kernel - SWAP CACHE part 3/many - Rearrange VM pagerops
[dragonfly.git] / sys / vm / vnode_pager.c
blob47d143a3ccfc8bff9eca346360dbd9594786a760
1 /*
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
42 * $DragonFly: src/sys/vm/vnode_pager.c,v 1.43 2008/06/19 23:27:39 dillon Exp $
46 * Page to/from files (vnodes).
50 * TODO:
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/buf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/conf.h>
64 #include <sys/sfbuf.h>
66 #include <vm/vm.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_map.h>
71 #include <vm/vnode_pager.h>
72 #include <vm/vm_extern.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
77 static void vnode_pager_dealloc (vm_object_t);
78 static int vnode_pager_getpage (vm_object_t, vm_page_t *, int);
79 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
80 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t);
82 struct pagerops vnodepagerops = {
83 vnode_pager_alloc,
84 vnode_pager_dealloc,
85 vnode_pager_getpage,
86 vnode_pager_putpages,
87 vnode_pager_haspage
90 static struct krate vbadrate = { 1 };
91 static struct krate vresrate = { 1 };
93 int vnode_pbuf_freecnt = -1; /* start out unlimited */
96 * Allocate (or lookup) pager for a vnode.
97 * Handle is a vnode pointer.
99 vm_object_t
100 vnode_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
102 vm_object_t object;
103 struct vnode *vp;
106 * Pageout to vnode, no can do yet.
108 if (handle == NULL)
109 return (NULL);
112 * XXX hack - This initialization should be put somewhere else.
114 if (vnode_pbuf_freecnt < 0) {
115 vnode_pbuf_freecnt = nswbuf / 2 + 1;
118 vp = (struct vnode *) handle;
121 * Prevent race condition when allocating the object. This
122 * can happen with NFS vnodes since the nfsnode isn't locked.
124 while (vp->v_flag & VOLOCK) {
125 vsetflags(vp, VOWANT);
126 tsleep(vp, 0, "vnpobj", 0);
128 vsetflags(vp, VOLOCK);
131 * If the object is being terminated, wait for it to
132 * go away.
134 while (((object = vp->v_object) != NULL) &&
135 (object->flags & OBJ_DEAD)) {
136 vm_object_dead_sleep(object, "vadead");
139 if (vp->v_sysref.refcnt <= 0)
140 panic("vnode_pager_alloc: no vnode reference");
142 if (object == NULL) {
144 * And an object of the appropriate size
146 object = vm_object_allocate(OBJT_VNODE,
147 OFF_TO_IDX(round_page(size)));
148 object->flags = 0;
149 object->handle = handle;
150 vp->v_object = object;
151 vp->v_filesize = size;
152 } else {
153 object->ref_count++;
154 if (vp->v_filesize != size) {
155 kprintf("vnode_pager_alloc: Warning, filesize "
156 "mismatch %lld/%lld\n",
157 (long long)vp->v_filesize,
158 (long long)size);
161 vref(vp);
163 vclrflags(vp, VOLOCK);
164 if (vp->v_flag & VOWANT) {
165 vclrflags(vp, VOWANT);
166 wakeup(vp);
168 return (object);
171 static void
172 vnode_pager_dealloc(vm_object_t object)
174 struct vnode *vp = object->handle;
176 if (vp == NULL)
177 panic("vnode_pager_dealloc: pager already dealloced");
179 vm_object_pip_wait(object, "vnpdea");
181 object->handle = NULL;
182 object->type = OBJT_DEAD;
183 vp->v_object = NULL;
184 vp->v_filesize = NOOFFSET;
185 vclrflags(vp, VTEXT | VOBJBUF);
189 * Return whether the vnode pager has the requested page. Return the
190 * number of disk-contiguous pages before and after the requested page,
191 * not including the requested page.
193 static boolean_t
194 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex)
196 struct vnode *vp = object->handle;
197 off_t loffset;
198 off_t doffset;
199 int voff;
200 int bsize;
201 int error;
204 * If no vp or vp is doomed or marked transparent to VM, we do not
205 * have the page.
207 if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
208 return FALSE;
211 * If filesystem no longer mounted or offset beyond end of file we do
212 * not have the page.
214 loffset = IDX_TO_OFF(pindex);
216 if (vp->v_mount == NULL || loffset >= vp->v_filesize)
217 return FALSE;
219 bsize = vp->v_mount->mnt_stat.f_iosize;
220 voff = loffset % bsize;
223 * XXX
225 * BMAP returns byte counts before and after, where after
226 * is inclusive of the base page. haspage must return page
227 * counts before and after where after does not include the
228 * base page.
230 * BMAP is allowed to return a *after of 0 for backwards
231 * compatibility. The base page is still considered valid if
232 * no error is returned.
234 error = VOP_BMAP(vp, loffset - voff, &doffset, NULL, NULL, 0);
235 if (error)
236 return TRUE;
237 if (doffset == NOOFFSET)
238 return FALSE;
239 return TRUE;
243 * Lets the VM system know about a change in size for a file.
244 * We adjust our own internal size and flush any cached pages in
245 * the associated object that are affected by the size change.
247 * NOTE: This routine may be invoked as a result of a pager put
248 * operation (possibly at object termination time), so we must be careful.
250 * NOTE: vp->v_filesize is initialized to NOOFFSET (-1), be sure that
251 * we do not blow up on the case. nsize will always be >= 0, however.
253 void
254 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
256 vm_pindex_t nobjsize;
257 vm_pindex_t oobjsize;
258 vm_object_t object = vp->v_object;
260 if (object == NULL)
261 return;
264 * Hasn't changed size
266 if (nsize == vp->v_filesize)
267 return;
270 * Has changed size. Adjust the VM object's size and v_filesize
271 * before we start scanning pages to prevent new pages from being
272 * allocated during the scan.
274 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
275 oobjsize = object->size;
276 object->size = nobjsize;
279 * File has shrunk. Toss any cached pages beyond the new EOF.
281 if (nsize < vp->v_filesize) {
282 vp->v_filesize = nsize;
283 if (nobjsize < oobjsize) {
284 vm_object_page_remove(object, nobjsize, oobjsize,
285 FALSE);
288 * This gets rid of garbage at the end of a page that is now
289 * only partially backed by the vnode. Since we are setting
290 * the entire page valid & clean after we are done we have
291 * to be sure that the portion of the page within the file
292 * bounds is already valid. If it isn't then making it
293 * valid would create a corrupt block.
295 if (nsize & PAGE_MASK) {
296 vm_offset_t kva;
297 vm_page_t m;
299 do {
300 m = vm_page_lookup(object, OFF_TO_IDX(nsize));
301 } while (m && vm_page_sleep_busy(m, TRUE, "vsetsz"));
303 if (m && m->valid) {
304 int base = (int)nsize & PAGE_MASK;
305 int size = PAGE_SIZE - base;
306 struct sf_buf *sf;
309 * Clear out partial-page garbage in case
310 * the page has been mapped.
312 * This is byte aligned.
314 vm_page_busy(m);
315 sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
316 kva = sf_buf_kva(sf);
317 bzero((caddr_t)kva + base, size);
318 sf_buf_free(sf);
321 * XXX work around SMP data integrity race
322 * by unmapping the page from user processes.
323 * The garbage we just cleared may be mapped
324 * to a user process running on another cpu
325 * and this code is not running through normal
326 * I/O channels which handle SMP issues for
327 * us, so unmap page to synchronize all cpus.
329 * XXX should vm_pager_unmap_page() have
330 * dealt with this?
332 vm_page_protect(m, VM_PROT_NONE);
335 * Clear out partial-page dirty bits. This
336 * has the side effect of setting the valid
337 * bits, but that is ok. There are a bunch
338 * of places in the VM system where we expected
339 * m->dirty == VM_PAGE_BITS_ALL. The file EOF
340 * case is one of them. If the page is still
341 * partially dirty, make it fully dirty.
343 * NOTE: We do not clear out the valid
344 * bits. This would prevent bogus_page
345 * replacement from working properly.
347 * NOTE: We do not want to clear the dirty
348 * bit for a partial DEV_BSIZE'd truncation!
349 * This is DEV_BSIZE aligned!
351 vm_page_clear_dirty_beg_nonincl(m, base, size);
352 if (m->dirty != 0)
353 m->dirty = VM_PAGE_BITS_ALL;
354 vm_page_wakeup(m);
357 } else {
358 vp->v_filesize = nsize;
363 * Release a page busied for a getpages operation. The page may have become
364 * wired (typically due to being used by the buffer cache) or otherwise been
365 * soft-busied and cannot be freed in that case. A held page can still be
366 * freed.
368 void
369 vnode_pager_freepage(vm_page_t m)
371 if (m->busy || m->wire_count) {
372 vm_page_activate(m);
373 vm_page_wakeup(m);
374 } else {
375 vm_page_free(m);
380 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
381 * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
382 * vnode_pager_generic_getpages() to implement the previous behaviour.
384 * All other FS's should use the bypass to get to the local media
385 * backing vp's VOP_GETPAGES.
387 static int
388 vnode_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
390 int rtval;
391 struct vnode *vp;
393 vp = object->handle;
394 rtval = VOP_GETPAGES(vp, mpp, PAGE_SIZE, 0, 0, seqaccess);
395 if (rtval == EOPNOTSUPP)
396 panic("vnode_pager: vfs's must implement vop_getpages\n");
397 return rtval;
401 * This is now called from local media FS's to operate against their
402 * own vnodes if they fail to implement VOP_GETPAGES.
404 * With all the caching local media devices do these days there is really
405 * very little point to attempting to restrict the I/O size to contiguous
406 * blocks on-disk, especially if our caller thinks we need all the specified
407 * pages. Just construct and issue a READ.
410 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *mpp, int bytecount,
411 int reqpage, int seqaccess)
413 struct iovec aiov;
414 struct uio auio;
415 off_t foff;
416 int error;
417 int count;
418 int i;
419 int ioflags;
422 * Do not do anything if the vnode is bad.
424 if (vp->v_mount == NULL)
425 return VM_PAGER_BAD;
428 * Calculate the number of pages. Since we are paging in whole
429 * pages, adjust bytecount to be an integral multiple of the page
430 * size. It will be clipped to the file EOF later on.
432 bytecount = round_page(bytecount);
433 count = bytecount / PAGE_SIZE;
436 * We could check m[reqpage]->valid here and shortcut the operation,
437 * but doing so breaks read-ahead. Instead assume that the VM
438 * system has already done at least the check, don't worry about
439 * any races, and issue the VOP_READ to allow read-ahead to function.
441 * This keeps the pipeline full for I/O bound sequentially scanned
442 * mmap()'s
444 /* don't shortcut */
447 * Discard pages past the file EOF. If the requested page is past
448 * the file EOF we just leave its valid bits set to 0, the caller
449 * expects to maintain ownership of the requested page. If the
450 * entire range is past file EOF discard everything and generate
451 * a pagein error.
453 foff = IDX_TO_OFF(mpp[0]->pindex);
454 if (foff >= vp->v_filesize) {
455 for (i = 0; i < count; i++) {
456 if (i != reqpage)
457 vnode_pager_freepage(mpp[i]);
459 return VM_PAGER_ERROR;
462 if (foff + bytecount > vp->v_filesize) {
463 bytecount = vp->v_filesize - foff;
464 i = round_page(bytecount) / PAGE_SIZE;
465 while (count > i) {
466 --count;
467 if (count != reqpage)
468 vnode_pager_freepage(mpp[count]);
473 * The size of the transfer is bytecount. bytecount will be an
474 * integral multiple of the page size unless it has been clipped
475 * to the file EOF. The transfer cannot exceed the file EOF.
477 * When dealing with real devices we must round-up to the device
478 * sector size.
480 if (vp->v_type == VBLK || vp->v_type == VCHR) {
481 int secmask = vp->v_rdev->si_bsize_phys - 1;
482 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
483 bytecount = (bytecount + secmask) & ~secmask;
487 * Severe hack to avoid deadlocks with the buffer cache
489 for (i = 0; i < count; ++i) {
490 vm_page_t mt = mpp[i];
492 vm_page_io_start(mt);
493 vm_page_wakeup(mt);
497 * Issue the I/O with some read-ahead if bytecount > PAGE_SIZE
499 ioflags = IO_VMIO;
500 if (seqaccess)
501 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
503 aiov.iov_base = NULL;
504 aiov.iov_len = bytecount;
505 auio.uio_iov = &aiov;
506 auio.uio_iovcnt = 1;
507 auio.uio_offset = foff;
508 auio.uio_segflg = UIO_NOCOPY;
509 auio.uio_rw = UIO_READ;
510 auio.uio_resid = bytecount;
511 auio.uio_td = NULL;
512 mycpu->gd_cnt.v_vnodein++;
513 mycpu->gd_cnt.v_vnodepgsin += count;
515 error = VOP_READ(vp, &auio, ioflags, proc0.p_ucred);
518 * Severe hack to avoid deadlocks with the buffer cache
520 for (i = 0; i < count; ++i) {
521 vm_page_t mt = mpp[i];
523 while (vm_page_sleep_busy(mt, FALSE, "getpgs"))
525 vm_page_busy(mt);
526 vm_page_io_finish(mt);
530 * Calculate the actual number of bytes read and clean up the
531 * page list.
533 bytecount -= auio.uio_resid;
535 for (i = 0; i < count; ++i) {
536 vm_page_t mt = mpp[i];
538 if (i != reqpage) {
539 if (error == 0 && mt->valid) {
540 if (mt->flags & PG_WANTED)
541 vm_page_activate(mt);
542 else
543 vm_page_deactivate(mt);
544 vm_page_wakeup(mt);
545 } else {
546 vnode_pager_freepage(mt);
548 } else if (mt->valid == 0) {
549 if (error == 0) {
550 kprintf("page failed but no I/O error page %p object %p pindex %d\n", mt, mt->object, (int) mt->pindex);
551 /* whoops, something happened */
552 error = EINVAL;
554 } else if (mt->valid != VM_PAGE_BITS_ALL) {
556 * Zero-extend the requested page if necessary (if
557 * the filesystem is using a small block size).
559 vm_page_zero_invalid(mt, TRUE);
562 if (error) {
563 kprintf("vnode_pager_getpage: I/O read error\n");
565 return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
569 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
570 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
571 * vnode_pager_generic_putpages() to implement the previous behaviour.
573 * Caller has already cleared the pmap modified bits, if any.
575 * All other FS's should use the bypass to get to the local media
576 * backing vp's VOP_PUTPAGES.
578 static void
579 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
580 boolean_t sync, int *rtvals)
582 int rtval;
583 struct vnode *vp;
584 int bytes = count * PAGE_SIZE;
587 * Force synchronous operation if we are extremely low on memory
588 * to prevent a low-memory deadlock. VOP operations often need to
589 * allocate more memory to initiate the I/O ( i.e. do a BMAP
590 * operation ). The swapper handles the case by limiting the amount
591 * of asynchronous I/O, but that sort of solution doesn't scale well
592 * for the vnode pager without a lot of work.
594 * Also, the backing vnode's iodone routine may not wake the pageout
595 * daemon up. This should be probably be addressed XXX.
598 if ((vmstats.v_free_count + vmstats.v_cache_count) < vmstats.v_pageout_free_min)
599 sync |= OBJPC_SYNC;
602 * Call device-specific putpages function
604 vp = object->handle;
605 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
606 if (rtval == EOPNOTSUPP) {
607 kprintf("vnode_pager: *** WARNING *** stale FS putpages\n");
608 rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
614 * This is now called from local media FS's to operate against their
615 * own vnodes if they fail to implement VOP_PUTPAGES.
617 * This is typically called indirectly via the pageout daemon and
618 * clustering has already typically occured, so in general we ask the
619 * underlying filesystem to write the data out asynchronously rather
620 * then delayed.
623 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
624 int flags, int *rtvals)
626 int i;
627 vm_object_t object;
628 int maxsize, ncount, count;
629 vm_ooffset_t poffset;
630 struct uio auio;
631 struct iovec aiov;
632 int error;
633 int ioflags;
635 object = vp->v_object;
636 count = bytecount / PAGE_SIZE;
638 for (i = 0; i < count; i++)
639 rtvals[i] = VM_PAGER_AGAIN;
641 if ((int) m[0]->pindex < 0) {
642 kprintf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
643 (long)m[0]->pindex, m[0]->dirty);
644 rtvals[0] = VM_PAGER_BAD;
645 return VM_PAGER_BAD;
648 maxsize = count * PAGE_SIZE;
649 ncount = count;
651 poffset = IDX_TO_OFF(m[0]->pindex);
654 * If the page-aligned write is larger then the actual file we
655 * have to invalidate pages occuring beyond the file EOF.
657 * If the file EOF resides in the middle of a page we still clear
658 * all of that page's dirty bits later on. If we didn't it would
659 * endlessly re-write.
661 * We do not under any circumstances truncate the valid bits, as
662 * this will screw up bogus page replacement.
664 * The caller has already read-protected the pages. The VFS must
665 * use the buffer cache to wrap the pages. The pages might not
666 * be immediately flushed by the buffer cache but once under its
667 * control the pages themselves can wind up being marked clean
668 * and their covering buffer cache buffer can be marked dirty.
670 if (poffset + maxsize > vp->v_filesize) {
671 if (poffset < vp->v_filesize) {
672 maxsize = vp->v_filesize - poffset;
673 ncount = btoc(maxsize);
674 } else {
675 maxsize = 0;
676 ncount = 0;
678 if (ncount < count) {
679 for (i = ncount; i < count; i++) {
680 rtvals[i] = VM_PAGER_BAD;
686 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
687 * rather then a bdwrite() to prevent paging I/O from saturating
688 * the buffer cache. Dummy-up the sequential heuristic to cause
689 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set,
690 * the system decides how to cluster.
692 ioflags = IO_VMIO;
693 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
694 ioflags |= IO_SYNC;
695 else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
696 ioflags |= IO_ASYNC;
697 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
698 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
700 aiov.iov_base = (caddr_t) 0;
701 aiov.iov_len = maxsize;
702 auio.uio_iov = &aiov;
703 auio.uio_iovcnt = 1;
704 auio.uio_offset = poffset;
705 auio.uio_segflg = UIO_NOCOPY;
706 auio.uio_rw = UIO_WRITE;
707 auio.uio_resid = maxsize;
708 auio.uio_td = NULL;
709 error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
710 mycpu->gd_cnt.v_vnodeout++;
711 mycpu->gd_cnt.v_vnodepgsout += ncount;
713 if (error) {
714 krateprintf(&vbadrate,
715 "vnode_pager_putpages: I/O error %d\n", error);
717 if (auio.uio_resid) {
718 krateprintf(&vresrate,
719 "vnode_pager_putpages: residual I/O %zd at %lu\n",
720 auio.uio_resid, (u_long)m[0]->pindex);
722 if (error == 0) {
723 for (i = 0; i < ncount; i++) {
724 rtvals[i] = VM_PAGER_OK;
725 vm_page_undirty(m[i]);
728 return rtvals[0];
731 struct vnode *
732 vnode_pager_lock(vm_object_t object)
734 struct thread *td = curthread; /* XXX */
735 int error;
737 for (; object != NULL; object = object->backing_object) {
738 if (object->type != OBJT_VNODE)
739 continue;
740 if (object->flags & OBJ_DEAD)
741 return NULL;
743 for (;;) {
744 struct vnode *vp = object->handle;
745 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
746 if (error == 0) {
747 if (object->handle != vp) {
748 vput(vp);
749 continue;
751 return (vp);
753 if ((object->flags & OBJ_DEAD) ||
754 (object->type != OBJT_VNODE)) {
755 return NULL;
757 kprintf("vnode_pager_lock: vp %p error %d lockstatus %d, retrying\n", vp, error, lockstatus(&vp->v_lock, td));
758 tsleep(object->handle, 0, "vnpgrl", hz);
761 return NULL;