kernel - Refactor cpu localization for VM page allocations
[dragonfly.git] / sys / vm / vm_page.c
blob54fb36c23bf399fb125b91ce3b90129a31d9d962
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
65 * Resident memory management module. The module manipulates 'VM pages'.
66 * A VM page is the core building block for memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 #include <sys/cpu_topology.h>
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/vm_kern.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
93 #include <machine/inttypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
97 #include <vm/vm_page2.h>
98 #include <sys/spinlock2.h>
100 #define VMACTION_HSIZE 256
101 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
103 static void vm_page_queue_init(void);
104 static void vm_page_free_wakeup(void);
105 static vm_page_t vm_page_select_cache(u_short pg_color);
106 static vm_page_t _vm_page_list_find2(int basequeue, int index);
107 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
110 * Array of tailq lists
112 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
114 LIST_HEAD(vm_page_action_list, vm_page_action);
115 struct vm_page_action_list action_list[VMACTION_HSIZE];
116 static volatile int vm_pages_waiting;
118 static struct alist vm_contig_alist;
119 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
120 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
122 static u_long vm_dma_reserved = 0;
123 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
124 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
125 "Memory reserved for DMA");
126 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
127 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
129 static int vm_contig_verbose = 0;
130 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
132 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
133 vm_pindex_t, pindex);
135 static void
136 vm_page_queue_init(void)
138 int i;
140 for (i = 0; i < PQ_L2_SIZE; i++)
141 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
142 for (i = 0; i < PQ_L2_SIZE; i++)
143 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
144 for (i = 0; i < PQ_L2_SIZE; i++)
145 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
146 for (i = 0; i < PQ_L2_SIZE; i++)
147 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
148 for (i = 0; i < PQ_L2_SIZE; i++)
149 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
150 /* PQ_NONE has no queue */
152 for (i = 0; i < PQ_COUNT; i++) {
153 TAILQ_INIT(&vm_page_queues[i].pl);
154 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
157 for (i = 0; i < VMACTION_HSIZE; i++)
158 LIST_INIT(&action_list[i]);
162 * note: place in initialized data section? Is this necessary?
164 long first_page = 0;
165 int vm_page_array_size = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
170 * (low level boot)
172 * Sets the page size, perhaps based upon the memory size.
173 * Must be called before any use of page-size dependent functions.
175 void
176 vm_set_page_size(void)
178 if (vmstats.v_page_size == 0)
179 vmstats.v_page_size = PAGE_SIZE;
180 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 panic("vm_set_page_size: page size not a power of two");
185 * (low level boot)
187 * Add a new page to the freelist for use by the system. New pages
188 * are added to both the head and tail of the associated free page
189 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190 * requests pull 'recent' adds (higher physical addresses) first.
192 * Beware that the page zeroing daemon will also be running soon after
193 * boot, moving pages from the head to the tail of the PQ_FREE queues.
195 * Must be called in a critical section.
197 static void
198 vm_add_new_page(vm_paddr_t pa)
200 struct vpgqueues *vpq;
201 vm_page_t m;
203 m = PHYS_TO_VM_PAGE(pa);
204 m->phys_addr = pa;
205 m->flags = 0;
206 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 m->pat_mode = PAT_WRITE_BACK;
209 * Twist for cpu localization in addition to page coloring, so
210 * different cpus selecting by m->queue get different page colors.
212 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
215 * Reserve a certain number of contiguous low memory pages for
216 * contigmalloc() to use.
218 if (pa < vm_low_phys_reserved) {
219 atomic_add_int(&vmstats.v_page_count, 1);
220 atomic_add_int(&vmstats.v_dma_pages, 1);
221 m->queue = PQ_NONE;
222 m->wire_count = 1;
223 atomic_add_int(&vmstats.v_wire_count, 1);
224 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 return;
229 * General page
231 m->queue = m->pc + PQ_FREE;
232 KKASSERT(m->dirty == 0);
234 atomic_add_int(&vmstats.v_page_count, 1);
235 atomic_add_int(&vmstats.v_free_count, 1);
236 vpq = &vm_page_queues[m->queue];
237 #if 0
238 /* too expensive time-wise in large-mem configurations */
239 if ((vpq->flipflop & 15) == 0) {
240 pmap_zero_page(VM_PAGE_TO_PHYS(m));
241 m->flags |= PG_ZERO;
242 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
243 ++vpq->zero_count;
244 } else {
245 #endif
246 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
247 #if 0
249 ++vpq->flipflop;
250 #endif
251 ++vpq->lcnt;
255 * (low level boot)
257 * Initializes the resident memory module.
259 * Preallocates memory for critical VM structures and arrays prior to
260 * kernel_map becoming available.
262 * Memory is allocated from (virtual2_start, virtual2_end) if available,
263 * otherwise memory is allocated from (virtual_start, virtual_end).
265 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
266 * large enough to hold vm_page_array & other structures for machines with
267 * large amounts of ram, so we want to use virtual2* when available.
269 void
270 vm_page_startup(void)
272 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
273 vm_offset_t mapped;
274 vm_size_t npages;
275 vm_paddr_t page_range;
276 vm_paddr_t new_end;
277 int i;
278 vm_paddr_t pa;
279 int nblocks;
280 vm_paddr_t last_pa;
281 vm_paddr_t end;
282 vm_paddr_t biggestone, biggestsize;
283 vm_paddr_t total;
285 total = 0;
286 biggestsize = 0;
287 biggestone = 0;
288 nblocks = 0;
289 vaddr = round_page(vaddr);
291 for (i = 0; phys_avail[i + 1]; i += 2) {
292 phys_avail[i] = round_page64(phys_avail[i]);
293 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
296 for (i = 0; phys_avail[i + 1]; i += 2) {
297 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
299 if (size > biggestsize) {
300 biggestone = i;
301 biggestsize = size;
303 ++nblocks;
304 total += size;
307 end = phys_avail[biggestone+1];
308 end = trunc_page(end);
311 * Initialize the queue headers for the free queue, the active queue
312 * and the inactive queue.
314 vm_page_queue_init();
316 #if !defined(_KERNEL_VIRTUAL)
318 * VKERNELs don't support minidumps and as such don't need
319 * vm_page_dump
321 * Allocate a bitmap to indicate that a random physical page
322 * needs to be included in a minidump.
324 * The amd64 port needs this to indicate which direct map pages
325 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
327 * However, i386 still needs this workspace internally within the
328 * minidump code. In theory, they are not needed on i386, but are
329 * included should the sf_buf code decide to use them.
331 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
332 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
333 end -= vm_page_dump_size;
334 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
335 VM_PROT_READ | VM_PROT_WRITE);
336 bzero((void *)vm_page_dump, vm_page_dump_size);
337 #endif
339 * Compute the number of pages of memory that will be available for
340 * use (taking into account the overhead of a page structure per
341 * page).
343 first_page = phys_avail[0] / PAGE_SIZE;
344 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
345 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
347 #ifndef _KERNEL_VIRTUAL
349 * (only applies to real kernels)
351 * Reserve a large amount of low memory for potential 32-bit DMA
352 * space allocations. Once device initialization is complete we
353 * release most of it, but keep (vm_dma_reserved) memory reserved
354 * for later use. Typically for X / graphics. Through trial and
355 * error we find that GPUs usually requires ~60-100MB or so.
357 * By default, 128M is left in reserve on machines with 2G+ of ram.
359 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
360 if (vm_low_phys_reserved > total / 4)
361 vm_low_phys_reserved = total / 4;
362 if (vm_dma_reserved == 0) {
363 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
364 if (vm_dma_reserved > total / 16)
365 vm_dma_reserved = total / 16;
367 #endif
368 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
369 ALIST_RECORDS_65536);
372 * Initialize the mem entry structures now, and put them in the free
373 * queue.
375 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
376 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
377 vm_page_array = (vm_page_t)mapped;
379 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
381 * since pmap_map on amd64 returns stuff out of a direct-map region,
382 * we have to manually add these pages to the minidump tracking so
383 * that they can be dumped, including the vm_page_array.
385 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
386 dump_add_page(pa);
387 #endif
390 * Clear all of the page structures
392 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
393 vm_page_array_size = page_range;
396 * Construct the free queue(s) in ascending order (by physical
397 * address) so that the first 16MB of physical memory is allocated
398 * last rather than first. On large-memory machines, this avoids
399 * the exhaustion of low physical memory before isa_dmainit has run.
401 vmstats.v_page_count = 0;
402 vmstats.v_free_count = 0;
403 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
404 pa = phys_avail[i];
405 if (i == biggestone)
406 last_pa = new_end;
407 else
408 last_pa = phys_avail[i + 1];
409 while (pa < last_pa && npages-- > 0) {
410 vm_add_new_page(pa);
411 pa += PAGE_SIZE;
414 if (virtual2_start)
415 virtual2_start = vaddr;
416 else
417 virtual_start = vaddr;
421 * We tended to reserve a ton of memory for contigmalloc(). Now that most
422 * drivers have initialized we want to return most the remaining free
423 * reserve back to the VM page queues so they can be used for normal
424 * allocations.
426 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
428 static void
429 vm_page_startup_finish(void *dummy __unused)
431 alist_blk_t blk;
432 alist_blk_t rblk;
433 alist_blk_t count;
434 alist_blk_t xcount;
435 alist_blk_t bfree;
436 vm_page_t m;
438 spin_lock(&vm_contig_spin);
439 for (;;) {
440 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
441 if (bfree <= vm_dma_reserved / PAGE_SIZE)
442 break;
443 if (count == 0)
444 break;
447 * Figure out how much of the initial reserve we have to
448 * free in order to reach our target.
450 bfree -= vm_dma_reserved / PAGE_SIZE;
451 if (count > bfree) {
452 blk += count - bfree;
453 count = bfree;
457 * Calculate the nearest power of 2 <= count.
459 for (xcount = 1; xcount <= count; xcount <<= 1)
461 xcount >>= 1;
462 blk += count - xcount;
463 count = xcount;
466 * Allocate the pages from the alist, then free them to
467 * the normal VM page queues.
469 * Pages allocated from the alist are wired. We have to
470 * busy, unwire, and free them. We must also adjust
471 * vm_low_phys_reserved before freeing any pages to prevent
472 * confusion.
474 rblk = alist_alloc(&vm_contig_alist, blk, count);
475 if (rblk != blk) {
476 kprintf("vm_page_startup_finish: Unable to return "
477 "dma space @0x%08x/%d -> 0x%08x\n",
478 blk, count, rblk);
479 break;
481 atomic_add_int(&vmstats.v_dma_pages, -count);
482 spin_unlock(&vm_contig_spin);
484 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
485 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
486 while (count) {
487 vm_page_busy_wait(m, FALSE, "cpgfr");
488 vm_page_unwire(m, 0);
489 vm_page_free(m);
490 --count;
491 ++m;
493 spin_lock(&vm_contig_spin);
495 spin_unlock(&vm_contig_spin);
498 * Print out how much DMA space drivers have already allocated and
499 * how much is left over.
501 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
502 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
503 (PAGE_SIZE / 1024),
504 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
506 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
507 vm_page_startup_finish, NULL);
511 * Scan comparison function for Red-Black tree scans. An inclusive
512 * (start,end) is expected. Other fields are not used.
515 rb_vm_page_scancmp(struct vm_page *p, void *data)
517 struct rb_vm_page_scan_info *info = data;
519 if (p->pindex < info->start_pindex)
520 return(-1);
521 if (p->pindex > info->end_pindex)
522 return(1);
523 return(0);
527 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
529 if (p1->pindex < p2->pindex)
530 return(-1);
531 if (p1->pindex > p2->pindex)
532 return(1);
533 return(0);
536 void
537 vm_page_init(vm_page_t m)
539 /* do nothing for now. Called from pmap_page_init() */
543 * Each page queue has its own spin lock, which is fairly optimal for
544 * allocating and freeing pages at least.
546 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
547 * queue spinlock via this function. Also note that m->queue cannot change
548 * unless both the page and queue are locked.
550 static __inline
551 void
552 _vm_page_queue_spin_lock(vm_page_t m)
554 u_short queue;
556 queue = m->queue;
557 if (queue != PQ_NONE) {
558 spin_lock(&vm_page_queues[queue].spin);
559 KKASSERT(queue == m->queue);
563 static __inline
564 void
565 _vm_page_queue_spin_unlock(vm_page_t m)
567 u_short queue;
569 queue = m->queue;
570 cpu_ccfence();
571 if (queue != PQ_NONE)
572 spin_unlock(&vm_page_queues[queue].spin);
575 static __inline
576 void
577 _vm_page_queues_spin_lock(u_short queue)
579 cpu_ccfence();
580 if (queue != PQ_NONE)
581 spin_lock(&vm_page_queues[queue].spin);
585 static __inline
586 void
587 _vm_page_queues_spin_unlock(u_short queue)
589 cpu_ccfence();
590 if (queue != PQ_NONE)
591 spin_unlock(&vm_page_queues[queue].spin);
594 void
595 vm_page_queue_spin_lock(vm_page_t m)
597 _vm_page_queue_spin_lock(m);
600 void
601 vm_page_queues_spin_lock(u_short queue)
603 _vm_page_queues_spin_lock(queue);
606 void
607 vm_page_queue_spin_unlock(vm_page_t m)
609 _vm_page_queue_spin_unlock(m);
612 void
613 vm_page_queues_spin_unlock(u_short queue)
615 _vm_page_queues_spin_unlock(queue);
619 * This locks the specified vm_page and its queue in the proper order
620 * (page first, then queue). The queue may change so the caller must
621 * recheck on return.
623 static __inline
624 void
625 _vm_page_and_queue_spin_lock(vm_page_t m)
627 vm_page_spin_lock(m);
628 _vm_page_queue_spin_lock(m);
631 static __inline
632 void
633 _vm_page_and_queue_spin_unlock(vm_page_t m)
635 _vm_page_queues_spin_unlock(m->queue);
636 vm_page_spin_unlock(m);
639 void
640 vm_page_and_queue_spin_unlock(vm_page_t m)
642 _vm_page_and_queue_spin_unlock(m);
645 void
646 vm_page_and_queue_spin_lock(vm_page_t m)
648 _vm_page_and_queue_spin_lock(m);
652 * Helper function removes vm_page from its current queue.
653 * Returns the base queue the page used to be on.
655 * The vm_page and the queue must be spinlocked.
656 * This function will unlock the queue but leave the page spinlocked.
658 static __inline u_short
659 _vm_page_rem_queue_spinlocked(vm_page_t m)
661 struct vpgqueues *pq;
662 u_short queue;
663 u_short oqueue;
665 queue = m->queue;
666 if (queue != PQ_NONE) {
667 pq = &vm_page_queues[queue];
668 TAILQ_REMOVE(&pq->pl, m, pageq);
669 atomic_add_int(pq->cnt, -1);
670 pq->lcnt--;
671 m->queue = PQ_NONE;
672 oqueue = queue;
673 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
674 --pq->zero_count;
675 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
676 queue -= m->pc;
677 vm_page_queues_spin_unlock(oqueue); /* intended */
679 return queue;
683 * Helper function places the vm_page on the specified queue.
685 * The vm_page must be spinlocked.
686 * This function will return with both the page and the queue locked.
688 static __inline void
689 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
691 struct vpgqueues *pq;
693 KKASSERT(m->queue == PQ_NONE);
695 if (queue != PQ_NONE) {
696 vm_page_queues_spin_lock(queue);
697 pq = &vm_page_queues[queue];
698 ++pq->lcnt;
699 atomic_add_int(pq->cnt, 1);
700 m->queue = queue;
703 * Put zero'd pages on the end ( where we look for zero'd pages
704 * first ) and non-zerod pages at the head.
706 if (queue - m->pc == PQ_FREE) {
707 if (m->flags & PG_ZERO) {
708 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
709 ++pq->zero_count;
710 } else {
711 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
713 } else if (athead) {
714 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
715 } else {
716 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
718 /* leave the queue spinlocked */
723 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
724 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
725 * did not. Only one sleep call will be made before returning.
727 * This function does NOT busy the page and on return the page is not
728 * guaranteed to be available.
730 void
731 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
733 u_int32_t flags;
735 for (;;) {
736 flags = m->flags;
737 cpu_ccfence();
739 if ((flags & PG_BUSY) == 0 &&
740 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
741 break;
743 tsleep_interlock(m, 0);
744 if (atomic_cmpset_int(&m->flags, flags,
745 flags | PG_WANTED | PG_REFERENCED)) {
746 tsleep(m, PINTERLOCKED, msg, 0);
747 break;
753 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
754 * also wait for m->busy to become 0 before setting PG_BUSY.
756 void
757 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
758 int also_m_busy, const char *msg
759 VM_PAGE_DEBUG_ARGS)
761 u_int32_t flags;
763 for (;;) {
764 flags = m->flags;
765 cpu_ccfence();
766 if (flags & PG_BUSY) {
767 tsleep_interlock(m, 0);
768 if (atomic_cmpset_int(&m->flags, flags,
769 flags | PG_WANTED | PG_REFERENCED)) {
770 tsleep(m, PINTERLOCKED, msg, 0);
772 } else if (also_m_busy && (flags & PG_SBUSY)) {
773 tsleep_interlock(m, 0);
774 if (atomic_cmpset_int(&m->flags, flags,
775 flags | PG_WANTED | PG_REFERENCED)) {
776 tsleep(m, PINTERLOCKED, msg, 0);
778 } else {
779 if (atomic_cmpset_int(&m->flags, flags,
780 flags | PG_BUSY)) {
781 #ifdef VM_PAGE_DEBUG
782 m->busy_func = func;
783 m->busy_line = lineno;
784 #endif
785 break;
792 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
793 * is also 0.
795 * Returns non-zero on failure.
798 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
799 VM_PAGE_DEBUG_ARGS)
801 u_int32_t flags;
803 for (;;) {
804 flags = m->flags;
805 cpu_ccfence();
806 if (flags & PG_BUSY)
807 return TRUE;
808 if (also_m_busy && (flags & PG_SBUSY))
809 return TRUE;
810 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
811 #ifdef VM_PAGE_DEBUG
812 m->busy_func = func;
813 m->busy_line = lineno;
814 #endif
815 return FALSE;
821 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
822 * that a wakeup() should be performed.
824 * The vm_page must be spinlocked and will remain spinlocked on return.
825 * The related queue must NOT be spinlocked (which could deadlock us).
827 * (inline version)
829 static __inline
831 _vm_page_wakeup(vm_page_t m)
833 u_int32_t flags;
835 for (;;) {
836 flags = m->flags;
837 cpu_ccfence();
838 if (atomic_cmpset_int(&m->flags, flags,
839 flags & ~(PG_BUSY | PG_WANTED))) {
840 break;
843 return(flags & PG_WANTED);
847 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
848 * is typically the last call you make on a page before moving onto
849 * other things.
851 void
852 vm_page_wakeup(vm_page_t m)
854 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
855 vm_page_spin_lock(m);
856 if (_vm_page_wakeup(m)) {
857 vm_page_spin_unlock(m);
858 wakeup(m);
859 } else {
860 vm_page_spin_unlock(m);
865 * Holding a page keeps it from being reused. Other parts of the system
866 * can still disassociate the page from its current object and free it, or
867 * perform read or write I/O on it and/or otherwise manipulate the page,
868 * but if the page is held the VM system will leave the page and its data
869 * intact and not reuse the page for other purposes until the last hold
870 * reference is released. (see vm_page_wire() if you want to prevent the
871 * page from being disassociated from its object too).
873 * The caller must still validate the contents of the page and, if necessary,
874 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
875 * before manipulating the page.
877 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
879 void
880 vm_page_hold(vm_page_t m)
882 vm_page_spin_lock(m);
883 atomic_add_int(&m->hold_count, 1);
884 if (m->queue - m->pc == PQ_FREE) {
885 _vm_page_queue_spin_lock(m);
886 _vm_page_rem_queue_spinlocked(m);
887 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
888 _vm_page_queue_spin_unlock(m);
890 vm_page_spin_unlock(m);
894 * The opposite of vm_page_hold(). If the page is on the HOLD queue
895 * it was freed while held and must be moved back to the FREE queue.
897 void
898 vm_page_unhold(vm_page_t m)
900 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
901 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
902 m, m->hold_count, m->queue - m->pc));
903 vm_page_spin_lock(m);
904 atomic_add_int(&m->hold_count, -1);
905 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
906 _vm_page_queue_spin_lock(m);
907 _vm_page_rem_queue_spinlocked(m);
908 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
909 _vm_page_queue_spin_unlock(m);
911 vm_page_spin_unlock(m);
915 * vm_page_getfake:
917 * Create a fictitious page with the specified physical address and
918 * memory attribute. The memory attribute is the only the machine-
919 * dependent aspect of a fictitious page that must be initialized.
922 void
923 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
926 if ((m->flags & PG_FICTITIOUS) != 0) {
928 * The page's memattr might have changed since the
929 * previous initialization. Update the pmap to the
930 * new memattr.
932 goto memattr;
934 m->phys_addr = paddr;
935 m->queue = PQ_NONE;
936 /* Fictitious pages don't use "segind". */
937 /* Fictitious pages don't use "order" or "pool". */
938 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
939 m->wire_count = 1;
940 pmap_page_init(m);
941 memattr:
942 pmap_page_set_memattr(m, memattr);
946 * Inserts the given vm_page into the object and object list.
948 * The pagetables are not updated but will presumably fault the page
949 * in if necessary, or if a kernel page the caller will at some point
950 * enter the page into the kernel's pmap. We are not allowed to block
951 * here so we *can't* do this anyway.
953 * This routine may not block.
954 * This routine must be called with the vm_object held.
955 * This routine must be called with a critical section held.
957 * This routine returns TRUE if the page was inserted into the object
958 * successfully, and FALSE if the page already exists in the object.
961 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
963 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
964 if (m->object != NULL)
965 panic("vm_page_insert: already inserted");
967 object->generation++;
970 * Record the object/offset pair in this page and add the
971 * pv_list_count of the page to the object.
973 * The vm_page spin lock is required for interactions with the pmap.
975 vm_page_spin_lock(m);
976 m->object = object;
977 m->pindex = pindex;
978 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
979 m->object = NULL;
980 m->pindex = 0;
981 vm_page_spin_unlock(m);
982 return FALSE;
984 ++object->resident_page_count;
985 ++mycpu->gd_vmtotal.t_rm;
986 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
987 vm_page_spin_unlock(m);
990 * Since we are inserting a new and possibly dirty page,
991 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
993 if ((m->valid & m->dirty) ||
994 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
995 vm_object_set_writeable_dirty(object);
998 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1000 swap_pager_page_inserted(m);
1001 return TRUE;
1005 * Removes the given vm_page_t from the (object,index) table
1007 * The underlying pmap entry (if any) is NOT removed here.
1008 * This routine may not block.
1010 * The page must be BUSY and will remain BUSY on return.
1011 * No other requirements.
1013 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1014 * it busy.
1016 void
1017 vm_page_remove(vm_page_t m)
1019 vm_object_t object;
1021 if (m->object == NULL) {
1022 return;
1025 if ((m->flags & PG_BUSY) == 0)
1026 panic("vm_page_remove: page not busy");
1028 object = m->object;
1030 vm_object_hold(object);
1033 * Remove the page from the object and update the object.
1035 * The vm_page spin lock is required for interactions with the pmap.
1037 vm_page_spin_lock(m);
1038 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1039 --object->resident_page_count;
1040 --mycpu->gd_vmtotal.t_rm;
1041 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1042 m->object = NULL;
1043 vm_page_spin_unlock(m);
1045 object->generation++;
1047 vm_object_drop(object);
1051 * Locate and return the page at (object, pindex), or NULL if the
1052 * page could not be found.
1054 * The caller must hold the vm_object token.
1056 vm_page_t
1057 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1059 vm_page_t m;
1062 * Search the hash table for this object/offset pair
1064 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1065 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1066 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1067 return(m);
1070 vm_page_t
1071 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1072 vm_pindex_t pindex,
1073 int also_m_busy, const char *msg
1074 VM_PAGE_DEBUG_ARGS)
1076 u_int32_t flags;
1077 vm_page_t m;
1079 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1080 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1081 while (m) {
1082 KKASSERT(m->object == object && m->pindex == pindex);
1083 flags = m->flags;
1084 cpu_ccfence();
1085 if (flags & PG_BUSY) {
1086 tsleep_interlock(m, 0);
1087 if (atomic_cmpset_int(&m->flags, flags,
1088 flags | PG_WANTED | PG_REFERENCED)) {
1089 tsleep(m, PINTERLOCKED, msg, 0);
1090 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1091 pindex);
1093 } else if (also_m_busy && (flags & PG_SBUSY)) {
1094 tsleep_interlock(m, 0);
1095 if (atomic_cmpset_int(&m->flags, flags,
1096 flags | PG_WANTED | PG_REFERENCED)) {
1097 tsleep(m, PINTERLOCKED, msg, 0);
1098 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1099 pindex);
1101 } else if (atomic_cmpset_int(&m->flags, flags,
1102 flags | PG_BUSY)) {
1103 #ifdef VM_PAGE_DEBUG
1104 m->busy_func = func;
1105 m->busy_line = lineno;
1106 #endif
1107 break;
1110 return m;
1114 * Attempt to lookup and busy a page.
1116 * Returns NULL if the page could not be found
1118 * Returns a vm_page and error == TRUE if the page exists but could not
1119 * be busied.
1121 * Returns a vm_page and error == FALSE on success.
1123 vm_page_t
1124 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1125 vm_pindex_t pindex,
1126 int also_m_busy, int *errorp
1127 VM_PAGE_DEBUG_ARGS)
1129 u_int32_t flags;
1130 vm_page_t m;
1132 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1133 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1134 *errorp = FALSE;
1135 while (m) {
1136 KKASSERT(m->object == object && m->pindex == pindex);
1137 flags = m->flags;
1138 cpu_ccfence();
1139 if (flags & PG_BUSY) {
1140 *errorp = TRUE;
1141 break;
1143 if (also_m_busy && (flags & PG_SBUSY)) {
1144 *errorp = TRUE;
1145 break;
1147 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1148 #ifdef VM_PAGE_DEBUG
1149 m->busy_func = func;
1150 m->busy_line = lineno;
1151 #endif
1152 break;
1155 return m;
1159 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1160 * be repurposed it will be released, *must_reenter will be set to 1, and
1161 * this function will fall-through to vm_page_lookup_busy_try().
1163 * The passed-in page must be wired and not busy. The returned page will
1164 * be busied and not wired.
1166 * A different page may be returned. The returned page will be busied and
1167 * not wired.
1169 * NULL can be returned. If so, the required page could not be busied.
1170 * The passed-in page will be unwired.
1172 vm_page_t
1173 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1174 int also_m_busy, int *errorp, vm_page_t m,
1175 int *must_reenter, int *iswired)
1177 if (m) {
1178 vm_page_busy_wait(m, TRUE, "biodep");
1179 if ((m->flags & (PG_UNMANAGED | PG_MAPPED | PG_FICTITIOUS)) ||
1180 m->busy || m->wire_count != 1 || m->hold_count) {
1181 vm_page_unwire(m, 0);
1182 vm_page_wakeup(m);
1183 /* fall through to normal lookup */
1184 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1185 vm_page_unwire(m, 0);
1186 vm_page_deactivate(m);
1187 vm_page_wakeup(m);
1188 /* fall through to normal lookup */
1189 } else {
1191 * We can safely repurpose the page. It should
1192 * already be unqueued.
1194 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1195 vm_page_remove(m);
1196 m->valid = 0;
1197 m->act_count = 0;
1198 if (vm_page_insert(m, object, pindex)) {
1199 *errorp = 0;
1200 *iswired = 1;
1202 return m;
1204 vm_page_unwire(m, 0);
1205 vm_page_free(m);
1206 /* fall through to normal lookup */
1209 *must_reenter = 1;
1210 *iswired = 0;
1211 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1213 return m;
1217 * Caller must hold the related vm_object
1219 vm_page_t
1220 vm_page_next(vm_page_t m)
1222 vm_page_t next;
1224 next = vm_page_rb_tree_RB_NEXT(m);
1225 if (next && next->pindex != m->pindex + 1)
1226 next = NULL;
1227 return (next);
1231 * vm_page_rename()
1233 * Move the given vm_page from its current object to the specified
1234 * target object/offset. The page must be busy and will remain so
1235 * on return.
1237 * new_object must be held.
1238 * This routine might block. XXX ?
1240 * NOTE: Swap associated with the page must be invalidated by the move. We
1241 * have to do this for several reasons: (1) we aren't freeing the
1242 * page, (2) we are dirtying the page, (3) the VM system is probably
1243 * moving the page from object A to B, and will then later move
1244 * the backing store from A to B and we can't have a conflict.
1246 * NOTE: We *always* dirty the page. It is necessary both for the
1247 * fact that we moved it, and because we may be invalidating
1248 * swap. If the page is on the cache, we have to deactivate it
1249 * or vm_page_dirty() will panic. Dirty pages are not allowed
1250 * on the cache.
1252 void
1253 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1255 KKASSERT(m->flags & PG_BUSY);
1256 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1257 if (m->object) {
1258 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1259 vm_page_remove(m);
1261 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1262 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1263 new_object, new_pindex);
1265 if (m->queue - m->pc == PQ_CACHE)
1266 vm_page_deactivate(m);
1267 vm_page_dirty(m);
1271 * vm_page_unqueue() without any wakeup. This routine is used when a page
1272 * is to remain BUSYied by the caller.
1274 * This routine may not block.
1276 void
1277 vm_page_unqueue_nowakeup(vm_page_t m)
1279 vm_page_and_queue_spin_lock(m);
1280 (void)_vm_page_rem_queue_spinlocked(m);
1281 vm_page_spin_unlock(m);
1285 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1286 * if necessary.
1288 * This routine may not block.
1290 void
1291 vm_page_unqueue(vm_page_t m)
1293 u_short queue;
1295 vm_page_and_queue_spin_lock(m);
1296 queue = _vm_page_rem_queue_spinlocked(m);
1297 if (queue == PQ_FREE || queue == PQ_CACHE) {
1298 vm_page_spin_unlock(m);
1299 pagedaemon_wakeup();
1300 } else {
1301 vm_page_spin_unlock(m);
1306 * vm_page_list_find()
1308 * Find a page on the specified queue with color optimization.
1310 * The page coloring optimization attempts to locate a page that does
1311 * not overload other nearby pages in the object in the cpu's L1 or L2
1312 * caches. We need this optimization because cpu caches tend to be
1313 * physical caches, while object spaces tend to be virtual.
1315 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1316 * and the algorithm is adjusted to localize allocations on a per-core basis.
1317 * This is done by 'twisting' the colors.
1319 * The page is returned spinlocked and removed from its queue (it will
1320 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1321 * is responsible for dealing with the busy-page case (usually by
1322 * deactivating the page and looping).
1324 * NOTE: This routine is carefully inlined. A non-inlined version
1325 * is available for outside callers but the only critical path is
1326 * from within this source file.
1328 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1329 * represent stable storage, allowing us to order our locks vm_page
1330 * first, then queue.
1332 static __inline
1333 vm_page_t
1334 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1336 vm_page_t m;
1338 for (;;) {
1339 if (prefer_zero)
1340 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1341 else
1342 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1343 if (m == NULL) {
1344 m = _vm_page_list_find2(basequeue, index);
1345 return(m);
1347 vm_page_and_queue_spin_lock(m);
1348 if (m->queue == basequeue + index) {
1349 _vm_page_rem_queue_spinlocked(m);
1350 /* vm_page_t spin held, no queue spin */
1351 break;
1353 vm_page_and_queue_spin_unlock(m);
1355 return(m);
1358 static vm_page_t
1359 _vm_page_list_find2(int basequeue, int index)
1361 int i;
1362 vm_page_t m = NULL;
1363 struct vpgqueues *pq;
1365 pq = &vm_page_queues[basequeue];
1368 * Note that for the first loop, index+i and index-i wind up at the
1369 * same place. Even though this is not totally optimal, we've already
1370 * blown it by missing the cache case so we do not care.
1372 * NOTE: Fan out from our starting index for localization purposes.
1374 for (i = 1; i <= PQ_L2_SIZE / 2; ++i) {
1375 for (;;) {
1376 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1377 if (m) {
1378 _vm_page_and_queue_spin_lock(m);
1379 if (m->queue ==
1380 basequeue + ((index + i) & PQ_L2_MASK)) {
1381 _vm_page_rem_queue_spinlocked(m);
1382 return(m);
1384 _vm_page_and_queue_spin_unlock(m);
1385 continue;
1387 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1388 if (m) {
1389 _vm_page_and_queue_spin_lock(m);
1390 if (m->queue ==
1391 basequeue + ((index - i) & PQ_L2_MASK)) {
1392 _vm_page_rem_queue_spinlocked(m);
1393 return(m);
1395 _vm_page_and_queue_spin_unlock(m);
1396 continue;
1398 break; /* next i */
1401 return(m);
1405 * Returns a vm_page candidate for allocation. The page is not busied so
1406 * it can move around. The caller must busy the page (and typically
1407 * deactivate it if it cannot be busied!)
1409 * Returns a spinlocked vm_page that has been removed from its queue.
1411 vm_page_t
1412 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1414 return(_vm_page_list_find(basequeue, index, prefer_zero));
1418 * Find a page on the cache queue with color optimization, remove it
1419 * from the queue, and busy it. The returned page will not be spinlocked.
1421 * A candidate failure will be deactivated. Candidates can fail due to
1422 * being busied by someone else, in which case they will be deactivated.
1424 * This routine may not block.
1427 static vm_page_t
1428 vm_page_select_cache(u_short pg_color)
1430 vm_page_t m;
1432 for (;;) {
1433 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1434 if (m == NULL)
1435 break;
1437 * (m) has been removed from its queue and spinlocked
1439 if (vm_page_busy_try(m, TRUE)) {
1440 _vm_page_deactivate_locked(m, 0);
1441 vm_page_spin_unlock(m);
1442 } else {
1444 * We successfully busied the page
1446 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1447 m->hold_count == 0 &&
1448 m->wire_count == 0 &&
1449 (m->dirty & m->valid) == 0) {
1450 vm_page_spin_unlock(m);
1451 pagedaemon_wakeup();
1452 return(m);
1456 * The page cannot be recycled, deactivate it.
1458 _vm_page_deactivate_locked(m, 0);
1459 if (_vm_page_wakeup(m)) {
1460 vm_page_spin_unlock(m);
1461 wakeup(m);
1462 } else {
1463 vm_page_spin_unlock(m);
1467 return (m);
1471 * Find a free or zero page, with specified preference. We attempt to
1472 * inline the nominal case and fall back to _vm_page_select_free()
1473 * otherwise. A busied page is removed from the queue and returned.
1475 * This routine may not block.
1477 static __inline vm_page_t
1478 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1480 vm_page_t m;
1482 for (;;) {
1483 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1484 prefer_zero);
1485 if (m == NULL)
1486 break;
1487 if (vm_page_busy_try(m, TRUE)) {
1489 * Various mechanisms such as a pmap_collect can
1490 * result in a busy page on the free queue. We
1491 * have to move the page out of the way so we can
1492 * retry the allocation. If the other thread is not
1493 * allocating the page then m->valid will remain 0 and
1494 * the pageout daemon will free the page later on.
1496 * Since we could not busy the page, however, we
1497 * cannot make assumptions as to whether the page
1498 * will be allocated by the other thread or not,
1499 * so all we can do is deactivate it to move it out
1500 * of the way. In particular, if the other thread
1501 * wires the page it may wind up on the inactive
1502 * queue and the pageout daemon will have to deal
1503 * with that case too.
1505 _vm_page_deactivate_locked(m, 0);
1506 vm_page_spin_unlock(m);
1507 } else {
1509 * Theoretically if we are able to busy the page
1510 * atomic with the queue removal (using the vm_page
1511 * lock) nobody else should be able to mess with the
1512 * page before us.
1514 KKASSERT((m->flags & (PG_UNMANAGED |
1515 PG_NEED_COMMIT)) == 0);
1516 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1517 "pg %p q=%d flags=%08x hold=%d wire=%d",
1518 m, m->queue, m->flags, m->hold_count, m->wire_count));
1519 KKASSERT(m->wire_count == 0);
1520 vm_page_spin_unlock(m);
1521 pagedaemon_wakeup();
1523 /* return busied and removed page */
1524 return(m);
1527 return(m);
1531 * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1532 * The idea is to populate this cache prior to acquiring any locks so
1533 * we don't wind up potentially zeroing VM pages (under heavy loads) while
1534 * holding potentialy contending locks.
1536 * Note that we allocate the page uninserted into anything and use a pindex
1537 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1538 * allocations should wind up being uncontended. However, we still want
1539 * to rove across PQ_L2_SIZE.
1541 void
1542 vm_page_pcpu_cache(void)
1544 #if 0
1545 globaldata_t gd = mycpu;
1546 vm_page_t m;
1548 if (gd->gd_vmpg_count < GD_MINVMPG) {
1549 crit_enter_gd(gd);
1550 while (gd->gd_vmpg_count < GD_MAXVMPG) {
1551 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1552 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1553 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1554 if (gd->gd_vmpg_count < GD_MAXVMPG) {
1555 if ((m->flags & PG_ZERO) == 0) {
1556 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1557 vm_page_flag_set(m, PG_ZERO);
1559 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1560 } else {
1561 vm_page_free(m);
1564 crit_exit_gd(gd);
1566 #endif
1570 * vm_page_alloc()
1572 * Allocate and return a memory cell associated with this VM object/offset
1573 * pair. If object is NULL an unassociated page will be allocated.
1575 * The returned page will be busied and removed from its queues. This
1576 * routine can block and may return NULL if a race occurs and the page
1577 * is found to already exist at the specified (object, pindex).
1579 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1580 * VM_ALLOC_QUICK like normal but cannot use cache
1581 * VM_ALLOC_SYSTEM greater free drain
1582 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1583 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1584 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1585 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1586 * (see vm_page_grab())
1587 * VM_ALLOC_USE_GD ok to use per-gd cache
1589 * The object must be held if not NULL
1590 * This routine may not block
1592 * Additional special handling is required when called from an interrupt
1593 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1594 * in this case.
1596 vm_page_t
1597 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1599 globaldata_t gd = mycpu;
1600 vm_object_t obj;
1601 vm_page_t m;
1602 u_short pg_color;
1603 int phys_id;
1604 int core_id;
1605 int object_pg_color;
1607 #if 0
1609 * Special per-cpu free VM page cache. The pages are pre-busied
1610 * and pre-zerod for us.
1612 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1613 crit_enter_gd(gd);
1614 if (gd->gd_vmpg_count) {
1615 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1616 crit_exit_gd(gd);
1617 goto done;
1619 crit_exit_gd(gd);
1621 #endif
1622 m = NULL;
1625 * CPU LOCALIZATION
1627 * CPU localization algorithm. Break the page queues up by physical
1628 * id and core id (note that two cpu threads will have the same core
1629 * id, and core_id != gd_cpuid).
1631 * This is nowhere near perfect, for example the last pindex in a
1632 * subgroup will overflow into the next cpu or package. But this
1633 * should get us good page reuse locality in heavy mixed loads.
1635 phys_id = get_cpu_phys_id(gd->gd_cpuid);
1636 core_id = get_cpu_core_id(gd->gd_cpuid);
1637 object_pg_color = object ? object->pg_color : 0;
1639 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
1640 if (PQ_L2_SIZE / ncpus >= 16) {
1642 * Enough space for a full break-down.
1644 pg_color = PQ_L2_SIZE * core_id /
1645 cpu_topology_core_ids;
1646 pg_color += PQ_L2_SIZE * phys_id *
1647 cpu_topology_core_ids /
1648 cpu_topology_phys_ids;
1649 pg_color += (pindex + object_pg_color) %
1650 (PQ_L2_SIZE / (cpu_topology_core_ids *
1651 cpu_topology_phys_ids));
1652 } else {
1654 * Hopefully enough space to at least break the
1655 * queues down by package id.
1657 pg_color = PQ_L2_SIZE * phys_id / cpu_topology_phys_ids;
1658 pg_color += (pindex + object_pg_color) %
1659 (PQ_L2_SIZE / cpu_topology_phys_ids);
1661 } else {
1663 * Unknown topology, distribute things evenly.
1665 pg_color = gd->gd_cpuid * PQ_L2_SIZE / ncpus;
1666 pg_color += pindex + object_pg_color;
1669 KKASSERT(page_req &
1670 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1671 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1674 * Certain system threads (pageout daemon, buf_daemon's) are
1675 * allowed to eat deeper into the free page list.
1677 if (curthread->td_flags & TDF_SYSTHREAD)
1678 page_req |= VM_ALLOC_SYSTEM;
1681 * Impose various limitations. Note that the v_free_reserved test
1682 * must match the opposite of vm_page_count_target() to avoid
1683 * livelocks, be careful.
1685 loop:
1686 if (vmstats.v_free_count >= vmstats.v_free_reserved ||
1687 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1688 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1689 vmstats.v_free_count > vmstats.v_interrupt_free_min)
1692 * The free queue has sufficient free pages to take one out.
1694 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1695 m = vm_page_select_free(pg_color, TRUE);
1696 else
1697 m = vm_page_select_free(pg_color, FALSE);
1698 } else if (page_req & VM_ALLOC_NORMAL) {
1700 * Allocatable from the cache (non-interrupt only). On
1701 * success, we must free the page and try again, thus
1702 * ensuring that vmstats.v_*_free_min counters are replenished.
1704 #ifdef INVARIANTS
1705 if (curthread->td_preempted) {
1706 kprintf("vm_page_alloc(): warning, attempt to allocate"
1707 " cache page from preempting interrupt\n");
1708 m = NULL;
1709 } else {
1710 m = vm_page_select_cache(pg_color);
1712 #else
1713 m = vm_page_select_cache(pg_color);
1714 #endif
1716 * On success move the page into the free queue and loop.
1718 * Only do this if we can safely acquire the vm_object lock,
1719 * because this is effectively a random page and the caller
1720 * might be holding the lock shared, we don't want to
1721 * deadlock.
1723 if (m != NULL) {
1724 KASSERT(m->dirty == 0,
1725 ("Found dirty cache page %p", m));
1726 if ((obj = m->object) != NULL) {
1727 if (vm_object_hold_try(obj)) {
1728 vm_page_protect(m, VM_PROT_NONE);
1729 vm_page_free(m);
1730 /* m->object NULL here */
1731 vm_object_drop(obj);
1732 } else {
1733 vm_page_deactivate(m);
1734 vm_page_wakeup(m);
1736 } else {
1737 vm_page_protect(m, VM_PROT_NONE);
1738 vm_page_free(m);
1740 goto loop;
1744 * On failure return NULL
1746 #if defined(DIAGNOSTIC)
1747 if (vmstats.v_cache_count > 0)
1748 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1749 #endif
1750 vm_pageout_deficit++;
1751 pagedaemon_wakeup();
1752 return (NULL);
1753 } else {
1755 * No pages available, wakeup the pageout daemon and give up.
1757 vm_pageout_deficit++;
1758 pagedaemon_wakeup();
1759 return (NULL);
1763 * v_free_count can race so loop if we don't find the expected
1764 * page.
1766 if (m == NULL)
1767 goto loop;
1770 * Good page found. The page has already been busied for us and
1771 * removed from its queues.
1773 KASSERT(m->dirty == 0,
1774 ("vm_page_alloc: free/cache page %p was dirty", m));
1775 KKASSERT(m->queue == PQ_NONE);
1777 #if 0
1778 done:
1779 #endif
1781 * Initialize the structure, inheriting some flags but clearing
1782 * all the rest. The page has already been busied for us.
1784 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1785 KKASSERT(m->wire_count == 0);
1786 KKASSERT(m->busy == 0);
1787 m->act_count = 0;
1788 m->valid = 0;
1791 * Caller must be holding the object lock (asserted by
1792 * vm_page_insert()).
1794 * NOTE: Inserting a page here does not insert it into any pmaps
1795 * (which could cause us to block allocating memory).
1797 * NOTE: If no object an unassociated page is allocated, m->pindex
1798 * can be used by the caller for any purpose.
1800 if (object) {
1801 if (vm_page_insert(m, object, pindex) == FALSE) {
1802 vm_page_free(m);
1803 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1804 panic("PAGE RACE %p[%ld]/%p",
1805 object, (long)pindex, m);
1806 m = NULL;
1808 } else {
1809 m->pindex = pindex;
1813 * Don't wakeup too often - wakeup the pageout daemon when
1814 * we would be nearly out of memory.
1816 pagedaemon_wakeup();
1819 * A PG_BUSY page is returned.
1821 return (m);
1825 * Returns number of pages available in our DMA memory reserve
1826 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1828 vm_size_t
1829 vm_contig_avail_pages(void)
1831 alist_blk_t blk;
1832 alist_blk_t count;
1833 alist_blk_t bfree;
1834 spin_lock(&vm_contig_spin);
1835 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1836 spin_unlock(&vm_contig_spin);
1838 return bfree;
1842 * Attempt to allocate contiguous physical memory with the specified
1843 * requirements.
1845 vm_page_t
1846 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1847 unsigned long alignment, unsigned long boundary,
1848 unsigned long size, vm_memattr_t memattr)
1850 alist_blk_t blk;
1851 vm_page_t m;
1852 int i;
1854 alignment >>= PAGE_SHIFT;
1855 if (alignment == 0)
1856 alignment = 1;
1857 boundary >>= PAGE_SHIFT;
1858 if (boundary == 0)
1859 boundary = 1;
1860 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1862 spin_lock(&vm_contig_spin);
1863 blk = alist_alloc(&vm_contig_alist, 0, size);
1864 if (blk == ALIST_BLOCK_NONE) {
1865 spin_unlock(&vm_contig_spin);
1866 if (bootverbose) {
1867 kprintf("vm_page_alloc_contig: %ldk nospace\n",
1868 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1870 return(NULL);
1872 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1873 alist_free(&vm_contig_alist, blk, size);
1874 spin_unlock(&vm_contig_spin);
1875 if (bootverbose) {
1876 kprintf("vm_page_alloc_contig: %ldk high "
1877 "%016jx failed\n",
1878 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
1879 (intmax_t)high);
1881 return(NULL);
1883 spin_unlock(&vm_contig_spin);
1884 if (vm_contig_verbose) {
1885 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1886 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1887 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1890 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1891 if (memattr != VM_MEMATTR_DEFAULT)
1892 for (i = 0;i < size;i++)
1893 pmap_page_set_memattr(&m[i], memattr);
1894 return m;
1898 * Free contiguously allocated pages. The pages will be wired but not busy.
1899 * When freeing to the alist we leave them wired and not busy.
1901 void
1902 vm_page_free_contig(vm_page_t m, unsigned long size)
1904 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1905 vm_pindex_t start = pa >> PAGE_SHIFT;
1906 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1908 if (vm_contig_verbose) {
1909 kprintf("vm_page_free_contig: %016jx/%ldk\n",
1910 (intmax_t)pa, size / 1024);
1912 if (pa < vm_low_phys_reserved) {
1913 KKASSERT(pa + size <= vm_low_phys_reserved);
1914 spin_lock(&vm_contig_spin);
1915 alist_free(&vm_contig_alist, start, pages);
1916 spin_unlock(&vm_contig_spin);
1917 } else {
1918 while (pages) {
1919 vm_page_busy_wait(m, FALSE, "cpgfr");
1920 vm_page_unwire(m, 0);
1921 vm_page_free(m);
1922 --pages;
1923 ++m;
1931 * Wait for sufficient free memory for nominal heavy memory use kernel
1932 * operations.
1934 * WARNING! Be sure never to call this in any vm_pageout code path, which
1935 * will trivially deadlock the system.
1937 void
1938 vm_wait_nominal(void)
1940 while (vm_page_count_min(0))
1941 vm_wait(0);
1945 * Test if vm_wait_nominal() would block.
1948 vm_test_nominal(void)
1950 if (vm_page_count_min(0))
1951 return(1);
1952 return(0);
1956 * Block until free pages are available for allocation, called in various
1957 * places before memory allocations.
1959 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1960 * more generous then that.
1962 void
1963 vm_wait(int timo)
1966 * never wait forever
1968 if (timo == 0)
1969 timo = hz;
1970 lwkt_gettoken(&vm_token);
1972 if (curthread == pagethread) {
1974 * The pageout daemon itself needs pages, this is bad.
1976 if (vm_page_count_min(0)) {
1977 vm_pageout_pages_needed = 1;
1978 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1980 } else {
1982 * Wakeup the pageout daemon if necessary and wait.
1984 * Do not wait indefinitely for the target to be reached,
1985 * as load might prevent it from being reached any time soon.
1986 * But wait a little to try to slow down page allocations
1987 * and to give more important threads (the pagedaemon)
1988 * allocation priority.
1990 if (vm_page_count_target()) {
1991 if (vm_pages_needed == 0) {
1992 vm_pages_needed = 1;
1993 wakeup(&vm_pages_needed);
1995 ++vm_pages_waiting; /* SMP race ok */
1996 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1999 lwkt_reltoken(&vm_token);
2003 * Block until free pages are available for allocation
2005 * Called only from vm_fault so that processes page faulting can be
2006 * easily tracked.
2008 void
2009 vm_wait_pfault(void)
2012 * Wakeup the pageout daemon if necessary and wait.
2014 * Do not wait indefinitely for the target to be reached,
2015 * as load might prevent it from being reached any time soon.
2016 * But wait a little to try to slow down page allocations
2017 * and to give more important threads (the pagedaemon)
2018 * allocation priority.
2020 if (vm_page_count_min(0)) {
2021 lwkt_gettoken(&vm_token);
2022 while (vm_page_count_severe()) {
2023 if (vm_page_count_target()) {
2024 if (vm_pages_needed == 0) {
2025 vm_pages_needed = 1;
2026 wakeup(&vm_pages_needed);
2028 ++vm_pages_waiting; /* SMP race ok */
2029 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2032 lwkt_reltoken(&vm_token);
2037 * Put the specified page on the active list (if appropriate). Ensure
2038 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2040 * The caller should be holding the page busied ? XXX
2041 * This routine may not block.
2043 void
2044 vm_page_activate(vm_page_t m)
2046 u_short oqueue;
2048 vm_page_spin_lock(m);
2049 if (m->queue - m->pc != PQ_ACTIVE) {
2050 _vm_page_queue_spin_lock(m);
2051 oqueue = _vm_page_rem_queue_spinlocked(m);
2052 /* page is left spinlocked, queue is unlocked */
2054 if (oqueue == PQ_CACHE)
2055 mycpu->gd_cnt.v_reactivated++;
2056 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2057 if (m->act_count < ACT_INIT)
2058 m->act_count = ACT_INIT;
2059 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2061 _vm_page_and_queue_spin_unlock(m);
2062 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2063 pagedaemon_wakeup();
2064 } else {
2065 if (m->act_count < ACT_INIT)
2066 m->act_count = ACT_INIT;
2067 vm_page_spin_unlock(m);
2072 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2073 * routine is called when a page has been added to the cache or free
2074 * queues.
2076 * This routine may not block.
2078 static __inline void
2079 vm_page_free_wakeup(void)
2082 * If the pageout daemon itself needs pages, then tell it that
2083 * there are some free.
2085 if (vm_pageout_pages_needed &&
2086 vmstats.v_cache_count + vmstats.v_free_count >=
2087 vmstats.v_pageout_free_min
2089 vm_pageout_pages_needed = 0;
2090 wakeup(&vm_pageout_pages_needed);
2094 * Wakeup processes that are waiting on memory.
2096 * Generally speaking we want to wakeup stuck processes as soon as
2097 * possible. !vm_page_count_min(0) is the absolute minimum point
2098 * where we can do this. Wait a bit longer to reduce degenerate
2099 * re-blocking (vm_page_free_hysteresis). The target check is just
2100 * to make sure the min-check w/hysteresis does not exceed the
2101 * normal target.
2103 if (vm_pages_waiting) {
2104 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2105 !vm_page_count_target()) {
2106 vm_pages_waiting = 0;
2107 wakeup(&vmstats.v_free_count);
2108 ++mycpu->gd_cnt.v_ppwakeups;
2110 #if 0
2111 if (!vm_page_count_target()) {
2113 * Plenty of pages are free, wakeup everyone.
2115 vm_pages_waiting = 0;
2116 wakeup(&vmstats.v_free_count);
2117 ++mycpu->gd_cnt.v_ppwakeups;
2118 } else if (!vm_page_count_min(0)) {
2120 * Some pages are free, wakeup someone.
2122 int wcount = vm_pages_waiting;
2123 if (wcount > 0)
2124 --wcount;
2125 vm_pages_waiting = wcount;
2126 wakeup_one(&vmstats.v_free_count);
2127 ++mycpu->gd_cnt.v_ppwakeups;
2129 #endif
2134 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2135 * it from its VM object.
2137 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2138 * return (the page will have been freed).
2140 void
2141 vm_page_free_toq(vm_page_t m)
2143 mycpu->gd_cnt.v_tfree++;
2144 KKASSERT((m->flags & PG_MAPPED) == 0);
2145 KKASSERT(m->flags & PG_BUSY);
2147 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2148 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2149 "PG_BUSY(%d), hold(%d)\n",
2150 (u_long)m->pindex, m->busy,
2151 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2152 if ((m->queue - m->pc) == PQ_FREE)
2153 panic("vm_page_free: freeing free page");
2154 else
2155 panic("vm_page_free: freeing busy page");
2159 * Remove from object, spinlock the page and its queues and
2160 * remove from any queue. No queue spinlock will be held
2161 * after this section (because the page was removed from any
2162 * queue).
2164 vm_page_remove(m);
2165 vm_page_and_queue_spin_lock(m);
2166 _vm_page_rem_queue_spinlocked(m);
2169 * No further management of fictitious pages occurs beyond object
2170 * and queue removal.
2172 if ((m->flags & PG_FICTITIOUS) != 0) {
2173 vm_page_spin_unlock(m);
2174 vm_page_wakeup(m);
2175 return;
2178 m->valid = 0;
2179 vm_page_undirty(m);
2181 if (m->wire_count != 0) {
2182 if (m->wire_count > 1) {
2183 panic(
2184 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2185 m->wire_count, (long)m->pindex);
2187 panic("vm_page_free: freeing wired page");
2191 * Clear the UNMANAGED flag when freeing an unmanaged page.
2192 * Clear the NEED_COMMIT flag
2194 if (m->flags & PG_UNMANAGED)
2195 vm_page_flag_clear(m, PG_UNMANAGED);
2196 if (m->flags & PG_NEED_COMMIT)
2197 vm_page_flag_clear(m, PG_NEED_COMMIT);
2199 if (m->hold_count != 0) {
2200 vm_page_flag_clear(m, PG_ZERO);
2201 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2202 } else {
2203 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2207 * This sequence allows us to clear PG_BUSY while still holding
2208 * its spin lock, which reduces contention vs allocators. We
2209 * must not leave the queue locked or _vm_page_wakeup() may
2210 * deadlock.
2212 _vm_page_queue_spin_unlock(m);
2213 if (_vm_page_wakeup(m)) {
2214 vm_page_spin_unlock(m);
2215 wakeup(m);
2216 } else {
2217 vm_page_spin_unlock(m);
2219 vm_page_free_wakeup();
2223 * vm_page_free_fromq_fast()
2225 * Remove a non-zero page from one of the free queues; the page is removed for
2226 * zeroing, so do not issue a wakeup.
2228 vm_page_t
2229 vm_page_free_fromq_fast(void)
2231 static int qi;
2232 vm_page_t m;
2233 int i;
2235 for (i = 0; i < PQ_L2_SIZE; ++i) {
2236 m = vm_page_list_find(PQ_FREE, qi, FALSE);
2237 /* page is returned spinlocked and removed from its queue */
2238 if (m) {
2239 if (vm_page_busy_try(m, TRUE)) {
2241 * We were unable to busy the page, deactivate
2242 * it and loop.
2244 _vm_page_deactivate_locked(m, 0);
2245 vm_page_spin_unlock(m);
2246 } else if (m->flags & PG_ZERO) {
2248 * The page is already PG_ZERO, requeue it
2249 * and loop.
2251 _vm_page_add_queue_spinlocked(m,
2252 PQ_FREE + m->pc,
2254 vm_page_queue_spin_unlock(m);
2255 if (_vm_page_wakeup(m)) {
2256 vm_page_spin_unlock(m);
2257 wakeup(m);
2258 } else {
2259 vm_page_spin_unlock(m);
2261 } else {
2263 * The page is not PG_ZERO'd so return it.
2265 KKASSERT((m->flags & (PG_UNMANAGED |
2266 PG_NEED_COMMIT)) == 0);
2267 KKASSERT(m->hold_count == 0);
2268 KKASSERT(m->wire_count == 0);
2269 vm_page_spin_unlock(m);
2270 break;
2272 m = NULL;
2274 qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2276 return (m);
2280 * vm_page_unmanage()
2282 * Prevent PV management from being done on the page. The page is
2283 * removed from the paging queues as if it were wired, and as a
2284 * consequence of no longer being managed the pageout daemon will not
2285 * touch it (since there is no way to locate the pte mappings for the
2286 * page). madvise() calls that mess with the pmap will also no longer
2287 * operate on the page.
2289 * Beyond that the page is still reasonably 'normal'. Freeing the page
2290 * will clear the flag.
2292 * This routine is used by OBJT_PHYS objects - objects using unswappable
2293 * physical memory as backing store rather then swap-backed memory and
2294 * will eventually be extended to support 4MB unmanaged physical
2295 * mappings.
2297 * Caller must be holding the page busy.
2299 void
2300 vm_page_unmanage(vm_page_t m)
2302 KKASSERT(m->flags & PG_BUSY);
2303 if ((m->flags & PG_UNMANAGED) == 0) {
2304 if (m->wire_count == 0)
2305 vm_page_unqueue(m);
2307 vm_page_flag_set(m, PG_UNMANAGED);
2311 * Mark this page as wired down by yet another map, removing it from
2312 * paging queues as necessary.
2314 * Caller must be holding the page busy.
2316 void
2317 vm_page_wire(vm_page_t m)
2320 * Only bump the wire statistics if the page is not already wired,
2321 * and only unqueue the page if it is on some queue (if it is unmanaged
2322 * it is already off the queues). Don't do anything with fictitious
2323 * pages because they are always wired.
2325 KKASSERT(m->flags & PG_BUSY);
2326 if ((m->flags & PG_FICTITIOUS) == 0) {
2327 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2328 if ((m->flags & PG_UNMANAGED) == 0)
2329 vm_page_unqueue(m);
2330 atomic_add_int(&vmstats.v_wire_count, 1);
2332 KASSERT(m->wire_count != 0,
2333 ("vm_page_wire: wire_count overflow m=%p", m));
2338 * Release one wiring of this page, potentially enabling it to be paged again.
2340 * Many pages placed on the inactive queue should actually go
2341 * into the cache, but it is difficult to figure out which. What
2342 * we do instead, if the inactive target is well met, is to put
2343 * clean pages at the head of the inactive queue instead of the tail.
2344 * This will cause them to be moved to the cache more quickly and
2345 * if not actively re-referenced, freed more quickly. If we just
2346 * stick these pages at the end of the inactive queue, heavy filesystem
2347 * meta-data accesses can cause an unnecessary paging load on memory bound
2348 * processes. This optimization causes one-time-use metadata to be
2349 * reused more quickly.
2351 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2352 * the inactive queue. This helps the pageout daemon determine memory
2353 * pressure and act on out-of-memory situations more quickly.
2355 * BUT, if we are in a low-memory situation we have no choice but to
2356 * put clean pages on the cache queue.
2358 * A number of routines use vm_page_unwire() to guarantee that the page
2359 * will go into either the inactive or active queues, and will NEVER
2360 * be placed in the cache - for example, just after dirtying a page.
2361 * dirty pages in the cache are not allowed.
2363 * This routine may not block.
2365 void
2366 vm_page_unwire(vm_page_t m, int activate)
2368 KKASSERT(m->flags & PG_BUSY);
2369 if (m->flags & PG_FICTITIOUS) {
2370 /* do nothing */
2371 } else if (m->wire_count <= 0) {
2372 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2373 } else {
2374 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2375 atomic_add_int(&vmstats.v_wire_count, -1);
2376 if (m->flags & PG_UNMANAGED) {
2378 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2379 vm_page_spin_lock(m);
2380 _vm_page_add_queue_spinlocked(m,
2381 PQ_ACTIVE + m->pc, 0);
2382 _vm_page_and_queue_spin_unlock(m);
2383 } else {
2384 vm_page_spin_lock(m);
2385 vm_page_flag_clear(m, PG_WINATCFLS);
2386 _vm_page_add_queue_spinlocked(m,
2387 PQ_INACTIVE + m->pc, 0);
2388 ++vm_swapcache_inactive_heuristic;
2389 _vm_page_and_queue_spin_unlock(m);
2396 * Move the specified page to the inactive queue. If the page has
2397 * any associated swap, the swap is deallocated.
2399 * Normally athead is 0 resulting in LRU operation. athead is set
2400 * to 1 if we want this page to be 'as if it were placed in the cache',
2401 * except without unmapping it from the process address space.
2403 * vm_page's spinlock must be held on entry and will remain held on return.
2404 * This routine may not block.
2406 static void
2407 _vm_page_deactivate_locked(vm_page_t m, int athead)
2409 u_short oqueue;
2412 * Ignore if already inactive.
2414 if (m->queue - m->pc == PQ_INACTIVE)
2415 return;
2416 _vm_page_queue_spin_lock(m);
2417 oqueue = _vm_page_rem_queue_spinlocked(m);
2419 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2420 if (oqueue == PQ_CACHE)
2421 mycpu->gd_cnt.v_reactivated++;
2422 vm_page_flag_clear(m, PG_WINATCFLS);
2423 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2424 if (athead == 0)
2425 ++vm_swapcache_inactive_heuristic;
2427 /* NOTE: PQ_NONE if condition not taken */
2428 _vm_page_queue_spin_unlock(m);
2429 /* leaves vm_page spinlocked */
2433 * Attempt to deactivate a page.
2435 * No requirements.
2437 void
2438 vm_page_deactivate(vm_page_t m)
2440 vm_page_spin_lock(m);
2441 _vm_page_deactivate_locked(m, 0);
2442 vm_page_spin_unlock(m);
2445 void
2446 vm_page_deactivate_locked(vm_page_t m)
2448 _vm_page_deactivate_locked(m, 0);
2452 * Attempt to move a page to PQ_CACHE.
2454 * Returns 0 on failure, 1 on success
2456 * The page should NOT be busied by the caller. This function will validate
2457 * whether the page can be safely moved to the cache.
2460 vm_page_try_to_cache(vm_page_t m)
2462 vm_page_spin_lock(m);
2463 if (vm_page_busy_try(m, TRUE)) {
2464 vm_page_spin_unlock(m);
2465 return(0);
2467 if (m->dirty || m->hold_count || m->wire_count ||
2468 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2469 if (_vm_page_wakeup(m)) {
2470 vm_page_spin_unlock(m);
2471 wakeup(m);
2472 } else {
2473 vm_page_spin_unlock(m);
2475 return(0);
2477 vm_page_spin_unlock(m);
2480 * Page busied by us and no longer spinlocked. Dirty pages cannot
2481 * be moved to the cache.
2483 vm_page_test_dirty(m);
2484 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2485 vm_page_wakeup(m);
2486 return(0);
2488 vm_page_cache(m);
2489 return(1);
2493 * Attempt to free the page. If we cannot free it, we do nothing.
2494 * 1 is returned on success, 0 on failure.
2496 * No requirements.
2499 vm_page_try_to_free(vm_page_t m)
2501 vm_page_spin_lock(m);
2502 if (vm_page_busy_try(m, TRUE)) {
2503 vm_page_spin_unlock(m);
2504 return(0);
2508 * The page can be in any state, including already being on the free
2509 * queue. Check to see if it really can be freed.
2511 if (m->dirty || /* can't free if it is dirty */
2512 m->hold_count || /* or held (XXX may be wrong) */
2513 m->wire_count || /* or wired */
2514 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2515 PG_NEED_COMMIT)) || /* or needs a commit */
2516 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2517 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2518 if (_vm_page_wakeup(m)) {
2519 vm_page_spin_unlock(m);
2520 wakeup(m);
2521 } else {
2522 vm_page_spin_unlock(m);
2524 return(0);
2526 vm_page_spin_unlock(m);
2529 * We can probably free the page.
2531 * Page busied by us and no longer spinlocked. Dirty pages will
2532 * not be freed by this function. We have to re-test the
2533 * dirty bit after cleaning out the pmaps.
2535 vm_page_test_dirty(m);
2536 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2537 vm_page_wakeup(m);
2538 return(0);
2540 vm_page_protect(m, VM_PROT_NONE);
2541 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2542 vm_page_wakeup(m);
2543 return(0);
2545 vm_page_free(m);
2546 return(1);
2550 * vm_page_cache
2552 * Put the specified page onto the page cache queue (if appropriate).
2554 * The page must be busy, and this routine will release the busy and
2555 * possibly even free the page.
2557 void
2558 vm_page_cache(vm_page_t m)
2560 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2561 m->busy || m->wire_count || m->hold_count) {
2562 kprintf("vm_page_cache: attempting to cache busy/held page\n");
2563 vm_page_wakeup(m);
2564 return;
2568 * Already in the cache (and thus not mapped)
2570 if ((m->queue - m->pc) == PQ_CACHE) {
2571 KKASSERT((m->flags & PG_MAPPED) == 0);
2572 vm_page_wakeup(m);
2573 return;
2577 * Caller is required to test m->dirty, but note that the act of
2578 * removing the page from its maps can cause it to become dirty
2579 * on an SMP system due to another cpu running in usermode.
2581 if (m->dirty) {
2582 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2583 (long)m->pindex);
2587 * Remove all pmaps and indicate that the page is not
2588 * writeable or mapped. Our vm_page_protect() call may
2589 * have blocked (especially w/ VM_PROT_NONE), so recheck
2590 * everything.
2592 vm_page_protect(m, VM_PROT_NONE);
2593 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2594 m->busy || m->wire_count || m->hold_count) {
2595 vm_page_wakeup(m);
2596 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2597 vm_page_deactivate(m);
2598 vm_page_wakeup(m);
2599 } else {
2600 _vm_page_and_queue_spin_lock(m);
2601 _vm_page_rem_queue_spinlocked(m);
2602 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2603 _vm_page_queue_spin_unlock(m);
2604 if (_vm_page_wakeup(m)) {
2605 vm_page_spin_unlock(m);
2606 wakeup(m);
2607 } else {
2608 vm_page_spin_unlock(m);
2610 vm_page_free_wakeup();
2615 * vm_page_dontneed()
2617 * Cache, deactivate, or do nothing as appropriate. This routine
2618 * is typically used by madvise() MADV_DONTNEED.
2620 * Generally speaking we want to move the page into the cache so
2621 * it gets reused quickly. However, this can result in a silly syndrome
2622 * due to the page recycling too quickly. Small objects will not be
2623 * fully cached. On the otherhand, if we move the page to the inactive
2624 * queue we wind up with a problem whereby very large objects
2625 * unnecessarily blow away our inactive and cache queues.
2627 * The solution is to move the pages based on a fixed weighting. We
2628 * either leave them alone, deactivate them, or move them to the cache,
2629 * where moving them to the cache has the highest weighting.
2630 * By forcing some pages into other queues we eventually force the
2631 * system to balance the queues, potentially recovering other unrelated
2632 * space from active. The idea is to not force this to happen too
2633 * often.
2635 * The page must be busied.
2637 void
2638 vm_page_dontneed(vm_page_t m)
2640 static int dnweight;
2641 int dnw;
2642 int head;
2644 dnw = ++dnweight;
2647 * occassionally leave the page alone
2649 if ((dnw & 0x01F0) == 0 ||
2650 m->queue - m->pc == PQ_INACTIVE ||
2651 m->queue - m->pc == PQ_CACHE
2653 if (m->act_count >= ACT_INIT)
2654 --m->act_count;
2655 return;
2659 * If vm_page_dontneed() is inactivating a page, it must clear
2660 * the referenced flag; otherwise the pagedaemon will see references
2661 * on the page in the inactive queue and reactivate it. Until the
2662 * page can move to the cache queue, madvise's job is not done.
2664 vm_page_flag_clear(m, PG_REFERENCED);
2665 pmap_clear_reference(m);
2667 if (m->dirty == 0)
2668 vm_page_test_dirty(m);
2670 if (m->dirty || (dnw & 0x0070) == 0) {
2672 * Deactivate the page 3 times out of 32.
2674 head = 0;
2675 } else {
2677 * Cache the page 28 times out of every 32. Note that
2678 * the page is deactivated instead of cached, but placed
2679 * at the head of the queue instead of the tail.
2681 head = 1;
2683 vm_page_spin_lock(m);
2684 _vm_page_deactivate_locked(m, head);
2685 vm_page_spin_unlock(m);
2689 * These routines manipulate the 'soft busy' count for a page. A soft busy
2690 * is almost like PG_BUSY except that it allows certain compatible operations
2691 * to occur on the page while it is busy. For example, a page undergoing a
2692 * write can still be mapped read-only.
2694 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2695 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2696 * busy bit is cleared.
2698 void
2699 vm_page_io_start(vm_page_t m)
2701 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2702 atomic_add_char(&m->busy, 1);
2703 vm_page_flag_set(m, PG_SBUSY);
2706 void
2707 vm_page_io_finish(vm_page_t m)
2709 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2710 atomic_subtract_char(&m->busy, 1);
2711 if (m->busy == 0)
2712 vm_page_flag_clear(m, PG_SBUSY);
2716 * Indicate that a clean VM page requires a filesystem commit and cannot
2717 * be reused. Used by tmpfs.
2719 void
2720 vm_page_need_commit(vm_page_t m)
2722 vm_page_flag_set(m, PG_NEED_COMMIT);
2723 vm_object_set_writeable_dirty(m->object);
2726 void
2727 vm_page_clear_commit(vm_page_t m)
2729 vm_page_flag_clear(m, PG_NEED_COMMIT);
2733 * Grab a page, blocking if it is busy and allocating a page if necessary.
2734 * A busy page is returned or NULL. The page may or may not be valid and
2735 * might not be on a queue (the caller is responsible for the disposition of
2736 * the page).
2738 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2739 * page will be zero'd and marked valid.
2741 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2742 * valid even if it already exists.
2744 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2745 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2746 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2748 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2749 * always returned if we had blocked.
2751 * This routine may not be called from an interrupt.
2753 * PG_ZERO is *ALWAYS* cleared by this routine.
2755 * No other requirements.
2757 vm_page_t
2758 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2760 vm_page_t m;
2761 int error;
2762 int shared = 1;
2764 KKASSERT(allocflags &
2765 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2766 vm_object_hold_shared(object);
2767 for (;;) {
2768 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2769 if (error) {
2770 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2771 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2772 m = NULL;
2773 break;
2775 /* retry */
2776 } else if (m == NULL) {
2777 if (shared) {
2778 vm_object_upgrade(object);
2779 shared = 0;
2781 if (allocflags & VM_ALLOC_RETRY)
2782 allocflags |= VM_ALLOC_NULL_OK;
2783 m = vm_page_alloc(object, pindex,
2784 allocflags & ~VM_ALLOC_RETRY);
2785 if (m)
2786 break;
2787 vm_wait(0);
2788 if ((allocflags & VM_ALLOC_RETRY) == 0)
2789 goto failed;
2790 } else {
2791 /* m found */
2792 break;
2797 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2799 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2800 * valid even if already valid.
2802 if (m->valid == 0) {
2803 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2804 if ((m->flags & PG_ZERO) == 0)
2805 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2806 m->valid = VM_PAGE_BITS_ALL;
2808 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2809 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2810 m->valid = VM_PAGE_BITS_ALL;
2812 vm_page_flag_clear(m, PG_ZERO);
2813 failed:
2814 vm_object_drop(object);
2815 return(m);
2819 * Mapping function for valid bits or for dirty bits in
2820 * a page. May not block.
2822 * Inputs are required to range within a page.
2824 * No requirements.
2825 * Non blocking.
2828 vm_page_bits(int base, int size)
2830 int first_bit;
2831 int last_bit;
2833 KASSERT(
2834 base + size <= PAGE_SIZE,
2835 ("vm_page_bits: illegal base/size %d/%d", base, size)
2838 if (size == 0) /* handle degenerate case */
2839 return(0);
2841 first_bit = base >> DEV_BSHIFT;
2842 last_bit = (base + size - 1) >> DEV_BSHIFT;
2844 return ((2 << last_bit) - (1 << first_bit));
2848 * Sets portions of a page valid and clean. The arguments are expected
2849 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2850 * of any partial chunks touched by the range. The invalid portion of
2851 * such chunks will be zero'd.
2853 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2854 * align base to DEV_BSIZE so as not to mark clean a partially
2855 * truncated device block. Otherwise the dirty page status might be
2856 * lost.
2858 * This routine may not block.
2860 * (base + size) must be less then or equal to PAGE_SIZE.
2862 static void
2863 _vm_page_zero_valid(vm_page_t m, int base, int size)
2865 int frag;
2866 int endoff;
2868 if (size == 0) /* handle degenerate case */
2869 return;
2872 * If the base is not DEV_BSIZE aligned and the valid
2873 * bit is clear, we have to zero out a portion of the
2874 * first block.
2877 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2878 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2880 pmap_zero_page_area(
2881 VM_PAGE_TO_PHYS(m),
2882 frag,
2883 base - frag
2888 * If the ending offset is not DEV_BSIZE aligned and the
2889 * valid bit is clear, we have to zero out a portion of
2890 * the last block.
2893 endoff = base + size;
2895 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2896 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2898 pmap_zero_page_area(
2899 VM_PAGE_TO_PHYS(m),
2900 endoff,
2901 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2907 * Set valid, clear dirty bits. If validating the entire
2908 * page we can safely clear the pmap modify bit. We also
2909 * use this opportunity to clear the PG_NOSYNC flag. If a process
2910 * takes a write fault on a MAP_NOSYNC memory area the flag will
2911 * be set again.
2913 * We set valid bits inclusive of any overlap, but we can only
2914 * clear dirty bits for DEV_BSIZE chunks that are fully within
2915 * the range.
2917 * Page must be busied?
2918 * No other requirements.
2920 void
2921 vm_page_set_valid(vm_page_t m, int base, int size)
2923 _vm_page_zero_valid(m, base, size);
2924 m->valid |= vm_page_bits(base, size);
2929 * Set valid bits and clear dirty bits.
2931 * NOTE: This function does not clear the pmap modified bit.
2932 * Also note that e.g. NFS may use a byte-granular base
2933 * and size.
2935 * WARNING: Page must be busied? But vfs_clean_one_page() will call
2936 * this without necessarily busying the page (via bdwrite()).
2937 * So for now vm_token must also be held.
2939 * No other requirements.
2941 void
2942 vm_page_set_validclean(vm_page_t m, int base, int size)
2944 int pagebits;
2946 _vm_page_zero_valid(m, base, size);
2947 pagebits = vm_page_bits(base, size);
2948 m->valid |= pagebits;
2949 m->dirty &= ~pagebits;
2950 if (base == 0 && size == PAGE_SIZE) {
2951 /*pmap_clear_modify(m);*/
2952 vm_page_flag_clear(m, PG_NOSYNC);
2957 * Set valid & dirty. Used by buwrite()
2959 * WARNING: Page must be busied? But vfs_dirty_one_page() will
2960 * call this function in buwrite() so for now vm_token must
2961 * be held.
2963 * No other requirements.
2965 void
2966 vm_page_set_validdirty(vm_page_t m, int base, int size)
2968 int pagebits;
2970 pagebits = vm_page_bits(base, size);
2971 m->valid |= pagebits;
2972 m->dirty |= pagebits;
2973 if (m->object)
2974 vm_object_set_writeable_dirty(m->object);
2978 * Clear dirty bits.
2980 * NOTE: This function does not clear the pmap modified bit.
2981 * Also note that e.g. NFS may use a byte-granular base
2982 * and size.
2984 * Page must be busied?
2985 * No other requirements.
2987 void
2988 vm_page_clear_dirty(vm_page_t m, int base, int size)
2990 m->dirty &= ~vm_page_bits(base, size);
2991 if (base == 0 && size == PAGE_SIZE) {
2992 /*pmap_clear_modify(m);*/
2993 vm_page_flag_clear(m, PG_NOSYNC);
2998 * Make the page all-dirty.
3000 * Also make sure the related object and vnode reflect the fact that the
3001 * object may now contain a dirty page.
3003 * Page must be busied?
3004 * No other requirements.
3006 void
3007 vm_page_dirty(vm_page_t m)
3009 #ifdef INVARIANTS
3010 int pqtype = m->queue - m->pc;
3011 #endif
3012 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3013 ("vm_page_dirty: page in free/cache queue!"));
3014 if (m->dirty != VM_PAGE_BITS_ALL) {
3015 m->dirty = VM_PAGE_BITS_ALL;
3016 if (m->object)
3017 vm_object_set_writeable_dirty(m->object);
3022 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3023 * valid and dirty bits for the effected areas are cleared.
3025 * Page must be busied?
3026 * Does not block.
3027 * No other requirements.
3029 void
3030 vm_page_set_invalid(vm_page_t m, int base, int size)
3032 int bits;
3034 bits = vm_page_bits(base, size);
3035 m->valid &= ~bits;
3036 m->dirty &= ~bits;
3037 m->object->generation++;
3041 * The kernel assumes that the invalid portions of a page contain
3042 * garbage, but such pages can be mapped into memory by user code.
3043 * When this occurs, we must zero out the non-valid portions of the
3044 * page so user code sees what it expects.
3046 * Pages are most often semi-valid when the end of a file is mapped
3047 * into memory and the file's size is not page aligned.
3049 * Page must be busied?
3050 * No other requirements.
3052 void
3053 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3055 int b;
3056 int i;
3059 * Scan the valid bits looking for invalid sections that
3060 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3061 * valid bit may be set ) have already been zerod by
3062 * vm_page_set_validclean().
3064 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3065 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3066 (m->valid & (1 << i))
3068 if (i > b) {
3069 pmap_zero_page_area(
3070 VM_PAGE_TO_PHYS(m),
3071 b << DEV_BSHIFT,
3072 (i - b) << DEV_BSHIFT
3075 b = i + 1;
3080 * setvalid is TRUE when we can safely set the zero'd areas
3081 * as being valid. We can do this if there are no cache consistency
3082 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3084 if (setvalid)
3085 m->valid = VM_PAGE_BITS_ALL;
3089 * Is a (partial) page valid? Note that the case where size == 0
3090 * will return FALSE in the degenerate case where the page is entirely
3091 * invalid, and TRUE otherwise.
3093 * Does not block.
3094 * No other requirements.
3097 vm_page_is_valid(vm_page_t m, int base, int size)
3099 int bits = vm_page_bits(base, size);
3101 if (m->valid && ((m->valid & bits) == bits))
3102 return 1;
3103 else
3104 return 0;
3108 * update dirty bits from pmap/mmu. May not block.
3110 * Caller must hold the page busy
3112 void
3113 vm_page_test_dirty(vm_page_t m)
3115 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3116 vm_page_dirty(m);
3121 * Register an action, associating it with its vm_page
3123 void
3124 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3126 struct vm_page_action_list *list;
3127 int hv;
3129 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3130 list = &action_list[hv];
3132 lwkt_gettoken(&vm_token);
3133 vm_page_flag_set(action->m, PG_ACTIONLIST);
3134 action->event = event;
3135 LIST_INSERT_HEAD(list, action, entry);
3136 lwkt_reltoken(&vm_token);
3140 * Unregister an action, disassociating it from its related vm_page
3142 void
3143 vm_page_unregister_action(vm_page_action_t action)
3145 struct vm_page_action_list *list;
3146 int hv;
3148 lwkt_gettoken(&vm_token);
3149 if (action->event != VMEVENT_NONE) {
3150 action->event = VMEVENT_NONE;
3151 LIST_REMOVE(action, entry);
3153 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3154 list = &action_list[hv];
3155 if (LIST_EMPTY(list))
3156 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3158 lwkt_reltoken(&vm_token);
3162 * Issue an event on a VM page. Corresponding action structures are
3163 * removed from the page's list and called.
3165 * If the vm_page has no more pending action events we clear its
3166 * PG_ACTIONLIST flag.
3168 void
3169 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3171 struct vm_page_action_list *list;
3172 struct vm_page_action *scan;
3173 struct vm_page_action *next;
3174 int hv;
3175 int all;
3177 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3178 list = &action_list[hv];
3179 all = 1;
3181 lwkt_gettoken(&vm_token);
3182 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3183 if (scan->m == m) {
3184 if (scan->event == event) {
3185 scan->event = VMEVENT_NONE;
3186 LIST_REMOVE(scan, entry);
3187 scan->func(m, scan);
3188 /* XXX */
3189 } else {
3190 all = 0;
3194 if (all)
3195 vm_page_flag_clear(m, PG_ACTIONLIST);
3196 lwkt_reltoken(&vm_token);
3199 #include "opt_ddb.h"
3200 #ifdef DDB
3201 #include <sys/kernel.h>
3203 #include <ddb/ddb.h>
3205 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3207 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3208 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3209 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3210 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3211 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3212 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3213 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3214 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3215 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3216 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3219 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3221 int i;
3222 db_printf("PQ_FREE:");
3223 for(i=0;i<PQ_L2_SIZE;i++) {
3224 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3226 db_printf("\n");
3228 db_printf("PQ_CACHE:");
3229 for(i=0;i<PQ_L2_SIZE;i++) {
3230 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3232 db_printf("\n");
3234 db_printf("PQ_ACTIVE:");
3235 for(i=0;i<PQ_L2_SIZE;i++) {
3236 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3238 db_printf("\n");
3240 db_printf("PQ_INACTIVE:");
3241 for(i=0;i<PQ_L2_SIZE;i++) {
3242 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3244 db_printf("\n");
3246 #endif /* DDB */