1174 * Create a fictitious page with the specified physical address and
1175 * memory attribute. The memory attribute is the only the machine-
1176 * dependent aspect of a fictitious page that must be initialized.
1179 void
1180 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1183 if ((m->flags & PG_FICTITIOUS) != 0) {
1185 * The page's memattr might have changed since the
1186 * previous initialization. Update the pmap to the
1187 * new memattr.
1189 goto memattr;
1191 m->phys_addr = paddr;
1192 m->queue = PQ_NONE;
1193 /* Fictitious pages don't use "segind". */
1194 /* Fictitious pages don't use "order" or "pool". */
1195 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1196 m->wire_count = 1;
1197 spin_init(&m->spin, "fake_page");
1198 pmap_page_init(m);
1199 memattr:
1200 pmap_page_set_memattr(m, memattr);
1204 * Inserts the given vm_page into the object and object list.
1206 * The pagetables are not updated but will presumably fault the page
1207 * in if necessary, or if a kernel page the caller will at some point
1208 * enter the page into the kernel's pmap. We are not allowed to block
1209 * here so we *can't* do this anyway.
1211 * This routine may not block.
1212 * This routine must be called with the vm_object held.
1213 * This routine must be called with a critical section held.
1215 * This routine returns TRUE if the page was inserted into the object
1216 * successfully, and FALSE if the page already exists in the object.
1219 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1221 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1222 if (m->object != NULL)
1223 panic("vm_page_insert: already inserted");
1225 atomic_add_int(&object->generation, 1);
1228 * Record the object/offset pair in this page and add the
1229 * pv_list_count of the page to the object.
1231 * The vm_page spin lock is required for interactions with the pmap.
1233 vm_page_spin_lock(m);
1234 m->object = object;
1235 m->pindex = pindex;
1236 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1237 m->object = NULL;
1238 m->pindex = 0;
1239 vm_page_spin_unlock(m);
1240 return FALSE;
1242 ++object->resident_page_count;
1243 ++mycpu->gd_vmtotal.t_rm;
1244 vm_page_spin_unlock(m);
1247 * Since we are inserting a new and possibly dirty page,
1248 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1250 if ((m->valid & m->dirty) ||
1251 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1252 vm_object_set_writeable_dirty(object);
1255 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1257 swap_pager_page_inserted(m);
1258 return TRUE;
1262 * Removes the given vm_page_t from the (object,index) table
1264 * The underlying pmap entry (if any) is NOT removed here.
1265 * This routine may not block.
1267 * The page must be BUSY and will remain BUSY on return.
1268 * No other requirements.
1270 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1271 * it busy.
1273 void
1274 vm_page_remove(vm_page_t m)
1276 vm_object_t object;
1278 if (m->object == NULL) {
1279 return;
1282 if ((m->flags & PG_BUSY) == 0)
1283 panic("vm_page_remove: page not busy");
1285 object = m->object;
1287 vm_object_hold(object);
1290 * Remove the page from the object and update the object.
1292 * The vm_page spin lock is required for interactions with the pmap.
1294 vm_page_spin_lock(m);
1295 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1296 --object->resident_page_count;
1297 --mycpu->gd_vmtotal.t_rm;
1298 m->object = NULL;
1299 atomic_add_int(&object->generation, 1);
1300 vm_page_spin_unlock(m);
1302 vm_object_drop(object);
1306 * Locate and return the page at (object, pindex), or NULL if the
1307 * page could not be found.
1309 * The caller must hold the vm_object token.
1311 vm_page_t
1312 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1314 vm_page_t m;
1317 * Search the hash table for this object/offset pair
1319 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1320 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1321 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1322 return(m);
1325 vm_page_t
1326 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1327 vm_pindex_t pindex,
1328 int also_m_busy, const char *msg
1329 VM_PAGE_DEBUG_ARGS)
1331 u_int32_t flags;
1332 vm_page_t m;
1334 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1335 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1336 while (m) {
1337 KKASSERT(m->object == object && m->pindex == pindex);
1338 flags = m->flags;
1339 cpu_ccfence();
1340 if (flags & PG_BUSY) {
1341 tsleep_interlock(m, 0);
1342 if (atomic_cmpset_int(&m->flags, flags,
1343 flags | PG_WANTED | PG_REFERENCED)) {
1344 tsleep(m, PINTERLOCKED, msg, 0);
1345 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1346 pindex);
1348 } else if (also_m_busy && (flags & PG_SBUSY)) {
1349 tsleep_interlock(m, 0);
1350 if (atomic_cmpset_int(&m->flags, flags,
1351 flags | PG_WANTED | PG_REFERENCED)) {
1352 tsleep(m, PINTERLOCKED, msg, 0);
1353 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1354 pindex);
1356 } else if (atomic_cmpset_int(&m->flags, flags,
1357 flags | PG_BUSY)) {
1358 #ifdef VM_PAGE_DEBUG
1359 m->busy_func = func;
1360 m->busy_line = lineno;
1361 #endif
1362 break;
1365 return m;
1369 * Attempt to lookup and busy a page.
1371 * Returns NULL if the page could not be found
1373 * Returns a vm_page and error == TRUE if the page exists but could not
1374 * be busied.
1376 * Returns a vm_page and error == FALSE on success.
1378 vm_page_t
1379 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1380 vm_pindex_t pindex,
1381 int also_m_busy, int *errorp
1382 VM_PAGE_DEBUG_ARGS)
1384 u_int32_t flags;
1385 vm_page_t m;
1387 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1388 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1389 *errorp = FALSE;
1390 while (m) {
1391 KKASSERT(m->object == object && m->pindex == pindex);
1392 flags = m->flags;
1393 cpu_ccfence();
1394 if (flags & PG_BUSY) {
1395 *errorp = TRUE;
1396 break;
1398 if (also_m_busy && (flags & PG_SBUSY)) {
1399 *errorp = TRUE;
1400 break;
1402 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1403 #ifdef VM_PAGE_DEBUG
1404 m->busy_func = func;
1405 m->busy_line = lineno;
1406 #endif
1407 break;
1410 return m;
1414 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1415 * be repurposed it will be released, *must_reenter will be set to 1, and
1416 * this function will fall-through to vm_page_lookup_busy_try().
1418 * The passed-in page must be wired and not busy. The returned page will
1419 * be busied and not wired.
1421 * A different page may be returned. The returned page will be busied and
1422 * not wired.
1424 * NULL can be returned. If so, the required page could not be busied.
1425 * The passed-in page will be unwired.
1427 vm_page_t
1428 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1429 int also_m_busy, int *errorp, vm_page_t m,
1430 int *must_reenter, int *iswired)
1432 if (m) {
1434 * Do not mess with pages in a complex state, such as pages
1435 * which are mapped, as repurposing such pages can be more
1436 * expensive than simply allocatin a new one.
1438 * NOTE: Soft-busying can deadlock against putpages or I/O
1439 * so we only allow hard-busying here.
1441 KKASSERT(also_m_busy == FALSE);
1442 vm_page_busy_wait(m, also_m_busy, "biodep");
1444 if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1445 PG_FICTITIOUS | PG_SBUSY)) ||
1446 m->busy || m->wire_count != 1 || m->hold_count) {
1447 vm_page_unwire(m, 0);
1448 vm_page_wakeup(m);
1449 /* fall through to normal lookup */
1450 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1451 vm_page_unwire(m, 0);
1452 vm_page_deactivate(m);
1453 vm_page_wakeup(m);
1454 /* fall through to normal lookup */
1455 } else {
1457 * We can safely repurpose the page. It should
1458 * already be unqueued.
1460 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1461 vm_page_remove(m);
1462 m->valid = 0;
1463 m->act_count = 0;
1464 if (vm_page_insert(m, object, pindex)) {
1465 *errorp = 0;
1466 *iswired = 1;
1468 return m;
1470 vm_page_unwire(m, 0);
1471 vm_page_free(m);
1472 /* fall through to normal lookup */
1477 * Cannot repurpose page, attempt to locate the desired page. May
1478 * return NULL.
1480 *must_reenter = 1;
1481 *iswired = 0;
1482 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1484 return m;
1488 * Caller must hold the related vm_object
1490 vm_page_t
1491 vm_page_next(vm_page_t m)
1493 vm_page_t next;
1495 next = vm_page_rb_tree_RB_NEXT(m);
1496 if (next && next->pindex != m->pindex + 1)
1497 next = NULL;
1498 return (next);
1502 * vm_page_rename()
1504 * Move the given vm_page from its current object to the specified
1505 * target object/offset. The page must be busy and will remain so
1506 * on return.
1508 * new_object must be held.
1509 * This routine might block. XXX ?
1511 * NOTE: Swap associated with the page must be invalidated by the move. We
1512 * have to do this for several reasons: (1) we aren't freeing the
1513 * page, (2) we are dirtying the page, (3) the VM system is probably
1514 * moving the page from object A to B, and will then later move
1515 * the backing store from A to B and we can't have a conflict.
1517 * NOTE: We *always* dirty the page. It is necessary both for the
1518 * fact that we moved it, and because we may be invalidating
1519 * swap. If the page is on the cache, we have to deactivate it
1520 * or vm_page_dirty() will panic. Dirty pages are not allowed
1521 * on the cache.
1523 void
1524 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1526 KKASSERT(m->flags & PG_BUSY);
1527 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1528 if (m->object) {
1529 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1530 vm_page_remove(m);
1532 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1533 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1534 new_object, new_pindex);
1536 if (m->queue - m->pc == PQ_CACHE)
1537 vm_page_deactivate(m);
1538 vm_page_dirty(m);
1542 * vm_page_unqueue() without any wakeup. This routine is used when a page
1543 * is to remain BUSYied by the caller.
1545 * This routine may not block.
1547 void
1548 vm_page_unqueue_nowakeup(vm_page_t m)
1550 vm_page_and_queue_spin_lock(m);
1551 (void)_vm_page_rem_queue_spinlocked(m);
1552 vm_page_spin_unlock(m);
1556 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1557 * if necessary.
1559 * This routine may not block.
1561 void
1562 vm_page_unqueue(vm_page_t m)
1564 u_short queue;
1566 vm_page_and_queue_spin_lock(m);
1567 queue = _vm_page_rem_queue_spinlocked(m);
1568 if (queue == PQ_FREE || queue == PQ_CACHE) {
1569 vm_page_spin_unlock(m);
1570 pagedaemon_wakeup();
1571 } else {
1572 vm_page_spin_unlock(m);
1577 * vm_page_list_find()
1579 * Find a page on the specified queue with color optimization.
1581 * The page coloring optimization attempts to locate a page that does
1582 * not overload other nearby pages in the object in the cpu's L1 or L2
1583 * caches. We need this optimization because cpu caches tend to be
1584 * physical caches, while object spaces tend to be virtual.
1586 * The page coloring optimization also, very importantly, tries to localize
1587 * memory to cpus and physical sockets.
1589 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1590 * and the algorithm is adjusted to localize allocations on a per-core basis.
1591 * This is done by 'twisting' the colors.
1593 * The page is returned spinlocked and removed from its queue (it will
1594 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1595 * is responsible for dealing with the busy-page case (usually by
1596 * deactivating the page and looping).
1598 * NOTE: This routine is carefully inlined. A non-inlined version
1599 * is available for outside callers but the only critical path is
1600 * from within this source file.
1602 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1603 * represent stable storage, allowing us to order our locks vm_page
1604 * first, then queue.
1606 static __inline
1607 vm_page_t
1608 _vm_page_list_find(int basequeue, int index)
1610 vm_page_t m;
1612 for (;;) {
1613 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1614 if (m == NULL) {
1615 m = _vm_page_list_find2(basequeue, index);
1616 return(m);
1618 vm_page_and_queue_spin_lock(m);
1619 if (m->queue == basequeue + index) {
1620 _vm_page_rem_queue_spinlocked(m);
1621 /* vm_page_t spin held, no queue spin */
1622 break;
1624 vm_page_and_queue_spin_unlock(m);
1626 return(m);
1630 * If we could not find the page in the desired queue try to find it in
1631 * a nearby queue.
1633 static vm_page_t
1634 _vm_page_list_find2(int basequeue, int index)
1636 struct vpgqueues *pq;
1637 vm_page_t m = NULL;
1638 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1639 int pqi;
1640 int i;
1642 index &= PQ_L2_MASK;
1643 pq = &vm_page_queues[basequeue];
1646 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1647 * else fails (PQ_L2_MASK which is 255).
1649 do {
1650 pqmask = (pqmask << 1) | 1;
1651 for (i = 0; i <= pqmask; ++i) {
1652 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1653 m = TAILQ_FIRST(&pq[pqi].pl);
1654 if (m) {
1655 _vm_page_and_queue_spin_lock(m);
1656 if (m->queue == basequeue + pqi) {
1657 _vm_page_rem_queue_spinlocked(m);
1658 return(m);
1660 _vm_page_and_queue_spin_unlock(m);
1661 --i;
1662 continue;
1665 } while (pqmask != PQ_L2_MASK);
1667 return(m);
1671 * Returns a vm_page candidate for allocation. The page is not busied so
1672 * it can move around. The caller must busy the page (and typically
1673 * deactivate it if it cannot be busied!)
1675 * Returns a spinlocked vm_page that has been removed from its queue.
1677 vm_page_t
1678 vm_page_list_find(int basequeue, int index)
1680 return(_vm_page_list_find(basequeue, index));
1684 * Find a page on the cache queue with color optimization, remove it
1685 * from the queue, and busy it. The returned page will not be spinlocked.
1687 * A candidate failure will be deactivated. Candidates can fail due to
1688 * being busied by someone else, in which case they will be deactivated.
1690 * This routine may not block.
1693 static vm_page_t
1694 vm_page_select_cache(u_short pg_color)
1696 vm_page_t m;
1698 for (;;) {
1699 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1700 if (m == NULL)
1701 break;
1703 * (m) has been removed from its queue and spinlocked
1705 if (vm_page_busy_try(m, TRUE)) {
1706 _vm_page_deactivate_locked(m, 0);
1707 vm_page_spin_unlock(m);
1708 } else {
1710 * We successfully busied the page
1712 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1713 m->hold_count == 0 &&
1714 m->wire_count == 0 &&
1715 (m->dirty & m->valid) == 0) {
1716 vm_page_spin_unlock(m);
1717 pagedaemon_wakeup();
1718 return(m);
1722 * The page cannot be recycled, deactivate it.
1724 _vm_page_deactivate_locked(m, 0);
1725 if (_vm_page_wakeup(m)) {
1726 vm_page_spin_unlock(m);
1727 wakeup(m);
1728 } else {
1729 vm_page_spin_unlock(m);
1733 return (m);
1737 * Find a free page. We attempt to inline the nominal case and fall back
1738 * to _vm_page_select_free() otherwise. A busied page is removed from
1739 * the queue and returned.
1741 * This routine may not block.
1743 static __inline vm_page_t
1744 vm_page_select_free(u_short pg_color)
1746 vm_page_t m;
1748 for (;;) {
1749 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1750 if (m == NULL)
1751 break;
1752 if (vm_page_busy_try(m, TRUE)) {
1754 * Various mechanisms such as a pmap_collect can
1755 * result in a busy page on the free queue. We
1756 * have to move the page out of the way so we can
1757 * retry the allocation. If the other thread is not
1758 * allocating the page then m->valid will remain 0 and
1759 * the pageout daemon will free the page later on.
1761 * Since we could not busy the page, however, we
1762 * cannot make assumptions as to whether the page
1763 * will be allocated by the other thread or not,
1764 * so all we can do is deactivate it to move it out
1765 * of the way. In particular, if the other thread
1766 * wires the page it may wind up on the inactive
1767 * queue and the pageout daemon will have to deal
1768 * with that case too.
1770 _vm_page_deactivate_locked(m, 0);
1771 vm_page_spin_unlock(m);
1772 } else {
1774 * Theoretically if we are able to busy the page
1775 * atomic with the queue removal (using the vm_page
1776 * lock) nobody else should be able to mess with the
1777 * page before us.
1779 KKASSERT((m->flags & (PG_UNMANAGED |
1780 PG_NEED_COMMIT)) == 0);
1781 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1782 "pg %p q=%d flags=%08x hold=%d wire=%d",
1783 m, m->queue, m->flags, m->hold_count, m->wire_count));
1784 KKASSERT(m->wire_count == 0);
1785 vm_page_spin_unlock(m);
1786 pagedaemon_wakeup();
1788 /* return busied and removed page */
1789 return(m);
1792 return(m);
1796 * vm_page_alloc()
1798 * Allocate and return a memory cell associated with this VM object/offset
1799 * pair. If object is NULL an unassociated page will be allocated.
1801 * The returned page will be busied and removed from its queues. This
1802 * routine can block and may return NULL if a race occurs and the page
1803 * is found to already exist at the specified (object, pindex).
1805 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1806 * VM_ALLOC_QUICK like normal but cannot use cache
1807 * VM_ALLOC_SYSTEM greater free drain
1808 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1809 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1810 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1811 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1812 * (see vm_page_grab())
1813 * VM_ALLOC_USE_GD ok to use per-gd cache
1815 * VM_ALLOC_CPU(n) allocate using specified cpu localization
1817 * The object must be held if not NULL
1818 * This routine may not block
1820 * Additional special handling is required when called from an interrupt
1821 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1822 * in this case.
1824 vm_page_t
1825 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1827 globaldata_t gd;
1828 vm_object_t obj;
1829 vm_page_t m;
1830 u_short pg_color;
1831 int cpuid_local;
1833 #if 0
1835 * Special per-cpu free VM page cache. The pages are pre-busied
1836 * and pre-zerod for us.
1838 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1839 crit_enter_gd(gd);
1840 if (gd->gd_vmpg_count) {
1841 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1842 crit_exit_gd(gd);
1843 goto done;
1845 crit_exit_gd(gd);
1847 #endif
1848 m = NULL;
1851 * CPU LOCALIZATION
1853 * CPU localization algorithm. Break the page queues up by physical
1854 * id and core id (note that two cpu threads will have the same core
1855 * id, and core_id != gd_cpuid).
1857 * This is nowhere near perfect, for example the last pindex in a
1858 * subgroup will overflow into the next cpu or package. But this
1859 * should get us good page reuse locality in heavy mixed loads.
1861 * (may be executed before the APs are started, so other GDs might
1862 * not exist!)
1864 if (page_req & VM_ALLOC_CPU_SPEC)
1865 cpuid_local = VM_ALLOC_GETCPU(page_req);
1866 else
1867 cpuid_local = mycpu->gd_cpuid;
1869 pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1871 KKASSERT(page_req &
1872 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1873 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1876 * Certain system threads (pageout daemon, buf_daemon's) are
1877 * allowed to eat deeper into the free page list.
1879 if (curthread->td_flags & TDF_SYSTHREAD)
1880 page_req |= VM_ALLOC_SYSTEM;
1883 * Impose various limitations. Note that the v_free_reserved test
1884 * must match the opposite of vm_page_count_target() to avoid
1885 * livelocks, be careful.
1887 loop:
1888 gd = mycpu;
1889 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1890 ((page_req & VM_ALLOC_INTERRUPT) &&
1891 gd->gd_vmstats.v_free_count > 0) ||
1892 ((page_req & VM_ALLOC_SYSTEM) &&
1893 gd->gd_vmstats.v_cache_count == 0 &&
1894 gd->gd_vmstats.v_free_count >
1895 gd->gd_vmstats.v_interrupt_free_min)
1898 * The free queue has sufficient free pages to take one out.
1900 m = vm_page_select_free(pg_color);
1901 } else if (page_req & VM_ALLOC_NORMAL) {
1903 * Allocatable from the cache (non-interrupt only). On
1904 * success, we must free the page and try again, thus
1905 * ensuring that vmstats.v_*_free_min counters are replenished.
1907 #ifdef INVARIANTS
1908 if (curthread->td_preempted) {
1909 kprintf("vm_page_alloc(): warning, attempt to allocate"
1910 " cache page from preempting interrupt\n");
1911 m = NULL;
1912 } else {
1913 m = vm_page_select_cache(pg_color);
1915 #else
1916 m = vm_page_select_cache(pg_color);
1917 #endif
1919 * On success move the page into the free queue and loop.
1921 * Only do this if we can safely acquire the vm_object lock,
1922 * because this is effectively a random page and the caller
1923 * might be holding the lock shared, we don't want to
1924 * deadlock.
1926 if (m != NULL) {
1927 KASSERT(m->dirty == 0,
1928 ("Found dirty cache page %p", m));
1929 if ((obj = m->object) != NULL) {
1930 if (vm_object_hold_try(obj)) {
1931 vm_page_protect(m, VM_PROT_NONE);
1932 vm_page_free(m);
1933 /* m->object NULL here */
1934 vm_object_drop(obj);
1935 } else {
1936 vm_page_deactivate(m);
1937 vm_page_wakeup(m);
1939 } else {
1940 vm_page_protect(m, VM_PROT_NONE);
1941 vm_page_free(m);
1943 goto loop;
1947 * On failure return NULL
1949 atomic_add_int(&vm_pageout_deficit, 1);
1950 pagedaemon_wakeup();
1951 return (NULL);
1952 } else {
1954 * No pages available, wakeup the pageout daemon and give up.
1956 atomic_add_int(&vm_pageout_deficit, 1);
1957 pagedaemon_wakeup();
1958 return (NULL);
1962 * v_free_count can race so loop if we don't find the expected
1963 * page.
1965 if (m == NULL) {
1966 vmstats_rollup();
1967 goto loop;
1971 * Good page found. The page has already been busied for us and
1972 * removed from its queues.
1974 KASSERT(m->dirty == 0,
1975 ("vm_page_alloc: free/cache page %p was dirty", m));
1976 KKASSERT(m->queue == PQ_NONE);
1978 #if 0
1979 done:
1980 #endif
1982 * Initialize the structure, inheriting some flags but clearing
1983 * all the rest. The page has already been busied for us.
1985 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1987 KKASSERT(m->wire_count == 0);
1988 KKASSERT(m->busy == 0);
1989 m->act_count = 0;
1990 m->valid = 0;
1993 * Caller must be holding the object lock (asserted by
1994 * vm_page_insert()).
1996 * NOTE: Inserting a page here does not insert it into any pmaps
1997 * (which could cause us to block allocating memory).
1999 * NOTE: If no object an unassociated page is allocated, m->pindex
2000 * can be used by the caller for any purpose.
2002 if (object) {
2003 if (vm_page_insert(m, object, pindex) == FALSE) {
2004 vm_page_free(m);
2005 if ((page_req & VM_ALLOC_NULL_OK) == 0)
2006 panic("PAGE RACE %p[%ld]/%p",
2007 object, (long)pindex, m);
2008 m = NULL;
2010 } else {
2011 m->pindex = pindex;
2015 * Don't wakeup too often - wakeup the pageout daemon when
2016 * we would be nearly out of memory.
2018 pagedaemon_wakeup();
2021 * A PG_BUSY page is returned.
2023 return (m);
2027 * Returns number of pages available in our DMA memory reserve
2028 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2030 vm_size_t
2031 vm_contig_avail_pages(void)
2033 alist_blk_t blk;
2034 alist_blk_t count;
2035 alist_blk_t bfree;
2036 spin_lock(&vm_contig_spin);
2037 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2038 spin_unlock(&vm_contig_spin);
2040 return bfree;
2044 * Attempt to allocate contiguous physical memory with the specified
2045 * requirements.
2047 vm_page_t
2048 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2049 unsigned long alignment, unsigned long boundary,
2050 unsigned long size, vm_memattr_t memattr)
2052 alist_blk_t blk;
2053 vm_page_t m;
2054 int i;
2056 alignment >>= PAGE_SHIFT;
2057 if (alignment == 0)
2058 alignment = 1;
2059 boundary >>= PAGE_SHIFT;
2060 if (boundary == 0)
2061 boundary = 1;
2062 size = (size + PAGE_MASK) >> PAGE_SHIFT;
2064 spin_lock(&vm_contig_spin);
2065 blk = alist_alloc(&vm_contig_alist, 0, size);
2066 if (blk == ALIST_BLOCK_NONE) {
2067 spin_unlock(&vm_contig_spin);
2068 if (bootverbose) {
2069 kprintf("vm_page_alloc_contig: %ldk nospace\n",
2070 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
2072 return(NULL);
2074 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2075 alist_free(&vm_contig_alist, blk, size);
2076 spin_unlock(&vm_contig_spin);
2077 if (bootverbose) {
2078 kprintf("vm_page_alloc_contig: %ldk high "
2079 "%016jx failed\n",
2080 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
2081 (intmax_t)high);
2083 return(NULL);
2085 spin_unlock(&vm_contig_spin);
2086 if (vm_contig_verbose) {
2087 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2088 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2089 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
2092 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2093 if (memattr != VM_MEMATTR_DEFAULT)
2094 for (i = 0;i < size;i++)
2095 pmap_page_set_memattr(&m[i], memattr);
2096 return m;
2100 * Free contiguously allocated pages. The pages will be wired but not busy.
2101 * When freeing to the alist we leave them wired and not busy.
2103 void
2104 vm_page_free_contig(vm_page_t m, unsigned long size)
2106 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2107 vm_pindex_t start = pa >> PAGE_SHIFT;
2108 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2110 if (vm_contig_verbose) {
2111 kprintf("vm_page_free_contig: %016jx/%ldk\n",
2112 (intmax_t)pa, size / 1024);
2114 if (pa < vm_low_phys_reserved) {
2115 KKASSERT(pa + size <= vm_low_phys_reserved);
2116 spin_lock(&vm_contig_spin);
2117 alist_free(&vm_contig_alist, start, pages);
2118 spin_unlock(&vm_contig_spin);
2119 } else {
2120 while (pages) {
2121 vm_page_busy_wait(m, FALSE, "cpgfr");
2122 vm_page_unwire(m, 0);
2123 vm_page_free(m);
2124 --pages;
2125 ++m;
2133 * Wait for sufficient free memory for nominal heavy memory use kernel
2134 * operations.
2136 * WARNING! Be sure never to call this in any vm_pageout code path, which
2137 * will trivially deadlock the system.
2139 void
2140 vm_wait_nominal(void)
2142 while (vm_page_count_min(0))
2143 vm_wait(0);
2147 * Test if vm_wait_nominal() would block.
2150 vm_test_nominal(void)
2152 if (vm_page_count_min(0))
2153 return(1);
2154 return(0);
2158 * Block until free pages are available for allocation, called in various
2159 * places before memory allocations.
2161 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2162 * more generous then that.
2164 void
2165 vm_wait(int timo)
2168 * never wait forever
2170 if (timo == 0)
2171 timo = hz;
2172 lwkt_gettoken(&vm_token);
2174 if (curthread == pagethread ||
2175 curthread == emergpager) {
2177 * The pageout daemon itself needs pages, this is bad.
2179 if (vm_page_count_min(0)) {
2180 vm_pageout_pages_needed = 1;
2181 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2183 } else {
2185 * Wakeup the pageout daemon if necessary and wait.
2187 * Do not wait indefinitely for the target to be reached,
2188 * as load might prevent it from being reached any time soon.
2189 * But wait a little to try to slow down page allocations
2190 * and to give more important threads (the pagedaemon)
2191 * allocation priority.
2193 if (vm_page_count_target()) {
2194 if (vm_pages_needed == 0) {
2195 vm_pages_needed = 1;
2196 wakeup(&vm_pages_needed);
2198 ++vm_pages_waiting; /* SMP race ok */
2199 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2202 lwkt_reltoken(&vm_token);
2206 * Block until free pages are available for allocation
2208 * Called only from vm_fault so that processes page faulting can be
2209 * easily tracked.
2211 void
2212 vm_wait_pfault(void)
2215 * Wakeup the pageout daemon if necessary and wait.
2217 * Do not wait indefinitely for the target to be reached,
2218 * as load might prevent it from being reached any time soon.
2219 * But wait a little to try to slow down page allocations
2220 * and to give more important threads (the pagedaemon)
2221 * allocation priority.
2223 if (vm_page_count_min(0)) {
2224 lwkt_gettoken(&vm_token);
2225 while (vm_page_count_severe()) {
2226 if (vm_page_count_target()) {
2227 thread_t td;
2229 if (vm_pages_needed == 0) {
2230 vm_pages_needed = 1;
2231 wakeup(&vm_pages_needed);
2233 ++vm_pages_waiting; /* SMP race ok */
2234 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2237 * Do not stay stuck in the loop if the system is trying
2238 * to kill the process.
2240 td = curthread;
2241 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2242 break;
2245 lwkt_reltoken(&vm_token);
2250 * Put the specified page on the active list (if appropriate). Ensure
2251 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2253 * The caller should be holding the page busied ? XXX
2254 * This routine may not block.
2256 void
2257 vm_page_activate(vm_page_t m)
2259 u_short oqueue;
2261 vm_page_spin_lock(m);
2262 if (m->queue - m->pc != PQ_ACTIVE) {
2263 _vm_page_queue_spin_lock(m);
2264 oqueue = _vm_page_rem_queue_spinlocked(m);
2265 /* page is left spinlocked, queue is unlocked */
2267 if (oqueue == PQ_CACHE)
2268 mycpu->gd_cnt.v_reactivated++;
2269 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2270 if (m->act_count < ACT_INIT)
2271 m->act_count = ACT_INIT;
2272 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2274 _vm_page_and_queue_spin_unlock(m);
2275 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2276 pagedaemon_wakeup();
2277 } else {
2278 if (m->act_count < ACT_INIT)
2279 m->act_count = ACT_INIT;
2280 vm_page_spin_unlock(m);
2285 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2286 * routine is called when a page has been added to the cache or free
2287 * queues.
2289 * This routine may not block.
2291 static __inline void
2292 vm_page_free_wakeup(void)
2294 globaldata_t gd = mycpu;
2297 * If the pageout daemon itself needs pages, then tell it that
2298 * there are some free.
2300 if (vm_pageout_pages_needed &&
2301 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2302 gd->gd_vmstats.v_pageout_free_min
2304 vm_pageout_pages_needed = 0;
2305 wakeup(&vm_pageout_pages_needed);
2309 * Wakeup processes that are waiting on memory.
2311 * Generally speaking we want to wakeup stuck processes as soon as
2312 * possible. !vm_page_count_min(0) is the absolute minimum point
2313 * where we can do this. Wait a bit longer to reduce degenerate
2314 * re-blocking (vm_page_free_hysteresis). The target check is just
2315 * to make sure the min-check w/hysteresis does not exceed the
2316 * normal target.
2318 if (vm_pages_waiting) {
2319 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2320 !vm_page_count_target()) {
2321 vm_pages_waiting = 0;
2322 wakeup(&vmstats.v_free_count);
2323 ++mycpu->gd_cnt.v_ppwakeups;
2325 #if 0
2326 if (!vm_page_count_target()) {
2328 * Plenty of pages are free, wakeup everyone.
2330 vm_pages_waiting = 0;
2331 wakeup(&vmstats.v_free_count);
2332 ++mycpu->gd_cnt.v_ppwakeups;
2333 } else if (!vm_page_count_min(0)) {
2335 * Some pages are free, wakeup someone.
2337 int wcount = vm_pages_waiting;
2338 if (wcount > 0)
2339 --wcount;
2340 vm_pages_waiting = wcount;
2341 wakeup_one(&vmstats.v_free_count);
2342 ++mycpu->gd_cnt.v_ppwakeups;
2344 #endif
2349 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2350 * it from its VM object.
2352 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2353 * return (the page will have been freed).
2355 void
2356 vm_page_free_toq(vm_page_t m)
2358 mycpu->gd_cnt.v_tfree++;
2359 KKASSERT((m->flags & PG_MAPPED) == 0);
2360 KKASSERT(m->flags & PG_BUSY);
2362 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2363 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2364 "PG_BUSY(%d), hold(%d)\n",
2365 (u_long)m->pindex, m->busy,
2366 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2367 if ((m->queue - m->pc) == PQ_FREE)
2368 panic("vm_page_free: freeing free page");
2369 else
2370 panic("vm_page_free: freeing busy page");
2374 * Remove from object, spinlock the page and its queues and
2375 * remove from any queue. No queue spinlock will be held
2376 * after this section (because the page was removed from any
2377 * queue).
2379 vm_page_remove(m);
2380 vm_page_and_queue_spin_lock(m);
2381 _vm_page_rem_queue_spinlocked(m);
2384 * No further management of fictitious pages occurs beyond object
2385 * and queue removal.
2387 if ((m->flags & PG_FICTITIOUS) != 0) {
2388 vm_page_spin_unlock(m);
2389 vm_page_wakeup(m);
2390 return;
2393 m->valid = 0;
2394 vm_page_undirty(m);
2396 if (m->wire_count != 0) {
2397 if (m->wire_count > 1) {
2398 panic(
2399 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2400 m->wire_count, (long)m->pindex);
2402 panic("vm_page_free: freeing wired page");
2406 * Clear the UNMANAGED flag when freeing an unmanaged page.
2407 * Clear the NEED_COMMIT flag
2409 if (m->flags & PG_UNMANAGED)
2410 vm_page_flag_clear(m, PG_UNMANAGED);
2411 if (m->flags & PG_NEED_COMMIT)
2412 vm_page_flag_clear(m, PG_NEED_COMMIT);
2414 if (m->hold_count != 0) {
2415 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2416 } else {
2417 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2421 * This sequence allows us to clear PG_BUSY while still holding
2422 * its spin lock, which reduces contention vs allocators. We
2423 * must not leave the queue locked or _vm_page_wakeup() may
2424 * deadlock.
2426 _vm_page_queue_spin_unlock(m);
2427 if (_vm_page_wakeup(m)) {
2428 vm_page_spin_unlock(m);
2429 wakeup(m);
2430 } else {
2431 vm_page_spin_unlock(m);
2433 vm_page_free_wakeup();
2437 * vm_page_unmanage()
2439 * Prevent PV management from being done on the page. The page is
2440 * removed from the paging queues as if it were wired, and as a
2441 * consequence of no longer being managed the pageout daemon will not
2442 * touch it (since there is no way to locate the pte mappings for the
2443 * page). madvise() calls that mess with the pmap will also no longer
2444 * operate on the page.
2446 * Beyond that the page is still reasonably 'normal'. Freeing the page
2447 * will clear the flag.
2449 * This routine is used by OBJT_PHYS objects - objects using unswappable
2450 * physical memory as backing store rather then swap-backed memory and
2451 * will eventually be extended to support 4MB unmanaged physical
2452 * mappings.
2454 * Caller must be holding the page busy.
2456 void
2457 vm_page_unmanage(vm_page_t m)
2459 KKASSERT(m->flags & PG_BUSY);
2460 if ((m->flags & PG_UNMANAGED) == 0) {
2461 if (m->wire_count == 0)
2462 vm_page_unqueue(m);
2464 vm_page_flag_set(m, PG_UNMANAGED);
2468 * Mark this page as wired down by yet another map, removing it from
2469 * paging queues as necessary.
2471 * Caller must be holding the page busy.
2473 void
2474 vm_page_wire(vm_page_t m)
2477 * Only bump the wire statistics if the page is not already wired,
2478 * and only unqueue the page if it is on some queue (if it is unmanaged
2479 * it is already off the queues). Don't do anything with fictitious
2480 * pages because they are always wired.
2482 KKASSERT(m->flags & PG_BUSY);
2483 if ((m->flags & PG_FICTITIOUS) == 0) {
2484 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2485 if ((m->flags & PG_UNMANAGED) == 0)
2486 vm_page_unqueue(m);
2487 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2489 KASSERT(m->wire_count != 0,
2490 ("vm_page_wire: wire_count overflow m=%p", m));
2495 * Release one wiring of this page, potentially enabling it to be paged again.
2497 * Many pages placed on the inactive queue should actually go
2498 * into the cache, but it is difficult to figure out which. What
2499 * we do instead, if the inactive target is well met, is to put
2500 * clean pages at the head of the inactive queue instead of the tail.
2501 * This will cause them to be moved to the cache more quickly and
2502 * if not actively re-referenced, freed more quickly. If we just
2503 * stick these pages at the end of the inactive queue, heavy filesystem
2504 * meta-data accesses can cause an unnecessary paging load on memory bound
2505 * processes. This optimization causes one-time-use metadata to be
2506 * reused more quickly.
2508 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2509 * the inactive queue. This helps the pageout daemon determine memory
2510 * pressure and act on out-of-memory situations more quickly.
2512 * BUT, if we are in a low-memory situation we have no choice but to
2513 * put clean pages on the cache queue.
2515 * A number of routines use vm_page_unwire() to guarantee that the page
2516 * will go into either the inactive or active queues, and will NEVER
2517 * be placed in the cache - for example, just after dirtying a page.
2518 * dirty pages in the cache are not allowed.
2520 * This routine may not block.
2522 void
2523 vm_page_unwire(vm_page_t m, int activate)
2525 KKASSERT(m->flags & PG_BUSY);
2526 if (m->flags & PG_FICTITIOUS) {
2527 /* do nothing */
2528 } else if (m->wire_count <= 0) {
2529 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2530 } else {
2531 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2532 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2533 if (m->flags & PG_UNMANAGED) {
2535 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2536 vm_page_spin_lock(m);
2537 _vm_page_add_queue_spinlocked(m,
2538 PQ_ACTIVE + m->pc, 0);
2539 _vm_page_and_queue_spin_unlock(m);
2540 } else {
2541 vm_page_spin_lock(m);
2542 vm_page_flag_clear(m, PG_WINATCFLS);
2543 _vm_page_add_queue_spinlocked(m,
2544 PQ_INACTIVE + m->pc, 0);
2545 ++vm_swapcache_inactive_heuristic;
2546 _vm_page_and_queue_spin_unlock(m);
2553 * Move the specified page to the inactive queue. If the page has
2554 * any associated swap, the swap is deallocated.
2556 * Normally athead is 0 resulting in LRU operation. athead is set
2557 * to 1 if we want this page to be 'as if it were placed in the cache',
2558 * except without unmapping it from the process address space.
2560 * vm_page's spinlock must be held on entry and will remain held on return.
2561 * This routine may not block.
2563 static void
2564 _vm_page_deactivate_locked(vm_page_t m, int athead)
2566 u_short oqueue;
2569 * Ignore if already inactive.
2571 if (m->queue - m->pc == PQ_INACTIVE)
2572 return;
2573 _vm_page_queue_spin_lock(m);
2574 oqueue = _vm_page_rem_queue_spinlocked(m);
2576 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2577 if (oqueue == PQ_CACHE)
2578 mycpu->gd_cnt.v_reactivated++;
2579 vm_page_flag_clear(m, PG_WINATCFLS);
2580 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2581 if (athead == 0)
2582 ++vm_swapcache_inactive_heuristic;
2584 /* NOTE: PQ_NONE if condition not taken */
2585 _vm_page_queue_spin_unlock(m);
2586 /* leaves vm_page spinlocked */
2590 * Attempt to deactivate a page.
2592 * No requirements.
2594 void
2595 vm_page_deactivate(vm_page_t m)
2597 vm_page_spin_lock(m);
2598 _vm_page_deactivate_locked(m, 0);
2599 vm_page_spin_unlock(m);
2602 void
2603 vm_page_deactivate_locked(vm_page_t m)
2605 _vm_page_deactivate_locked(m, 0);
2609 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2611 * This function returns non-zero if it successfully moved the page to
2612 * PQ_CACHE.
2614 * This function unconditionally unbusies the page on return.
2617 vm_page_try_to_cache(vm_page_t m)
2619 vm_page_spin_lock(m);
2620 if (m->dirty || m->hold_count || m->wire_count ||
2621 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2622 if (_vm_page_wakeup(m)) {
2623 vm_page_spin_unlock(m);
2624 wakeup(m);
2625 } else {
2626 vm_page_spin_unlock(m);
2628 return(0);
2630 vm_page_spin_unlock(m);
2633 * Page busied by us and no longer spinlocked. Dirty pages cannot
2634 * be moved to the cache.
2636 vm_page_test_dirty(m);
2637 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2638 vm_page_wakeup(m);
2639 return(0);
2641 vm_page_cache(m);
2642 return(1);
2646 * Attempt to free the page. If we cannot free it, we do nothing.
2647 * 1 is returned on success, 0 on failure.
2649 * No requirements.
2652 vm_page_try_to_free(vm_page_t m)
2654 vm_page_spin_lock(m);
2655 if (vm_page_busy_try(m, TRUE)) {
2656 vm_page_spin_unlock(m);
2657 return(0);
2661 * The page can be in any state, including already being on the free
2662 * queue. Check to see if it really can be freed.
2664 if (m->dirty || /* can't free if it is dirty */
2665 m->hold_count || /* or held (XXX may be wrong) */
2666 m->wire_count || /* or wired */
2667 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2668 PG_NEED_COMMIT)) || /* or needs a commit */
2669 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2670 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2671 if (_vm_page_wakeup(m)) {
2672 vm_page_spin_unlock(m);
2673 wakeup(m);
2674 } else {
2675 vm_page_spin_unlock(m);
2677 return(0);
2679 vm_page_spin_unlock(m);
2682 * We can probably free the page.
2684 * Page busied by us and no longer spinlocked. Dirty pages will
2685 * not be freed by this function. We have to re-test the
2686 * dirty bit after cleaning out the pmaps.
2688 vm_page_test_dirty(m);
2689 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2690 vm_page_wakeup(m);
2691 return(0);
2693 vm_page_protect(m, VM_PROT_NONE);
2694 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2695 vm_page_wakeup(m);
2696 return(0);
2698 vm_page_free(m);
2699 return(1);
2703 * vm_page_cache
2705 * Put the specified page onto the page cache queue (if appropriate).
2707 * The page must be busy, and this routine will release the busy and
2708 * possibly even free the page.
2710 void
2711 vm_page_cache(vm_page_t m)
2714 * Not suitable for the cache
2716 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2717 m->busy || m->wire_count || m->hold_count) {
2718 vm_page_wakeup(m);
2719 return;
2723 * Already in the cache (and thus not mapped)
2725 if ((m->queue - m->pc) == PQ_CACHE) {
2726 KKASSERT((m->flags & PG_MAPPED) == 0);
2727 vm_page_wakeup(m);
2728 return;
2732 * Caller is required to test m->dirty, but note that the act of
2733 * removing the page from its maps can cause it to become dirty
2734 * on an SMP system due to another cpu running in usermode.
2736 if (m->dirty) {
2737 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2738 (long)m->pindex);
2742 * Remove all pmaps and indicate that the page is not
2743 * writeable or mapped. Our vm_page_protect() call may
2744 * have blocked (especially w/ VM_PROT_NONE), so recheck
2745 * everything.
2747 vm_page_protect(m, VM_PROT_NONE);
2748 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2749 m->busy || m->wire_count || m->hold_count) {
2750 vm_page_wakeup(m);
2751 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2752 vm_page_deactivate(m);
2753 vm_page_wakeup(m);
2754 } else {
2755 _vm_page_and_queue_spin_lock(m);
2756 _vm_page_rem_queue_spinlocked(m);
2757 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2758 _vm_page_queue_spin_unlock(m);
2759 if (_vm_page_wakeup(m)) {
2760 vm_page_spin_unlock(m);
2761 wakeup(m);
2762 } else {
2763 vm_page_spin_unlock(m);
2765 vm_page_free_wakeup();
2770 * vm_page_dontneed()
2772 * Cache, deactivate, or do nothing as appropriate. This routine
2773 * is typically used by madvise() MADV_DONTNEED.
2775 * Generally speaking we want to move the page into the cache so
2776 * it gets reused quickly. However, this can result in a silly syndrome
2777 * due to the page recycling too quickly. Small objects will not be
2778 * fully cached. On the otherhand, if we move the page to the inactive
2779 * queue we wind up with a problem whereby very large objects
2780 * unnecessarily blow away our inactive and cache queues.
2782 * The solution is to move the pages based on a fixed weighting. We
2783 * either leave them alone, deactivate them, or move them to the cache,
2784 * where moving them to the cache has the highest weighting.
2785 * By forcing some pages into other queues we eventually force the
2786 * system to balance the queues, potentially recovering other unrelated
2787 * space from active. The idea is to not force this to happen too
2788 * often.
2790 * The page must be busied.
2792 void
2793 vm_page_dontneed(vm_page_t m)
2795 static int dnweight;
2796 int dnw;
2797 int head;
2799 dnw = ++dnweight;
2802 * occassionally leave the page alone
2804 if ((dnw & 0x01F0) == 0 ||
2805 m->queue - m->pc == PQ_INACTIVE ||
2806 m->queue - m->pc == PQ_CACHE
2808 if (m->act_count >= ACT_INIT)
2809 --m->act_count;
2810 return;
2814 * If vm_page_dontneed() is inactivating a page, it must clear
2815 * the referenced flag; otherwise the pagedaemon will see references
2816 * on the page in the inactive queue and reactivate it. Until the
2817 * page can move to the cache queue, madvise's job is not done.
2819 vm_page_flag_clear(m, PG_REFERENCED);
2820 pmap_clear_reference(m);
2822 if (m->dirty == 0)
2823 vm_page_test_dirty(m);
2825 if (m->dirty || (dnw & 0x0070) == 0) {
2827 * Deactivate the page 3 times out of 32.
2829 head = 0;
2830 } else {
2832 * Cache the page 28 times out of every 32. Note that
2833 * the page is deactivated instead of cached, but placed
2834 * at the head of the queue instead of the tail.
2836 head = 1;
2838 vm_page_spin_lock(m);
2839 _vm_page_deactivate_locked(m, head);
2840 vm_page_spin_unlock(m);
2844 * These routines manipulate the 'soft busy' count for a page. A soft busy
2845 * is almost like PG_BUSY except that it allows certain compatible operations
2846 * to occur on the page while it is busy. For example, a page undergoing a
2847 * write can still be mapped read-only.
2849 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2850 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2851 * busy bit is cleared.
2853 * The caller must hold the page BUSY when making these two calls.
2855 void
2856 vm_page_io_start(vm_page_t m)
2858 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2859 atomic_add_char(&m->busy, 1);
2860 vm_page_flag_set(m, PG_SBUSY);
2863 void
2864 vm_page_io_finish(vm_page_t m)
2866 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2867 atomic_subtract_char(&m->busy, 1);
2868 if (m->busy == 0)
2869 vm_page_flag_clear(m, PG_SBUSY);
2873 * Indicate that a clean VM page requires a filesystem commit and cannot
2874 * be reused. Used by tmpfs.
2876 void
2877 vm_page_need_commit(vm_page_t m)
2879 vm_page_flag_set(m, PG_NEED_COMMIT);
2880 vm_object_set_writeable_dirty(m->object);
2883 void
2884 vm_page_clear_commit(vm_page_t m)
2886 vm_page_flag_clear(m, PG_NEED_COMMIT);
2890 * Grab a page, blocking if it is busy and allocating a page if necessary.
2891 * A busy page is returned or NULL. The page may or may not be valid and
2892 * might not be on a queue (the caller is responsible for the disposition of
2893 * the page).
2895 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2896 * page will be zero'd and marked valid.
2898 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2899 * valid even if it already exists.
2901 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2902 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2903 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2905 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2906 * always returned if we had blocked.
2908 * This routine may not be called from an interrupt.
2910 * No other requirements.
2912 vm_page_t
2913 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2915 vm_page_t m;
2916 int error;
2917 int shared = 1;
2919 KKASSERT(allocflags &
2920 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2921 vm_object_hold_shared(object);
2922 for (;;) {
2923 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2924 if (error) {
2925 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2926 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2927 m = NULL;
2928 break;
2930 /* retry */
2931 } else if (m == NULL) {
2932 if (shared) {
2933 vm_object_upgrade(object);
2934 shared = 0;
2936 if (allocflags & VM_ALLOC_RETRY)
2937 allocflags |= VM_ALLOC_NULL_OK;
2938 m = vm_page_alloc(object, pindex,
2939 allocflags & ~VM_ALLOC_RETRY);
2940 if (m)
2941 break;
2942 vm_wait(0);
2943 if ((allocflags & VM_ALLOC_RETRY) == 0)
2944 goto failed;
2945 } else {
2946 /* m found */
2947 break;
2952 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2954 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2955 * valid even if already valid.
2957 * NOTE! We have removed all of the PG_ZERO optimizations and also
2958 * removed the idle zeroing code. These optimizations actually
2959 * slow things down on modern cpus because the zerod area is
2960 * likely uncached, placing a memory-access burden on the
2961 * accesors taking the fault.
2963 * By always zeroing the page in-line with the fault, no
2964 * dynamic ram reads are needed and the caches are hot, ready
2965 * for userland to access the memory.
2967 if (m->valid == 0) {
2968 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2969 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2970 m->valid = VM_PAGE_BITS_ALL;
2972 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2973 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2974 m->valid = VM_PAGE_BITS_ALL;
2976 failed:
2977 vm_object_drop(object);
2978 return(m);
2982 * Mapping function for valid bits or for dirty bits in
2983 * a page. May not block.
2985 * Inputs are required to range within a page.
2987 * No requirements.
2988 * Non blocking.
2991 vm_page_bits(int base, int size)
2993 int first_bit;
2994 int last_bit;
2996 KASSERT(
2997 base + size <= PAGE_SIZE,
2998 ("vm_page_bits: illegal base/size %d/%d", base, size)
3001 if (size == 0) /* handle degenerate case */
3002 return(0);
3004 first_bit = base >> DEV_BSHIFT;
3005 last_bit = (base + size - 1) >> DEV_BSHIFT;
3007 return ((2 << last_bit) - (1 << first_bit));
3011 * Sets portions of a page valid and clean. The arguments are expected
3012 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3013 * of any partial chunks touched by the range. The invalid portion of
3014 * such chunks will be zero'd.
3016 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3017 * align base to DEV_BSIZE so as not to mark clean a partially
3018 * truncated device block. Otherwise the dirty page status might be
3019 * lost.
3021 * This routine may not block.
3023 * (base + size) must be less then or equal to PAGE_SIZE.
3025 static void
3026 _vm_page_zero_valid(vm_page_t m, int base, int size)
3028 int frag;
3029 int endoff;
3031 if (size == 0) /* handle degenerate case */
3032 return;
3035 * If the base is not DEV_BSIZE aligned and the valid
3036 * bit is clear, we have to zero out a portion of the
3037 * first block.
3040 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3041 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3043 pmap_zero_page_area(
3044 VM_PAGE_TO_PHYS(m),
3045 frag,
3046 base - frag
3051 * If the ending offset is not DEV_BSIZE aligned and the
3052 * valid bit is clear, we have to zero out a portion of
3053 * the last block.
3056 endoff = base + size;
3058 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3059 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3061 pmap_zero_page_area(
3062 VM_PAGE_TO_PHYS(m),
3063 endoff,
3064 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3070 * Set valid, clear dirty bits. If validating the entire
3071 * page we can safely clear the pmap modify bit. We also
3072 * use this opportunity to clear the PG_NOSYNC flag. If a process
3073 * takes a write fault on a MAP_NOSYNC memory area the flag will
3074 * be set again.
3076 * We set valid bits inclusive of any overlap, but we can only
3077 * clear dirty bits for DEV_BSIZE chunks that are fully within
3078 * the range.
3080 * Page must be busied?
3081 * No other requirements.
3083 void
3084 vm_page_set_valid(vm_page_t m, int base, int size)
3086 _vm_page_zero_valid(m, base, size);
3087 m->valid |= vm_page_bits(base, size);
3092 * Set valid bits and clear dirty bits.
3094 * Page must be busied by caller.
3096 * NOTE: This function does not clear the pmap modified bit.
3097 * Also note that e.g. NFS may use a byte-granular base
3098 * and size.
3100 * No other requirements.
3102 void
3103 vm_page_set_validclean(vm_page_t m, int base, int size)
3105 int pagebits;
3107 _vm_page_zero_valid(m, base, size);
3108 pagebits = vm_page_bits(base, size);
3109 m->valid |= pagebits;
3110 m->dirty &= ~pagebits;
3111 if (base == 0 && size == PAGE_SIZE) {
3112 /*pmap_clear_modify(m);*/
3113 vm_page_flag_clear(m, PG_NOSYNC);
3118 * Set valid & dirty. Used by buwrite()
3120 * Page must be busied by caller.
3122 void
3123 vm_page_set_validdirty(vm_page_t m, int base, int size)
3125 int pagebits;
3127 pagebits = vm_page_bits(base, size);
3128 m->valid |= pagebits;
3129 m->dirty |= pagebits;
3130 if (m->object)
3131 vm_object_set_writeable_dirty(m->object);
3135 * Clear dirty bits.
3137 * NOTE: This function does not clear the pmap modified bit.
3138 * Also note that e.g. NFS may use a byte-granular base
3139 * and size.
3141 * Page must be busied?
3142 * No other requirements.
3144 void
3145 vm_page_clear_dirty(vm_page_t m, int base, int size)
3147 m->dirty &= ~vm_page_bits(base, size);
3148 if (base == 0 && size == PAGE_SIZE) {
3149 /*pmap_clear_modify(m);*/
3150 vm_page_flag_clear(m, PG_NOSYNC);
3155 * Make the page all-dirty.
3157 * Also make sure the related object and vnode reflect the fact that the
3158 * object may now contain a dirty page.
3160 * Page must be busied?
3161 * No other requirements.
3163 void
3164 vm_page_dirty(vm_page_t m)
3166 #ifdef INVARIANTS
3167 int pqtype = m->queue - m->pc;
3168 #endif
3169 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3170 ("vm_page_dirty: page in free/cache queue!"));
3171 if (m->dirty != VM_PAGE_BITS_ALL) {
3172 m->dirty = VM_PAGE_BITS_ALL;
3173 if (m->object)
3174 vm_object_set_writeable_dirty(m->object);
3179 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3180 * valid and dirty bits for the effected areas are cleared.
3182 * Page must be busied?
3183 * Does not block.
3184 * No other requirements.
3186 void
3187 vm_page_set_invalid(vm_page_t m, int base, int size)
3189 int bits;
3191 bits = vm_page_bits(base, size);
3192 m->valid &= ~bits;
3193 m->dirty &= ~bits;
3194 atomic_add_int(&m->object->generation, 1);
3198 * The kernel assumes that the invalid portions of a page contain
3199 * garbage, but such pages can be mapped into memory by user code.
3200 * When this occurs, we must zero out the non-valid portions of the
3201 * page so user code sees what it expects.
3203 * Pages are most often semi-valid when the end of a file is mapped
3204 * into memory and the file's size is not page aligned.
3206 * Page must be busied?
3207 * No other requirements.
3209 void
3210 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3212 int b;
3213 int i;
3216 * Scan the valid bits looking for invalid sections that
3217 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3218 * valid bit may be set ) have already been zerod by
3219 * vm_page_set_validclean().
3221 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3222 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3223 (m->valid & (1 << i))
3225 if (i > b) {
3226 pmap_zero_page_area(
3227 VM_PAGE_TO_PHYS(m),
3228 b << DEV_BSHIFT,
3229 (i - b) << DEV_BSHIFT
3232 b = i + 1;
3237 * setvalid is TRUE when we can safely set the zero'd areas
3238 * as being valid. We can do this if there are no cache consistency
3239 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3241 if (setvalid)
3242 m->valid = VM_PAGE_BITS_ALL;
3246 * Is a (partial) page valid? Note that the case where size == 0
3247 * will return FALSE in the degenerate case where the page is entirely
3248 * invalid, and TRUE otherwise.
3250 * Does not block.
3251 * No other requirements.
3254 vm_page_is_valid(vm_page_t m, int base, int size)
3256 int bits = vm_page_bits(base, size);
3258 if (m->valid && ((m->valid & bits) == bits))
3259 return 1;
3260 else
3261 return 0;
3265 * update dirty bits from pmap/mmu. May not block.
3267 * Caller must hold the page busy
3269 void
3270 vm_page_test_dirty(vm_page_t m)
3272 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3273 vm_page_dirty(m);
3278 * Register an action, associating it with its vm_page
3280 void
3281 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3283 struct vm_page_action_hash *hash;
3284 int hv;
3286 hv = (int)((intptr_t)action->m >> 8) & vmaction_hmask;
3287 hash = &action_hash[hv];
3289 lockmgr(&hash->lk, LK_EXCLUSIVE);
3290 vm_page_flag_set(action->m, PG_ACTIONLIST);
3291 action->event = event;
3292 LIST_INSERT_HEAD(&hash->list, action, entry);
3293 lockmgr(&hash->lk, LK_RELEASE);
3297 * Unregister an action, disassociating it from its related vm_page
3299 void
3300 vm_page_unregister_action(vm_page_action_t action)
3302 struct vm_page_action_hash *hash;
3303 int hv;
3305 hv = (int)((intptr_t)action->m >> 8) & vmaction_hmask;
3306 hash = &action_hash[hv];
3307 lockmgr(&hash->lk, LK_EXCLUSIVE);
3308 if (action->event != VMEVENT_NONE) {
3309 action->event = VMEVENT_NONE;
3310 LIST_REMOVE(action, entry);
3312 if (LIST_EMPTY(&hash->list))
3313 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3315 lockmgr(&hash->lk, LK_RELEASE);
3319 * Issue an event on a VM page. Corresponding action structures are
3320 * removed from the page's list and called.
3322 * If the vm_page has no more pending action events we clear its
3323 * PG_ACTIONLIST flag.
3325 void
3326 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3328 struct vm_page_action_hash *hash;
3329 struct vm_page_action *scan;
3330 struct vm_page_action *next;
3331 int hv;
3332 int all;
3334 hv = (int)((intptr_t)m >> 8) & vmaction_hmask;
3335 hash = &action_hash[hv];
3336 all = 1;
3338 lockmgr(&hash->lk, LK_EXCLUSIVE);
3339 LIST_FOREACH_MUTABLE(scan, &hash->list, entry, next) {
3340 if (scan->m == m) {
3341 if (scan->event == event) {
3342 scan->event = VMEVENT_NONE;
3343 LIST_REMOVE(scan, entry);
3344 scan->func(m, scan);
3345 /* XXX */
3346 } else {
3347 all = 0;
3351 if (all)
3352 vm_page_flag_clear(m, PG_ACTIONLIST);
3353 lockmgr(&hash->lk, LK_RELEASE);
3356 #include "opt_ddb.h"
3357 #ifdef DDB
3358 #include <ddb/ddb.h>
3360 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3362 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3363 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3364 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3365 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3366 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3367 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3368 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3369 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3370 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3371 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3374 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3376 int i;
3377 db_printf("PQ_FREE:");
3378 for (i = 0; i < PQ_L2_SIZE; i++) {
3379 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3381 db_printf("\n");
3383 db_printf("PQ_CACHE:");
3384 for(i = 0; i < PQ_L2_SIZE; i++) {
3385 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3387 db_printf("\n");
3389 db_printf("PQ_ACTIVE:");
3390 for(i = 0; i < PQ_L2_SIZE; i++) {
3391 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3393 db_printf("\n");
3395 db_printf("PQ_INACTIVE:");
3396 for(i = 0; i < PQ_L2_SIZE; i++) {
3397 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3399 db_printf("\n");
3401 #endif /* DDB */