Remove sys/mplock2.h from more files.
[dragonfly.git] / sys / vm / vm_page.c
blobddb6fa029c7625e142da622711c1c1c7864465fd
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
39 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40 * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
70 * Resident memory management module. The module manipulates 'VM pages'.
71 * A VM page is the core building block for memory management.
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/kernel.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
95 #include <machine/md_var.h>
97 #include <vm/vm_page2.h>
99 #define VMACTION_HSIZE 256
100 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
107 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
109 LIST_HEAD(vm_page_action_list, vm_page_action);
110 struct vm_page_action_list action_list[VMACTION_HSIZE];
111 static volatile int vm_pages_waiting;
114 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
115 vm_pindex_t, pindex);
117 static void
118 vm_page_queue_init(void)
120 int i;
122 for (i = 0; i < PQ_L2_SIZE; i++)
123 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
124 for (i = 0; i < PQ_L2_SIZE; i++)
125 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
127 vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
128 vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
129 vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
130 /* PQ_NONE has no queue */
132 for (i = 0; i < PQ_COUNT; i++)
133 TAILQ_INIT(&vm_page_queues[i].pl);
135 for (i = 0; i < VMACTION_HSIZE; i++)
136 LIST_INIT(&action_list[i]);
140 * note: place in initialized data section? Is this necessary?
142 long first_page = 0;
143 int vm_page_array_size = 0;
144 int vm_page_zero_count = 0;
145 vm_page_t vm_page_array = 0;
148 * (low level boot)
150 * Sets the page size, perhaps based upon the memory size.
151 * Must be called before any use of page-size dependent functions.
153 void
154 vm_set_page_size(void)
156 if (vmstats.v_page_size == 0)
157 vmstats.v_page_size = PAGE_SIZE;
158 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
159 panic("vm_set_page_size: page size not a power of two");
163 * (low level boot)
165 * Add a new page to the freelist for use by the system. New pages
166 * are added to both the head and tail of the associated free page
167 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
168 * requests pull 'recent' adds (higher physical addresses) first.
170 * Must be called in a critical section.
172 vm_page_t
173 vm_add_new_page(vm_paddr_t pa)
175 struct vpgqueues *vpq;
176 vm_page_t m;
178 ++vmstats.v_page_count;
179 ++vmstats.v_free_count;
180 m = PHYS_TO_VM_PAGE(pa);
181 m->phys_addr = pa;
182 m->flags = 0;
183 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
184 m->queue = m->pc + PQ_FREE;
185 KKASSERT(m->dirty == 0);
187 vpq = &vm_page_queues[m->queue];
188 if (vpq->flipflop)
189 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
190 else
191 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
192 vpq->flipflop = 1 - vpq->flipflop;
194 vm_page_queues[m->queue].lcnt++;
195 return (m);
199 * (low level boot)
201 * Initializes the resident memory module.
203 * Preallocates memory for critical VM structures and arrays prior to
204 * kernel_map becoming available.
206 * Memory is allocated from (virtual2_start, virtual2_end) if available,
207 * otherwise memory is allocated from (virtual_start, virtual_end).
209 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
210 * large enough to hold vm_page_array & other structures for machines with
211 * large amounts of ram, so we want to use virtual2* when available.
213 void
214 vm_page_startup(void)
216 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
217 vm_offset_t mapped;
218 vm_size_t npages;
219 vm_paddr_t page_range;
220 vm_paddr_t new_end;
221 int i;
222 vm_paddr_t pa;
223 int nblocks;
224 vm_paddr_t last_pa;
225 vm_paddr_t end;
226 vm_paddr_t biggestone, biggestsize;
227 vm_paddr_t total;
229 total = 0;
230 biggestsize = 0;
231 biggestone = 0;
232 nblocks = 0;
233 vaddr = round_page(vaddr);
235 for (i = 0; phys_avail[i + 1]; i += 2) {
236 phys_avail[i] = round_page64(phys_avail[i]);
237 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
240 for (i = 0; phys_avail[i + 1]; i += 2) {
241 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
243 if (size > biggestsize) {
244 biggestone = i;
245 biggestsize = size;
247 ++nblocks;
248 total += size;
251 end = phys_avail[biggestone+1];
252 end = trunc_page(end);
255 * Initialize the queue headers for the free queue, the active queue
256 * and the inactive queue.
259 vm_page_queue_init();
261 /* VKERNELs don't support minidumps and as such don't need vm_page_dump */
262 #if !defined(_KERNEL_VIRTUAL)
264 * Allocate a bitmap to indicate that a random physical page
265 * needs to be included in a minidump.
267 * The amd64 port needs this to indicate which direct map pages
268 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
270 * However, i386 still needs this workspace internally within the
271 * minidump code. In theory, they are not needed on i386, but are
272 * included should the sf_buf code decide to use them.
274 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
275 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
276 end -= vm_page_dump_size;
277 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
278 VM_PROT_READ | VM_PROT_WRITE);
279 bzero((void *)vm_page_dump, vm_page_dump_size);
280 #endif
283 * Compute the number of pages of memory that will be available for
284 * use (taking into account the overhead of a page structure per
285 * page).
287 first_page = phys_avail[0] / PAGE_SIZE;
288 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
289 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
292 * Initialize the mem entry structures now, and put them in the free
293 * queue.
295 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
296 mapped = pmap_map(&vaddr, new_end, end,
297 VM_PROT_READ | VM_PROT_WRITE);
298 vm_page_array = (vm_page_t)mapped;
300 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
302 * since pmap_map on amd64 returns stuff out of a direct-map region,
303 * we have to manually add these pages to the minidump tracking so
304 * that they can be dumped, including the vm_page_array.
306 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
307 dump_add_page(pa);
308 #endif
311 * Clear all of the page structures
313 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
314 vm_page_array_size = page_range;
317 * Construct the free queue(s) in ascending order (by physical
318 * address) so that the first 16MB of physical memory is allocated
319 * last rather than first. On large-memory machines, this avoids
320 * the exhaustion of low physical memory before isa_dmainit has run.
322 vmstats.v_page_count = 0;
323 vmstats.v_free_count = 0;
324 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
325 pa = phys_avail[i];
326 if (i == biggestone)
327 last_pa = new_end;
328 else
329 last_pa = phys_avail[i + 1];
330 while (pa < last_pa && npages-- > 0) {
331 vm_add_new_page(pa);
332 pa += PAGE_SIZE;
335 if (virtual2_start)
336 virtual2_start = vaddr;
337 else
338 virtual_start = vaddr;
342 * Scan comparison function for Red-Black tree scans. An inclusive
343 * (start,end) is expected. Other fields are not used.
346 rb_vm_page_scancmp(struct vm_page *p, void *data)
348 struct rb_vm_page_scan_info *info = data;
350 if (p->pindex < info->start_pindex)
351 return(-1);
352 if (p->pindex > info->end_pindex)
353 return(1);
354 return(0);
358 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
360 if (p1->pindex < p2->pindex)
361 return(-1);
362 if (p1->pindex > p2->pindex)
363 return(1);
364 return(0);
368 * Holding a page keeps it from being reused. Other parts of the system
369 * can still disassociate the page from its current object and free it, or
370 * perform read or write I/O on it and/or otherwise manipulate the page,
371 * but if the page is held the VM system will leave the page and its data
372 * intact and not reuse the page for other purposes until the last hold
373 * reference is released. (see vm_page_wire() if you want to prevent the
374 * page from being disassociated from its object too).
376 * The caller must hold vm_token.
378 * The caller must still validate the contents of the page and, if necessary,
379 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
380 * before manipulating the page.
382 void
383 vm_page_hold(vm_page_t m)
385 ASSERT_LWKT_TOKEN_HELD(&vm_token);
386 ++m->hold_count;
390 * The opposite of vm_page_hold(). A page can be freed while being held,
391 * which places it on the PQ_HOLD queue. We must call vm_page_free_toq()
392 * in this case to actually free it once the hold count drops to 0.
394 * The caller must hold vm_token if non-blocking operation is desired,
395 * but otherwise does not need to.
397 void
398 vm_page_unhold(vm_page_t m)
400 lwkt_gettoken(&vm_token);
401 --m->hold_count;
402 KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
403 if (m->hold_count == 0 && m->queue == PQ_HOLD) {
404 vm_page_busy(m);
405 vm_page_free_toq(m);
407 lwkt_reltoken(&vm_token);
411 * Inserts the given vm_page into the object and object list.
413 * The pagetables are not updated but will presumably fault the page
414 * in if necessary, or if a kernel page the caller will at some point
415 * enter the page into the kernel's pmap. We are not allowed to block
416 * here so we *can't* do this anyway.
418 * This routine may not block.
419 * This routine must be called with the vm_token held.
420 * This routine must be called with a critical section held.
422 void
423 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
425 ASSERT_LWKT_TOKEN_HELD(&vm_token);
426 if (m->object != NULL)
427 panic("vm_page_insert: already inserted");
430 * Record the object/offset pair in this page
432 m->object = object;
433 m->pindex = pindex;
436 * Insert it into the object.
438 vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
439 object->generation++;
442 * show that the object has one more resident page.
444 object->resident_page_count++;
447 * Add the pv_list_cout of the page when its inserted in
448 * the object
450 object->agg_pv_list_count = object->agg_pv_list_count + m->md.pv_list_count;
453 * Since we are inserting a new and possibly dirty page,
454 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
456 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
457 vm_object_set_writeable_dirty(object);
460 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
462 swap_pager_page_inserted(m);
466 * Removes the given vm_page_t from the global (object,index) hash table
467 * and from the object's memq.
469 * The underlying pmap entry (if any) is NOT removed here.
470 * This routine may not block.
472 * The page must be BUSY and will remain BUSY on return.
473 * No other requirements.
475 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
476 * it busy.
478 void
479 vm_page_remove(vm_page_t m)
481 vm_object_t object;
483 lwkt_gettoken(&vm_token);
484 if (m->object == NULL) {
485 lwkt_reltoken(&vm_token);
486 return;
489 if ((m->flags & PG_BUSY) == 0)
490 panic("vm_page_remove: page not busy");
492 object = m->object;
495 * Remove the page from the object and update the object.
497 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
498 object->resident_page_count--;
499 object->agg_pv_list_count = object->agg_pv_list_count - m->md.pv_list_count;
500 object->generation++;
501 m->object = NULL;
503 lwkt_reltoken(&vm_token);
507 * Locate and return the page at (object, pindex), or NULL if the
508 * page could not be found.
510 * The caller must hold vm_token.
512 vm_page_t
513 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
515 vm_page_t m;
518 * Search the hash table for this object/offset pair
520 ASSERT_LWKT_TOKEN_HELD(&vm_token);
521 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
522 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
523 return(m);
527 * vm_page_rename()
529 * Move the given memory entry from its current object to the specified
530 * target object/offset.
532 * The object must be locked.
533 * This routine may not block.
535 * Note: This routine will raise itself to splvm(), the caller need not.
537 * Note: Swap associated with the page must be invalidated by the move. We
538 * have to do this for several reasons: (1) we aren't freeing the
539 * page, (2) we are dirtying the page, (3) the VM system is probably
540 * moving the page from object A to B, and will then later move
541 * the backing store from A to B and we can't have a conflict.
543 * Note: We *always* dirty the page. It is necessary both for the
544 * fact that we moved it, and because we may be invalidating
545 * swap. If the page is on the cache, we have to deactivate it
546 * or vm_page_dirty() will panic. Dirty pages are not allowed
547 * on the cache.
549 void
550 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
552 lwkt_gettoken(&vm_token);
553 vm_page_remove(m);
554 vm_page_insert(m, new_object, new_pindex);
555 if (m->queue - m->pc == PQ_CACHE)
556 vm_page_deactivate(m);
557 vm_page_dirty(m);
558 vm_page_wakeup(m);
559 lwkt_reltoken(&vm_token);
563 * vm_page_unqueue() without any wakeup. This routine is used when a page
564 * is being moved between queues or otherwise is to remain BUSYied by the
565 * caller.
567 * The caller must hold vm_token
568 * This routine may not block.
570 void
571 vm_page_unqueue_nowakeup(vm_page_t m)
573 int queue = m->queue;
574 struct vpgqueues *pq;
576 ASSERT_LWKT_TOKEN_HELD(&vm_token);
577 if (queue != PQ_NONE) {
578 pq = &vm_page_queues[queue];
579 m->queue = PQ_NONE;
580 TAILQ_REMOVE(&pq->pl, m, pageq);
581 (*pq->cnt)--;
582 pq->lcnt--;
587 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
588 * if necessary.
590 * The caller must hold vm_token
591 * This routine may not block.
593 void
594 vm_page_unqueue(vm_page_t m)
596 int queue = m->queue;
597 struct vpgqueues *pq;
599 ASSERT_LWKT_TOKEN_HELD(&vm_token);
600 if (queue != PQ_NONE) {
601 m->queue = PQ_NONE;
602 pq = &vm_page_queues[queue];
603 TAILQ_REMOVE(&pq->pl, m, pageq);
604 (*pq->cnt)--;
605 pq->lcnt--;
606 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
607 pagedaemon_wakeup();
612 * vm_page_list_find()
614 * Find a page on the specified queue with color optimization.
616 * The page coloring optimization attempts to locate a page that does
617 * not overload other nearby pages in the object in the cpu's L1 or L2
618 * caches. We need this optimization because cpu caches tend to be
619 * physical caches, while object spaces tend to be virtual.
621 * Must be called with vm_token held.
622 * This routine may not block.
624 * Note that this routine is carefully inlined. A non-inlined version
625 * is available for outside callers but the only critical path is
626 * from within this source file.
628 static __inline
629 vm_page_t
630 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
632 vm_page_t m;
634 if (prefer_zero)
635 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
636 else
637 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
638 if (m == NULL)
639 m = _vm_page_list_find2(basequeue, index);
640 return(m);
643 static vm_page_t
644 _vm_page_list_find2(int basequeue, int index)
646 int i;
647 vm_page_t m = NULL;
648 struct vpgqueues *pq;
650 pq = &vm_page_queues[basequeue];
653 * Note that for the first loop, index+i and index-i wind up at the
654 * same place. Even though this is not totally optimal, we've already
655 * blown it by missing the cache case so we do not care.
658 for(i = PQ_L2_SIZE / 2; i > 0; --i) {
659 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
660 break;
662 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
663 break;
665 return(m);
669 * Must be called with vm_token held if the caller desired non-blocking
670 * operation and a stable result.
672 vm_page_t
673 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
675 return(_vm_page_list_find(basequeue, index, prefer_zero));
679 * Find a page on the cache queue with color optimization. As pages
680 * might be found, but not applicable, they are deactivated. This
681 * keeps us from using potentially busy cached pages.
683 * This routine may not block.
684 * Must be called with vm_token held.
686 vm_page_t
687 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
689 vm_page_t m;
691 ASSERT_LWKT_TOKEN_HELD(&vm_token);
692 while (TRUE) {
693 m = _vm_page_list_find(
694 PQ_CACHE,
695 (pindex + object->pg_color) & PQ_L2_MASK,
696 FALSE
698 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
699 m->hold_count || m->wire_count)) {
700 /* cache page found busy */
701 vm_page_deactivate(m);
702 #ifdef INVARIANTS
703 kprintf("Warning: busy page %p found in cache\n", m);
704 #endif
705 continue;
707 return m;
709 /* not reached */
713 * Find a free or zero page, with specified preference. We attempt to
714 * inline the nominal case and fall back to _vm_page_select_free()
715 * otherwise.
717 * This routine must be called with a critical section held.
718 * This routine may not block.
720 static __inline vm_page_t
721 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
723 vm_page_t m;
725 m = _vm_page_list_find(
726 PQ_FREE,
727 (pindex + object->pg_color) & PQ_L2_MASK,
728 prefer_zero
730 return(m);
734 * vm_page_alloc()
736 * Allocate and return a memory cell associated with this VM object/offset
737 * pair.
739 * page_req classes:
741 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
742 * VM_ALLOC_QUICK like normal but cannot use cache
743 * VM_ALLOC_SYSTEM greater free drain
744 * VM_ALLOC_INTERRUPT allow free list to be completely drained
745 * VM_ALLOC_ZERO advisory request for pre-zero'd page
747 * The object must be locked.
748 * This routine may not block.
749 * The returned page will be marked PG_BUSY
751 * Additional special handling is required when called from an interrupt
752 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
753 * in this case.
755 vm_page_t
756 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
758 vm_page_t m = NULL;
760 lwkt_gettoken(&vm_token);
762 KKASSERT(object != NULL);
763 KASSERT(!vm_page_lookup(object, pindex),
764 ("vm_page_alloc: page already allocated"));
765 KKASSERT(page_req &
766 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
767 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
770 * Certain system threads (pageout daemon, buf_daemon's) are
771 * allowed to eat deeper into the free page list.
773 if (curthread->td_flags & TDF_SYSTHREAD)
774 page_req |= VM_ALLOC_SYSTEM;
776 loop:
777 if (vmstats.v_free_count > vmstats.v_free_reserved ||
778 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
779 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
780 vmstats.v_free_count > vmstats.v_interrupt_free_min)
783 * The free queue has sufficient free pages to take one out.
785 if (page_req & VM_ALLOC_ZERO)
786 m = vm_page_select_free(object, pindex, TRUE);
787 else
788 m = vm_page_select_free(object, pindex, FALSE);
789 } else if (page_req & VM_ALLOC_NORMAL) {
791 * Allocatable from the cache (non-interrupt only). On
792 * success, we must free the page and try again, thus
793 * ensuring that vmstats.v_*_free_min counters are replenished.
795 #ifdef INVARIANTS
796 if (curthread->td_preempted) {
797 kprintf("vm_page_alloc(): warning, attempt to allocate"
798 " cache page from preempting interrupt\n");
799 m = NULL;
800 } else {
801 m = vm_page_select_cache(object, pindex);
803 #else
804 m = vm_page_select_cache(object, pindex);
805 #endif
807 * On success move the page into the free queue and loop.
809 if (m != NULL) {
810 KASSERT(m->dirty == 0,
811 ("Found dirty cache page %p", m));
812 vm_page_busy(m);
813 vm_page_protect(m, VM_PROT_NONE);
814 vm_page_free(m);
815 goto loop;
819 * On failure return NULL
821 lwkt_reltoken(&vm_token);
822 #if defined(DIAGNOSTIC)
823 if (vmstats.v_cache_count > 0)
824 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
825 #endif
826 vm_pageout_deficit++;
827 pagedaemon_wakeup();
828 return (NULL);
829 } else {
831 * No pages available, wakeup the pageout daemon and give up.
833 lwkt_reltoken(&vm_token);
834 vm_pageout_deficit++;
835 pagedaemon_wakeup();
836 return (NULL);
840 * Good page found. The page has not yet been busied. We are in
841 * a critical section.
843 KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
844 KASSERT(m->dirty == 0,
845 ("vm_page_alloc: free/cache page %p was dirty", m));
848 * Remove from free queue
850 vm_page_unqueue_nowakeup(m);
853 * Initialize structure. Only the PG_ZERO flag is inherited. Set
854 * the page PG_BUSY
856 if (m->flags & PG_ZERO) {
857 vm_page_zero_count--;
858 m->flags = PG_ZERO | PG_BUSY;
859 } else {
860 m->flags = PG_BUSY;
862 m->wire_count = 0;
863 m->hold_count = 0;
864 m->act_count = 0;
865 m->busy = 0;
866 m->valid = 0;
869 * vm_page_insert() is safe while holding vm_token. Note also that
870 * inserting a page here does not insert it into the pmap (which
871 * could cause us to block allocating memory). We cannot block
872 * anywhere.
874 vm_page_insert(m, object, pindex);
877 * Don't wakeup too often - wakeup the pageout daemon when
878 * we would be nearly out of memory.
880 pagedaemon_wakeup();
882 lwkt_reltoken(&vm_token);
885 * A PG_BUSY page is returned.
887 return (m);
891 * Wait for sufficient free memory for nominal heavy memory use kernel
892 * operations.
894 void
895 vm_wait_nominal(void)
897 while (vm_page_count_min(0))
898 vm_wait(0);
902 * Test if vm_wait_nominal() would block.
905 vm_test_nominal(void)
907 if (vm_page_count_min(0))
908 return(1);
909 return(0);
913 * Block until free pages are available for allocation, called in various
914 * places before memory allocations.
916 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
917 * more generous then that.
919 void
920 vm_wait(int timo)
923 * never wait forever
925 if (timo == 0)
926 timo = hz;
927 lwkt_gettoken(&vm_token);
929 if (curthread == pagethread) {
931 * The pageout daemon itself needs pages, this is bad.
933 if (vm_page_count_min(0)) {
934 vm_pageout_pages_needed = 1;
935 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
937 } else {
939 * Wakeup the pageout daemon if necessary and wait.
941 if (vm_page_count_target()) {
942 if (vm_pages_needed == 0) {
943 vm_pages_needed = 1;
944 wakeup(&vm_pages_needed);
946 ++vm_pages_waiting; /* SMP race ok */
947 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
950 lwkt_reltoken(&vm_token);
954 * Block until free pages are available for allocation
956 * Called only from vm_fault so that processes page faulting can be
957 * easily tracked.
959 void
960 vm_waitpfault(void)
963 * Wakeup the pageout daemon if necessary and wait.
965 if (vm_page_count_target()) {
966 lwkt_gettoken(&vm_token);
967 if (vm_page_count_target()) {
968 if (vm_pages_needed == 0) {
969 vm_pages_needed = 1;
970 wakeup(&vm_pages_needed);
972 ++vm_pages_waiting; /* SMP race ok */
973 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
975 lwkt_reltoken(&vm_token);
980 * Put the specified page on the active list (if appropriate). Ensure
981 * that act_count is at least ACT_INIT but do not otherwise mess with it.
983 * The page queues must be locked.
984 * This routine may not block.
986 void
987 vm_page_activate(vm_page_t m)
989 lwkt_gettoken(&vm_token);
990 if (m->queue != PQ_ACTIVE) {
991 if ((m->queue - m->pc) == PQ_CACHE)
992 mycpu->gd_cnt.v_reactivated++;
994 vm_page_unqueue(m);
996 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
997 m->queue = PQ_ACTIVE;
998 vm_page_queues[PQ_ACTIVE].lcnt++;
999 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
1000 m, pageq);
1001 if (m->act_count < ACT_INIT)
1002 m->act_count = ACT_INIT;
1003 vmstats.v_active_count++;
1005 } else {
1006 if (m->act_count < ACT_INIT)
1007 m->act_count = ACT_INIT;
1009 lwkt_reltoken(&vm_token);
1013 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
1014 * routine is called when a page has been added to the cache or free
1015 * queues.
1017 * This routine may not block.
1018 * This routine must be called at splvm()
1020 static __inline void
1021 vm_page_free_wakeup(void)
1024 * If the pageout daemon itself needs pages, then tell it that
1025 * there are some free.
1027 if (vm_pageout_pages_needed &&
1028 vmstats.v_cache_count + vmstats.v_free_count >=
1029 vmstats.v_pageout_free_min
1031 wakeup(&vm_pageout_pages_needed);
1032 vm_pageout_pages_needed = 0;
1036 * Wakeup processes that are waiting on memory.
1038 * NOTE: vm_paging_target() is the pageout daemon's target, while
1039 * vm_page_count_target() is somewhere inbetween. We want
1040 * to wake processes up prior to the pageout daemon reaching
1041 * its target to provide some hysteresis.
1043 if (vm_pages_waiting) {
1044 if (!vm_page_count_target()) {
1046 * Plenty of pages are free, wakeup everyone.
1048 vm_pages_waiting = 0;
1049 wakeup(&vmstats.v_free_count);
1050 ++mycpu->gd_cnt.v_ppwakeups;
1051 } else if (!vm_page_count_min(0)) {
1053 * Some pages are free, wakeup someone.
1055 int wcount = vm_pages_waiting;
1056 if (wcount > 0)
1057 --wcount;
1058 vm_pages_waiting = wcount;
1059 wakeup_one(&vmstats.v_free_count);
1060 ++mycpu->gd_cnt.v_ppwakeups;
1066 * vm_page_free_toq:
1068 * Returns the given page to the PQ_FREE list, disassociating it with
1069 * any VM object.
1071 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
1072 * return (the page will have been freed). No particular spl is required
1073 * on entry.
1075 * This routine may not block.
1077 void
1078 vm_page_free_toq(vm_page_t m)
1080 struct vpgqueues *pq;
1082 lwkt_gettoken(&vm_token);
1083 mycpu->gd_cnt.v_tfree++;
1085 KKASSERT((m->flags & PG_MAPPED) == 0);
1087 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1088 kprintf(
1089 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1090 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1091 m->hold_count);
1092 if ((m->queue - m->pc) == PQ_FREE)
1093 panic("vm_page_free: freeing free page");
1094 else
1095 panic("vm_page_free: freeing busy page");
1099 * unqueue, then remove page. Note that we cannot destroy
1100 * the page here because we do not want to call the pager's
1101 * callback routine until after we've put the page on the
1102 * appropriate free queue.
1104 vm_page_unqueue_nowakeup(m);
1105 vm_page_remove(m);
1108 * No further management of fictitious pages occurs beyond object
1109 * and queue removal.
1111 if ((m->flags & PG_FICTITIOUS) != 0) {
1112 vm_page_wakeup(m);
1113 lwkt_reltoken(&vm_token);
1114 return;
1117 m->valid = 0;
1118 vm_page_undirty(m);
1120 if (m->wire_count != 0) {
1121 if (m->wire_count > 1) {
1122 panic(
1123 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1124 m->wire_count, (long)m->pindex);
1126 panic("vm_page_free: freeing wired page");
1130 * Clear the UNMANAGED flag when freeing an unmanaged page.
1132 if (m->flags & PG_UNMANAGED) {
1133 m->flags &= ~PG_UNMANAGED;
1136 if (m->hold_count != 0) {
1137 m->flags &= ~PG_ZERO;
1138 m->queue = PQ_HOLD;
1139 } else {
1140 m->queue = PQ_FREE + m->pc;
1142 pq = &vm_page_queues[m->queue];
1143 pq->lcnt++;
1144 ++(*pq->cnt);
1147 * Put zero'd pages on the end ( where we look for zero'd pages
1148 * first ) and non-zerod pages at the head.
1150 if (m->flags & PG_ZERO) {
1151 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1152 ++vm_page_zero_count;
1153 } else {
1154 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1156 vm_page_wakeup(m);
1157 vm_page_free_wakeup();
1158 lwkt_reltoken(&vm_token);
1162 * vm_page_free_fromq_fast()
1164 * Remove a non-zero page from one of the free queues; the page is removed for
1165 * zeroing, so do not issue a wakeup.
1167 * MPUNSAFE
1169 vm_page_t
1170 vm_page_free_fromq_fast(void)
1172 static int qi;
1173 vm_page_t m;
1174 int i;
1176 lwkt_gettoken(&vm_token);
1177 for (i = 0; i < PQ_L2_SIZE; ++i) {
1178 m = vm_page_list_find(PQ_FREE, qi, FALSE);
1179 qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1180 if (m && (m->flags & PG_ZERO) == 0) {
1181 KKASSERT(m->busy == 0 && (m->flags & PG_BUSY) == 0);
1182 vm_page_unqueue_nowakeup(m);
1183 vm_page_busy(m);
1184 break;
1186 m = NULL;
1188 lwkt_reltoken(&vm_token);
1189 return (m);
1193 * vm_page_unmanage()
1195 * Prevent PV management from being done on the page. The page is
1196 * removed from the paging queues as if it were wired, and as a
1197 * consequence of no longer being managed the pageout daemon will not
1198 * touch it (since there is no way to locate the pte mappings for the
1199 * page). madvise() calls that mess with the pmap will also no longer
1200 * operate on the page.
1202 * Beyond that the page is still reasonably 'normal'. Freeing the page
1203 * will clear the flag.
1205 * This routine is used by OBJT_PHYS objects - objects using unswappable
1206 * physical memory as backing store rather then swap-backed memory and
1207 * will eventually be extended to support 4MB unmanaged physical
1208 * mappings.
1210 * Must be called with a critical section held.
1211 * Must be called with vm_token held.
1213 void
1214 vm_page_unmanage(vm_page_t m)
1216 ASSERT_LWKT_TOKEN_HELD(&vm_token);
1217 if ((m->flags & PG_UNMANAGED) == 0) {
1218 if (m->wire_count == 0)
1219 vm_page_unqueue(m);
1221 vm_page_flag_set(m, PG_UNMANAGED);
1225 * Mark this page as wired down by yet another map, removing it from
1226 * paging queues as necessary.
1228 * The page queues must be locked.
1229 * This routine may not block.
1231 void
1232 vm_page_wire(vm_page_t m)
1235 * Only bump the wire statistics if the page is not already wired,
1236 * and only unqueue the page if it is on some queue (if it is unmanaged
1237 * it is already off the queues). Don't do anything with fictitious
1238 * pages because they are always wired.
1240 lwkt_gettoken(&vm_token);
1241 if ((m->flags & PG_FICTITIOUS) == 0) {
1242 if (m->wire_count == 0) {
1243 if ((m->flags & PG_UNMANAGED) == 0)
1244 vm_page_unqueue(m);
1245 vmstats.v_wire_count++;
1247 m->wire_count++;
1248 KASSERT(m->wire_count != 0,
1249 ("vm_page_wire: wire_count overflow m=%p", m));
1251 lwkt_reltoken(&vm_token);
1255 * Release one wiring of this page, potentially enabling it to be paged again.
1257 * Many pages placed on the inactive queue should actually go
1258 * into the cache, but it is difficult to figure out which. What
1259 * we do instead, if the inactive target is well met, is to put
1260 * clean pages at the head of the inactive queue instead of the tail.
1261 * This will cause them to be moved to the cache more quickly and
1262 * if not actively re-referenced, freed more quickly. If we just
1263 * stick these pages at the end of the inactive queue, heavy filesystem
1264 * meta-data accesses can cause an unnecessary paging load on memory bound
1265 * processes. This optimization causes one-time-use metadata to be
1266 * reused more quickly.
1268 * BUT, if we are in a low-memory situation we have no choice but to
1269 * put clean pages on the cache queue.
1271 * A number of routines use vm_page_unwire() to guarantee that the page
1272 * will go into either the inactive or active queues, and will NEVER
1273 * be placed in the cache - for example, just after dirtying a page.
1274 * dirty pages in the cache are not allowed.
1276 * The page queues must be locked.
1277 * This routine may not block.
1279 void
1280 vm_page_unwire(vm_page_t m, int activate)
1282 lwkt_gettoken(&vm_token);
1283 if (m->flags & PG_FICTITIOUS) {
1284 /* do nothing */
1285 } else if (m->wire_count <= 0) {
1286 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1287 } else {
1288 if (--m->wire_count == 0) {
1289 --vmstats.v_wire_count;
1290 if (m->flags & PG_UNMANAGED) {
1292 } else if (activate) {
1293 TAILQ_INSERT_TAIL(
1294 &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1295 m->queue = PQ_ACTIVE;
1296 vm_page_queues[PQ_ACTIVE].lcnt++;
1297 vmstats.v_active_count++;
1298 } else {
1299 vm_page_flag_clear(m, PG_WINATCFLS);
1300 TAILQ_INSERT_TAIL(
1301 &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1302 m->queue = PQ_INACTIVE;
1303 vm_page_queues[PQ_INACTIVE].lcnt++;
1304 vmstats.v_inactive_count++;
1305 ++vm_swapcache_inactive_heuristic;
1309 lwkt_reltoken(&vm_token);
1314 * Move the specified page to the inactive queue. If the page has
1315 * any associated swap, the swap is deallocated.
1317 * Normally athead is 0 resulting in LRU operation. athead is set
1318 * to 1 if we want this page to be 'as if it were placed in the cache',
1319 * except without unmapping it from the process address space.
1321 * This routine may not block.
1322 * The caller must hold vm_token.
1324 static __inline void
1325 _vm_page_deactivate(vm_page_t m, int athead)
1328 * Ignore if already inactive.
1330 if (m->queue == PQ_INACTIVE)
1331 return;
1333 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1334 if ((m->queue - m->pc) == PQ_CACHE)
1335 mycpu->gd_cnt.v_reactivated++;
1336 vm_page_flag_clear(m, PG_WINATCFLS);
1337 vm_page_unqueue(m);
1338 if (athead) {
1339 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1340 m, pageq);
1341 } else {
1342 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1343 m, pageq);
1344 ++vm_swapcache_inactive_heuristic;
1346 m->queue = PQ_INACTIVE;
1347 vm_page_queues[PQ_INACTIVE].lcnt++;
1348 vmstats.v_inactive_count++;
1353 * Attempt to deactivate a page.
1355 * No requirements.
1357 void
1358 vm_page_deactivate(vm_page_t m)
1360 lwkt_gettoken(&vm_token);
1361 _vm_page_deactivate(m, 0);
1362 lwkt_reltoken(&vm_token);
1366 * Attempt to move a page to PQ_CACHE.
1367 * Returns 0 on failure, 1 on success
1369 * No requirements.
1372 vm_page_try_to_cache(vm_page_t m)
1374 lwkt_gettoken(&vm_token);
1375 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1376 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1377 lwkt_reltoken(&vm_token);
1378 return(0);
1380 vm_page_busy(m);
1381 vm_page_test_dirty(m);
1382 if (m->dirty) {
1383 lwkt_reltoken(&vm_token);
1384 return(0);
1386 vm_page_cache(m);
1387 lwkt_reltoken(&vm_token);
1388 return(1);
1392 * Attempt to free the page. If we cannot free it, we do nothing.
1393 * 1 is returned on success, 0 on failure.
1395 * No requirements.
1398 vm_page_try_to_free(vm_page_t m)
1400 lwkt_gettoken(&vm_token);
1401 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1402 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1403 lwkt_reltoken(&vm_token);
1404 return(0);
1406 vm_page_test_dirty(m);
1407 if (m->dirty) {
1408 lwkt_reltoken(&vm_token);
1409 return(0);
1411 vm_page_busy(m);
1412 vm_page_protect(m, VM_PROT_NONE);
1413 vm_page_free(m);
1414 lwkt_reltoken(&vm_token);
1415 return(1);
1419 * vm_page_cache
1421 * Put the specified page onto the page cache queue (if appropriate).
1423 * The caller must hold vm_token.
1424 * This routine may not block.
1425 * The page must be busy, and this routine will release the busy and
1426 * possibly even free the page.
1428 void
1429 vm_page_cache(vm_page_t m)
1431 ASSERT_LWKT_TOKEN_HELD(&vm_token);
1433 if ((m->flags & PG_UNMANAGED) || m->busy ||
1434 m->wire_count || m->hold_count) {
1435 kprintf("vm_page_cache: attempting to cache busy/held page\n");
1436 vm_page_wakeup(m);
1437 return;
1441 * Already in the cache (and thus not mapped)
1443 if ((m->queue - m->pc) == PQ_CACHE) {
1444 KKASSERT((m->flags & PG_MAPPED) == 0);
1445 vm_page_wakeup(m);
1446 return;
1450 * Caller is required to test m->dirty, but note that the act of
1451 * removing the page from its maps can cause it to become dirty
1452 * on an SMP system due to another cpu running in usermode.
1454 if (m->dirty) {
1455 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1456 (long)m->pindex);
1460 * Remove all pmaps and indicate that the page is not
1461 * writeable or mapped. Our vm_page_protect() call may
1462 * have blocked (especially w/ VM_PROT_NONE), so recheck
1463 * everything.
1465 vm_page_protect(m, VM_PROT_NONE);
1466 if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1467 m->wire_count || m->hold_count) {
1468 vm_page_wakeup(m);
1469 } else if (m->dirty) {
1470 vm_page_deactivate(m);
1471 vm_page_wakeup(m);
1472 } else {
1473 vm_page_unqueue_nowakeup(m);
1474 m->queue = PQ_CACHE + m->pc;
1475 vm_page_queues[m->queue].lcnt++;
1476 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1477 vmstats.v_cache_count++;
1478 vm_page_wakeup(m);
1479 vm_page_free_wakeup();
1484 * vm_page_dontneed()
1486 * Cache, deactivate, or do nothing as appropriate. This routine
1487 * is typically used by madvise() MADV_DONTNEED.
1489 * Generally speaking we want to move the page into the cache so
1490 * it gets reused quickly. However, this can result in a silly syndrome
1491 * due to the page recycling too quickly. Small objects will not be
1492 * fully cached. On the otherhand, if we move the page to the inactive
1493 * queue we wind up with a problem whereby very large objects
1494 * unnecessarily blow away our inactive and cache queues.
1496 * The solution is to move the pages based on a fixed weighting. We
1497 * either leave them alone, deactivate them, or move them to the cache,
1498 * where moving them to the cache has the highest weighting.
1499 * By forcing some pages into other queues we eventually force the
1500 * system to balance the queues, potentially recovering other unrelated
1501 * space from active. The idea is to not force this to happen too
1502 * often.
1504 * No requirements.
1506 void
1507 vm_page_dontneed(vm_page_t m)
1509 static int dnweight;
1510 int dnw;
1511 int head;
1513 dnw = ++dnweight;
1516 * occassionally leave the page alone
1518 lwkt_gettoken(&vm_token);
1519 if ((dnw & 0x01F0) == 0 ||
1520 m->queue == PQ_INACTIVE ||
1521 m->queue - m->pc == PQ_CACHE
1523 if (m->act_count >= ACT_INIT)
1524 --m->act_count;
1525 lwkt_reltoken(&vm_token);
1526 return;
1529 if (m->dirty == 0)
1530 vm_page_test_dirty(m);
1532 if (m->dirty || (dnw & 0x0070) == 0) {
1534 * Deactivate the page 3 times out of 32.
1536 head = 0;
1537 } else {
1539 * Cache the page 28 times out of every 32. Note that
1540 * the page is deactivated instead of cached, but placed
1541 * at the head of the queue instead of the tail.
1543 head = 1;
1545 _vm_page_deactivate(m, head);
1546 lwkt_reltoken(&vm_token);
1550 * Grab a page, blocking if it is busy and allocating a page if necessary.
1551 * A busy page is returned or NULL.
1553 * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1554 * If VM_ALLOC_RETRY is not specified
1556 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1557 * always returned if we had blocked.
1558 * This routine will never return NULL if VM_ALLOC_RETRY is set.
1559 * This routine may not be called from an interrupt.
1560 * The returned page may not be entirely valid.
1562 * This routine may be called from mainline code without spl protection and
1563 * be guarenteed a busied page associated with the object at the specified
1564 * index.
1566 * No requirements.
1568 vm_page_t
1569 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1571 vm_page_t m;
1572 int generation;
1574 KKASSERT(allocflags &
1575 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1576 lwkt_gettoken(&vm_token);
1577 retrylookup:
1578 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1579 if (m->busy || (m->flags & PG_BUSY)) {
1580 generation = object->generation;
1582 while ((object->generation == generation) &&
1583 (m->busy || (m->flags & PG_BUSY))) {
1584 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1585 tsleep(m, 0, "pgrbwt", 0);
1586 if ((allocflags & VM_ALLOC_RETRY) == 0) {
1587 m = NULL;
1588 goto done;
1591 goto retrylookup;
1592 } else {
1593 vm_page_busy(m);
1594 goto done;
1597 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1598 if (m == NULL) {
1599 vm_wait(0);
1600 if ((allocflags & VM_ALLOC_RETRY) == 0)
1601 goto done;
1602 goto retrylookup;
1604 done:
1605 lwkt_reltoken(&vm_token);
1606 return(m);
1610 * Mapping function for valid bits or for dirty bits in
1611 * a page. May not block.
1613 * Inputs are required to range within a page.
1615 * No requirements.
1616 * Non blocking.
1619 vm_page_bits(int base, int size)
1621 int first_bit;
1622 int last_bit;
1624 KASSERT(
1625 base + size <= PAGE_SIZE,
1626 ("vm_page_bits: illegal base/size %d/%d", base, size)
1629 if (size == 0) /* handle degenerate case */
1630 return(0);
1632 first_bit = base >> DEV_BSHIFT;
1633 last_bit = (base + size - 1) >> DEV_BSHIFT;
1635 return ((2 << last_bit) - (1 << first_bit));
1639 * Sets portions of a page valid and clean. The arguments are expected
1640 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1641 * of any partial chunks touched by the range. The invalid portion of
1642 * such chunks will be zero'd.
1644 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1645 * align base to DEV_BSIZE so as not to mark clean a partially
1646 * truncated device block. Otherwise the dirty page status might be
1647 * lost.
1649 * This routine may not block.
1651 * (base + size) must be less then or equal to PAGE_SIZE.
1653 static void
1654 _vm_page_zero_valid(vm_page_t m, int base, int size)
1656 int frag;
1657 int endoff;
1659 if (size == 0) /* handle degenerate case */
1660 return;
1663 * If the base is not DEV_BSIZE aligned and the valid
1664 * bit is clear, we have to zero out a portion of the
1665 * first block.
1668 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1669 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1671 pmap_zero_page_area(
1672 VM_PAGE_TO_PHYS(m),
1673 frag,
1674 base - frag
1679 * If the ending offset is not DEV_BSIZE aligned and the
1680 * valid bit is clear, we have to zero out a portion of
1681 * the last block.
1684 endoff = base + size;
1686 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1687 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1689 pmap_zero_page_area(
1690 VM_PAGE_TO_PHYS(m),
1691 endoff,
1692 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1698 * Set valid, clear dirty bits. If validating the entire
1699 * page we can safely clear the pmap modify bit. We also
1700 * use this opportunity to clear the PG_NOSYNC flag. If a process
1701 * takes a write fault on a MAP_NOSYNC memory area the flag will
1702 * be set again.
1704 * We set valid bits inclusive of any overlap, but we can only
1705 * clear dirty bits for DEV_BSIZE chunks that are fully within
1706 * the range.
1708 * Page must be busied?
1709 * No other requirements.
1711 void
1712 vm_page_set_valid(vm_page_t m, int base, int size)
1714 _vm_page_zero_valid(m, base, size);
1715 m->valid |= vm_page_bits(base, size);
1720 * Set valid bits and clear dirty bits.
1722 * NOTE: This function does not clear the pmap modified bit.
1723 * Also note that e.g. NFS may use a byte-granular base
1724 * and size.
1726 * WARNING: Page must be busied? But vfs_clean_one_page() will call
1727 * this without necessarily busying the page (via bdwrite()).
1728 * So for now vm_token must also be held.
1730 * No other requirements.
1732 void
1733 vm_page_set_validclean(vm_page_t m, int base, int size)
1735 int pagebits;
1737 _vm_page_zero_valid(m, base, size);
1738 pagebits = vm_page_bits(base, size);
1739 m->valid |= pagebits;
1740 m->dirty &= ~pagebits;
1741 if (base == 0 && size == PAGE_SIZE) {
1742 /*pmap_clear_modify(m);*/
1743 vm_page_flag_clear(m, PG_NOSYNC);
1748 * Set valid & dirty. Used by buwrite()
1750 * WARNING: Page must be busied? But vfs_dirty_one_page() will
1751 * call this function in buwrite() so for now vm_token must
1752 * be held.
1754 * No other requirements.
1756 void
1757 vm_page_set_validdirty(vm_page_t m, int base, int size)
1759 int pagebits;
1761 pagebits = vm_page_bits(base, size);
1762 m->valid |= pagebits;
1763 m->dirty |= pagebits;
1764 if (m->object)
1765 vm_object_set_writeable_dirty(m->object);
1769 * Clear dirty bits.
1771 * NOTE: This function does not clear the pmap modified bit.
1772 * Also note that e.g. NFS may use a byte-granular base
1773 * and size.
1775 * Page must be busied?
1776 * No other requirements.
1778 void
1779 vm_page_clear_dirty(vm_page_t m, int base, int size)
1781 m->dirty &= ~vm_page_bits(base, size);
1782 if (base == 0 && size == PAGE_SIZE) {
1783 /*pmap_clear_modify(m);*/
1784 vm_page_flag_clear(m, PG_NOSYNC);
1789 * Make the page all-dirty.
1791 * Also make sure the related object and vnode reflect the fact that the
1792 * object may now contain a dirty page.
1794 * Page must be busied?
1795 * No other requirements.
1797 void
1798 vm_page_dirty(vm_page_t m)
1800 #ifdef INVARIANTS
1801 int pqtype = m->queue - m->pc;
1802 #endif
1803 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1804 ("vm_page_dirty: page in free/cache queue!"));
1805 if (m->dirty != VM_PAGE_BITS_ALL) {
1806 m->dirty = VM_PAGE_BITS_ALL;
1807 if (m->object)
1808 vm_object_set_writeable_dirty(m->object);
1813 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1814 * valid and dirty bits for the effected areas are cleared.
1816 * Page must be busied?
1817 * Does not block.
1818 * No other requirements.
1820 void
1821 vm_page_set_invalid(vm_page_t m, int base, int size)
1823 int bits;
1825 bits = vm_page_bits(base, size);
1826 m->valid &= ~bits;
1827 m->dirty &= ~bits;
1828 m->object->generation++;
1832 * The kernel assumes that the invalid portions of a page contain
1833 * garbage, but such pages can be mapped into memory by user code.
1834 * When this occurs, we must zero out the non-valid portions of the
1835 * page so user code sees what it expects.
1837 * Pages are most often semi-valid when the end of a file is mapped
1838 * into memory and the file's size is not page aligned.
1840 * Page must be busied?
1841 * No other requirements.
1843 void
1844 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1846 int b;
1847 int i;
1850 * Scan the valid bits looking for invalid sections that
1851 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1852 * valid bit may be set ) have already been zerod by
1853 * vm_page_set_validclean().
1855 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1856 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1857 (m->valid & (1 << i))
1859 if (i > b) {
1860 pmap_zero_page_area(
1861 VM_PAGE_TO_PHYS(m),
1862 b << DEV_BSHIFT,
1863 (i - b) << DEV_BSHIFT
1866 b = i + 1;
1871 * setvalid is TRUE when we can safely set the zero'd areas
1872 * as being valid. We can do this if there are no cache consistency
1873 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1875 if (setvalid)
1876 m->valid = VM_PAGE_BITS_ALL;
1880 * Is a (partial) page valid? Note that the case where size == 0
1881 * will return FALSE in the degenerate case where the page is entirely
1882 * invalid, and TRUE otherwise.
1884 * Does not block.
1885 * No other requirements.
1888 vm_page_is_valid(vm_page_t m, int base, int size)
1890 int bits = vm_page_bits(base, size);
1892 if (m->valid && ((m->valid & bits) == bits))
1893 return 1;
1894 else
1895 return 0;
1899 * update dirty bits from pmap/mmu. May not block.
1901 * Caller must hold vm_token if non-blocking operation desired.
1902 * No other requirements.
1904 void
1905 vm_page_test_dirty(vm_page_t m)
1907 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1908 vm_page_dirty(m);
1913 * Register an action, associating it with its vm_page
1915 void
1916 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
1918 struct vm_page_action_list *list;
1919 int hv;
1921 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1922 list = &action_list[hv];
1924 lwkt_gettoken(&vm_token);
1925 vm_page_flag_set(action->m, PG_ACTIONLIST);
1926 action->event = event;
1927 LIST_INSERT_HEAD(list, action, entry);
1928 lwkt_reltoken(&vm_token);
1932 * Unregister an action, disassociating it from its related vm_page
1934 void
1935 vm_page_unregister_action(vm_page_action_t action)
1937 struct vm_page_action_list *list;
1938 int hv;
1940 lwkt_gettoken(&vm_token);
1941 if (action->event != VMEVENT_NONE) {
1942 action->event = VMEVENT_NONE;
1943 LIST_REMOVE(action, entry);
1945 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1946 list = &action_list[hv];
1947 if (LIST_EMPTY(list))
1948 vm_page_flag_clear(action->m, PG_ACTIONLIST);
1950 lwkt_reltoken(&vm_token);
1954 * Issue an event on a VM page. Corresponding action structures are
1955 * removed from the page's list and called.
1957 * If the vm_page has no more pending action events we clear its
1958 * PG_ACTIONLIST flag.
1960 void
1961 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1963 struct vm_page_action_list *list;
1964 struct vm_page_action *scan;
1965 struct vm_page_action *next;
1966 int hv;
1967 int all;
1969 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
1970 list = &action_list[hv];
1971 all = 1;
1973 lwkt_gettoken(&vm_token);
1974 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
1975 if (scan->m == m) {
1976 if (scan->event == event) {
1977 scan->event = VMEVENT_NONE;
1978 LIST_REMOVE(scan, entry);
1979 scan->func(m, scan);
1980 /* XXX */
1981 } else {
1982 all = 0;
1986 if (all)
1987 vm_page_flag_clear(m, PG_ACTIONLIST);
1988 lwkt_reltoken(&vm_token);
1992 #include "opt_ddb.h"
1993 #ifdef DDB
1994 #include <sys/kernel.h>
1996 #include <ddb/ddb.h>
1998 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2000 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
2001 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
2002 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
2003 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
2004 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
2005 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
2006 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
2007 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2008 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2009 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2012 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2014 int i;
2015 db_printf("PQ_FREE:");
2016 for(i=0;i<PQ_L2_SIZE;i++) {
2017 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
2019 db_printf("\n");
2021 db_printf("PQ_CACHE:");
2022 for(i=0;i<PQ_L2_SIZE;i++) {
2023 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2025 db_printf("\n");
2027 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2028 vm_page_queues[PQ_ACTIVE].lcnt,
2029 vm_page_queues[PQ_INACTIVE].lcnt);
2031 #endif /* DDB */