ipfw: Use netisr wrappers
[dragonfly.git] / sys / kern / kern_synch.c
blob741939905774a8bdd77d580291c4ff9c075184cd
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #include <sys/kcollect.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 #include <sys/ktr.h>
55 #include <sys/serialize.h>
57 #include <sys/signal2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mutex2.h>
62 #include <machine/cpu.h>
63 #include <machine/smp.h>
65 TAILQ_HEAD(tslpque, thread);
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
69 static void sched_dyninit (void *dummy);
70 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
72 int lbolt;
73 void *lbolt_syncer;
74 int ncpus;
75 int ncpus2, ncpus2_shift, ncpus2_mask; /* note: mask not cpumask_t */
76 int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
77 int safepri;
78 int tsleep_now_works;
79 int tsleep_crypto_dump = 0;
81 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
83 #define __DEALL(ident) __DEQUALIFY(void *, ident)
85 #if !defined(KTR_TSLEEP)
86 #define KTR_TSLEEP KTR_ALL
87 #endif
88 KTR_INFO_MASTER(tsleep);
89 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
90 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
91 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
92 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
93 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
95 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
96 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
98 struct loadavg averunnable =
99 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
101 * Constants for averages over 1, 5, and 15 minutes
102 * when sampling at 5 second intervals.
104 static fixpt_t cexp[3] = {
105 0.9200444146293232 * FSCALE, /* exp(-1/12) */
106 0.9834714538216174 * FSCALE, /* exp(-1/60) */
107 0.9944598480048967 * FSCALE, /* exp(-1/180) */
110 static void endtsleep (void *);
111 static void loadav (void *arg);
112 static void schedcpu (void *arg);
114 static int pctcpu_decay = 10;
115 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
118 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
120 int fscale __unused = FSCALE; /* exported to systat */
121 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
124 * Recompute process priorities, once a second.
126 * Since the userland schedulers are typically event oriented, if the
127 * estcpu calculation at wakeup() time is not sufficient to make a
128 * process runnable relative to other processes in the system we have
129 * a 1-second recalc to help out.
131 * This code also allows us to store sysclock_t data in the process structure
132 * without fear of an overrun, since sysclock_t are guarenteed to hold
133 * several seconds worth of count.
135 * WARNING! callouts can preempt normal threads. However, they will not
136 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
138 static int schedcpu_stats(struct proc *p, void *data __unused);
139 static int schedcpu_resource(struct proc *p, void *data __unused);
141 static void
142 schedcpu(void *arg)
144 allproc_scan(schedcpu_stats, NULL, 1);
145 allproc_scan(schedcpu_resource, NULL, 1);
146 if (mycpu->gd_cpuid == 0) {
147 wakeup((caddr_t)&lbolt);
148 wakeup(lbolt_syncer);
150 callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
154 * General process statistics once a second
156 static int
157 schedcpu_stats(struct proc *p, void *data __unused)
159 struct lwp *lp;
162 * Threads may not be completely set up if process in SIDL state.
164 if (p->p_stat == SIDL)
165 return(0);
167 PHOLD(p);
168 if (lwkt_trytoken(&p->p_token) == FALSE) {
169 PRELE(p);
170 return(0);
173 p->p_swtime++;
174 FOREACH_LWP_IN_PROC(lp, p) {
175 if (lp->lwp_stat == LSSLEEP) {
176 ++lp->lwp_slptime;
177 if (lp->lwp_slptime == 1)
178 p->p_usched->uload_update(lp);
182 * Only recalculate processes that are active or have slept
183 * less then 2 seconds. The schedulers understand this.
184 * Otherwise decay by 50% per second.
186 if (lp->lwp_slptime <= 1) {
187 p->p_usched->recalculate(lp);
188 } else {
189 int decay;
191 decay = pctcpu_decay;
192 cpu_ccfence();
193 if (decay <= 1)
194 decay = 1;
195 if (decay > 100)
196 decay = 100;
197 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
200 lwkt_reltoken(&p->p_token);
201 lwkt_yield();
202 PRELE(p);
203 return(0);
207 * Resource checks. XXX break out since ksignal/killproc can block,
208 * limiting us to one process killed per second. There is probably
209 * a better way.
211 static int
212 schedcpu_resource(struct proc *p, void *data __unused)
214 u_int64_t ttime;
215 struct lwp *lp;
217 if (p->p_stat == SIDL)
218 return(0);
220 PHOLD(p);
221 if (lwkt_trytoken(&p->p_token) == FALSE) {
222 PRELE(p);
223 return(0);
226 if (p->p_stat == SZOMB || p->p_limit == NULL) {
227 lwkt_reltoken(&p->p_token);
228 PRELE(p);
229 return(0);
232 ttime = 0;
233 FOREACH_LWP_IN_PROC(lp, p) {
235 * We may have caught an lp in the middle of being
236 * created, lwp_thread can be NULL.
238 if (lp->lwp_thread) {
239 ttime += lp->lwp_thread->td_sticks;
240 ttime += lp->lwp_thread->td_uticks;
244 switch(plimit_testcpulimit(p->p_limit, ttime)) {
245 case PLIMIT_TESTCPU_KILL:
246 killproc(p, "exceeded maximum CPU limit");
247 break;
248 case PLIMIT_TESTCPU_XCPU:
249 if ((p->p_flags & P_XCPU) == 0) {
250 p->p_flags |= P_XCPU;
251 ksignal(p, SIGXCPU);
253 break;
254 default:
255 break;
257 lwkt_reltoken(&p->p_token);
258 lwkt_yield();
259 PRELE(p);
260 return(0);
264 * This is only used by ps. Generate a cpu percentage use over
265 * a period of one second.
267 void
268 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
270 fixpt_t acc;
271 int remticks;
273 acc = (cpticks << FSHIFT) / ttlticks;
274 if (ttlticks >= ESTCPUFREQ) {
275 lp->lwp_pctcpu = acc;
276 } else {
277 remticks = ESTCPUFREQ - ttlticks;
278 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
279 ESTCPUFREQ;
284 * Handy macros to calculate hash indices. LOOKUP() calculates the
285 * global cpumask hash index, TCHASHSHIFT() converts that into the
286 * pcpu hash index.
288 * By making the pcpu hash arrays smaller we save a significant amount
289 * of memory at very low cost. The real cost is in IPIs, which are handled
290 * by the much larger global cpumask hash table.
292 #define LOOKUP(x) (((u_int)(uintptr_t)(x)) % slpque_tablesize)
293 #define TCHASHSHIFT(x) ((x) >> 4)
295 static uint32_t slpque_tablesize;
296 static cpumask_t *slpque_cpumasks;
299 * This is a dandy function that allows us to interlock tsleep/wakeup
300 * operations with unspecified upper level locks, such as lockmgr locks,
301 * simply by holding a critical section. The sequence is:
303 * (acquire upper level lock)
304 * tsleep_interlock(blah)
305 * (release upper level lock)
306 * tsleep(blah, ...)
308 * Basically this functions queues us on the tsleep queue without actually
309 * descheduling us. When tsleep() is later called with PINTERLOCK it
310 * assumes the thread was already queued, otherwise it queues it there.
312 * Thus it is possible to receive the wakeup prior to going to sleep and
313 * the race conditions are covered.
315 static __inline void
316 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
318 thread_t td = gd->gd_curthread;
319 uint32_t cid;
320 uint32_t gid;
322 crit_enter_quick(td);
323 if (td->td_flags & TDF_TSLEEPQ) {
324 cid = LOOKUP(td->td_wchan);
325 gid = TCHASHSHIFT(cid);
326 TAILQ_REMOVE(&gd->gd_tsleep_hash[gid], td, td_sleepq);
327 if (TAILQ_FIRST(&gd->gd_tsleep_hash[gid]) == NULL) {
328 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
329 gd->gd_cpuid);
331 } else {
332 td->td_flags |= TDF_TSLEEPQ;
334 cid = LOOKUP(ident);
335 gid = TCHASHSHIFT(cid);
336 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[gid], td, td_sleepq);
337 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
338 td->td_wchan = ident;
339 td->td_wdomain = flags & PDOMAIN_MASK;
340 crit_exit_quick(td);
343 void
344 tsleep_interlock(const volatile void *ident, int flags)
346 _tsleep_interlock(mycpu, ident, flags);
350 * Remove thread from sleepq. Must be called with a critical section held.
351 * The thread must not be migrating.
353 static __inline void
354 _tsleep_remove(thread_t td)
356 globaldata_t gd = mycpu;
357 uint32_t cid;
358 uint32_t gid;
360 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
361 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
362 if (td->td_flags & TDF_TSLEEPQ) {
363 td->td_flags &= ~TDF_TSLEEPQ;
364 cid = LOOKUP(td->td_wchan);
365 gid = TCHASHSHIFT(cid);
366 TAILQ_REMOVE(&gd->gd_tsleep_hash[gid], td, td_sleepq);
367 if (TAILQ_FIRST(&gd->gd_tsleep_hash[gid]) == NULL) {
368 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
369 gd->gd_cpuid);
371 td->td_wchan = NULL;
372 td->td_wdomain = 0;
376 void
377 tsleep_remove(thread_t td)
379 _tsleep_remove(td);
383 * General sleep call. Suspends the current process until a wakeup is
384 * performed on the specified identifier. The process will then be made
385 * runnable with the specified priority. Sleeps at most timo/hz seconds
386 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
387 * before and after sleeping, else signals are not checked. Returns 0 if
388 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
389 * signal needs to be delivered, ERESTART is returned if the current system
390 * call should be restarted if possible, and EINTR is returned if the system
391 * call should be interrupted by the signal (return EINTR).
393 * Note that if we are a process, we release_curproc() before messing with
394 * the LWKT scheduler.
396 * During autoconfiguration or after a panic, a sleep will simply
397 * lower the priority briefly to allow interrupts, then return.
399 * WARNING! This code can't block (short of switching away), or bad things
400 * will happen. No getting tokens, no blocking locks, etc.
403 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
405 struct thread *td = curthread;
406 struct lwp *lp = td->td_lwp;
407 struct proc *p = td->td_proc; /* may be NULL */
408 globaldata_t gd;
409 int sig;
410 int catch;
411 int error;
412 int oldpri;
413 struct callout thandle;
416 * Currently a severe hack. Make sure any delayed wakeups
417 * are flushed before we sleep or we might deadlock on whatever
418 * event we are sleeping on.
420 if (td->td_flags & TDF_DELAYED_WAKEUP)
421 wakeup_end_delayed();
424 * NOTE: removed KTRPOINT, it could cause races due to blocking
425 * even in stable. Just scrap it for now.
427 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
429 * After a panic, or before we actually have an operational
430 * softclock, just give interrupts a chance, then just return;
432 * don't run any other procs or panic below,
433 * in case this is the idle process and already asleep.
435 splz();
436 oldpri = td->td_pri;
437 lwkt_setpri_self(safepri);
438 lwkt_switch();
439 lwkt_setpri_self(oldpri);
440 return (0);
442 logtsleep2(tsleep_beg, ident);
443 gd = td->td_gd;
444 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
445 td->td_wakefromcpu = -1; /* overwritten by _wakeup */
448 * NOTE: all of this occurs on the current cpu, including any
449 * callout-based wakeups, so a critical section is a sufficient
450 * interlock.
452 * The entire sequence through to where we actually sleep must
453 * run without breaking the critical section.
455 catch = flags & PCATCH;
456 error = 0;
457 sig = 0;
459 crit_enter_quick(td);
461 KASSERT(ident != NULL, ("tsleep: no ident"));
462 KASSERT(lp == NULL ||
463 lp->lwp_stat == LSRUN || /* Obvious */
464 lp->lwp_stat == LSSTOP, /* Set in tstop */
465 ("tsleep %p %s %d",
466 ident, wmesg, lp->lwp_stat));
469 * We interlock the sleep queue if the caller has not already done
470 * it for us. This must be done before we potentially acquire any
471 * tokens or we can loose the wakeup.
473 if ((flags & PINTERLOCKED) == 0) {
474 _tsleep_interlock(gd, ident, flags);
478 * Setup for the current process (if this is a process). We must
479 * interlock with lwp_token to avoid remote wakeup races via
480 * setrunnable()
482 if (lp) {
483 lwkt_gettoken(&lp->lwp_token);
486 * If the umbrella process is in the SCORE state then
487 * make sure that the thread is flagged going into a
488 * normal sleep to allow the core dump to proceed, otherwise
489 * the coredump can end up waiting forever. If the normal
490 * sleep is woken up, the thread will enter a stopped state
491 * upon return to userland.
493 * We do not want to interrupt or cause a thread exist at
494 * this juncture because that will mess-up the state the
495 * coredump is trying to save.
497 if (p->p_stat == SCORE &&
498 (lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
499 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
500 ++p->p_nstopped;
504 * PCATCH requested.
506 if (catch) {
508 * Early termination if PCATCH was set and a
509 * signal is pending, interlocked with the
510 * critical section.
512 * Early termination only occurs when tsleep() is
513 * entered while in a normal LSRUN state.
515 if ((sig = CURSIG(lp)) != 0)
516 goto resume;
519 * Causes ksignal to wake us up if a signal is
520 * received (interlocked with lp->lwp_token).
522 lp->lwp_flags |= LWP_SINTR;
524 } else {
525 KKASSERT(p == NULL);
529 * Make sure the current process has been untangled from
530 * the userland scheduler and initialize slptime to start
531 * counting.
533 * NOTE: td->td_wakefromcpu is pre-set by the release function
534 * for the dfly scheduler, and then adjusted by _wakeup()
536 if (lp) {
537 p->p_usched->release_curproc(lp);
538 lp->lwp_slptime = 0;
542 * If the interlocked flag is set but our cpu bit in the slpqueue
543 * is no longer set, then a wakeup was processed inbetween the
544 * tsleep_interlock() (ours or the callers), and here. This can
545 * occur under numerous circumstances including when we release the
546 * current process.
548 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
549 * to process incoming IPIs, thus draining incoming wakeups.
551 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
552 logtsleep2(ilockfail, ident);
553 goto resume;
557 * scheduling is blocked while in a critical section. Coincide
558 * the descheduled-by-tsleep flag with the descheduling of the
559 * lwkt.
561 * The timer callout is localized on our cpu and interlocked by
562 * our critical section.
564 lwkt_deschedule_self(td);
565 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
566 td->td_wmesg = wmesg;
569 * Setup the timeout, if any. The timeout is only operable while
570 * the thread is flagged descheduled.
572 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
573 if (timo) {
574 callout_init_mp(&thandle);
575 callout_reset(&thandle, timo, endtsleep, td);
579 * Beddy bye bye.
581 if (lp) {
583 * Ok, we are sleeping. Place us in the SSLEEP state.
585 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
588 * tstop() sets LSSTOP, so don't fiddle with that.
590 if (lp->lwp_stat != LSSTOP)
591 lp->lwp_stat = LSSLEEP;
592 lp->lwp_ru.ru_nvcsw++;
593 p->p_usched->uload_update(lp);
594 lwkt_switch();
597 * And when we are woken up, put us back in LSRUN. If we
598 * slept for over a second, recalculate our estcpu.
600 lp->lwp_stat = LSRUN;
601 if (lp->lwp_slptime) {
602 p->p_usched->uload_update(lp);
603 p->p_usched->recalculate(lp);
605 lp->lwp_slptime = 0;
606 } else {
607 lwkt_switch();
611 * Make sure we haven't switched cpus while we were asleep. It's
612 * not supposed to happen. Cleanup our temporary flags.
614 KKASSERT(gd == td->td_gd);
617 * Cleanup the timeout. If the timeout has already occured thandle
618 * has already been stopped, otherwise stop thandle. If the timeout
619 * is running (the callout thread must be blocked trying to get
620 * lwp_token) then wait for us to get scheduled.
622 if (timo) {
623 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
624 /* else we won't get rescheduled! */
625 if (lp->lwp_stat != LSSTOP)
626 lp->lwp_stat = LSSLEEP;
627 lwkt_deschedule_self(td);
628 td->td_wmesg = "tsrace";
629 lwkt_switch();
630 kprintf("td %p %s: timeout race\n", td, td->td_comm);
632 if (td->td_flags & TDF_TIMEOUT) {
633 td->td_flags &= ~TDF_TIMEOUT;
634 error = EWOULDBLOCK;
635 } else {
636 /* does not block when on same cpu */
637 callout_stop(&thandle);
640 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
643 * Make sure we have been removed from the sleepq. In most
644 * cases this will have been done for us already but it is
645 * possible for a scheduling IPI to be in-flight from a
646 * previous tsleep/tsleep_interlock() or due to a straight-out
647 * call to lwkt_schedule() (in the case of an interrupt thread),
648 * causing a spurious wakeup.
650 _tsleep_remove(td);
651 td->td_wmesg = NULL;
654 * Figure out the correct error return. If interrupted by a
655 * signal we want to return EINTR or ERESTART.
657 resume:
658 if (lp) {
659 if (catch && error == 0) {
660 if (sig != 0 || (sig = CURSIG(lp))) {
661 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
662 error = EINTR;
663 else
664 error = ERESTART;
668 lp->lwp_flags &= ~LWP_SINTR;
671 * Unconditionally set us to LSRUN on resume. lwp_stat could
672 * be in a weird state due to the goto resume, particularly
673 * when tsleep() is called from tstop().
675 lp->lwp_stat = LSRUN;
676 lwkt_reltoken(&lp->lwp_token);
678 logtsleep1(tsleep_end);
679 crit_exit_quick(td);
680 return (error);
684 * Interlocked spinlock sleep. An exclusively held spinlock must
685 * be passed to ssleep(). The function will atomically release the
686 * spinlock and tsleep on the ident, then reacquire the spinlock and
687 * return.
689 * This routine is fairly important along the critical path, so optimize it
690 * heavily.
693 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
694 const char *wmesg, int timo)
696 globaldata_t gd = mycpu;
697 int error;
699 _tsleep_interlock(gd, ident, flags);
700 spin_unlock_quick(gd, spin);
701 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
702 _spin_lock_quick(gd, spin, wmesg);
704 return (error);
708 lksleep(const volatile void *ident, struct lock *lock, int flags,
709 const char *wmesg, int timo)
711 globaldata_t gd = mycpu;
712 int error;
714 _tsleep_interlock(gd, ident, flags);
715 lockmgr(lock, LK_RELEASE);
716 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
717 lockmgr(lock, LK_EXCLUSIVE);
719 return (error);
723 * Interlocked mutex sleep. An exclusively held mutex must be passed
724 * to mtxsleep(). The function will atomically release the mutex
725 * and tsleep on the ident, then reacquire the mutex and return.
728 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
729 const char *wmesg, int timo)
731 globaldata_t gd = mycpu;
732 int error;
734 _tsleep_interlock(gd, ident, flags);
735 mtx_unlock(mtx);
736 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
737 mtx_lock_ex_quick(mtx);
739 return (error);
743 * Interlocked serializer sleep. An exclusively held serializer must
744 * be passed to zsleep(). The function will atomically release
745 * the serializer and tsleep on the ident, then reacquire the serializer
746 * and return.
749 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
750 const char *wmesg, int timo)
752 globaldata_t gd = mycpu;
753 int ret;
755 ASSERT_SERIALIZED(slz);
757 _tsleep_interlock(gd, ident, flags);
758 lwkt_serialize_exit(slz);
759 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
760 lwkt_serialize_enter(slz);
762 return ret;
766 * Directly block on the LWKT thread by descheduling it. This
767 * is much faster then tsleep(), but the only legal way to wake
768 * us up is to directly schedule the thread.
770 * Setting TDF_SINTR will cause new signals to directly schedule us.
772 * This routine must be called while in a critical section.
775 lwkt_sleep(const char *wmesg, int flags)
777 thread_t td = curthread;
778 int sig;
780 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
781 td->td_flags |= TDF_BLOCKED;
782 td->td_wmesg = wmesg;
783 lwkt_deschedule_self(td);
784 lwkt_switch();
785 td->td_wmesg = NULL;
786 td->td_flags &= ~TDF_BLOCKED;
787 return(0);
789 if ((sig = CURSIG(td->td_lwp)) != 0) {
790 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
791 return(EINTR);
792 else
793 return(ERESTART);
796 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
797 td->td_wmesg = wmesg;
798 lwkt_deschedule_self(td);
799 lwkt_switch();
800 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
801 td->td_wmesg = NULL;
802 return(0);
806 * Implement the timeout for tsleep.
808 * This type of callout timeout is scheduled on the same cpu the process
809 * is sleeping on. Also, at the moment, the MP lock is held.
811 static void
812 endtsleep(void *arg)
814 thread_t td = arg;
815 struct lwp *lp;
818 * We are going to have to get the lwp_token, which means we might
819 * block. This can race a tsleep getting woken up by other means
820 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
821 * processing to complete (sorry tsleep!).
823 * We can safely set td_flags because td MUST be on the same cpu
824 * as we are.
826 KKASSERT(td->td_gd == mycpu);
827 crit_enter();
828 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
831 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
832 * from exiting the tsleep on us. The flag is interlocked by virtue
833 * of lp being on the same cpu as we are.
835 if ((lp = td->td_lwp) != NULL)
836 lwkt_gettoken(&lp->lwp_token);
838 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
840 if (lp) {
842 * callout timer should normally never be set in tstop()
843 * because it passes a timeout of 0. However, there is a
844 * case during thread exit (which SSTOP's all the threads)
845 * for which tstop() must break out and can (properly) leave
846 * the thread in LSSTOP.
848 KKASSERT(lp->lwp_stat != LSSTOP ||
849 (lp->lwp_mpflags & LWP_MP_WEXIT));
850 setrunnable(lp);
851 lwkt_reltoken(&lp->lwp_token);
852 } else {
853 _tsleep_remove(td);
854 lwkt_schedule(td);
856 KKASSERT(td->td_gd == mycpu);
857 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
858 crit_exit();
862 * Make all processes sleeping on the specified identifier runnable.
863 * count may be zero or one only.
865 * The domain encodes the sleep/wakeup domain, flags, plus the originating
866 * cpu.
868 * This call may run without the MP lock held. We can only manipulate thread
869 * state on the cpu owning the thread. We CANNOT manipulate process state
870 * at all.
872 * _wakeup() can be passed to an IPI so we can't use (const volatile
873 * void *ident).
875 static void
876 _wakeup(void *ident, int domain)
878 struct tslpque *qp;
879 struct thread *td;
880 struct thread *ntd;
881 globaldata_t gd;
882 cpumask_t mask;
883 uint32_t cid;
884 uint32_t gid;
886 crit_enter();
887 logtsleep2(wakeup_beg, ident);
888 gd = mycpu;
889 cid = LOOKUP(ident);
890 gid = TCHASHSHIFT(cid);
891 qp = &gd->gd_tsleep_hash[gid];
892 restart:
893 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
894 ntd = TAILQ_NEXT(td, td_sleepq);
895 if (td->td_wchan == ident &&
896 td->td_wdomain == (domain & PDOMAIN_MASK)
898 KKASSERT(td->td_gd == gd);
899 _tsleep_remove(td);
900 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
901 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
902 lwkt_schedule(td);
903 if (domain & PWAKEUP_ONE)
904 goto done;
906 goto restart;
911 * Because a bunch of cpumask array entries cover the same queue, it
912 * is possible for our bit to remain set in some of them and cause
913 * spurious wakeup IPIs later on. Make sure that the bit is cleared
914 * when a spurious IPI occurs to prevent further spurious IPIs.
916 if (TAILQ_FIRST(qp) == NULL) {
917 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
921 * We finished checking the current cpu but there still may be
922 * more work to do. Either wakeup_one was requested and no matching
923 * thread was found, or a normal wakeup was requested and we have
924 * to continue checking cpus.
926 * It should be noted that this scheme is actually less expensive then
927 * the old scheme when waking up multiple threads, since we send
928 * only one IPI message per target candidate which may then schedule
929 * multiple threads. Before we could have wound up sending an IPI
930 * message for each thread on the target cpu (!= current cpu) that
931 * needed to be woken up.
933 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
934 * should be ok since we are passing idents in the IPI rather
935 * then thread pointers.
937 * NOTE: We MUST mfence (or use an atomic op) prior to reading
938 * the cpumask, as another cpu may have written to it in
939 * a fashion interlocked with whatever the caller did before
940 * calling wakeup(). Otherwise we might miss the interaction
941 * (kern_mutex.c can cause this problem).
943 * lfence is insufficient as it may allow a written state to
944 * reorder around the cpumask load.
946 if ((domain & PWAKEUP_MYCPU) == 0) {
947 cpu_mfence();
948 mask = slpque_cpumasks[cid];
949 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
950 if (CPUMASK_TESTNZERO(mask)) {
951 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
952 domain | PWAKEUP_MYCPU);
955 done:
956 logtsleep1(wakeup_end);
957 crit_exit();
961 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
963 void
964 wakeup(const volatile void *ident)
966 globaldata_t gd = mycpu;
967 thread_t td = gd->gd_curthread;
969 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
971 * If we are in a delayed wakeup section, record up to two wakeups in
972 * a per-CPU queue and issue them when we block or exit the delayed
973 * wakeup section.
975 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
976 return;
977 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
978 return;
980 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
981 __DEALL(ident));
982 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
983 __DEALL(ident));
986 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
990 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
992 void
993 wakeup_one(const volatile void *ident)
995 /* XXX potentially round-robin the first responding cpu */
996 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
997 PWAKEUP_ONE);
1001 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1002 * only.
1004 void
1005 wakeup_mycpu(const volatile void *ident)
1007 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1008 PWAKEUP_MYCPU);
1012 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1013 * only.
1015 void
1016 wakeup_mycpu_one(const volatile void *ident)
1018 /* XXX potentially round-robin the first responding cpu */
1019 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1020 PWAKEUP_MYCPU | PWAKEUP_ONE);
1024 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1025 * only.
1027 void
1028 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1030 globaldata_t mygd = mycpu;
1031 if (gd == mycpu) {
1032 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1033 PWAKEUP_MYCPU);
1034 } else {
1035 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1036 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1037 PWAKEUP_MYCPU);
1042 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1043 * only.
1045 void
1046 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1048 globaldata_t mygd = mycpu;
1049 if (gd == mygd) {
1050 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1051 PWAKEUP_MYCPU | PWAKEUP_ONE);
1052 } else {
1053 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1054 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1055 PWAKEUP_MYCPU | PWAKEUP_ONE);
1060 * Wakeup all threads waiting on the specified ident that slept using
1061 * the specified domain, on all cpus.
1063 void
1064 wakeup_domain(const volatile void *ident, int domain)
1066 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1070 * Wakeup one thread waiting on the specified ident that slept using
1071 * the specified domain, on any cpu.
1073 void
1074 wakeup_domain_one(const volatile void *ident, int domain)
1076 /* XXX potentially round-robin the first responding cpu */
1077 _wakeup(__DEALL(ident),
1078 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1081 void
1082 wakeup_start_delayed(void)
1084 globaldata_t gd = mycpu;
1086 crit_enter();
1087 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1088 crit_exit();
1091 void
1092 wakeup_end_delayed(void)
1094 globaldata_t gd = mycpu;
1096 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1097 crit_enter();
1098 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1099 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1100 if (gd->gd_delayed_wakeup[0]) {
1101 wakeup(gd->gd_delayed_wakeup[0]);
1102 gd->gd_delayed_wakeup[0] = NULL;
1104 if (gd->gd_delayed_wakeup[1]) {
1105 wakeup(gd->gd_delayed_wakeup[1]);
1106 gd->gd_delayed_wakeup[1] = NULL;
1109 crit_exit();
1114 * setrunnable()
1116 * Make a process runnable. lp->lwp_token must be held on call and this
1117 * function must be called from the cpu owning lp.
1119 * This only has an effect if we are in LSSTOP or LSSLEEP.
1121 void
1122 setrunnable(struct lwp *lp)
1124 thread_t td = lp->lwp_thread;
1126 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1127 KKASSERT(td->td_gd == mycpu);
1128 crit_enter();
1129 if (lp->lwp_stat == LSSTOP)
1130 lp->lwp_stat = LSSLEEP;
1131 if (lp->lwp_stat == LSSLEEP) {
1132 _tsleep_remove(td);
1133 lwkt_schedule(td);
1134 } else if (td->td_flags & TDF_SINTR) {
1135 lwkt_schedule(td);
1137 crit_exit();
1141 * The process is stopped due to some condition, usually because p_stat is
1142 * set to SSTOP, but also possibly due to being traced.
1144 * Caller must hold p->p_token
1146 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1147 * because the parent may check the child's status before the child actually
1148 * gets to this routine.
1150 * This routine is called with the current lwp only, typically just
1151 * before returning to userland if the process state is detected as
1152 * possibly being in a stopped state.
1154 void
1155 tstop(void)
1157 struct lwp *lp = curthread->td_lwp;
1158 struct proc *p = lp->lwp_proc;
1159 struct proc *q;
1161 lwkt_gettoken(&lp->lwp_token);
1162 crit_enter();
1165 * If LWP_MP_WSTOP is set, we were sleeping
1166 * while our process was stopped. At this point
1167 * we were already counted as stopped.
1169 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1171 * If we're the last thread to stop, signal
1172 * our parent.
1174 p->p_nstopped++;
1175 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1176 wakeup(&p->p_nstopped);
1177 if (p->p_nstopped == p->p_nthreads) {
1179 * Token required to interlock kern_wait()
1181 q = p->p_pptr;
1182 PHOLD(q);
1183 lwkt_gettoken(&q->p_token);
1184 p->p_flags &= ~P_WAITED;
1185 wakeup(p->p_pptr);
1186 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1187 ksignal(q, SIGCHLD);
1188 lwkt_reltoken(&q->p_token);
1189 PRELE(q);
1194 * Wait here while in a stopped state, interlocked with lwp_token.
1195 * We must break-out if the whole process is trying to exit.
1197 while (STOPLWP(p, lp)) {
1198 lp->lwp_stat = LSSTOP;
1199 tsleep(p, 0, "stop", 0);
1201 p->p_nstopped--;
1202 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1203 crit_exit();
1204 lwkt_reltoken(&lp->lwp_token);
1208 * Compute a tenex style load average of a quantity on
1209 * 1, 5 and 15 minute intervals. This is a pcpu callout.
1211 * We segment the lwp scan on a pcpu basis. This does NOT
1212 * mean the associated lwps are on this cpu, it is done
1213 * just to break the work up.
1215 * The callout on cpu0 rolls up the stats from the other
1216 * cpus.
1218 static int loadav_count_runnable(struct lwp *p, void *data);
1220 static void
1221 loadav(void *arg)
1223 globaldata_t gd = mycpu;
1224 struct loadavg *avg;
1225 int i, nrun;
1227 nrun = 0;
1228 alllwp_scan(loadav_count_runnable, &nrun, 1);
1229 gd->gd_loadav_nrunnable = nrun;
1230 if (gd->gd_cpuid == 0) {
1231 avg = &averunnable;
1232 nrun = 0;
1233 for (i = 0; i < ncpus; ++i)
1234 nrun += globaldata_find(i)->gd_loadav_nrunnable;
1235 for (i = 0; i < 3; i++) {
1236 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1237 (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1242 * Schedule the next update to occur after 5 seconds, but add a
1243 * random variation to avoid synchronisation with processes that
1244 * run at regular intervals.
1246 callout_reset(&gd->gd_loadav_callout,
1247 hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1248 loadav, NULL);
1251 static int
1252 loadav_count_runnable(struct lwp *lp, void *data)
1254 int *nrunp = data;
1255 thread_t td;
1257 switch (lp->lwp_stat) {
1258 case LSRUN:
1259 if ((td = lp->lwp_thread) == NULL)
1260 break;
1261 if (td->td_flags & TDF_BLOCKED)
1262 break;
1263 ++*nrunp;
1264 break;
1265 default:
1266 break;
1268 lwkt_yield();
1269 return(0);
1273 * Regular data collection
1275 static uint64_t
1276 collect_load_callback(int n)
1278 int fscale = averunnable.fscale;
1280 return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1283 static void
1284 sched_setup(void *dummy __unused)
1286 globaldata_t save_gd = mycpu;
1287 globaldata_t gd;
1288 int n;
1290 kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1291 KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1294 * Kick off timeout driven events by calling first time. We
1295 * split the work across available cpus to help scale it,
1296 * it can eat a lot of cpu when there are a lot of processes
1297 * on the system.
1299 for (n = 0; n < ncpus; ++n) {
1300 gd = globaldata_find(n);
1301 lwkt_setcpu_self(gd);
1302 callout_init_mp(&gd->gd_loadav_callout);
1303 callout_init_mp(&gd->gd_schedcpu_callout);
1304 schedcpu(NULL);
1305 loadav(NULL);
1307 lwkt_setcpu_self(save_gd);
1311 * Extremely early initialization, dummy-up the tables so we don't have
1312 * to conditionalize for NULL in _wakeup() and tsleep_interlock(). Even
1313 * though the system isn't blocking this early, these functions still
1314 * try to access the hash table.
1316 * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1317 * is called.
1319 void
1320 sleep_early_gdinit(globaldata_t gd)
1322 static struct tslpque dummy_slpque;
1323 static cpumask_t dummy_cpumasks;
1325 slpque_tablesize = 1;
1326 gd->gd_tsleep_hash = &dummy_slpque;
1327 slpque_cpumasks = &dummy_cpumasks;
1328 TAILQ_INIT(&dummy_slpque);
1332 * PCPU initialization. Called after KMALLOC is operational, by
1333 * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1335 * WARNING! The pcpu hash table is smaller than the global cpumask
1336 * hash table, which can save us a lot of memory when maxproc
1337 * is set high.
1339 void
1340 sleep_gdinit(globaldata_t gd)
1342 struct thread *td;
1343 uint32_t n;
1344 uint32_t i;
1347 * This shouldn't happen, that is there shouldn't be any threads
1348 * waiting on the dummy tsleep queue this early in the boot.
1350 if (gd->gd_cpuid == 0) {
1351 TAILQ_FOREACH(td, &gd->gd_tsleep_hash[0], td_sleepq) {
1352 kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1357 * Note that we have to allocate one extra slot because we are
1358 * shifting a modulo value. TCHASHSHIFT(slpque_tablesize - 1) can
1359 * return the same value as TCHASHSHIFT(slpque_tablesize).
1361 n = TCHASHSHIFT(slpque_tablesize) + 1;
1363 gd->gd_tsleep_hash = kmalloc(sizeof(struct tslpque) * n,
1364 M_TSLEEP, M_WAITOK | M_ZERO);
1365 for (i = 0; i < n; ++i)
1366 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
1370 * Dynamic initialization after the memory system is operational.
1372 static void
1373 sched_dyninit(void *dummy __unused)
1375 int tblsize;
1376 int tblsize2;
1377 int n;
1380 * Calculate table size for slpque hash. We want a prime number
1381 * large enough to avoid overloading slpque_cpumasks when the
1382 * system has a large number of sleeping processes, which will
1383 * spam IPIs on wakeup().
1385 * While it is true this is really a per-lwp factor, generally
1386 * speaking the maxproc limit is a good metric to go by.
1388 for (tblsize = maxproc | 1; ; tblsize += 2) {
1389 if (tblsize % 3 == 0)
1390 continue;
1391 if (tblsize % 5 == 0)
1392 continue;
1393 tblsize2 = (tblsize / 2) | 1;
1394 for (n = 7; n < tblsize2; n += 2) {
1395 if (tblsize % n == 0)
1396 break;
1398 if (n == tblsize2)
1399 break;
1403 * PIDs are currently limited to 6 digits. Cap the table size
1404 * at double this.
1406 if (tblsize > 2000003)
1407 tblsize = 2000003;
1409 slpque_tablesize = tblsize;
1410 slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1411 M_TSLEEP, M_WAITOK | M_ZERO);
1412 sleep_gdinit(mycpu);