kernel: Remove unused *.h files from SRCS in kernel module Makefiles.
[dragonfly.git] / sys / bus / cam / cam_xpt.c
blobfae2c8b9a023d3260f21a6909c5a37262a9d3b22
1 /*
2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 struct task task;
77 void *data1;
78 uintptr_t data2;
82 * Definition of an async handler callback block. These are used to add
83 * SIMs and peripherals to the async callback lists.
85 struct async_node {
86 SLIST_ENTRY(async_node) links;
87 u_int32_t event_enable; /* Async Event enables */
88 void (*callback)(void *arg, u_int32_t code,
89 struct cam_path *path, void *args);
90 void *callback_arg;
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
97 * This is the maximum number of high powered commands (e.g. start unit)
98 * that can be outstanding at a particular time.
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER 4
102 #endif
105 * Structure for queueing a device in a run queue.
106 * There is one run queue for allocating new ccbs,
107 * and another for sending ccbs to the controller.
109 struct cam_ed_qinfo {
110 cam_pinfo pinfo;
111 struct cam_ed *device;
115 * The CAM EDT (Existing Device Table) contains the device information for
116 * all devices for all busses in the system. The table contains a
117 * cam_ed structure for each device on the bus.
119 struct cam_ed {
120 TAILQ_ENTRY(cam_ed) links;
121 struct cam_ed_qinfo alloc_ccb_entry;
122 struct cam_ed_qinfo send_ccb_entry;
123 struct cam_et *target;
124 struct cam_sim *sim;
125 lun_id_t lun_id;
126 struct camq drvq; /*
127 * Queue of type drivers wanting to do
128 * work on this device.
130 struct cam_ccbq ccbq; /* Queue of pending ccbs */
131 struct async_list asyncs; /* Async callback info for this B/T/L */
132 struct periph_list periphs; /* All attached devices */
133 u_int generation; /* Generation number */
134 struct cam_periph *owner; /* Peripheral driver's ownership tag */
135 struct xpt_quirk_entry *quirk; /* Oddities about this device */
136 /* Storage for the inquiry data */
137 cam_proto protocol;
138 u_int protocol_version;
139 cam_xport transport;
140 u_int transport_version;
141 struct scsi_inquiry_data inq_data;
142 u_int8_t inq_flags; /*
143 * Current settings for inquiry flags.
144 * This allows us to override settings
145 * like disconnection and tagged
146 * queuing for a device.
148 u_int8_t queue_flags; /* Queue flags from the control page */
149 u_int8_t serial_num_len;
150 u_int8_t *serial_num;
151 u_int32_t qfrozen_cnt;
152 u_int32_t flags;
153 #define CAM_DEV_UNCONFIGURED 0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
155 #define CAM_DEV_REL_ON_COMPLETE 0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
158 #define CAM_DEV_TAG_AFTER_COUNT 0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
160 #define CAM_DEV_IN_DV 0x80
161 #define CAM_DEV_DV_HIT_BOTTOM 0x100
162 u_int32_t tag_delay_count;
163 #define CAM_TAG_DELAY_COUNT 5
164 u_int32_t tag_saved_openings;
165 u_int32_t refcount;
166 struct callout callout;
170 * Each target is represented by an ET (Existing Target). These
171 * entries are created when a target is successfully probed with an
172 * identify, and removed when a device fails to respond after a number
173 * of retries, or a bus rescan finds the device missing.
175 struct cam_et {
176 TAILQ_HEAD(, cam_ed) ed_entries;
177 TAILQ_ENTRY(cam_et) links;
178 struct cam_eb *bus;
179 target_id_t target_id;
180 u_int32_t refcount;
181 u_int generation;
182 struct timeval last_reset; /* uptime of last reset */
186 * Each bus is represented by an EB (Existing Bus). These entries
187 * are created by calls to xpt_bus_register and deleted by calls to
188 * xpt_bus_deregister.
190 struct cam_eb {
191 TAILQ_HEAD(, cam_et) et_entries;
192 TAILQ_ENTRY(cam_eb) links;
193 path_id_t path_id;
194 struct cam_sim *sim;
195 struct timeval last_reset; /* uptime of last reset */
196 u_int32_t flags;
197 #define CAM_EB_RUNQ_SCHEDULED 0x01
198 u_int32_t refcount;
199 u_int generation;
200 int counted_to_config; /* busses_to_config */
203 struct cam_path {
204 struct cam_periph *periph;
205 struct cam_eb *bus;
206 struct cam_et *target;
207 struct cam_ed *device;
210 struct xpt_quirk_entry {
211 struct scsi_inquiry_pattern inq_pat;
212 u_int8_t quirks;
213 #define CAM_QUIRK_NOLUNS 0x01
214 #define CAM_QUIRK_NOSERIAL 0x02
215 #define CAM_QUIRK_HILUNS 0x04
216 #define CAM_QUIRK_NOHILUNS 0x08
217 u_int mintags;
218 u_int maxtags;
221 static int cam_srch_hi = 0;
222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
225 sysctl_cam_search_luns, "I",
226 "allow search above LUN 7 for SCSI3 and greater devices");
228 #define CAM_SCSI2_MAXLUN 8
230 * If we're not quirked to search <= the first 8 luns
231 * and we are either quirked to search above lun 8,
232 * or we're > SCSI-2 and we've enabled hilun searching,
233 * or we're > SCSI-2 and the last lun was a success,
234 * we can look for luns above lun 8.
236 #define CAN_SRCH_HI_SPARSE(dv) \
237 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
238 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
239 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241 #define CAN_SRCH_HI_DENSE(dv) \
242 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
243 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
244 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246 typedef enum {
247 XPT_FLAG_OPEN = 0x01
248 } xpt_flags;
250 struct xpt_softc {
251 xpt_flags flags;
252 u_int32_t xpt_generation;
254 /* number of high powered commands that can go through right now */
255 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
256 int num_highpower;
258 /* queue for handling async rescan requests. */
259 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
260 int ccb_scanq_running;
262 /* Registered busses */
263 TAILQ_HEAD(,cam_eb) xpt_busses;
264 u_int bus_generation;
266 struct intr_config_hook *xpt_config_hook;
268 struct lock xpt_topo_lock;
269 struct lock xpt_lock;
272 static const char quantum[] = "QUANTUM";
273 static const char sony[] = "SONY";
274 static const char west_digital[] = "WDIGTL";
275 static const char samsung[] = "SAMSUNG";
276 static const char seagate[] = "SEAGATE";
277 static const char microp[] = "MICROP";
279 static struct xpt_quirk_entry xpt_quirk_table[] =
282 /* Reports QUEUE FULL for temporary resource shortages */
283 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
284 /*quirks*/0, /*mintags*/24, /*maxtags*/32
287 /* Reports QUEUE FULL for temporary resource shortages */
288 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
289 /*quirks*/0, /*mintags*/24, /*maxtags*/32
292 /* Reports QUEUE FULL for temporary resource shortages */
293 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
294 /*quirks*/0, /*mintags*/24, /*maxtags*/32
297 /* Broken tagged queuing drive */
298 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
299 /*quirks*/0, /*mintags*/0, /*maxtags*/0
302 /* Broken tagged queuing drive */
303 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
304 /*quirks*/0, /*mintags*/0, /*maxtags*/0
307 /* Broken tagged queuing drive */
308 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
309 /*quirks*/0, /*mintags*/0, /*maxtags*/0
313 * Unfortunately, the Quantum Atlas III has the same
314 * problem as the Atlas II drives above.
315 * Reported by: "Johan Granlund" <johan@granlund.nu>
317 * For future reference, the drive with the problem was:
318 * QUANTUM QM39100TD-SW N1B0
320 * It's possible that Quantum will fix the problem in later
321 * firmware revisions. If that happens, the quirk entry
322 * will need to be made specific to the firmware revisions
323 * with the problem.
326 /* Reports QUEUE FULL for temporary resource shortages */
327 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
328 /*quirks*/0, /*mintags*/24, /*maxtags*/32
332 * 18 Gig Atlas III, same problem as the 9G version.
333 * Reported by: Andre Albsmeier
334 * <andre.albsmeier@mchp.siemens.de>
336 * For future reference, the drive with the problem was:
337 * QUANTUM QM318000TD-S N491
339 /* Reports QUEUE FULL for temporary resource shortages */
340 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
341 /*quirks*/0, /*mintags*/24, /*maxtags*/32
345 * Broken tagged queuing drive
346 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
347 * and: Martin Renters <martin@tdc.on.ca>
349 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
350 /*quirks*/0, /*mintags*/0, /*maxtags*/0
353 * The Seagate Medalist Pro drives have very poor write
354 * performance with anything more than 2 tags.
356 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
357 * Drive: <SEAGATE ST36530N 1444>
359 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
360 * Drive: <SEAGATE ST34520W 1281>
362 * No one has actually reported that the 9G version
363 * (ST39140*) of the Medalist Pro has the same problem, but
364 * we're assuming that it does because the 4G and 6.5G
365 * versions of the drive are broken.
368 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
369 /*quirks*/0, /*mintags*/2, /*maxtags*/2
372 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
373 /*quirks*/0, /*mintags*/2, /*maxtags*/2
376 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
377 /*quirks*/0, /*mintags*/2, /*maxtags*/2
381 * Slow when tagged queueing is enabled. Write performance
382 * steadily drops off with more and more concurrent
383 * transactions. Best sequential write performance with
384 * tagged queueing turned off and write caching turned on.
386 * PR: kern/10398
387 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
388 * Drive: DCAS-34330 w/ "S65A" firmware.
390 * The drive with the problem had the "S65A" firmware
391 * revision, and has also been reported (by Stephen J.
392 * Roznowski <sjr@home.net>) for a drive with the "S61A"
393 * firmware revision.
395 * Although no one has reported problems with the 2 gig
396 * version of the DCAS drive, the assumption is that it
397 * has the same problems as the 4 gig version. Therefore
398 * this quirk entries disables tagged queueing for all
399 * DCAS drives.
401 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
402 /*quirks*/0, /*mintags*/0, /*maxtags*/0
405 /* Broken tagged queuing drive */
406 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
407 /*quirks*/0, /*mintags*/0, /*maxtags*/0
410 /* Broken tagged queuing drive */
411 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
412 /*quirks*/0, /*mintags*/0, /*maxtags*/0
415 /* This does not support other than LUN 0 */
416 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
417 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
421 * Broken tagged queuing drive.
422 * Submitted by:
423 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
424 * in PR kern/9535
426 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
427 /*quirks*/0, /*mintags*/0, /*maxtags*/0
431 * Slow when tagged queueing is enabled. (1.5MB/sec versus
432 * 8MB/sec.)
433 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
434 * Best performance with these drives is achieved with
435 * tagged queueing turned off, and write caching turned on.
437 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
438 /*quirks*/0, /*mintags*/0, /*maxtags*/0
442 * Slow when tagged queueing is enabled. (1.5MB/sec versus
443 * 8MB/sec.)
444 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
445 * Best performance with these drives is achieved with
446 * tagged queueing turned off, and write caching turned on.
448 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
449 /*quirks*/0, /*mintags*/0, /*maxtags*/0
453 * Doesn't handle queue full condition correctly,
454 * so we need to limit maxtags to what the device
455 * can handle instead of determining this automatically.
457 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
458 /*quirks*/0, /*mintags*/2, /*maxtags*/32
461 /* Really only one LUN */
462 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
463 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
466 /* I can't believe we need a quirk for DPT volumes. */
467 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
468 CAM_QUIRK_NOLUNS,
469 /*mintags*/0, /*maxtags*/255
473 * Many Sony CDROM drives don't like multi-LUN probing.
475 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
476 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
480 * This drive doesn't like multiple LUN probing.
481 * Submitted by: Parag Patel <parag@cgt.com>
483 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
484 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
487 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
488 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
492 * The 8200 doesn't like multi-lun probing, and probably
493 * don't like serial number requests either.
496 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
497 "EXB-8200*", "*"
499 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
503 * Let's try the same as above, but for a drive that says
504 * it's an IPL-6860 but is actually an EXB 8200.
507 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
508 "IPL-6860*", "*"
510 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
514 * These Hitachi drives don't like multi-lun probing.
515 * The PR submitter has a DK319H, but says that the Linux
516 * kernel has a similar work-around for the DK312 and DK314,
517 * so all DK31* drives are quirked here.
518 * PR: misc/18793
519 * Submitted by: Paul Haddad <paul@pth.com>
521 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
522 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
526 * The Hitachi CJ series with J8A8 firmware apparantly has
527 * problems with tagged commands.
528 * PR: 23536
529 * Reported by: amagai@nue.org
531 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
532 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
536 * These are the large storage arrays.
537 * Submitted by: William Carrel <william.carrel@infospace.com>
539 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
540 CAM_QUIRK_HILUNS, 2, 1024
544 * This old revision of the TDC3600 is also SCSI-1, and
545 * hangs upon serial number probing.
548 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
549 " TDC 3600", "U07:"
551 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
555 * Would repond to all LUNs if asked for.
558 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
559 "CP150", "*"
561 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
565 * Would repond to all LUNs if asked for.
568 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
569 "96X2*", "*"
571 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
574 /* Submitted by: Matthew Dodd <winter@jurai.net> */
575 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
576 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
579 /* Submitted by: Matthew Dodd <winter@jurai.net> */
580 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
581 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
584 /* TeraSolutions special settings for TRC-22 RAID */
585 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
586 /*quirks*/0, /*mintags*/55, /*maxtags*/255
589 /* Veritas Storage Appliance */
590 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
591 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
595 * Would respond to all LUNs. Device type and removable
596 * flag are jumper-selectable.
598 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
599 "Tahiti 1", "*"
601 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
604 /* EasyRAID E5A aka. areca ARC-6010 */
605 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
606 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
609 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
610 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
613 /* Default tagged queuing parameters for all devices */
615 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
616 /*vendor*/"*", /*product*/"*", /*revision*/"*"
618 /*quirks*/0, /*mintags*/2, /*maxtags*/255
622 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
624 typedef enum {
625 DM_RET_COPY = 0x01,
626 DM_RET_FLAG_MASK = 0x0f,
627 DM_RET_NONE = 0x00,
628 DM_RET_STOP = 0x10,
629 DM_RET_DESCEND = 0x20,
630 DM_RET_ERROR = 0x30,
631 DM_RET_ACTION_MASK = 0xf0
632 } dev_match_ret;
634 typedef enum {
635 XPT_DEPTH_BUS,
636 XPT_DEPTH_TARGET,
637 XPT_DEPTH_DEVICE,
638 XPT_DEPTH_PERIPH
639 } xpt_traverse_depth;
641 struct xpt_traverse_config {
642 xpt_traverse_depth depth;
643 void *tr_func;
644 void *tr_arg;
647 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
648 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
649 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
650 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
651 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
653 /* Transport layer configuration information */
654 static struct xpt_softc xsoftc;
656 /* Queues for our software interrupt handler */
657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
659 static cam_simq_t cam_simq;
660 static struct spinlock cam_simq_spin;
662 struct cam_periph *xpt_periph;
664 static periph_init_t xpt_periph_init;
666 static periph_init_t probe_periph_init;
668 static struct periph_driver xpt_driver =
670 xpt_periph_init, "xpt",
671 TAILQ_HEAD_INITIALIZER(xpt_driver.units)
674 static struct periph_driver probe_driver =
676 probe_periph_init, "probe",
677 TAILQ_HEAD_INITIALIZER(probe_driver.units)
680 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
681 PERIPHDRIVER_DECLARE(probe, probe_driver);
683 static d_open_t xptopen;
684 static d_close_t xptclose;
685 static d_ioctl_t xptioctl;
687 static struct dev_ops xpt_ops = {
688 { "xpt", 0, D_MPSAFE },
689 .d_open = xptopen,
690 .d_close = xptclose,
691 .d_ioctl = xptioctl
694 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
695 static void dead_sim_poll(struct cam_sim *sim);
697 /* Dummy SIM that is used when the real one has gone. */
698 static struct cam_sim cam_dead_sim;
699 static struct lock cam_dead_lock;
701 /* Storage for debugging datastructures */
702 #ifdef CAMDEBUG
703 struct cam_path *cam_dpath;
704 u_int32_t cam_dflags;
705 u_int32_t cam_debug_delay;
706 #endif
708 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
709 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
710 #endif
713 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
714 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
715 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
717 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
718 || defined(CAM_DEBUG_LUN)
719 #ifdef CAMDEBUG
720 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
721 || !defined(CAM_DEBUG_LUN)
722 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
723 and CAM_DEBUG_LUN"
724 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
725 #else /* !CAMDEBUG */
726 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
727 #endif /* CAMDEBUG */
728 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
730 /* Our boot-time initialization hook */
731 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
733 static moduledata_t cam_moduledata = {
734 "cam",
735 cam_module_event_handler,
736 NULL
739 static int xpt_init(void *);
741 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
742 MODULE_VERSION(cam, 1);
745 static cam_status xpt_compile_path(struct cam_path *new_path,
746 struct cam_periph *perph,
747 path_id_t path_id,
748 target_id_t target_id,
749 lun_id_t lun_id);
751 static void xpt_release_path(struct cam_path *path);
753 static void xpt_async_bcast(struct async_list *async_head,
754 u_int32_t async_code,
755 struct cam_path *path,
756 void *async_arg);
757 static void xpt_dev_async(u_int32_t async_code,
758 struct cam_eb *bus,
759 struct cam_et *target,
760 struct cam_ed *device,
761 void *async_arg);
762 static path_id_t xptnextfreepathid(void);
763 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
764 static union ccb *xpt_get_ccb(struct cam_ed *device);
765 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
766 u_int32_t new_priority);
767 static void xpt_run_dev_allocq(struct cam_eb *bus);
768 static void xpt_run_dev_sendq(struct cam_eb *bus);
769 static timeout_t xpt_release_devq_timeout;
770 static void xpt_release_bus(struct cam_eb *bus);
771 static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
772 int run_queue);
773 static struct cam_et*
774 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
775 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
776 static struct cam_ed*
777 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
778 lun_id_t lun_id);
779 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
780 struct cam_ed *device);
781 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
782 static struct cam_eb*
783 xpt_find_bus(path_id_t path_id);
784 static struct cam_et*
785 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
786 static struct cam_ed*
787 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
788 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
789 static void xpt_scan_lun(struct cam_periph *periph,
790 struct cam_path *path, cam_flags flags,
791 union ccb *ccb);
792 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
793 static xpt_busfunc_t xptconfigbuscountfunc;
794 static xpt_busfunc_t xptconfigfunc;
795 static void xpt_config(void *arg);
796 static xpt_devicefunc_t xptpassannouncefunc;
797 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
798 static void xpt_uncount_bus (struct cam_eb *bus);
799 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
800 static void xptpoll(struct cam_sim *sim);
801 static inthand2_t swi_cambio;
802 static void camisr(void *);
803 static void camisr_runqueue(struct cam_sim *);
804 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
805 u_int num_patterns, struct cam_eb *bus);
806 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
807 u_int num_patterns,
808 struct cam_ed *device);
809 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
810 u_int num_patterns,
811 struct cam_periph *periph);
812 static xpt_busfunc_t xptedtbusfunc;
813 static xpt_targetfunc_t xptedttargetfunc;
814 static xpt_devicefunc_t xptedtdevicefunc;
815 static xpt_periphfunc_t xptedtperiphfunc;
816 static xpt_pdrvfunc_t xptplistpdrvfunc;
817 static xpt_periphfunc_t xptplistperiphfunc;
818 static int xptedtmatch(struct ccb_dev_match *cdm);
819 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
820 static int xptbustraverse(struct cam_eb *start_bus,
821 xpt_busfunc_t *tr_func, void *arg);
822 static int xpttargettraverse(struct cam_eb *bus,
823 struct cam_et *start_target,
824 xpt_targetfunc_t *tr_func, void *arg);
825 static int xptdevicetraverse(struct cam_et *target,
826 struct cam_ed *start_device,
827 xpt_devicefunc_t *tr_func, void *arg);
828 static int xptperiphtraverse(struct cam_ed *device,
829 struct cam_periph *start_periph,
830 xpt_periphfunc_t *tr_func, void *arg);
831 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
832 xpt_pdrvfunc_t *tr_func, void *arg);
833 static int xptpdperiphtraverse(struct periph_driver **pdrv,
834 struct cam_periph *start_periph,
835 xpt_periphfunc_t *tr_func,
836 void *arg);
837 static xpt_busfunc_t xptdefbusfunc;
838 static xpt_targetfunc_t xptdeftargetfunc;
839 static xpt_devicefunc_t xptdefdevicefunc;
840 static xpt_periphfunc_t xptdefperiphfunc;
841 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
842 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
843 void *arg);
844 static xpt_devicefunc_t xptsetasyncfunc;
845 static xpt_busfunc_t xptsetasyncbusfunc;
846 static cam_status xptregister(struct cam_periph *periph,
847 void *arg);
848 static cam_status proberegister(struct cam_periph *periph,
849 void *arg);
850 static void probeschedule(struct cam_periph *probe_periph);
851 static void probestart(struct cam_periph *periph, union ccb *start_ccb);
852 static void proberequestdefaultnegotiation(struct cam_periph *periph);
853 static int proberequestbackoff(struct cam_periph *periph,
854 struct cam_ed *device);
855 static void probedone(struct cam_periph *periph, union ccb *done_ccb);
856 static void probecleanup(struct cam_periph *periph);
857 static void xpt_find_quirk(struct cam_ed *device);
858 static void xpt_devise_transport(struct cam_path *path);
859 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
860 struct cam_ed *device,
861 int async_update);
862 static void xpt_toggle_tags(struct cam_path *path);
863 static void xpt_start_tags(struct cam_path *path);
864 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
865 struct cam_ed *dev);
866 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
867 struct cam_ed *dev);
868 static __inline int periph_is_queued(struct cam_periph *periph);
869 static __inline int device_is_alloc_queued(struct cam_ed *device);
870 static __inline int device_is_send_queued(struct cam_ed *device);
871 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873 static __inline int
874 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 int retval;
878 if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
879 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
880 cam_ccbq_resize(&dev->ccbq,
881 dev->ccbq.dev_openings
882 + dev->ccbq.dev_active);
883 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
886 * The priority of a device waiting for CCB resources
887 * is that of the the highest priority peripheral driver
888 * enqueued.
890 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
891 &dev->alloc_ccb_entry.pinfo,
892 CAMQ_GET_HEAD(&dev->drvq)->priority);
893 } else {
894 retval = 0;
897 return (retval);
900 static __inline int
901 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 int retval;
905 if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907 * The priority of a device waiting for controller
908 * resources is that of the the highest priority CCB
909 * enqueued.
911 retval =
912 xpt_schedule_dev(&bus->sim->devq->send_queue,
913 &dev->send_ccb_entry.pinfo,
914 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
915 } else {
916 retval = 0;
918 return (retval);
921 static __inline int
922 periph_is_queued(struct cam_periph *periph)
924 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
927 static __inline int
928 device_is_alloc_queued(struct cam_ed *device)
930 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
933 static __inline int
934 device_is_send_queued(struct cam_ed *device)
936 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
939 static __inline int
940 dev_allocq_is_runnable(struct cam_devq *devq)
943 * Have work to do.
944 * Have space to do more work.
945 * Allowed to do work.
947 return ((devq->alloc_queue.qfrozen_cnt == 0)
948 && (devq->alloc_queue.entries > 0)
949 && (devq->alloc_openings > 0));
952 static void
953 xpt_periph_init(void)
955 make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
958 static void
959 probe_periph_init(void)
964 static void
965 xptdone(struct cam_periph *periph, union ccb *done_ccb)
967 /* Caller will release the CCB */
968 wakeup(&done_ccb->ccb_h.cbfcnp);
971 static int
972 xptopen(struct dev_open_args *ap)
974 cdev_t dev = ap->a_head.a_dev;
977 * Only allow read-write access.
979 if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
980 return(EPERM);
983 * We don't allow nonblocking access.
985 if ((ap->a_oflags & O_NONBLOCK) != 0) {
986 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
987 return(ENODEV);
990 /* Mark ourselves open */
991 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
992 xsoftc.flags |= XPT_FLAG_OPEN;
993 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
995 return(0);
998 static int
999 xptclose(struct dev_close_args *ap)
1002 /* Mark ourselves closed */
1003 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1004 xsoftc.flags &= ~XPT_FLAG_OPEN;
1005 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1007 return(0);
1011 * Don't automatically grab the xpt softc lock here even though this is going
1012 * through the xpt device. The xpt device is really just a back door for
1013 * accessing other devices and SIMs, so the right thing to do is to grab
1014 * the appropriate SIM lock once the bus/SIM is located.
1016 static int
1017 xptioctl(struct dev_ioctl_args *ap)
1019 int error;
1021 error = 0;
1023 switch(ap->a_cmd) {
1025 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1026 * to accept CCB types that don't quite make sense to send through a
1027 * passthrough driver.
1029 case CAMIOCOMMAND: {
1030 union ccb *ccb;
1031 union ccb *inccb;
1032 struct cam_eb *bus;
1034 inccb = (union ccb *)ap->a_data;
1036 bus = xpt_find_bus(inccb->ccb_h.path_id);
1037 if (bus == NULL) {
1038 error = EINVAL;
1039 break;
1042 switch(inccb->ccb_h.func_code) {
1043 case XPT_SCAN_BUS:
1044 case XPT_RESET_BUS:
1045 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1046 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1047 error = EINVAL;
1048 break;
1050 /* FALLTHROUGH */
1051 case XPT_PATH_INQ:
1052 case XPT_ENG_INQ:
1053 case XPT_SCAN_LUN:
1055 ccb = xpt_alloc_ccb();
1057 CAM_SIM_LOCK(bus->sim);
1060 * Create a path using the bus, target, and lun the
1061 * user passed in.
1063 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1064 inccb->ccb_h.path_id,
1065 inccb->ccb_h.target_id,
1066 inccb->ccb_h.target_lun) !=
1067 CAM_REQ_CMP){
1068 error = EINVAL;
1069 CAM_SIM_UNLOCK(bus->sim);
1070 xpt_free_ccb(ccb);
1071 break;
1073 /* Ensure all of our fields are correct */
1074 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1075 inccb->ccb_h.pinfo.priority);
1076 xpt_merge_ccb(ccb, inccb);
1077 ccb->ccb_h.cbfcnp = xptdone;
1078 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1079 bcopy(ccb, inccb, sizeof(union ccb));
1080 xpt_free_path(ccb->ccb_h.path);
1081 xpt_free_ccb(ccb);
1082 CAM_SIM_UNLOCK(bus->sim);
1083 break;
1085 case XPT_DEBUG: {
1086 union ccb ccb;
1089 * This is an immediate CCB, so it's okay to
1090 * allocate it on the stack.
1093 CAM_SIM_LOCK(bus->sim);
1096 * Create a path using the bus, target, and lun the
1097 * user passed in.
1099 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1100 inccb->ccb_h.path_id,
1101 inccb->ccb_h.target_id,
1102 inccb->ccb_h.target_lun) !=
1103 CAM_REQ_CMP){
1104 error = EINVAL;
1105 CAM_SIM_UNLOCK(bus->sim);
1106 break;
1108 /* Ensure all of our fields are correct */
1109 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1110 inccb->ccb_h.pinfo.priority);
1111 xpt_merge_ccb(&ccb, inccb);
1112 ccb.ccb_h.cbfcnp = xptdone;
1113 xpt_action(&ccb);
1114 CAM_SIM_UNLOCK(bus->sim);
1115 bcopy(&ccb, inccb, sizeof(union ccb));
1116 xpt_free_path(ccb.ccb_h.path);
1117 break;
1120 case XPT_DEV_MATCH: {
1121 struct cam_periph_map_info mapinfo;
1122 struct cam_path *old_path;
1125 * We can't deal with physical addresses for this
1126 * type of transaction.
1128 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1129 error = EINVAL;
1130 break;
1134 * Save this in case the caller had it set to
1135 * something in particular.
1137 old_path = inccb->ccb_h.path;
1140 * We really don't need a path for the matching
1141 * code. The path is needed because of the
1142 * debugging statements in xpt_action(). They
1143 * assume that the CCB has a valid path.
1145 inccb->ccb_h.path = xpt_periph->path;
1147 bzero(&mapinfo, sizeof(mapinfo));
1150 * Map the pattern and match buffers into kernel
1151 * virtual address space.
1153 error = cam_periph_mapmem(inccb, &mapinfo);
1155 if (error) {
1156 inccb->ccb_h.path = old_path;
1157 break;
1161 * This is an immediate CCB, we can send it on directly.
1163 xpt_action(inccb);
1166 * Map the buffers back into user space.
1168 cam_periph_unmapmem(inccb, &mapinfo);
1170 inccb->ccb_h.path = old_path;
1172 error = 0;
1173 break;
1175 default:
1176 error = ENOTSUP;
1177 break;
1179 xpt_release_bus(bus);
1180 break;
1183 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1184 * with the periphal driver name and unit name filled in. The other
1185 * fields don't really matter as input. The passthrough driver name
1186 * ("pass"), and unit number are passed back in the ccb. The current
1187 * device generation number, and the index into the device peripheral
1188 * driver list, and the status are also passed back. Note that
1189 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1190 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1191 * (or rather should be) impossible for the device peripheral driver
1192 * list to change since we look at the whole thing in one pass, and
1193 * we do it with lock protection.
1196 case CAMGETPASSTHRU: {
1197 union ccb *ccb;
1198 struct cam_periph *periph;
1199 struct periph_driver **p_drv;
1200 char *name;
1201 u_int unit;
1202 u_int cur_generation;
1203 int base_periph_found;
1204 int splbreaknum;
1206 ccb = (union ccb *)ap->a_data;
1207 unit = ccb->cgdl.unit_number;
1208 name = ccb->cgdl.periph_name;
1210 * Every 100 devices, we want to drop our lock protection to
1211 * give the software interrupt handler a chance to run.
1212 * Most systems won't run into this check, but this should
1213 * avoid starvation in the software interrupt handler in
1214 * large systems.
1216 splbreaknum = 100;
1218 ccb = (union ccb *)ap->a_data;
1220 base_periph_found = 0;
1223 * Sanity check -- make sure we don't get a null peripheral
1224 * driver name.
1226 if (*ccb->cgdl.periph_name == '\0') {
1227 error = EINVAL;
1228 break;
1231 /* Keep the list from changing while we traverse it */
1232 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1233 ptstartover:
1234 cur_generation = xsoftc.xpt_generation;
1236 /* first find our driver in the list of drivers */
1237 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1238 if (strcmp((*p_drv)->driver_name, name) == 0)
1239 break;
1242 if (*p_drv == NULL) {
1243 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1244 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1245 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1246 *ccb->cgdl.periph_name = '\0';
1247 ccb->cgdl.unit_number = 0;
1248 error = ENOENT;
1249 break;
1253 * Run through every peripheral instance of this driver
1254 * and check to see whether it matches the unit passed
1255 * in by the user. If it does, get out of the loops and
1256 * find the passthrough driver associated with that
1257 * peripheral driver.
1259 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1261 if (periph->unit_number == unit) {
1262 break;
1263 } else if (--splbreaknum == 0) {
1264 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1265 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1266 splbreaknum = 100;
1267 if (cur_generation != xsoftc.xpt_generation)
1268 goto ptstartover;
1272 * If we found the peripheral driver that the user passed
1273 * in, go through all of the peripheral drivers for that
1274 * particular device and look for a passthrough driver.
1276 if (periph != NULL) {
1277 struct cam_ed *device;
1278 int i;
1280 base_periph_found = 1;
1281 device = periph->path->device;
1282 for (i = 0, periph = SLIST_FIRST(&device->periphs);
1283 periph != NULL;
1284 periph = SLIST_NEXT(periph, periph_links), i++) {
1286 * Check to see whether we have a
1287 * passthrough device or not.
1289 if (strcmp(periph->periph_name, "pass") == 0) {
1291 * Fill in the getdevlist fields.
1293 strcpy(ccb->cgdl.periph_name,
1294 periph->periph_name);
1295 ccb->cgdl.unit_number =
1296 periph->unit_number;
1297 if (SLIST_NEXT(periph, periph_links))
1298 ccb->cgdl.status =
1299 CAM_GDEVLIST_MORE_DEVS;
1300 else
1301 ccb->cgdl.status =
1302 CAM_GDEVLIST_LAST_DEVICE;
1303 ccb->cgdl.generation =
1304 device->generation;
1305 ccb->cgdl.index = i;
1307 * Fill in some CCB header fields
1308 * that the user may want.
1310 ccb->ccb_h.path_id =
1311 periph->path->bus->path_id;
1312 ccb->ccb_h.target_id =
1313 periph->path->target->target_id;
1314 ccb->ccb_h.target_lun =
1315 periph->path->device->lun_id;
1316 ccb->ccb_h.status = CAM_REQ_CMP;
1317 break;
1323 * If the periph is null here, one of two things has
1324 * happened. The first possibility is that we couldn't
1325 * find the unit number of the particular peripheral driver
1326 * that the user is asking about. e.g. the user asks for
1327 * the passthrough driver for "da11". We find the list of
1328 * "da" peripherals all right, but there is no unit 11.
1329 * The other possibility is that we went through the list
1330 * of peripheral drivers attached to the device structure,
1331 * but didn't find one with the name "pass". Either way,
1332 * we return ENOENT, since we couldn't find something.
1334 if (periph == NULL) {
1335 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1336 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1337 *ccb->cgdl.periph_name = '\0';
1338 ccb->cgdl.unit_number = 0;
1339 error = ENOENT;
1341 * It is unfortunate that this is even necessary,
1342 * but there are many, many clueless users out there.
1343 * If this is true, the user is looking for the
1344 * passthrough driver, but doesn't have one in his
1345 * kernel.
1347 if (base_periph_found == 1) {
1348 kprintf("xptioctl: pass driver is not in the "
1349 "kernel\n");
1350 kprintf("xptioctl: put \"device pass\" in "
1351 "your kernel config file\n");
1354 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1355 break;
1357 default:
1358 error = ENOTTY;
1359 break;
1362 return(error);
1365 static int
1366 cam_module_event_handler(module_t mod, int what, void *arg)
1368 int error;
1370 switch (what) {
1371 case MOD_LOAD:
1372 if ((error = xpt_init(NULL)) != 0)
1373 return (error);
1374 break;
1375 case MOD_UNLOAD:
1376 return EBUSY;
1377 default:
1378 return EOPNOTSUPP;
1381 return 0;
1385 * Thread to handle asynchronous main-context requests.
1387 * This function is typically used by drivers to perform complex actions
1388 * such as bus scans and engineering requests in a main context instead
1389 * of an interrupt context.
1391 static void
1392 xpt_scanner_thread(void *dummy)
1394 union ccb *ccb;
1395 struct cam_sim *sim;
1397 for (;;) {
1398 xpt_lock_buses();
1399 xsoftc.ccb_scanq_running = 1;
1400 while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1401 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1402 sim_links.tqe);
1403 xpt_unlock_buses();
1405 sim = ccb->ccb_h.path->bus->sim;
1406 CAM_SIM_LOCK(sim);
1407 xpt_action(ccb);
1408 CAM_SIM_UNLOCK(sim);
1410 xpt_lock_buses();
1412 xsoftc.ccb_scanq_running = 0;
1413 tsleep_interlock(&xsoftc.ccb_scanq, 0);
1414 xpt_unlock_buses();
1415 tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1420 * Issue an asynchronous asction
1422 void
1423 xpt_action_async(union ccb *ccb)
1425 xpt_lock_buses();
1426 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1427 if (xsoftc.ccb_scanq_running == 0) {
1428 xsoftc.ccb_scanq_running = 1;
1429 wakeup(&xsoftc.ccb_scanq);
1431 xpt_unlock_buses();
1435 /* Functions accessed by the peripheral drivers */
1436 static int
1437 xpt_init(void *dummy)
1439 struct cam_sim *xpt_sim;
1440 struct cam_path *path;
1441 struct cam_devq *devq;
1442 cam_status status;
1444 TAILQ_INIT(&xsoftc.xpt_busses);
1445 TAILQ_INIT(&cam_simq);
1446 TAILQ_INIT(&xsoftc.ccb_scanq);
1447 STAILQ_INIT(&xsoftc.highpowerq);
1448 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1450 spin_init(&cam_simq_spin, "cam_simq_spin");
1451 lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1452 lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1454 SLIST_INIT(&cam_dead_sim.ccb_freeq);
1455 TAILQ_INIT(&cam_dead_sim.sim_doneq);
1456 spin_init(&cam_dead_sim.sim_spin, "cam_dead_sim");
1457 cam_dead_sim.sim_action = dead_sim_action;
1458 cam_dead_sim.sim_poll = dead_sim_poll;
1459 cam_dead_sim.sim_name = "dead_sim";
1460 cam_dead_sim.lock = &cam_dead_lock;
1461 lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1462 cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1465 * The xpt layer is, itself, the equivelent of a SIM.
1466 * Allow 16 ccbs in the ccb pool for it. This should
1467 * give decent parallelism when we probe busses and
1468 * perform other XPT functions.
1470 devq = cam_simq_alloc(16);
1471 xpt_sim = cam_sim_alloc(xptaction,
1472 xptpoll,
1473 "xpt",
1474 /*softc*/NULL,
1475 /*unit*/0,
1476 /*lock*/&xsoftc.xpt_lock,
1477 /*max_dev_transactions*/0,
1478 /*max_tagged_dev_transactions*/0,
1479 devq);
1480 cam_simq_release(devq);
1481 if (xpt_sim == NULL)
1482 return (ENOMEM);
1484 xpt_sim->max_ccbs = 16;
1486 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1487 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1488 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1489 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1490 " failing attach\n", status);
1491 return (EINVAL);
1495 * Looking at the XPT from the SIM layer, the XPT is
1496 * the equivelent of a peripheral driver. Allocate
1497 * a peripheral driver entry for us.
1499 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1500 CAM_TARGET_WILDCARD,
1501 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1502 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1503 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1504 " failing attach\n", status);
1505 return (EINVAL);
1508 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1509 path, NULL, 0, xpt_sim);
1510 xpt_free_path(path);
1512 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1515 * Register a callback for when interrupts are enabled.
1517 xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1518 M_CAMXPT, M_INTWAIT | M_ZERO);
1519 xsoftc.xpt_config_hook->ich_func = xpt_config;
1520 xsoftc.xpt_config_hook->ich_desc = "xpt";
1521 xsoftc.xpt_config_hook->ich_order = 1000;
1522 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1523 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1524 kprintf("xpt_init: config_intrhook_establish failed "
1525 "- failing attach\n");
1528 /* fire up rescan thread */
1529 if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1530 kprintf("xpt_init: failed to create rescan thread\n");
1532 /* Install our software interrupt handlers */
1533 register_swi_mp(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1535 return (0);
1538 static cam_status
1539 xptregister(struct cam_periph *periph, void *arg)
1541 struct cam_sim *xpt_sim;
1543 if (periph == NULL) {
1544 kprintf("xptregister: periph was NULL!!\n");
1545 return(CAM_REQ_CMP_ERR);
1548 xpt_sim = (struct cam_sim *)arg;
1549 xpt_sim->softc = periph;
1550 xpt_periph = periph;
1551 periph->softc = NULL;
1553 return(CAM_REQ_CMP);
1556 int32_t
1557 xpt_add_periph(struct cam_periph *periph)
1559 struct cam_ed *device;
1560 int32_t status;
1561 struct periph_list *periph_head;
1563 sim_lock_assert_owned(periph->sim->lock);
1565 device = periph->path->device;
1567 periph_head = &device->periphs;
1569 status = CAM_REQ_CMP;
1571 if (device != NULL) {
1573 * Make room for this peripheral
1574 * so it will fit in the queue
1575 * when it's scheduled to run
1577 status = camq_resize(&device->drvq,
1578 device->drvq.array_size + 1);
1580 device->generation++;
1582 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1585 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1586 xsoftc.xpt_generation++;
1587 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1589 return (status);
1592 void
1593 xpt_remove_periph(struct cam_periph *periph)
1595 struct cam_ed *device;
1597 sim_lock_assert_owned(periph->sim->lock);
1599 device = periph->path->device;
1601 if (device != NULL) {
1602 struct periph_list *periph_head;
1604 periph_head = &device->periphs;
1606 /* Release the slot for this peripheral */
1607 camq_resize(&device->drvq, device->drvq.array_size - 1);
1609 device->generation++;
1611 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1614 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1615 xsoftc.xpt_generation++;
1616 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1619 void
1620 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1622 struct ccb_pathinq cpi;
1623 struct ccb_trans_settings cts;
1624 struct cam_path *path;
1625 u_int speed;
1626 u_int freq;
1627 u_int mb;
1629 sim_lock_assert_owned(periph->sim->lock);
1631 path = periph->path;
1633 /* Report basic attachment and inquiry data */
1634 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1635 periph->periph_name, periph->unit_number,
1636 path->bus->sim->sim_name,
1637 path->bus->sim->unit_number,
1638 path->bus->sim->bus_id,
1639 path->target->target_id,
1640 path->device->lun_id);
1641 kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1642 scsi_print_inquiry(&path->device->inq_data);
1644 /* Report serial number */
1645 if (path->device->serial_num_len > 0) {
1646 /* Don't wrap the screen - print only the first 60 chars */
1647 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1648 periph->unit_number, path->device->serial_num);
1651 /* Acquire and report transfer speed */
1652 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1653 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1654 cts.type = CTS_TYPE_CURRENT_SETTINGS;
1655 xpt_action((union ccb*)&cts);
1656 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1657 return;
1660 /* Ask the SIM for its base transfer speed */
1661 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1662 cpi.ccb_h.func_code = XPT_PATH_INQ;
1663 xpt_action((union ccb *)&cpi);
1665 speed = cpi.base_transfer_speed;
1666 freq = 0;
1667 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1668 struct ccb_trans_settings_spi *spi;
1670 spi = &cts.xport_specific.spi;
1671 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1672 && spi->sync_offset != 0) {
1673 freq = scsi_calc_syncsrate(spi->sync_period);
1674 speed = freq;
1677 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1678 speed *= (0x01 << spi->bus_width);
1680 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1681 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1682 if (fc->valid & CTS_FC_VALID_SPEED) {
1683 speed = fc->bitrate;
1687 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1688 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1689 if (sas->valid & CTS_SAS_VALID_SPEED) {
1690 speed = sas->bitrate;
1694 mb = speed / 1000;
1695 if (mb > 0)
1696 kprintf("%s%d: %d.%03dMB/s transfers",
1697 periph->periph_name, periph->unit_number,
1698 mb, speed % 1000);
1699 else
1700 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1701 periph->unit_number, speed);
1703 /* Report additional information about SPI connections */
1704 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1705 struct ccb_trans_settings_spi *spi;
1707 spi = &cts.xport_specific.spi;
1708 if (freq != 0) {
1709 kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1710 freq % 1000,
1711 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1712 ? " DT" : "",
1713 spi->sync_offset);
1715 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1716 && spi->bus_width > 0) {
1717 if (freq != 0) {
1718 kprintf(", ");
1719 } else {
1720 kprintf(" (");
1722 kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1723 } else if (freq != 0) {
1724 kprintf(")");
1727 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1728 struct ccb_trans_settings_fc *fc;
1730 fc = &cts.xport_specific.fc;
1731 if (fc->valid & CTS_FC_VALID_WWNN)
1732 kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1733 if (fc->valid & CTS_FC_VALID_WWPN)
1734 kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1735 if (fc->valid & CTS_FC_VALID_PORT)
1736 kprintf(" PortID 0x%x", fc->port);
1739 if (path->device->inq_flags & SID_CmdQue
1740 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1741 kprintf("\n%s%d: Command Queueing Enabled",
1742 periph->periph_name, periph->unit_number);
1744 kprintf("\n");
1747 * We only want to print the caller's announce string if they've
1748 * passed one in..
1750 if (announce_string != NULL)
1751 kprintf("%s%d: %s\n", periph->periph_name,
1752 periph->unit_number, announce_string);
1755 static dev_match_ret
1756 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1757 struct cam_eb *bus)
1759 dev_match_ret retval;
1760 int i;
1762 retval = DM_RET_NONE;
1765 * If we aren't given something to match against, that's an error.
1767 if (bus == NULL)
1768 return(DM_RET_ERROR);
1771 * If there are no match entries, then this bus matches no
1772 * matter what.
1774 if ((patterns == NULL) || (num_patterns == 0))
1775 return(DM_RET_DESCEND | DM_RET_COPY);
1777 for (i = 0; i < num_patterns; i++) {
1778 struct bus_match_pattern *cur_pattern;
1781 * If the pattern in question isn't for a bus node, we
1782 * aren't interested. However, we do indicate to the
1783 * calling routine that we should continue descending the
1784 * tree, since the user wants to match against lower-level
1785 * EDT elements.
1787 if (patterns[i].type != DEV_MATCH_BUS) {
1788 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1789 retval |= DM_RET_DESCEND;
1790 continue;
1793 cur_pattern = &patterns[i].pattern.bus_pattern;
1796 * If they want to match any bus node, we give them any
1797 * device node.
1799 if (cur_pattern->flags == BUS_MATCH_ANY) {
1800 /* set the copy flag */
1801 retval |= DM_RET_COPY;
1804 * If we've already decided on an action, go ahead
1805 * and return.
1807 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1808 return(retval);
1812 * Not sure why someone would do this...
1814 if (cur_pattern->flags == BUS_MATCH_NONE)
1815 continue;
1817 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1818 && (cur_pattern->path_id != bus->path_id))
1819 continue;
1821 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1822 && (cur_pattern->bus_id != bus->sim->bus_id))
1823 continue;
1825 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1826 && (cur_pattern->unit_number != bus->sim->unit_number))
1827 continue;
1829 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1830 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1831 DEV_IDLEN) != 0))
1832 continue;
1835 * If we get to this point, the user definitely wants
1836 * information on this bus. So tell the caller to copy the
1837 * data out.
1839 retval |= DM_RET_COPY;
1842 * If the return action has been set to descend, then we
1843 * know that we've already seen a non-bus matching
1844 * expression, therefore we need to further descend the tree.
1845 * This won't change by continuing around the loop, so we
1846 * go ahead and return. If we haven't seen a non-bus
1847 * matching expression, we keep going around the loop until
1848 * we exhaust the matching expressions. We'll set the stop
1849 * flag once we fall out of the loop.
1851 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1852 return(retval);
1856 * If the return action hasn't been set to descend yet, that means
1857 * we haven't seen anything other than bus matching patterns. So
1858 * tell the caller to stop descending the tree -- the user doesn't
1859 * want to match against lower level tree elements.
1861 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1862 retval |= DM_RET_STOP;
1864 return(retval);
1867 static dev_match_ret
1868 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1869 struct cam_ed *device)
1871 dev_match_ret retval;
1872 int i;
1874 retval = DM_RET_NONE;
1877 * If we aren't given something to match against, that's an error.
1879 if (device == NULL)
1880 return(DM_RET_ERROR);
1883 * If there are no match entries, then this device matches no
1884 * matter what.
1886 if ((patterns == NULL) || (num_patterns == 0))
1887 return(DM_RET_DESCEND | DM_RET_COPY);
1889 for (i = 0; i < num_patterns; i++) {
1890 struct device_match_pattern *cur_pattern;
1893 * If the pattern in question isn't for a device node, we
1894 * aren't interested.
1896 if (patterns[i].type != DEV_MATCH_DEVICE) {
1897 if ((patterns[i].type == DEV_MATCH_PERIPH)
1898 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1899 retval |= DM_RET_DESCEND;
1900 continue;
1903 cur_pattern = &patterns[i].pattern.device_pattern;
1906 * If they want to match any device node, we give them any
1907 * device node.
1909 if (cur_pattern->flags == DEV_MATCH_ANY) {
1910 /* set the copy flag */
1911 retval |= DM_RET_COPY;
1915 * If we've already decided on an action, go ahead
1916 * and return.
1918 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1919 return(retval);
1923 * Not sure why someone would do this...
1925 if (cur_pattern->flags == DEV_MATCH_NONE)
1926 continue;
1928 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1929 && (cur_pattern->path_id != device->target->bus->path_id))
1930 continue;
1932 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1933 && (cur_pattern->target_id != device->target->target_id))
1934 continue;
1936 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1937 && (cur_pattern->target_lun != device->lun_id))
1938 continue;
1940 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1941 && (cam_quirkmatch((caddr_t)&device->inq_data,
1942 (caddr_t)&cur_pattern->inq_pat,
1943 1, sizeof(cur_pattern->inq_pat),
1944 scsi_static_inquiry_match) == NULL))
1945 continue;
1948 * If we get to this point, the user definitely wants
1949 * information on this device. So tell the caller to copy
1950 * the data out.
1952 retval |= DM_RET_COPY;
1955 * If the return action has been set to descend, then we
1956 * know that we've already seen a peripheral matching
1957 * expression, therefore we need to further descend the tree.
1958 * This won't change by continuing around the loop, so we
1959 * go ahead and return. If we haven't seen a peripheral
1960 * matching expression, we keep going around the loop until
1961 * we exhaust the matching expressions. We'll set the stop
1962 * flag once we fall out of the loop.
1964 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1965 return(retval);
1969 * If the return action hasn't been set to descend yet, that means
1970 * we haven't seen any peripheral matching patterns. So tell the
1971 * caller to stop descending the tree -- the user doesn't want to
1972 * match against lower level tree elements.
1974 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1975 retval |= DM_RET_STOP;
1977 return(retval);
1981 * Match a single peripheral against any number of match patterns.
1983 static dev_match_ret
1984 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1985 struct cam_periph *periph)
1987 dev_match_ret retval;
1988 int i;
1991 * If we aren't given something to match against, that's an error.
1993 if (periph == NULL)
1994 return(DM_RET_ERROR);
1997 * If there are no match entries, then this peripheral matches no
1998 * matter what.
2000 if ((patterns == NULL) || (num_patterns == 0))
2001 return(DM_RET_STOP | DM_RET_COPY);
2004 * There aren't any nodes below a peripheral node, so there's no
2005 * reason to descend the tree any further.
2007 retval = DM_RET_STOP;
2009 for (i = 0; i < num_patterns; i++) {
2010 struct periph_match_pattern *cur_pattern;
2013 * If the pattern in question isn't for a peripheral, we
2014 * aren't interested.
2016 if (patterns[i].type != DEV_MATCH_PERIPH)
2017 continue;
2019 cur_pattern = &patterns[i].pattern.periph_pattern;
2022 * If they want to match on anything, then we will do so.
2024 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2025 /* set the copy flag */
2026 retval |= DM_RET_COPY;
2029 * We've already set the return action to stop,
2030 * since there are no nodes below peripherals in
2031 * the tree.
2033 return(retval);
2037 * Not sure why someone would do this...
2039 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2040 continue;
2042 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2043 && (cur_pattern->path_id != periph->path->bus->path_id))
2044 continue;
2047 * For the target and lun id's, we have to make sure the
2048 * target and lun pointers aren't NULL. The xpt peripheral
2049 * has a wildcard target and device.
2051 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2052 && ((periph->path->target == NULL)
2053 ||(cur_pattern->target_id != periph->path->target->target_id)))
2054 continue;
2056 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2057 && ((periph->path->device == NULL)
2058 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2059 continue;
2061 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2062 && (cur_pattern->unit_number != periph->unit_number))
2063 continue;
2065 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2066 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2067 DEV_IDLEN) != 0))
2068 continue;
2071 * If we get to this point, the user definitely wants
2072 * information on this peripheral. So tell the caller to
2073 * copy the data out.
2075 retval |= DM_RET_COPY;
2078 * The return action has already been set to stop, since
2079 * peripherals don't have any nodes below them in the EDT.
2081 return(retval);
2085 * If we get to this point, the peripheral that was passed in
2086 * doesn't match any of the patterns.
2088 return(retval);
2091 static int
2092 xptedtbusfunc(struct cam_eb *bus, void *arg)
2094 struct ccb_dev_match *cdm;
2095 dev_match_ret retval;
2097 cdm = (struct ccb_dev_match *)arg;
2100 * If our position is for something deeper in the tree, that means
2101 * that we've already seen this node. So, we keep going down.
2103 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2104 && (cdm->pos.cookie.bus == bus)
2105 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2106 && (cdm->pos.cookie.target != NULL))
2107 retval = DM_RET_DESCEND;
2108 else
2109 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2112 * If we got an error, bail out of the search.
2114 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2115 cdm->status = CAM_DEV_MATCH_ERROR;
2116 return(0);
2120 * If the copy flag is set, copy this bus out.
2122 if (retval & DM_RET_COPY) {
2123 int spaceleft, j;
2125 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2126 sizeof(struct dev_match_result));
2129 * If we don't have enough space to put in another
2130 * match result, save our position and tell the
2131 * user there are more devices to check.
2133 if (spaceleft < sizeof(struct dev_match_result)) {
2134 bzero(&cdm->pos, sizeof(cdm->pos));
2135 cdm->pos.position_type =
2136 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2138 cdm->pos.cookie.bus = bus;
2139 cdm->pos.generations[CAM_BUS_GENERATION]=
2140 xsoftc.bus_generation;
2141 cdm->status = CAM_DEV_MATCH_MORE;
2142 return(0);
2144 j = cdm->num_matches;
2145 cdm->num_matches++;
2146 cdm->matches[j].type = DEV_MATCH_BUS;
2147 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2148 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2149 cdm->matches[j].result.bus_result.unit_number =
2150 bus->sim->unit_number;
2151 strncpy(cdm->matches[j].result.bus_result.dev_name,
2152 bus->sim->sim_name, DEV_IDLEN);
2156 * If the user is only interested in busses, there's no
2157 * reason to descend to the next level in the tree.
2159 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2160 return(1);
2163 * If there is a target generation recorded, check it to
2164 * make sure the target list hasn't changed.
2166 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2167 && (bus == cdm->pos.cookie.bus)
2168 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2169 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2170 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2171 bus->generation)) {
2172 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2173 return(0);
2176 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2177 && (cdm->pos.cookie.bus == bus)
2178 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2179 && (cdm->pos.cookie.target != NULL))
2180 return(xpttargettraverse(bus,
2181 (struct cam_et *)cdm->pos.cookie.target,
2182 xptedttargetfunc, arg));
2183 else
2184 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2187 static int
2188 xptedttargetfunc(struct cam_et *target, void *arg)
2190 struct ccb_dev_match *cdm;
2192 cdm = (struct ccb_dev_match *)arg;
2195 * If there is a device list generation recorded, check it to
2196 * make sure the device list hasn't changed.
2198 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2199 && (cdm->pos.cookie.bus == target->bus)
2200 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2201 && (cdm->pos.cookie.target == target)
2202 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2203 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2204 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2205 target->generation)) {
2206 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2207 return(0);
2210 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2211 && (cdm->pos.cookie.bus == target->bus)
2212 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2213 && (cdm->pos.cookie.target == target)
2214 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2215 && (cdm->pos.cookie.device != NULL))
2216 return(xptdevicetraverse(target,
2217 (struct cam_ed *)cdm->pos.cookie.device,
2218 xptedtdevicefunc, arg));
2219 else
2220 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2223 static int
2224 xptedtdevicefunc(struct cam_ed *device, void *arg)
2227 struct ccb_dev_match *cdm;
2228 dev_match_ret retval;
2230 cdm = (struct ccb_dev_match *)arg;
2233 * If our position is for something deeper in the tree, that means
2234 * that we've already seen this node. So, we keep going down.
2236 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2237 && (cdm->pos.cookie.device == device)
2238 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2239 && (cdm->pos.cookie.periph != NULL))
2240 retval = DM_RET_DESCEND;
2241 else
2242 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2243 device);
2245 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2246 cdm->status = CAM_DEV_MATCH_ERROR;
2247 return(0);
2251 * If the copy flag is set, copy this device out.
2253 if (retval & DM_RET_COPY) {
2254 int spaceleft, j;
2256 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2257 sizeof(struct dev_match_result));
2260 * If we don't have enough space to put in another
2261 * match result, save our position and tell the
2262 * user there are more devices to check.
2264 if (spaceleft < sizeof(struct dev_match_result)) {
2265 bzero(&cdm->pos, sizeof(cdm->pos));
2266 cdm->pos.position_type =
2267 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2268 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2270 cdm->pos.cookie.bus = device->target->bus;
2271 cdm->pos.generations[CAM_BUS_GENERATION]=
2272 xsoftc.bus_generation;
2273 cdm->pos.cookie.target = device->target;
2274 cdm->pos.generations[CAM_TARGET_GENERATION] =
2275 device->target->bus->generation;
2276 cdm->pos.cookie.device = device;
2277 cdm->pos.generations[CAM_DEV_GENERATION] =
2278 device->target->generation;
2279 cdm->status = CAM_DEV_MATCH_MORE;
2280 return(0);
2282 j = cdm->num_matches;
2283 cdm->num_matches++;
2284 cdm->matches[j].type = DEV_MATCH_DEVICE;
2285 cdm->matches[j].result.device_result.path_id =
2286 device->target->bus->path_id;
2287 cdm->matches[j].result.device_result.target_id =
2288 device->target->target_id;
2289 cdm->matches[j].result.device_result.target_lun =
2290 device->lun_id;
2291 bcopy(&device->inq_data,
2292 &cdm->matches[j].result.device_result.inq_data,
2293 sizeof(struct scsi_inquiry_data));
2295 /* Let the user know whether this device is unconfigured */
2296 if (device->flags & CAM_DEV_UNCONFIGURED)
2297 cdm->matches[j].result.device_result.flags =
2298 DEV_RESULT_UNCONFIGURED;
2299 else
2300 cdm->matches[j].result.device_result.flags =
2301 DEV_RESULT_NOFLAG;
2305 * If the user isn't interested in peripherals, don't descend
2306 * the tree any further.
2308 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2309 return(1);
2312 * If there is a peripheral list generation recorded, make sure
2313 * it hasn't changed.
2315 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2316 && (device->target->bus == cdm->pos.cookie.bus)
2317 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2318 && (device->target == cdm->pos.cookie.target)
2319 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2320 && (device == cdm->pos.cookie.device)
2321 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2322 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2323 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2324 device->generation)){
2325 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2326 return(0);
2329 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2330 && (cdm->pos.cookie.bus == device->target->bus)
2331 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2332 && (cdm->pos.cookie.target == device->target)
2333 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2334 && (cdm->pos.cookie.device == device)
2335 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2336 && (cdm->pos.cookie.periph != NULL))
2337 return(xptperiphtraverse(device,
2338 (struct cam_periph *)cdm->pos.cookie.periph,
2339 xptedtperiphfunc, arg));
2340 else
2341 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2344 static int
2345 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2347 struct ccb_dev_match *cdm;
2348 dev_match_ret retval;
2350 cdm = (struct ccb_dev_match *)arg;
2352 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2354 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2355 cdm->status = CAM_DEV_MATCH_ERROR;
2356 return(0);
2360 * If the copy flag is set, copy this peripheral out.
2362 if (retval & DM_RET_COPY) {
2363 int spaceleft, j;
2365 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2366 sizeof(struct dev_match_result));
2369 * If we don't have enough space to put in another
2370 * match result, save our position and tell the
2371 * user there are more devices to check.
2373 if (spaceleft < sizeof(struct dev_match_result)) {
2374 bzero(&cdm->pos, sizeof(cdm->pos));
2375 cdm->pos.position_type =
2376 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2377 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2378 CAM_DEV_POS_PERIPH;
2380 cdm->pos.cookie.bus = periph->path->bus;
2381 cdm->pos.generations[CAM_BUS_GENERATION]=
2382 xsoftc.bus_generation;
2383 cdm->pos.cookie.target = periph->path->target;
2384 cdm->pos.generations[CAM_TARGET_GENERATION] =
2385 periph->path->bus->generation;
2386 cdm->pos.cookie.device = periph->path->device;
2387 cdm->pos.generations[CAM_DEV_GENERATION] =
2388 periph->path->target->generation;
2389 cdm->pos.cookie.periph = periph;
2390 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2391 periph->path->device->generation;
2392 cdm->status = CAM_DEV_MATCH_MORE;
2393 return(0);
2396 j = cdm->num_matches;
2397 cdm->num_matches++;
2398 cdm->matches[j].type = DEV_MATCH_PERIPH;
2399 cdm->matches[j].result.periph_result.path_id =
2400 periph->path->bus->path_id;
2401 cdm->matches[j].result.periph_result.target_id =
2402 periph->path->target->target_id;
2403 cdm->matches[j].result.periph_result.target_lun =
2404 periph->path->device->lun_id;
2405 cdm->matches[j].result.periph_result.unit_number =
2406 periph->unit_number;
2407 strncpy(cdm->matches[j].result.periph_result.periph_name,
2408 periph->periph_name, DEV_IDLEN);
2411 return(1);
2414 static int
2415 xptedtmatch(struct ccb_dev_match *cdm)
2417 int ret;
2419 cdm->num_matches = 0;
2422 * Check the bus list generation. If it has changed, the user
2423 * needs to reset everything and start over.
2425 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2426 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2427 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2428 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2429 return(0);
2432 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2433 && (cdm->pos.cookie.bus != NULL))
2434 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2435 xptedtbusfunc, cdm);
2436 else
2437 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2440 * If we get back 0, that means that we had to stop before fully
2441 * traversing the EDT. It also means that one of the subroutines
2442 * has set the status field to the proper value. If we get back 1,
2443 * we've fully traversed the EDT and copied out any matching entries.
2445 if (ret == 1)
2446 cdm->status = CAM_DEV_MATCH_LAST;
2448 return(ret);
2451 static int
2452 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2454 struct ccb_dev_match *cdm;
2456 cdm = (struct ccb_dev_match *)arg;
2458 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2459 && (cdm->pos.cookie.pdrv == pdrv)
2460 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2461 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2462 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2463 (*pdrv)->generation)) {
2464 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2465 return(0);
2468 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2469 && (cdm->pos.cookie.pdrv == pdrv)
2470 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2471 && (cdm->pos.cookie.periph != NULL))
2472 return(xptpdperiphtraverse(pdrv,
2473 (struct cam_periph *)cdm->pos.cookie.periph,
2474 xptplistperiphfunc, arg));
2475 else
2476 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2479 static int
2480 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2482 struct ccb_dev_match *cdm;
2483 dev_match_ret retval;
2485 cdm = (struct ccb_dev_match *)arg;
2487 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2489 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2490 cdm->status = CAM_DEV_MATCH_ERROR;
2491 return(0);
2495 * If the copy flag is set, copy this peripheral out.
2497 if (retval & DM_RET_COPY) {
2498 int spaceleft, j;
2500 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2501 sizeof(struct dev_match_result));
2504 * If we don't have enough space to put in another
2505 * match result, save our position and tell the
2506 * user there are more devices to check.
2508 if (spaceleft < sizeof(struct dev_match_result)) {
2509 struct periph_driver **pdrv;
2511 pdrv = NULL;
2512 bzero(&cdm->pos, sizeof(cdm->pos));
2513 cdm->pos.position_type =
2514 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2515 CAM_DEV_POS_PERIPH;
2518 * This may look a bit non-sensical, but it is
2519 * actually quite logical. There are very few
2520 * peripheral drivers, and bloating every peripheral
2521 * structure with a pointer back to its parent
2522 * peripheral driver linker set entry would cost
2523 * more in the long run than doing this quick lookup.
2525 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2526 if (strcmp((*pdrv)->driver_name,
2527 periph->periph_name) == 0)
2528 break;
2531 if (*pdrv == NULL) {
2532 cdm->status = CAM_DEV_MATCH_ERROR;
2533 return(0);
2536 cdm->pos.cookie.pdrv = pdrv;
2538 * The periph generation slot does double duty, as
2539 * does the periph pointer slot. They are used for
2540 * both edt and pdrv lookups and positioning.
2542 cdm->pos.cookie.periph = periph;
2543 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2544 (*pdrv)->generation;
2545 cdm->status = CAM_DEV_MATCH_MORE;
2546 return(0);
2549 j = cdm->num_matches;
2550 cdm->num_matches++;
2551 cdm->matches[j].type = DEV_MATCH_PERIPH;
2552 cdm->matches[j].result.periph_result.path_id =
2553 periph->path->bus->path_id;
2556 * The transport layer peripheral doesn't have a target or
2557 * lun.
2559 if (periph->path->target)
2560 cdm->matches[j].result.periph_result.target_id =
2561 periph->path->target->target_id;
2562 else
2563 cdm->matches[j].result.periph_result.target_id = -1;
2565 if (periph->path->device)
2566 cdm->matches[j].result.periph_result.target_lun =
2567 periph->path->device->lun_id;
2568 else
2569 cdm->matches[j].result.periph_result.target_lun = -1;
2571 cdm->matches[j].result.periph_result.unit_number =
2572 periph->unit_number;
2573 strncpy(cdm->matches[j].result.periph_result.periph_name,
2574 periph->periph_name, DEV_IDLEN);
2577 return(1);
2580 static int
2581 xptperiphlistmatch(struct ccb_dev_match *cdm)
2583 int ret;
2585 cdm->num_matches = 0;
2588 * At this point in the edt traversal function, we check the bus
2589 * list generation to make sure that no busses have been added or
2590 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2591 * For the peripheral driver list traversal function, however, we
2592 * don't have to worry about new peripheral driver types coming or
2593 * going; they're in a linker set, and therefore can't change
2594 * without a recompile.
2597 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2598 && (cdm->pos.cookie.pdrv != NULL))
2599 ret = xptpdrvtraverse(
2600 (struct periph_driver **)cdm->pos.cookie.pdrv,
2601 xptplistpdrvfunc, cdm);
2602 else
2603 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2606 * If we get back 0, that means that we had to stop before fully
2607 * traversing the peripheral driver tree. It also means that one of
2608 * the subroutines has set the status field to the proper value. If
2609 * we get back 1, we've fully traversed the EDT and copied out any
2610 * matching entries.
2612 if (ret == 1)
2613 cdm->status = CAM_DEV_MATCH_LAST;
2615 return(ret);
2618 static int
2619 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2621 struct cam_eb *bus, *next_bus;
2622 int retval;
2624 retval = 1;
2626 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2627 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2628 bus != NULL;
2629 bus = next_bus) {
2630 next_bus = TAILQ_NEXT(bus, links);
2632 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2633 CAM_SIM_LOCK(bus->sim);
2634 retval = tr_func(bus, arg);
2635 CAM_SIM_UNLOCK(bus->sim);
2636 if (retval == 0)
2637 return(retval);
2638 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2640 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2642 return(retval);
2645 static int
2646 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2647 xpt_targetfunc_t *tr_func, void *arg)
2649 struct cam_et *target, *next_target;
2650 int retval;
2652 retval = 1;
2653 for (target = (start_target ? start_target :
2654 TAILQ_FIRST(&bus->et_entries));
2655 target != NULL; target = next_target) {
2657 next_target = TAILQ_NEXT(target, links);
2659 retval = tr_func(target, arg);
2661 if (retval == 0)
2662 return(retval);
2665 return(retval);
2668 static int
2669 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2670 xpt_devicefunc_t *tr_func, void *arg)
2672 struct cam_ed *device, *next_device;
2673 int retval;
2675 retval = 1;
2676 for (device = (start_device ? start_device :
2677 TAILQ_FIRST(&target->ed_entries));
2678 device != NULL;
2679 device = next_device) {
2681 next_device = TAILQ_NEXT(device, links);
2683 retval = tr_func(device, arg);
2685 if (retval == 0)
2686 return(retval);
2689 return(retval);
2692 static int
2693 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2694 xpt_periphfunc_t *tr_func, void *arg)
2696 struct cam_periph *periph, *next_periph;
2697 int retval;
2699 retval = 1;
2701 for (periph = (start_periph ? start_periph :
2702 SLIST_FIRST(&device->periphs));
2703 periph != NULL;
2704 periph = next_periph) {
2706 next_periph = SLIST_NEXT(periph, periph_links);
2708 retval = tr_func(periph, arg);
2709 if (retval == 0)
2710 return(retval);
2713 return(retval);
2716 static int
2717 xptpdrvtraverse(struct periph_driver **start_pdrv,
2718 xpt_pdrvfunc_t *tr_func, void *arg)
2720 struct periph_driver **pdrv;
2721 int retval;
2723 retval = 1;
2726 * We don't traverse the peripheral driver list like we do the
2727 * other lists, because it is a linker set, and therefore cannot be
2728 * changed during runtime. If the peripheral driver list is ever
2729 * re-done to be something other than a linker set (i.e. it can
2730 * change while the system is running), the list traversal should
2731 * be modified to work like the other traversal functions.
2733 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2734 *pdrv != NULL; pdrv++) {
2735 retval = tr_func(pdrv, arg);
2737 if (retval == 0)
2738 return(retval);
2741 return(retval);
2744 static int
2745 xptpdperiphtraverse(struct periph_driver **pdrv,
2746 struct cam_periph *start_periph,
2747 xpt_periphfunc_t *tr_func, void *arg)
2749 struct cam_periph *periph, *next_periph;
2750 int retval;
2752 retval = 1;
2754 for (periph = (start_periph ? start_periph :
2755 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2756 periph = next_periph) {
2758 next_periph = TAILQ_NEXT(periph, unit_links);
2760 retval = tr_func(periph, arg);
2761 if (retval == 0)
2762 return(retval);
2764 return(retval);
2767 static int
2768 xptdefbusfunc(struct cam_eb *bus, void *arg)
2770 struct xpt_traverse_config *tr_config;
2772 tr_config = (struct xpt_traverse_config *)arg;
2774 if (tr_config->depth == XPT_DEPTH_BUS) {
2775 xpt_busfunc_t *tr_func;
2777 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2779 return(tr_func(bus, tr_config->tr_arg));
2780 } else
2781 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2784 static int
2785 xptdeftargetfunc(struct cam_et *target, void *arg)
2787 struct xpt_traverse_config *tr_config;
2789 tr_config = (struct xpt_traverse_config *)arg;
2791 if (tr_config->depth == XPT_DEPTH_TARGET) {
2792 xpt_targetfunc_t *tr_func;
2794 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2796 return(tr_func(target, tr_config->tr_arg));
2797 } else
2798 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2801 static int
2802 xptdefdevicefunc(struct cam_ed *device, void *arg)
2804 struct xpt_traverse_config *tr_config;
2806 tr_config = (struct xpt_traverse_config *)arg;
2808 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2809 xpt_devicefunc_t *tr_func;
2811 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2813 return(tr_func(device, tr_config->tr_arg));
2814 } else
2815 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2818 static int
2819 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2821 struct xpt_traverse_config *tr_config;
2822 xpt_periphfunc_t *tr_func;
2824 tr_config = (struct xpt_traverse_config *)arg;
2826 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2829 * Unlike the other default functions, we don't check for depth
2830 * here. The peripheral driver level is the last level in the EDT,
2831 * so if we're here, we should execute the function in question.
2833 return(tr_func(periph, tr_config->tr_arg));
2837 * Execute the given function for every bus in the EDT.
2839 static int
2840 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2842 struct xpt_traverse_config tr_config;
2844 tr_config.depth = XPT_DEPTH_BUS;
2845 tr_config.tr_func = tr_func;
2846 tr_config.tr_arg = arg;
2848 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2852 * Execute the given function for every device in the EDT.
2854 static int
2855 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2857 struct xpt_traverse_config tr_config;
2859 tr_config.depth = XPT_DEPTH_DEVICE;
2860 tr_config.tr_func = tr_func;
2861 tr_config.tr_arg = arg;
2863 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2866 static int
2867 xptsetasyncfunc(struct cam_ed *device, void *arg)
2869 struct cam_path path;
2870 struct ccb_getdev cgd;
2871 struct async_node *cur_entry;
2873 cur_entry = (struct async_node *)arg;
2876 * Don't report unconfigured devices (Wildcard devs,
2877 * devices only for target mode, device instances
2878 * that have been invalidated but are waiting for
2879 * their last reference count to be released).
2881 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2882 return (1);
2884 xpt_compile_path(&path,
2885 NULL,
2886 device->target->bus->path_id,
2887 device->target->target_id,
2888 device->lun_id);
2889 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2890 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2891 xpt_action((union ccb *)&cgd);
2892 cur_entry->callback(cur_entry->callback_arg,
2893 AC_FOUND_DEVICE,
2894 &path, &cgd);
2895 xpt_release_path(&path);
2897 return(1);
2900 static int
2901 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2903 struct cam_path path;
2904 struct ccb_pathinq cpi;
2905 struct async_node *cur_entry;
2907 cur_entry = (struct async_node *)arg;
2909 xpt_compile_path(&path, /*periph*/NULL,
2910 bus->sim->path_id,
2911 CAM_TARGET_WILDCARD,
2912 CAM_LUN_WILDCARD);
2913 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2914 cpi.ccb_h.func_code = XPT_PATH_INQ;
2915 xpt_action((union ccb *)&cpi);
2916 cur_entry->callback(cur_entry->callback_arg,
2917 AC_PATH_REGISTERED,
2918 &path, &cpi);
2919 xpt_release_path(&path);
2921 return(1);
2924 static void
2925 xpt_action_sasync_cb(void *context, int pending)
2927 struct async_node *cur_entry;
2928 struct xpt_task *task;
2929 uint32_t added;
2931 task = (struct xpt_task *)context;
2932 cur_entry = (struct async_node *)task->data1;
2933 added = task->data2;
2935 if ((added & AC_FOUND_DEVICE) != 0) {
2937 * Get this peripheral up to date with all
2938 * the currently existing devices.
2940 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2942 if ((added & AC_PATH_REGISTERED) != 0) {
2944 * Get this peripheral up to date with all
2945 * the currently existing busses.
2947 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2949 kfree(task, M_CAMXPT);
2952 void
2953 xpt_action(union ccb *start_ccb)
2955 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2957 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2959 switch (start_ccb->ccb_h.func_code) {
2960 case XPT_SCSI_IO:
2961 case XPT_TRIM:
2963 struct cam_ed *device;
2964 #ifdef CAMDEBUG
2965 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2966 struct cam_path *path;
2968 path = start_ccb->ccb_h.path;
2969 #endif
2972 * For the sake of compatibility with SCSI-1
2973 * devices that may not understand the identify
2974 * message, we include lun information in the
2975 * second byte of all commands. SCSI-1 specifies
2976 * that luns are a 3 bit value and reserves only 3
2977 * bits for lun information in the CDB. Later
2978 * revisions of the SCSI spec allow for more than 8
2979 * luns, but have deprecated lun information in the
2980 * CDB. So, if the lun won't fit, we must omit.
2982 * Also be aware that during initial probing for devices,
2983 * the inquiry information is unknown but initialized to 0.
2984 * This means that this code will be exercised while probing
2985 * devices with an ANSI revision greater than 2.
2987 device = start_ccb->ccb_h.path->device;
2988 if (device->protocol_version <= SCSI_REV_2
2989 && start_ccb->ccb_h.target_lun < 8
2990 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2992 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2993 start_ccb->ccb_h.target_lun << 5;
2995 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2996 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2997 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2998 &path->device->inq_data),
2999 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3000 cdb_str, sizeof(cdb_str))));
3001 /* FALLTHROUGH */
3003 case XPT_TARGET_IO:
3004 case XPT_CONT_TARGET_IO:
3005 start_ccb->csio.sense_resid = 0;
3006 start_ccb->csio.resid = 0;
3007 /* FALLTHROUGH */
3008 case XPT_RESET_DEV:
3009 case XPT_ENG_EXEC:
3011 struct cam_path *path;
3012 struct cam_sim *sim;
3013 int runq;
3015 path = start_ccb->ccb_h.path;
3017 sim = path->bus->sim;
3018 if (sim == &cam_dead_sim) {
3019 /* The SIM has gone; just execute the CCB directly. */
3020 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3021 (*(sim->sim_action))(sim, start_ccb);
3022 break;
3025 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3026 if (path->device->qfrozen_cnt == 0)
3027 runq = xpt_schedule_dev_sendq(path->bus, path->device);
3028 else
3029 runq = 0;
3030 if (runq != 0)
3031 xpt_run_dev_sendq(path->bus);
3032 break;
3034 case XPT_SET_TRAN_SETTINGS:
3036 xpt_set_transfer_settings(&start_ccb->cts,
3037 start_ccb->ccb_h.path->device,
3038 /*async_update*/FALSE);
3039 break;
3041 case XPT_CALC_GEOMETRY:
3043 struct cam_sim *sim;
3045 /* Filter out garbage */
3046 if (start_ccb->ccg.block_size == 0
3047 || start_ccb->ccg.volume_size == 0) {
3048 start_ccb->ccg.cylinders = 0;
3049 start_ccb->ccg.heads = 0;
3050 start_ccb->ccg.secs_per_track = 0;
3051 start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 break;
3054 sim = start_ccb->ccb_h.path->bus->sim;
3055 (*(sim->sim_action))(sim, start_ccb);
3056 break;
3058 case XPT_ABORT:
3060 union ccb* abort_ccb;
3062 abort_ccb = start_ccb->cab.abort_ccb;
3063 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3065 if (abort_ccb->ccb_h.pinfo.index >= 0) {
3066 struct cam_ccbq *ccbq;
3068 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3069 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3070 abort_ccb->ccb_h.status =
3071 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3072 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3073 xpt_done(abort_ccb);
3074 start_ccb->ccb_h.status = CAM_REQ_CMP;
3075 break;
3077 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3078 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3080 * We've caught this ccb en route to
3081 * the SIM. Flag it for abort and the
3082 * SIM will do so just before starting
3083 * real work on the CCB.
3085 abort_ccb->ccb_h.status =
3086 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3087 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3088 start_ccb->ccb_h.status = CAM_REQ_CMP;
3089 break;
3092 if (XPT_FC_IS_QUEUED(abort_ccb)
3093 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3095 * It's already completed but waiting
3096 * for our SWI to get to it.
3098 start_ccb->ccb_h.status = CAM_UA_ABORT;
3099 break;
3102 * If we weren't able to take care of the abort request
3103 * in the XPT, pass the request down to the SIM for processing.
3105 /* FALLTHROUGH */
3107 case XPT_ACCEPT_TARGET_IO:
3108 case XPT_EN_LUN:
3109 case XPT_IMMED_NOTIFY:
3110 case XPT_NOTIFY_ACK:
3111 case XPT_GET_TRAN_SETTINGS:
3112 case XPT_RESET_BUS:
3114 struct cam_sim *sim;
3116 sim = start_ccb->ccb_h.path->bus->sim;
3117 (*(sim->sim_action))(sim, start_ccb);
3118 break;
3120 case XPT_PATH_INQ:
3122 struct cam_sim *sim;
3124 sim = start_ccb->ccb_h.path->bus->sim;
3125 (*(sim->sim_action))(sim, start_ccb);
3126 break;
3128 case XPT_PATH_STATS:
3129 start_ccb->cpis.last_reset =
3130 start_ccb->ccb_h.path->bus->last_reset;
3131 start_ccb->ccb_h.status = CAM_REQ_CMP;
3132 break;
3133 case XPT_GDEV_TYPE:
3135 struct cam_ed *dev;
3137 dev = start_ccb->ccb_h.path->device;
3138 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3139 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3140 } else {
3141 struct ccb_getdev *cgd;
3143 cgd = &start_ccb->cgd;
3144 cgd->inq_data = dev->inq_data;
3145 cgd->ccb_h.status = CAM_REQ_CMP;
3146 cgd->serial_num_len = dev->serial_num_len;
3147 if ((dev->serial_num_len > 0)
3148 && (dev->serial_num != NULL))
3149 bcopy(dev->serial_num, cgd->serial_num,
3150 dev->serial_num_len);
3152 break;
3154 case XPT_GDEV_STATS:
3156 struct cam_ed *dev;
3158 dev = start_ccb->ccb_h.path->device;
3159 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3160 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3161 } else {
3162 struct ccb_getdevstats *cgds;
3163 struct cam_eb *bus;
3164 struct cam_et *tar;
3166 cgds = &start_ccb->cgds;
3167 bus = cgds->ccb_h.path->bus;
3168 tar = cgds->ccb_h.path->target;
3169 cgds->dev_openings = dev->ccbq.dev_openings;
3170 cgds->dev_active = dev->ccbq.dev_active;
3171 cgds->devq_openings = dev->ccbq.devq_openings;
3172 cgds->devq_queued = dev->ccbq.queue.entries;
3173 cgds->held = dev->ccbq.held;
3174 cgds->last_reset = tar->last_reset;
3175 cgds->maxtags = dev->quirk->maxtags;
3176 cgds->mintags = dev->quirk->mintags;
3177 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3178 cgds->last_reset = bus->last_reset;
3179 cgds->ccb_h.status = CAM_REQ_CMP;
3181 break;
3183 case XPT_GDEVLIST:
3185 struct cam_periph *nperiph;
3186 struct periph_list *periph_head;
3187 struct ccb_getdevlist *cgdl;
3188 u_int i;
3189 struct cam_ed *device;
3190 int found;
3193 found = 0;
3196 * Don't want anyone mucking with our data.
3198 device = start_ccb->ccb_h.path->device;
3199 periph_head = &device->periphs;
3200 cgdl = &start_ccb->cgdl;
3203 * Check and see if the list has changed since the user
3204 * last requested a list member. If so, tell them that the
3205 * list has changed, and therefore they need to start over
3206 * from the beginning.
3208 if ((cgdl->index != 0) &&
3209 (cgdl->generation != device->generation)) {
3210 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3211 break;
3215 * Traverse the list of peripherals and attempt to find
3216 * the requested peripheral.
3218 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3219 (nperiph != NULL) && (i <= cgdl->index);
3220 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3221 if (i == cgdl->index) {
3222 strncpy(cgdl->periph_name,
3223 nperiph->periph_name,
3224 DEV_IDLEN);
3225 cgdl->unit_number = nperiph->unit_number;
3226 found = 1;
3229 if (found == 0) {
3230 cgdl->status = CAM_GDEVLIST_ERROR;
3231 break;
3234 if (nperiph == NULL)
3235 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3236 else
3237 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3239 cgdl->index++;
3240 cgdl->generation = device->generation;
3242 cgdl->ccb_h.status = CAM_REQ_CMP;
3243 break;
3245 case XPT_DEV_MATCH:
3247 dev_pos_type position_type;
3248 struct ccb_dev_match *cdm;
3249 int ret;
3251 cdm = &start_ccb->cdm;
3254 * There are two ways of getting at information in the EDT.
3255 * The first way is via the primary EDT tree. It starts
3256 * with a list of busses, then a list of targets on a bus,
3257 * then devices/luns on a target, and then peripherals on a
3258 * device/lun. The "other" way is by the peripheral driver
3259 * lists. The peripheral driver lists are organized by
3260 * peripheral driver. (obviously) So it makes sense to
3261 * use the peripheral driver list if the user is looking
3262 * for something like "da1", or all "da" devices. If the
3263 * user is looking for something on a particular bus/target
3264 * or lun, it's generally better to go through the EDT tree.
3267 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3268 position_type = cdm->pos.position_type;
3269 else {
3270 u_int i;
3272 position_type = CAM_DEV_POS_NONE;
3274 for (i = 0; i < cdm->num_patterns; i++) {
3275 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3276 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3277 position_type = CAM_DEV_POS_EDT;
3278 break;
3282 if (cdm->num_patterns == 0)
3283 position_type = CAM_DEV_POS_EDT;
3284 else if (position_type == CAM_DEV_POS_NONE)
3285 position_type = CAM_DEV_POS_PDRV;
3288 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3289 case CAM_DEV_POS_EDT:
3290 ret = xptedtmatch(cdm);
3291 break;
3292 case CAM_DEV_POS_PDRV:
3293 ret = xptperiphlistmatch(cdm);
3294 break;
3295 default:
3296 cdm->status = CAM_DEV_MATCH_ERROR;
3297 break;
3300 if (cdm->status == CAM_DEV_MATCH_ERROR)
3301 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3302 else
3303 start_ccb->ccb_h.status = CAM_REQ_CMP;
3305 break;
3307 case XPT_SASYNC_CB:
3309 struct ccb_setasync *csa;
3310 struct async_node *cur_entry;
3311 struct async_list *async_head;
3312 u_int32_t added;
3314 csa = &start_ccb->csa;
3315 added = csa->event_enable;
3316 async_head = &csa->ccb_h.path->device->asyncs;
3319 * If there is already an entry for us, simply
3320 * update it.
3322 cur_entry = SLIST_FIRST(async_head);
3323 while (cur_entry != NULL) {
3324 if ((cur_entry->callback_arg == csa->callback_arg)
3325 && (cur_entry->callback == csa->callback))
3326 break;
3327 cur_entry = SLIST_NEXT(cur_entry, links);
3330 if (cur_entry != NULL) {
3332 * If the request has no flags set,
3333 * remove the entry.
3335 added &= ~cur_entry->event_enable;
3336 if (csa->event_enable == 0) {
3337 SLIST_REMOVE(async_head, cur_entry,
3338 async_node, links);
3339 atomic_add_int(
3340 &csa->ccb_h.path->device->refcount, -1);
3341 kfree(cur_entry, M_CAMXPT);
3342 } else {
3343 cur_entry->event_enable = csa->event_enable;
3345 } else {
3346 cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3347 M_INTWAIT);
3348 cur_entry->event_enable = csa->event_enable;
3349 cur_entry->callback_arg = csa->callback_arg;
3350 cur_entry->callback = csa->callback;
3351 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3352 atomic_add_int(&csa->ccb_h.path->device->refcount, 1);
3356 * Need to decouple this operation via a taskqueue so that
3357 * the locking doesn't become a mess.
3359 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3360 struct xpt_task *task;
3362 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3363 M_INTWAIT);
3365 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3366 task->data1 = cur_entry;
3367 task->data2 = added;
3368 taskqueue_enqueue(taskqueue_thread[mycpuid],
3369 &task->task);
3372 start_ccb->ccb_h.status = CAM_REQ_CMP;
3373 break;
3375 case XPT_REL_SIMQ:
3377 struct ccb_relsim *crs;
3378 struct cam_ed *dev;
3380 crs = &start_ccb->crs;
3381 dev = crs->ccb_h.path->device;
3382 if (dev == NULL) {
3384 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3385 break;
3388 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3390 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3391 /* Don't ever go below one opening */
3392 if (crs->openings > 0) {
3393 xpt_dev_ccbq_resize(crs->ccb_h.path,
3394 crs->openings);
3396 if (bootverbose) {
3397 xpt_print(crs->ccb_h.path,
3398 "tagged openings now %d\n",
3399 crs->openings);
3405 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3407 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3410 * Just extend the old timeout and decrement
3411 * the freeze count so that a single timeout
3412 * is sufficient for releasing the queue.
3414 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3415 callout_stop(&dev->callout);
3416 } else {
3418 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3421 callout_reset(&dev->callout,
3422 (crs->release_timeout * hz) / 1000,
3423 xpt_release_devq_timeout, dev);
3425 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3429 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3431 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3433 * Decrement the freeze count so that a single
3434 * completion is still sufficient to unfreeze
3435 * the queue.
3437 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3438 } else {
3440 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3441 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3445 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3447 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3448 || (dev->ccbq.dev_active == 0)) {
3450 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3451 } else {
3453 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3454 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3458 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3460 xpt_release_devq(crs->ccb_h.path, /*count*/1,
3461 /*run_queue*/TRUE);
3463 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3464 start_ccb->ccb_h.status = CAM_REQ_CMP;
3465 break;
3467 case XPT_SCAN_BUS:
3468 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3469 break;
3470 case XPT_SCAN_LUN:
3471 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3472 start_ccb->ccb_h.path, start_ccb->crcn.flags,
3473 start_ccb);
3474 break;
3475 case XPT_DEBUG: {
3476 #ifdef CAMDEBUG
3477 #ifdef CAM_DEBUG_DELAY
3478 cam_debug_delay = CAM_DEBUG_DELAY;
3479 #endif
3480 cam_dflags = start_ccb->cdbg.flags;
3481 if (cam_dpath != NULL) {
3482 xpt_free_path(cam_dpath);
3483 cam_dpath = NULL;
3486 if (cam_dflags != CAM_DEBUG_NONE) {
3487 if (xpt_create_path(&cam_dpath, xpt_periph,
3488 start_ccb->ccb_h.path_id,
3489 start_ccb->ccb_h.target_id,
3490 start_ccb->ccb_h.target_lun) !=
3491 CAM_REQ_CMP) {
3492 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3493 cam_dflags = CAM_DEBUG_NONE;
3494 } else {
3495 start_ccb->ccb_h.status = CAM_REQ_CMP;
3496 xpt_print(cam_dpath, "debugging flags now %x\n",
3497 cam_dflags);
3499 } else {
3500 cam_dpath = NULL;
3501 start_ccb->ccb_h.status = CAM_REQ_CMP;
3503 #else /* !CAMDEBUG */
3504 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3505 #endif /* CAMDEBUG */
3506 break;
3508 case XPT_NOOP:
3509 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3510 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3511 start_ccb->ccb_h.status = CAM_REQ_CMP;
3512 break;
3513 default:
3514 case XPT_SDEV_TYPE:
3515 case XPT_TERM_IO:
3516 case XPT_ENG_INQ:
3517 /* XXX Implement */
3518 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3519 break;
3523 void
3524 xpt_polled_action(union ccb *start_ccb)
3526 u_int32_t timeout;
3527 struct cam_sim *sim;
3528 struct cam_devq *devq;
3529 struct cam_ed *dev;
3531 timeout = start_ccb->ccb_h.timeout;
3532 sim = start_ccb->ccb_h.path->bus->sim;
3533 devq = sim->devq;
3534 dev = start_ccb->ccb_h.path->device;
3536 sim_lock_assert_owned(sim->lock);
3539 * Steal an opening so that no other queued requests
3540 * can get it before us while we simulate interrupts.
3542 dev->ccbq.devq_openings--;
3543 dev->ccbq.dev_openings--;
3545 while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3546 && (--timeout > 0)) {
3547 DELAY(1000);
3548 (*(sim->sim_poll))(sim);
3549 camisr_runqueue(sim);
3552 dev->ccbq.devq_openings++;
3553 dev->ccbq.dev_openings++;
3555 if (timeout != 0) {
3556 xpt_action(start_ccb);
3557 while(--timeout > 0) {
3558 (*(sim->sim_poll))(sim);
3559 camisr_runqueue(sim);
3560 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3561 != CAM_REQ_INPROG)
3562 break;
3563 DELAY(1000);
3565 if (timeout == 0) {
3567 * XXX Is it worth adding a sim_timeout entry
3568 * point so we can attempt recovery? If
3569 * this is only used for dumps, I don't think
3570 * it is.
3572 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3574 } else {
3575 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3580 * Schedule a peripheral driver to receive a ccb when it's
3581 * target device has space for more transactions.
3583 void
3584 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3586 struct cam_ed *device;
3587 union ccb *work_ccb;
3588 int runq;
3590 sim_lock_assert_owned(perph->sim->lock);
3592 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3593 device = perph->path->device;
3594 if (periph_is_queued(perph)) {
3595 /* Simply reorder based on new priority */
3596 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3597 (" change priority to %d\n", new_priority));
3598 if (new_priority < perph->pinfo.priority) {
3599 camq_change_priority(&device->drvq,
3600 perph->pinfo.index,
3601 new_priority);
3603 runq = 0;
3604 } else if (perph->path->bus->sim == &cam_dead_sim) {
3605 /* The SIM is gone so just call periph_start directly. */
3606 work_ccb = xpt_get_ccb(perph->path->device);
3607 if (work_ccb == NULL)
3608 return; /* XXX */
3609 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3610 perph->pinfo.priority = new_priority;
3611 perph->periph_start(perph, work_ccb);
3612 return;
3613 } else {
3614 /* New entry on the queue */
3615 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3616 (" added periph to queue\n"));
3617 perph->pinfo.priority = new_priority;
3618 perph->pinfo.generation = ++device->drvq.generation;
3619 camq_insert(&device->drvq, &perph->pinfo);
3620 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3622 if (runq != 0) {
3623 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3624 (" calling xpt_run_devq\n"));
3625 xpt_run_dev_allocq(perph->path->bus);
3631 * Schedule a device to run on a given queue.
3632 * If the device was inserted as a new entry on the queue,
3633 * return 1 meaning the device queue should be run. If we
3634 * were already queued, implying someone else has already
3635 * started the queue, return 0 so the caller doesn't attempt
3636 * to run the queue.
3638 static int
3639 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3640 u_int32_t new_priority)
3642 int retval;
3643 u_int32_t old_priority;
3645 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3647 old_priority = pinfo->priority;
3650 * Are we already queued?
3652 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3653 /* Simply reorder based on new priority */
3654 if (new_priority < old_priority) {
3655 camq_change_priority(queue, pinfo->index,
3656 new_priority);
3657 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3658 ("changed priority to %d\n",
3659 new_priority));
3661 retval = 0;
3662 } else {
3663 /* New entry on the queue */
3664 if (new_priority < old_priority)
3665 pinfo->priority = new_priority;
3667 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3668 ("Inserting onto queue\n"));
3669 pinfo->generation = ++queue->generation;
3670 camq_insert(queue, pinfo);
3671 retval = 1;
3673 return (retval);
3676 static void
3677 xpt_run_dev_allocq(struct cam_eb *bus)
3679 struct cam_devq *devq;
3681 if ((devq = bus->sim->devq) == NULL) {
3682 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3683 return;
3685 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3687 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3688 (" qfrozen_cnt == 0x%x, entries == %d, "
3689 "openings == %d, active == %d\n",
3690 devq->alloc_queue.qfrozen_cnt,
3691 devq->alloc_queue.entries,
3692 devq->alloc_openings,
3693 devq->alloc_active));
3695 devq->alloc_queue.qfrozen_cnt++;
3696 while ((devq->alloc_queue.entries > 0)
3697 && (devq->alloc_openings > 0)
3698 && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3699 struct cam_ed_qinfo *qinfo;
3700 struct cam_ed *device;
3701 union ccb *work_ccb;
3702 struct cam_periph *drv;
3703 struct camq *drvq;
3705 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3706 CAMQ_HEAD);
3707 device = qinfo->device;
3709 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3710 ("running device %p\n", device));
3712 drvq = &device->drvq;
3714 #ifdef CAMDEBUG
3715 if (drvq->entries <= 0) {
3716 panic("xpt_run_dev_allocq: "
3717 "Device on queue without any work to do");
3719 #endif
3720 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3721 devq->alloc_openings--;
3722 devq->alloc_active++;
3723 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3724 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3725 drv->pinfo.priority);
3726 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3727 ("calling periph start\n"));
3728 drv->periph_start(drv, work_ccb);
3729 } else {
3731 * Malloc failure in alloc_ccb
3734 * XXX add us to a list to be run from free_ccb
3735 * if we don't have any ccbs active on this
3736 * device queue otherwise we may never get run
3737 * again.
3739 break;
3742 if (drvq->entries > 0) {
3743 /* We have more work. Attempt to reschedule */
3744 xpt_schedule_dev_allocq(bus, device);
3747 devq->alloc_queue.qfrozen_cnt--;
3750 static void
3751 xpt_run_dev_sendq(struct cam_eb *bus)
3753 struct cam_devq *devq;
3755 if ((devq = bus->sim->devq) == NULL) {
3756 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3757 return;
3759 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3761 devq->send_queue.qfrozen_cnt++;
3762 while ((devq->send_queue.entries > 0)
3763 && (devq->send_openings > 0)) {
3764 struct cam_ed_qinfo *qinfo;
3765 struct cam_ed *device;
3766 union ccb *work_ccb;
3767 struct cam_sim *sim;
3769 if (devq->send_queue.qfrozen_cnt > 1) {
3770 break;
3773 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3774 CAMQ_HEAD);
3775 device = qinfo->device;
3778 * If the device has been "frozen", don't attempt
3779 * to run it.
3781 if (device->qfrozen_cnt > 0) {
3782 continue;
3785 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3786 ("running device %p\n", device));
3788 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3789 if (work_ccb == NULL) {
3790 kprintf("device on run queue with no ccbs???\n");
3791 continue;
3794 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3796 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3797 if (xsoftc.num_highpower <= 0) {
3799 * We got a high power command, but we
3800 * don't have any available slots. Freeze
3801 * the device queue until we have a slot
3802 * available.
3804 device->qfrozen_cnt++;
3805 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3806 &work_ccb->ccb_h,
3807 xpt_links.stqe);
3809 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3810 continue;
3811 } else {
3813 * Consume a high power slot while
3814 * this ccb runs.
3816 xsoftc.num_highpower--;
3818 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3820 devq->active_dev = device;
3821 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3823 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3825 devq->send_openings--;
3826 devq->send_active++;
3828 if (device->ccbq.queue.entries > 0)
3829 xpt_schedule_dev_sendq(bus, device);
3831 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3833 * The client wants to freeze the queue
3834 * after this CCB is sent.
3836 device->qfrozen_cnt++;
3839 /* In Target mode, the peripheral driver knows best... */
3840 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3841 if ((device->inq_flags & SID_CmdQue) != 0
3842 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3843 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3844 else
3846 * Clear this in case of a retried CCB that
3847 * failed due to a rejected tag.
3849 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3853 * Device queues can be shared among multiple sim instances
3854 * that reside on different busses. Use the SIM in the queue
3855 * CCB's path, rather than the one in the bus that was passed
3856 * into this function.
3858 sim = work_ccb->ccb_h.path->bus->sim;
3859 (*(sim->sim_action))(sim, work_ccb);
3861 devq->active_dev = NULL;
3863 devq->send_queue.qfrozen_cnt--;
3867 * This function merges stuff from the slave ccb into the master ccb, while
3868 * keeping important fields in the master ccb constant.
3870 void
3871 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3874 * Pull fields that are valid for peripheral drivers to set
3875 * into the master CCB along with the CCB "payload".
3877 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3878 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3879 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3880 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3881 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3882 sizeof(union ccb) - sizeof(struct ccb_hdr));
3885 void
3886 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3888 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3889 callout_init(&ccb_h->timeout_ch);
3890 ccb_h->pinfo.priority = priority;
3891 ccb_h->path = path;
3892 ccb_h->path_id = path->bus->path_id;
3893 if (path->target)
3894 ccb_h->target_id = path->target->target_id;
3895 else
3896 ccb_h->target_id = CAM_TARGET_WILDCARD;
3897 if (path->device) {
3898 ccb_h->target_lun = path->device->lun_id;
3899 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3900 } else {
3901 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3903 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3904 ccb_h->flags = 0;
3907 /* Path manipulation functions */
3908 cam_status
3909 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3910 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3912 struct cam_path *path;
3913 cam_status status;
3915 path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3916 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3917 if (status != CAM_REQ_CMP) {
3918 kfree(path, M_CAMXPT);
3919 path = NULL;
3921 *new_path_ptr = path;
3922 return (status);
3925 cam_status
3926 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3927 struct cam_periph *periph, path_id_t path_id,
3928 target_id_t target_id, lun_id_t lun_id)
3930 struct cam_path *path;
3931 struct cam_eb *bus = NULL;
3932 cam_status status;
3933 int need_unlock = 0;
3935 path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3937 if (path_id != CAM_BUS_WILDCARD) {
3938 bus = xpt_find_bus(path_id);
3939 if (bus != NULL) {
3940 need_unlock = 1;
3941 CAM_SIM_LOCK(bus->sim);
3944 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3945 if (need_unlock)
3946 CAM_SIM_UNLOCK(bus->sim);
3947 if (status != CAM_REQ_CMP) {
3948 kfree(path, M_CAMXPT);
3949 path = NULL;
3951 *new_path_ptr = path;
3952 return (status);
3955 static cam_status
3956 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3957 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3959 struct cam_eb *bus;
3960 struct cam_et *target;
3961 struct cam_ed *device;
3962 cam_status status;
3964 status = CAM_REQ_CMP; /* Completed without error */
3965 target = NULL; /* Wildcarded */
3966 device = NULL; /* Wildcarded */
3969 * We will potentially modify the EDT, so block interrupts
3970 * that may attempt to create cam paths.
3972 bus = xpt_find_bus(path_id);
3973 if (bus == NULL) {
3974 status = CAM_PATH_INVALID;
3975 } else {
3976 target = xpt_find_target(bus, target_id);
3977 if (target == NULL) {
3978 /* Create one */
3979 struct cam_et *new_target;
3981 new_target = xpt_alloc_target(bus, target_id);
3982 if (new_target == NULL) {
3983 status = CAM_RESRC_UNAVAIL;
3984 } else {
3985 target = new_target;
3988 if (target != NULL) {
3989 device = xpt_find_device(target, lun_id);
3990 if (device == NULL) {
3991 /* Create one */
3992 struct cam_ed *new_device;
3994 new_device = xpt_alloc_device(bus,
3995 target,
3996 lun_id);
3997 if (new_device == NULL) {
3998 status = CAM_RESRC_UNAVAIL;
3999 } else {
4000 device = new_device;
4007 * Only touch the user's data if we are successful.
4009 if (status == CAM_REQ_CMP) {
4010 new_path->periph = perph;
4011 new_path->bus = bus;
4012 new_path->target = target;
4013 new_path->device = device;
4014 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4015 } else {
4016 if (device != NULL)
4017 xpt_release_device(bus, target, device);
4018 if (target != NULL)
4019 xpt_release_target(bus, target);
4020 if (bus != NULL)
4021 xpt_release_bus(bus);
4023 return (status);
4026 static void
4027 xpt_release_path(struct cam_path *path)
4029 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4030 if (path->device != NULL) {
4031 xpt_release_device(path->bus, path->target, path->device);
4032 path->device = NULL;
4034 if (path->target != NULL) {
4035 xpt_release_target(path->bus, path->target);
4036 path->target = NULL;
4038 if (path->bus != NULL) {
4039 xpt_release_bus(path->bus);
4040 path->bus = NULL;
4044 void
4045 xpt_free_path(struct cam_path *path)
4047 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4048 xpt_release_path(path);
4049 kfree(path, M_CAMXPT);
4054 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4055 * in path1, 2 for match with wildcards in path2.
4058 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4060 int retval = 0;
4062 if (path1->bus != path2->bus) {
4063 if (path1->bus->path_id == CAM_BUS_WILDCARD)
4064 retval = 1;
4065 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4066 retval = 2;
4067 else
4068 return (-1);
4070 if (path1->target != path2->target) {
4071 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4072 if (retval == 0)
4073 retval = 1;
4074 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4075 retval = 2;
4076 else
4077 return (-1);
4079 if (path1->device != path2->device) {
4080 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4081 if (retval == 0)
4082 retval = 1;
4083 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4084 retval = 2;
4085 else
4086 return (-1);
4088 return (retval);
4091 void
4092 xpt_print_path(struct cam_path *path)
4095 if (path == NULL)
4096 kprintf("(nopath): ");
4097 else {
4098 if (path->periph != NULL)
4099 kprintf("(%s%d:", path->periph->periph_name,
4100 path->periph->unit_number);
4101 else
4102 kprintf("(noperiph:");
4104 if (path->bus != NULL)
4105 kprintf("%s%d:%d:", path->bus->sim->sim_name,
4106 path->bus->sim->unit_number,
4107 path->bus->sim->bus_id);
4108 else
4109 kprintf("nobus:");
4111 if (path->target != NULL)
4112 kprintf("%d:", path->target->target_id);
4113 else
4114 kprintf("X:");
4116 if (path->device != NULL)
4117 kprintf("%d): ", path->device->lun_id);
4118 else
4119 kprintf("X): ");
4123 void
4124 xpt_print(struct cam_path *path, const char *fmt, ...)
4126 __va_list ap;
4127 xpt_print_path(path);
4128 __va_start(ap, fmt);
4129 kvprintf(fmt, ap);
4130 __va_end(ap);
4134 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4136 struct sbuf sb;
4138 sim_lock_assert_owned(path->bus->sim->lock);
4140 sbuf_new(&sb, str, str_len, 0);
4142 if (path == NULL)
4143 sbuf_printf(&sb, "(nopath): ");
4144 else {
4145 if (path->periph != NULL)
4146 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4147 path->periph->unit_number);
4148 else
4149 sbuf_printf(&sb, "(noperiph:");
4151 if (path->bus != NULL)
4152 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4153 path->bus->sim->unit_number,
4154 path->bus->sim->bus_id);
4155 else
4156 sbuf_printf(&sb, "nobus:");
4158 if (path->target != NULL)
4159 sbuf_printf(&sb, "%d:", path->target->target_id);
4160 else
4161 sbuf_printf(&sb, "X:");
4163 if (path->device != NULL)
4164 sbuf_printf(&sb, "%d): ", path->device->lun_id);
4165 else
4166 sbuf_printf(&sb, "X): ");
4168 sbuf_finish(&sb);
4170 return(sbuf_len(&sb));
4173 path_id_t
4174 xpt_path_path_id(struct cam_path *path)
4176 sim_lock_assert_owned(path->bus->sim->lock);
4178 return(path->bus->path_id);
4181 target_id_t
4182 xpt_path_target_id(struct cam_path *path)
4184 sim_lock_assert_owned(path->bus->sim->lock);
4186 if (path->target != NULL)
4187 return (path->target->target_id);
4188 else
4189 return (CAM_TARGET_WILDCARD);
4192 lun_id_t
4193 xpt_path_lun_id(struct cam_path *path)
4195 sim_lock_assert_owned(path->bus->sim->lock);
4197 if (path->device != NULL)
4198 return (path->device->lun_id);
4199 else
4200 return (CAM_LUN_WILDCARD);
4203 struct cam_sim *
4204 xpt_path_sim(struct cam_path *path)
4206 return (path->bus->sim);
4209 struct cam_periph*
4210 xpt_path_periph(struct cam_path *path)
4212 sim_lock_assert_owned(path->bus->sim->lock);
4214 return (path->periph);
4217 char *
4218 xpt_path_serialno(struct cam_path *path)
4220 return (path->device->serial_num);
4224 * Release a CAM control block for the caller. Remit the cost of the structure
4225 * to the device referenced by the path. If the this device had no 'credits'
4226 * and peripheral drivers have registered async callbacks for this notification
4227 * call them now.
4229 void
4230 xpt_release_ccb(union ccb *free_ccb)
4232 struct cam_path *path;
4233 struct cam_ed *device;
4234 struct cam_eb *bus;
4235 struct cam_sim *sim;
4237 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4238 path = free_ccb->ccb_h.path;
4239 device = path->device;
4240 bus = path->bus;
4241 sim = bus->sim;
4243 sim_lock_assert_owned(sim->lock);
4245 cam_ccbq_release_opening(&device->ccbq);
4246 if (sim->ccb_count > sim->max_ccbs) {
4247 xpt_free_ccb(free_ccb);
4248 sim->ccb_count--;
4249 } else if (sim == &cam_dead_sim) {
4250 xpt_free_ccb(free_ccb);
4251 } else {
4252 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4253 xpt_links.sle);
4255 if (sim->devq == NULL) {
4256 return;
4258 sim->devq->alloc_openings++;
4259 sim->devq->alloc_active--;
4260 /* XXX Turn this into an inline function - xpt_run_device?? */
4261 if ((device_is_alloc_queued(device) == 0)
4262 && (device->drvq.entries > 0)) {
4263 xpt_schedule_dev_allocq(bus, device);
4265 if (dev_allocq_is_runnable(sim->devq))
4266 xpt_run_dev_allocq(bus);
4269 /* Functions accessed by SIM drivers */
4272 * A sim structure, listing the SIM entry points and instance
4273 * identification info is passed to xpt_bus_register to hook the SIM
4274 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4275 * for this new bus and places it in the array of busses and assigns
4276 * it a path_id. The path_id may be influenced by "hard wiring"
4277 * information specified by the user. Once interrupt services are
4278 * availible, the bus will be probed.
4280 int32_t
4281 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4283 struct cam_eb *new_bus;
4284 struct cam_eb *old_bus;
4285 struct ccb_pathinq cpi;
4287 sim_lock_assert_owned(sim->lock);
4289 sim->bus_id = bus;
4290 new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4293 * Must hold topo lock across xptpathid() through installation of
4294 * new_bus to avoid duplication due to SMP races.
4296 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4297 if (strcmp(sim->sim_name, "xpt") != 0) {
4298 sim->path_id =
4299 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4302 TAILQ_INIT(&new_bus->et_entries);
4303 new_bus->path_id = sim->path_id;
4304 new_bus->sim = sim;
4305 atomic_add_int(&sim->refcount, 1);
4306 timevalclear(&new_bus->last_reset);
4307 new_bus->flags = 0;
4308 new_bus->refcount = 1; /* Held until a bus_deregister event */
4309 new_bus->generation = 0;
4310 new_bus->counted_to_config = 0;
4311 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4312 while (old_bus != NULL && old_bus->path_id < new_bus->path_id)
4313 old_bus = TAILQ_NEXT(old_bus, links);
4314 if (old_bus != NULL)
4315 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4316 else
4317 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4318 xsoftc.bus_generation++;
4319 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4321 /* Notify interested parties */
4322 if (sim->path_id != CAM_XPT_PATH_ID) {
4323 struct cam_path path;
4325 xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4326 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4327 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4328 cpi.ccb_h.func_code = XPT_PATH_INQ;
4329 xpt_action((union ccb *)&cpi);
4330 xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4331 xpt_release_path(&path);
4333 return (CAM_SUCCESS);
4337 * Deregister a bus. We must clean out all transactions pending on the bus.
4338 * This routine is typically called prior to cam_sim_free() (e.g. see
4339 * dev/usbmisc/umass/umass.c)
4341 int32_t
4342 xpt_bus_deregister(path_id_t pathid)
4344 struct cam_path bus_path;
4345 struct cam_et *target;
4346 struct cam_ed *device;
4347 struct cam_ed_qinfo *qinfo;
4348 struct cam_devq *devq;
4349 struct cam_periph *periph;
4350 struct cam_sim *ccbsim;
4351 union ccb *work_ccb;
4352 cam_status status;
4353 int retries = 0;
4355 status = xpt_compile_path(&bus_path, NULL, pathid,
4356 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4357 if (status != CAM_REQ_CMP)
4358 return (status);
4361 * This should clear out all pending requests and timeouts, but
4362 * the ccb's may be queued to a software interrupt.
4364 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4365 * and it really ought to.
4367 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4368 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4371 * Mark the SIM as having been deregistered. This prevents
4372 * certain operations from re-queueing to it, stops new devices
4373 * from being added, etc.
4375 devq = bus_path.bus->sim->devq;
4376 ccbsim = bus_path.bus->sim;
4377 ccbsim->flags |= CAM_SIM_DEREGISTERED;
4379 again:
4381 * Execute any pending operations now.
4383 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4384 CAMQ_HEAD)) != NULL ||
4385 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4386 CAMQ_HEAD)) != NULL) {
4387 do {
4388 device = qinfo->device;
4389 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4390 if (work_ccb != NULL) {
4391 devq->active_dev = device;
4392 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4393 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4394 (*(ccbsim->sim_action))(ccbsim, work_ccb);
4397 periph = (struct cam_periph *)camq_remove(&device->drvq,
4398 CAMQ_HEAD);
4399 if (periph != NULL)
4400 xpt_schedule(periph, periph->pinfo.priority);
4401 } while (work_ccb != NULL || periph != NULL);
4405 * Make sure all completed CCBs are processed.
4407 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4408 camisr_runqueue(ccbsim);
4412 * Check for requeues, reissues asyncs if necessary
4414 if (CAMQ_GET_HEAD(&devq->send_queue))
4415 kprintf("camq: devq send_queue still in use (%d entries)\n",
4416 devq->send_queue.entries);
4417 if (CAMQ_GET_HEAD(&devq->alloc_queue))
4418 kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4419 devq->alloc_queue.entries);
4420 if (CAMQ_GET_HEAD(&devq->send_queue) ||
4421 CAMQ_GET_HEAD(&devq->alloc_queue)) {
4422 if (++retries < 5) {
4423 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4424 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4425 goto again;
4430 * Retarget the bus and all cached sim pointers to dead_sim.
4432 * Various CAM subsystems may be holding on to targets, devices,
4433 * and/or peripherals and may attempt to use the sim pointer cached
4434 * in some of these structures during close.
4436 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4437 bus_path.bus->sim = &cam_dead_sim;
4438 TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4439 TAILQ_FOREACH(device, &target->ed_entries, links) {
4440 device->sim = &cam_dead_sim;
4441 SLIST_FOREACH(periph, &device->periphs, periph_links) {
4442 periph->sim = &cam_dead_sim;
4446 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4449 * Repeat the async's for the benefit of any new devices, such as
4450 * might be created from completed probes. Any new device
4451 * ops will run on dead_sim.
4453 * XXX There are probably races :-(
4455 CAM_SIM_LOCK(&cam_dead_sim);
4456 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4457 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4458 CAM_SIM_UNLOCK(&cam_dead_sim);
4460 /* Release the reference count held while registered. */
4461 xpt_release_bus(bus_path.bus);
4462 xpt_release_path(&bus_path);
4464 /* Release the ref we got when the bus was registered */
4465 cam_sim_release(ccbsim, 0);
4467 return (CAM_REQ_CMP);
4471 * Must be called with xpt_topo_lock held.
4473 static path_id_t
4474 xptnextfreepathid(void)
4476 struct cam_eb *bus;
4477 path_id_t pathid;
4478 const char *strval;
4480 pathid = 0;
4481 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4482 retry:
4483 /* Find an unoccupied pathid */
4484 while (bus != NULL && bus->path_id <= pathid) {
4485 if (bus->path_id == pathid)
4486 pathid++;
4487 bus = TAILQ_NEXT(bus, links);
4491 * Ensure that this pathid is not reserved for
4492 * a bus that may be registered in the future.
4494 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4495 ++pathid;
4496 /* Start the search over */
4497 goto retry;
4499 return (pathid);
4503 * Must be called with xpt_topo_lock held.
4505 static path_id_t
4506 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4508 path_id_t pathid;
4509 int i, dunit, val;
4510 char buf[32];
4512 pathid = CAM_XPT_PATH_ID;
4513 ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4514 i = -1;
4515 while ((i = resource_query_string(i, "at", buf)) != -1) {
4516 if (strcmp(resource_query_name(i), "scbus")) {
4517 /* Avoid a bit of foot shooting. */
4518 continue;
4520 dunit = resource_query_unit(i);
4521 if (dunit < 0) /* unwired?! */
4522 continue;
4523 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4524 if (sim_bus == val) {
4525 pathid = dunit;
4526 break;
4528 } else if (sim_bus == 0) {
4529 /* Unspecified matches bus 0 */
4530 pathid = dunit;
4531 break;
4532 } else {
4533 kprintf("Ambiguous scbus configuration for %s%d "
4534 "bus %d, cannot wire down. The kernel "
4535 "config entry for scbus%d should "
4536 "specify a controller bus.\n"
4537 "Scbus will be assigned dynamically.\n",
4538 sim_name, sim_unit, sim_bus, dunit);
4539 break;
4543 if (pathid == CAM_XPT_PATH_ID)
4544 pathid = xptnextfreepathid();
4545 return (pathid);
4548 void
4549 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4551 struct cam_eb *bus;
4552 struct cam_et *target, *next_target;
4553 struct cam_ed *device, *next_device;
4555 sim_lock_assert_owned(path->bus->sim->lock);
4557 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4560 * Most async events come from a CAM interrupt context. In
4561 * a few cases, the error recovery code at the peripheral layer,
4562 * which may run from our SWI or a process context, may signal
4563 * deferred events with a call to xpt_async.
4566 bus = path->bus;
4568 if (async_code == AC_BUS_RESET) {
4569 /* Update our notion of when the last reset occurred */
4570 microuptime(&bus->last_reset);
4573 for (target = TAILQ_FIRST(&bus->et_entries);
4574 target != NULL;
4575 target = next_target) {
4577 next_target = TAILQ_NEXT(target, links);
4579 if (path->target != target
4580 && path->target->target_id != CAM_TARGET_WILDCARD
4581 && target->target_id != CAM_TARGET_WILDCARD)
4582 continue;
4584 if (async_code == AC_SENT_BDR) {
4585 /* Update our notion of when the last reset occurred */
4586 microuptime(&path->target->last_reset);
4589 for (device = TAILQ_FIRST(&target->ed_entries);
4590 device != NULL;
4591 device = next_device) {
4593 next_device = TAILQ_NEXT(device, links);
4595 if (path->device != device
4596 && path->device->lun_id != CAM_LUN_WILDCARD
4597 && device->lun_id != CAM_LUN_WILDCARD)
4598 continue;
4600 xpt_dev_async(async_code, bus, target,
4601 device, async_arg);
4603 xpt_async_bcast(&device->asyncs, async_code,
4604 path, async_arg);
4609 * If this wasn't a fully wildcarded async, tell all
4610 * clients that want all async events.
4612 if (bus != xpt_periph->path->bus)
4613 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4614 path, async_arg);
4617 static void
4618 xpt_async_bcast(struct async_list *async_head,
4619 u_int32_t async_code,
4620 struct cam_path *path, void *async_arg)
4622 struct async_node *cur_entry;
4624 cur_entry = SLIST_FIRST(async_head);
4625 while (cur_entry != NULL) {
4626 struct async_node *next_entry;
4628 * Grab the next list entry before we call the current
4629 * entry's callback. This is because the callback function
4630 * can delete its async callback entry.
4632 next_entry = SLIST_NEXT(cur_entry, links);
4633 if ((cur_entry->event_enable & async_code) != 0)
4634 cur_entry->callback(cur_entry->callback_arg,
4635 async_code, path,
4636 async_arg);
4637 cur_entry = next_entry;
4642 * Handle any per-device event notifications that require action by the XPT.
4644 static void
4645 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4646 struct cam_ed *device, void *async_arg)
4648 cam_status status;
4649 struct cam_path newpath;
4652 * We only need to handle events for real devices.
4654 if (target->target_id == CAM_TARGET_WILDCARD
4655 || device->lun_id == CAM_LUN_WILDCARD)
4656 return;
4659 * We need our own path with wildcards expanded to
4660 * handle certain types of events.
4662 if ((async_code == AC_SENT_BDR)
4663 || (async_code == AC_BUS_RESET)
4664 || (async_code == AC_INQ_CHANGED))
4665 status = xpt_compile_path(&newpath, NULL,
4666 bus->path_id,
4667 target->target_id,
4668 device->lun_id);
4669 else
4670 status = CAM_REQ_CMP_ERR;
4672 if (status == CAM_REQ_CMP) {
4675 * Allow transfer negotiation to occur in a
4676 * tag free environment.
4678 if (async_code == AC_SENT_BDR
4679 || async_code == AC_BUS_RESET)
4680 xpt_toggle_tags(&newpath);
4682 if (async_code == AC_INQ_CHANGED) {
4684 * We've sent a start unit command, or
4685 * something similar to a device that
4686 * may have caused its inquiry data to
4687 * change. So we re-scan the device to
4688 * refresh the inquiry data for it.
4690 xpt_scan_lun(newpath.periph, &newpath,
4691 CAM_EXPECT_INQ_CHANGE, NULL);
4693 xpt_release_path(&newpath);
4694 } else if (async_code == AC_LOST_DEVICE) {
4696 * When we lose a device the device may be about to detach
4697 * the sim, we have to clear out all pending timeouts and
4698 * requests before that happens.
4700 * This typically happens most often with USB/UMASS devices.
4702 * XXX it would be nice if we could abort the requests
4703 * pertaining to the device.
4705 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4706 if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4707 device->flags |= CAM_DEV_UNCONFIGURED;
4708 xpt_release_device(bus, target, device);
4710 } else if (async_code == AC_TRANSFER_NEG) {
4711 struct ccb_trans_settings *settings;
4713 settings = (struct ccb_trans_settings *)async_arg;
4714 xpt_set_transfer_settings(settings, device,
4715 /*async_update*/TRUE);
4719 u_int32_t
4720 xpt_freeze_devq(struct cam_path *path, u_int count)
4722 struct ccb_hdr *ccbh;
4724 sim_lock_assert_owned(path->bus->sim->lock);
4726 path->device->qfrozen_cnt += count;
4729 * Mark the last CCB in the queue as needing
4730 * to be requeued if the driver hasn't
4731 * changed it's state yet. This fixes a race
4732 * where a ccb is just about to be queued to
4733 * a controller driver when it's interrupt routine
4734 * freezes the queue. To completly close the
4735 * hole, controller drives must check to see
4736 * if a ccb's status is still CAM_REQ_INPROG
4737 * just before they queue
4738 * the CCB. See ahc_action/ahc_freeze_devq for
4739 * an example.
4741 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4742 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4743 ccbh->status = CAM_REQUEUE_REQ;
4744 return (path->device->qfrozen_cnt);
4747 u_int32_t
4748 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4750 sim_lock_assert_owned(sim->lock);
4752 if (sim->devq == NULL)
4753 return(count);
4754 sim->devq->send_queue.qfrozen_cnt += count;
4755 if (sim->devq->active_dev != NULL) {
4756 struct ccb_hdr *ccbh;
4758 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4759 ccb_hdr_tailq);
4760 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4761 ccbh->status = CAM_REQUEUE_REQ;
4763 return (sim->devq->send_queue.qfrozen_cnt);
4767 * Release the device queue after a timeout has expired, typically used to
4768 * introduce a delay before retrying after an I/O error or other problem.
4770 static void
4771 xpt_release_devq_timeout(void *arg)
4773 struct cam_ed *device;
4775 device = (struct cam_ed *)arg;
4776 CAM_SIM_LOCK(device->sim);
4777 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4778 CAM_SIM_UNLOCK(device->sim);
4781 void
4782 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4784 sim_lock_assert_owned(path->bus->sim->lock);
4786 xpt_release_devq_device(path->device, count, run_queue);
4789 static void
4790 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4792 int rundevq;
4794 rundevq = 0;
4796 if (dev->qfrozen_cnt > 0) {
4798 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4799 dev->qfrozen_cnt -= count;
4800 if (dev->qfrozen_cnt == 0) {
4803 * No longer need to wait for a successful
4804 * command completion.
4806 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4809 * Remove any timeouts that might be scheduled
4810 * to release this queue.
4812 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4813 callout_stop(&dev->callout);
4814 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4818 * Now that we are unfrozen schedule the
4819 * device so any pending transactions are
4820 * run.
4822 if ((dev->ccbq.queue.entries > 0)
4823 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4824 && (run_queue != 0)) {
4825 rundevq = 1;
4829 if (rundevq != 0)
4830 xpt_run_dev_sendq(dev->target->bus);
4833 void
4834 xpt_release_simq(struct cam_sim *sim, int run_queue)
4836 struct camq *sendq;
4838 sim_lock_assert_owned(sim->lock);
4840 if (sim->devq == NULL)
4841 return;
4843 sendq = &(sim->devq->send_queue);
4844 if (sendq->qfrozen_cnt > 0) {
4845 sendq->qfrozen_cnt--;
4846 if (sendq->qfrozen_cnt == 0) {
4847 struct cam_eb *bus;
4850 * If there is a timeout scheduled to release this
4851 * sim queue, remove it. The queue frozen count is
4852 * already at 0.
4854 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4855 callout_stop(&sim->callout);
4856 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4858 bus = xpt_find_bus(sim->path_id);
4860 if (run_queue) {
4862 * Now that we are unfrozen run the send queue.
4864 xpt_run_dev_sendq(bus);
4866 xpt_release_bus(bus);
4871 void
4872 xpt_done(union ccb *done_ccb)
4874 struct cam_sim *sim;
4876 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4877 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4879 * Queue up the request for handling by our SWI handler
4880 * any of the "non-immediate" type of ccbs.
4882 sim = done_ccb->ccb_h.path->bus->sim;
4883 switch (done_ccb->ccb_h.path->periph->type) {
4884 case CAM_PERIPH_BIO:
4885 spin_lock(&sim->sim_spin);
4886 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4887 sim_links.tqe);
4888 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4889 spin_unlock(&sim->sim_spin);
4890 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4891 spin_lock(&cam_simq_spin);
4892 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4893 TAILQ_INSERT_TAIL(&cam_simq, sim,
4894 links);
4895 sim->flags |= CAM_SIM_ON_DONEQ;
4897 spin_unlock(&cam_simq_spin);
4899 if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4900 setsoftcambio();
4901 break;
4902 default:
4903 panic("unknown periph type %d",
4904 done_ccb->ccb_h.path->periph->type);
4909 union ccb *
4910 xpt_alloc_ccb(void)
4912 union ccb *new_ccb;
4914 new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4915 return (new_ccb);
4918 void
4919 xpt_free_ccb(union ccb *free_ccb)
4921 kfree(free_ccb, M_CAMXPT);
4926 /* Private XPT functions */
4929 * Get a CAM control block for the caller. Charge the structure to the device
4930 * referenced by the path. If the this device has no 'credits' then the
4931 * device already has the maximum number of outstanding operations under way
4932 * and we return NULL. If we don't have sufficient resources to allocate more
4933 * ccbs, we also return NULL.
4935 static union ccb *
4936 xpt_get_ccb(struct cam_ed *device)
4938 union ccb *new_ccb;
4939 struct cam_sim *sim;
4941 sim = device->sim;
4942 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4943 new_ccb = xpt_alloc_ccb();
4944 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4945 callout_init(&new_ccb->ccb_h.timeout_ch);
4946 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4947 xpt_links.sle);
4948 sim->ccb_count++;
4950 cam_ccbq_take_opening(&device->ccbq);
4951 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4952 return (new_ccb);
4955 static void
4956 xpt_release_bus(struct cam_eb *bus)
4958 for (;;) {
4959 int count = bus->refcount;
4961 cpu_ccfence();
4962 if (count == 1) {
4963 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4964 if (atomic_cmpset_int(&bus->refcount, 1, 0)) {
4965 if (TAILQ_EMPTY(&bus->et_entries)) {
4966 TAILQ_REMOVE(&xsoftc.xpt_busses,
4967 bus, links);
4968 xsoftc.bus_generation++;
4969 kfree(bus, M_CAMXPT);
4971 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4972 return;
4974 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4975 } else {
4976 if (atomic_cmpset_int(&bus->refcount, count, count-1)) {
4977 return;
4983 static struct cam_et *
4984 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4986 struct cam_et *target;
4987 struct cam_et *cur_target;
4989 target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4991 TAILQ_INIT(&target->ed_entries);
4992 target->bus = bus;
4993 target->target_id = target_id;
4994 target->refcount = 1;
4995 target->generation = 0;
4996 timevalclear(&target->last_reset);
4999 * Hold a reference to our parent bus so it
5000 * will not go away before we do.
5002 atomic_add_int(&bus->refcount, 1);
5004 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5005 /* Insertion sort into our bus's target list */
5006 cur_target = TAILQ_FIRST(&bus->et_entries);
5007 while (cur_target != NULL && cur_target->target_id < target_id)
5008 cur_target = TAILQ_NEXT(cur_target, links);
5010 if (cur_target != NULL) {
5011 TAILQ_INSERT_BEFORE(cur_target, target, links);
5012 } else {
5013 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
5015 bus->generation++;
5016 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5018 return (target);
5021 static void
5022 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5024 for (;;) {
5025 int count = target->refcount;
5027 cpu_ccfence();
5028 if (count == 1) {
5029 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5030 if (atomic_cmpset_int(&target->refcount, 1, 0)) {
5031 KKASSERT(TAILQ_EMPTY(&target->ed_entries));
5032 TAILQ_REMOVE(&bus->et_entries, target, links);
5033 bus->generation++;
5034 kfree(target, M_CAMXPT);
5035 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5036 xpt_release_bus(bus);
5037 return;
5039 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5040 } else {
5041 if (atomic_cmpset_int(&target->refcount,
5042 count, count - 1)) {
5043 return;
5049 static struct cam_ed *
5050 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5052 struct cam_path path;
5053 struct cam_ed *device;
5054 struct cam_devq *devq;
5055 cam_status status;
5058 * Disallow new devices while trying to deregister a sim
5060 if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5061 return (NULL);
5064 * Make space for us in the device queue on our bus
5066 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5067 devq = bus->sim->devq;
5068 if (devq == NULL) {
5069 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5070 return(NULL);
5072 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5073 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5075 if (status != CAM_REQ_CMP) {
5076 device = NULL;
5077 } else {
5078 device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5081 if (device != NULL) {
5082 struct cam_ed *cur_device;
5084 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5085 device->alloc_ccb_entry.device = device;
5086 cam_init_pinfo(&device->send_ccb_entry.pinfo);
5087 device->send_ccb_entry.device = device;
5088 device->target = target;
5089 device->lun_id = lun_id;
5090 device->sim = bus->sim;
5091 /* Initialize our queues */
5092 if (camq_init(&device->drvq, 0) != 0) {
5093 kfree(device, M_CAMXPT);
5094 return (NULL);
5096 if (cam_ccbq_init(&device->ccbq,
5097 bus->sim->max_dev_openings) != 0) {
5098 camq_fini(&device->drvq);
5099 kfree(device, M_CAMXPT);
5100 return (NULL);
5102 SLIST_INIT(&device->asyncs);
5103 SLIST_INIT(&device->periphs);
5104 device->generation = 0;
5105 device->owner = NULL;
5107 * Take the default quirk entry until we have inquiry
5108 * data and can determine a better quirk to use.
5110 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5111 bzero(&device->inq_data, sizeof(device->inq_data));
5112 device->inq_flags = 0;
5113 device->queue_flags = 0;
5114 device->serial_num = NULL;
5115 device->serial_num_len = 0;
5116 device->qfrozen_cnt = 0;
5117 device->flags = CAM_DEV_UNCONFIGURED;
5118 device->tag_delay_count = 0;
5119 device->tag_saved_openings = 0;
5120 device->refcount = 1;
5121 callout_init(&device->callout);
5124 * Hold a reference to our parent target so it
5125 * will not go away before we do.
5127 atomic_add_int(&target->refcount, 1);
5130 * XXX should be limited by number of CCBs this bus can
5131 * do.
5133 bus->sim->max_ccbs += device->ccbq.devq_openings;
5134 /* Insertion sort into our target's device list */
5135 cur_device = TAILQ_FIRST(&target->ed_entries);
5136 while (cur_device != NULL && cur_device->lun_id < lun_id)
5137 cur_device = TAILQ_NEXT(cur_device, links);
5138 if (cur_device != NULL) {
5139 TAILQ_INSERT_BEFORE(cur_device, device, links);
5140 } else {
5141 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5143 target->generation++;
5144 if (lun_id != CAM_LUN_WILDCARD) {
5145 xpt_compile_path(&path,
5146 NULL,
5147 bus->path_id,
5148 target->target_id,
5149 lun_id);
5150 xpt_devise_transport(&path);
5151 xpt_release_path(&path);
5154 return (device);
5157 static void
5158 xpt_reference_device(struct cam_ed *device)
5160 atomic_add_int(&device->refcount, 1);
5163 static void
5164 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5165 struct cam_ed *device)
5167 struct cam_devq *devq;
5169 for (;;) {
5170 int count = device->refcount;
5172 if (count == 1) {
5173 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5174 if (atomic_cmpset_int(&device->refcount, 1, 0)) {
5175 KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5176 if (device->alloc_ccb_entry.pinfo.index !=
5177 CAM_UNQUEUED_INDEX ||
5178 device->send_ccb_entry.pinfo.index !=
5179 CAM_UNQUEUED_INDEX) {
5180 panic("Removing device while "
5181 "still queued for ccbs");
5183 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5184 device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5185 callout_stop(&device->callout);
5187 TAILQ_REMOVE(&target->ed_entries, device, links);
5188 target->generation++;
5189 bus->sim->max_ccbs -= device->ccbq.devq_openings;
5190 if ((devq = bus->sim->devq) != NULL) {
5191 /* Release our slot in the devq */
5192 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5194 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5196 camq_fini(&device->drvq);
5197 camq_fini(&device->ccbq.queue);
5198 xpt_release_target(bus, target);
5199 kfree(device, M_CAMXPT);
5200 return;
5202 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5203 } else {
5204 if (atomic_cmpset_int(&device->refcount,
5205 count, count - 1)) {
5206 return;
5212 static u_int32_t
5213 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5215 int diff;
5216 int result;
5217 struct cam_ed *dev;
5219 dev = path->device;
5221 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5222 result = cam_ccbq_resize(&dev->ccbq, newopenings);
5223 if (result == CAM_REQ_CMP && (diff < 0)) {
5224 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5226 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5227 || (dev->inq_flags & SID_CmdQue) != 0)
5228 dev->tag_saved_openings = newopenings;
5229 /* Adjust the global limit */
5230 dev->sim->max_ccbs += diff;
5231 return (result);
5234 static struct cam_eb *
5235 xpt_find_bus(path_id_t path_id)
5237 struct cam_eb *bus;
5239 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5240 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5241 if (bus->path_id == path_id) {
5242 atomic_add_int(&bus->refcount, 1);
5243 break;
5246 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5248 return (bus);
5251 static struct cam_et *
5252 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
5254 struct cam_et *target;
5256 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5257 TAILQ_FOREACH(target, &bus->et_entries, links) {
5258 if (target->target_id == target_id) {
5259 atomic_add_int(&target->refcount, 1);
5260 break;
5263 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5265 return (target);
5268 static struct cam_ed *
5269 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5271 struct cam_ed *device;
5273 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5274 TAILQ_FOREACH(device, &target->ed_entries, links) {
5275 if (device->lun_id == lun_id) {
5276 atomic_add_int(&device->refcount, 1);
5277 break;
5280 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5282 return (device);
5285 typedef struct {
5286 union ccb *request_ccb;
5287 struct ccb_pathinq *cpi;
5288 int counter;
5289 } xpt_scan_bus_info;
5292 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5293 * As the scan progresses, xpt_scan_bus is used as the
5294 * callback on completion function.
5296 static void
5297 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5299 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5300 ("xpt_scan_bus\n"));
5301 switch (request_ccb->ccb_h.func_code) {
5302 case XPT_SCAN_BUS:
5304 xpt_scan_bus_info *scan_info;
5305 union ccb *work_ccb;
5306 struct cam_path *path;
5307 u_int i;
5308 u_int max_target;
5309 u_int initiator_id;
5311 /* Find out the characteristics of the bus */
5312 work_ccb = xpt_alloc_ccb();
5313 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5314 request_ccb->ccb_h.pinfo.priority);
5315 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5316 xpt_action(work_ccb);
5317 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5318 request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5319 xpt_free_ccb(work_ccb);
5320 xpt_done(request_ccb);
5321 return;
5324 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5326 * Can't scan the bus on an adapter that
5327 * cannot perform the initiator role.
5329 request_ccb->ccb_h.status = CAM_REQ_CMP;
5330 xpt_free_ccb(work_ccb);
5331 xpt_done(request_ccb);
5332 return;
5335 /* Save some state for use while we probe for devices */
5336 scan_info = (xpt_scan_bus_info *)
5337 kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5338 scan_info->request_ccb = request_ccb;
5339 scan_info->cpi = &work_ccb->cpi;
5341 /* Cache on our stack so we can work asynchronously */
5342 max_target = scan_info->cpi->max_target;
5343 initiator_id = scan_info->cpi->initiator_id;
5347 * We can scan all targets in parallel, or do it sequentially.
5349 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5350 max_target = 0;
5351 scan_info->counter = 0;
5352 } else {
5353 scan_info->counter = scan_info->cpi->max_target + 1;
5354 if (scan_info->cpi->initiator_id < scan_info->counter) {
5355 scan_info->counter--;
5359 for (i = 0; i <= max_target; i++) {
5360 cam_status status;
5361 if (i == initiator_id)
5362 continue;
5364 status = xpt_create_path(&path, xpt_periph,
5365 request_ccb->ccb_h.path_id,
5366 i, 0);
5367 if (status != CAM_REQ_CMP) {
5368 kprintf("xpt_scan_bus: xpt_create_path failed"
5369 " with status %#x, bus scan halted\n",
5370 status);
5371 kfree(scan_info, M_CAMXPT);
5372 request_ccb->ccb_h.status = status;
5373 xpt_free_ccb(work_ccb);
5374 xpt_done(request_ccb);
5375 break;
5377 work_ccb = xpt_alloc_ccb();
5378 xpt_setup_ccb(&work_ccb->ccb_h, path,
5379 request_ccb->ccb_h.pinfo.priority);
5380 work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5381 work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5382 work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5383 work_ccb->crcn.flags = request_ccb->crcn.flags;
5384 xpt_action(work_ccb);
5386 break;
5388 case XPT_SCAN_LUN:
5390 cam_status status;
5391 struct cam_path *path;
5392 xpt_scan_bus_info *scan_info;
5393 path_id_t path_id;
5394 target_id_t target_id;
5395 lun_id_t lun_id;
5397 /* Reuse the same CCB to query if a device was really found */
5398 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5399 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5400 request_ccb->ccb_h.pinfo.priority);
5401 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5403 path_id = request_ccb->ccb_h.path_id;
5404 target_id = request_ccb->ccb_h.target_id;
5405 lun_id = request_ccb->ccb_h.target_lun;
5406 xpt_action(request_ccb);
5408 if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5409 struct cam_ed *device;
5410 struct cam_et *target;
5411 int phl;
5414 * If we already probed lun 0 successfully, or
5415 * we have additional configured luns on this
5416 * target that might have "gone away", go onto
5417 * the next lun.
5419 target = request_ccb->ccb_h.path->target;
5421 * We may touch devices that we don't
5422 * hold references too, so ensure they
5423 * don't disappear out from under us.
5424 * The target above is referenced by the
5425 * path in the request ccb.
5427 phl = 0;
5428 device = TAILQ_FIRST(&target->ed_entries);
5429 if (device != NULL) {
5430 phl = CAN_SRCH_HI_SPARSE(device);
5431 if (device->lun_id == 0)
5432 device = TAILQ_NEXT(device, links);
5434 if ((lun_id != 0) || (device != NULL)) {
5435 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5436 lun_id++;
5438 } else {
5439 struct cam_ed *device;
5441 device = request_ccb->ccb_h.path->device;
5443 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5444 /* Try the next lun */
5445 if (lun_id < (CAM_SCSI2_MAXLUN-1)
5446 || CAN_SRCH_HI_DENSE(device))
5447 lun_id++;
5452 * Free the current request path- we're done with it.
5454 xpt_free_path(request_ccb->ccb_h.path);
5457 * Check to see if we scan any further luns.
5459 if (lun_id == request_ccb->ccb_h.target_lun
5460 || lun_id > scan_info->cpi->max_lun) {
5461 int done;
5463 hop_again:
5464 done = 0;
5465 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5466 scan_info->counter++;
5467 if (scan_info->counter ==
5468 scan_info->cpi->initiator_id) {
5469 scan_info->counter++;
5471 if (scan_info->counter >=
5472 scan_info->cpi->max_target+1) {
5473 done = 1;
5475 } else {
5476 scan_info->counter--;
5477 if (scan_info->counter == 0) {
5478 done = 1;
5481 if (done) {
5482 xpt_free_ccb(request_ccb);
5483 xpt_free_ccb((union ccb *)scan_info->cpi);
5484 request_ccb = scan_info->request_ccb;
5485 kfree(scan_info, M_CAMXPT);
5486 request_ccb->ccb_h.status = CAM_REQ_CMP;
5487 xpt_done(request_ccb);
5488 break;
5491 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5492 break;
5494 status = xpt_create_path(&path, xpt_periph,
5495 scan_info->request_ccb->ccb_h.path_id,
5496 scan_info->counter, 0);
5497 if (status != CAM_REQ_CMP) {
5498 kprintf("xpt_scan_bus: xpt_create_path failed"
5499 " with status %#x, bus scan halted\n",
5500 status);
5501 xpt_free_ccb(request_ccb);
5502 xpt_free_ccb((union ccb *)scan_info->cpi);
5503 request_ccb = scan_info->request_ccb;
5504 kfree(scan_info, M_CAMXPT);
5505 request_ccb->ccb_h.status = status;
5506 xpt_done(request_ccb);
5507 break;
5509 xpt_setup_ccb(&request_ccb->ccb_h, path,
5510 request_ccb->ccb_h.pinfo.priority);
5511 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5512 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5513 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5514 request_ccb->crcn.flags =
5515 scan_info->request_ccb->crcn.flags;
5516 } else {
5517 status = xpt_create_path(&path, xpt_periph,
5518 path_id, target_id, lun_id);
5519 if (status != CAM_REQ_CMP) {
5520 kprintf("xpt_scan_bus: xpt_create_path failed "
5521 "with status %#x, halting LUN scan\n",
5522 status);
5523 goto hop_again;
5525 xpt_setup_ccb(&request_ccb->ccb_h, path,
5526 request_ccb->ccb_h.pinfo.priority);
5527 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5528 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5529 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5530 request_ccb->crcn.flags =
5531 scan_info->request_ccb->crcn.flags;
5533 xpt_action(request_ccb);
5534 break;
5536 default:
5537 break;
5541 typedef enum {
5542 PROBE_TUR,
5543 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */
5544 PROBE_FULL_INQUIRY,
5545 PROBE_MODE_SENSE,
5546 PROBE_SERIAL_NUM_0,
5547 PROBE_SERIAL_NUM_1,
5548 PROBE_TUR_FOR_NEGOTIATION,
5549 PROBE_INQUIRY_BASIC_DV1,
5550 PROBE_INQUIRY_BASIC_DV2,
5551 PROBE_DV_EXIT,
5552 PROBE_INVALID
5553 } probe_action;
5555 static char *probe_action_text[] = {
5556 "PROBE_TUR",
5557 "PROBE_INQUIRY",
5558 "PROBE_FULL_INQUIRY",
5559 "PROBE_MODE_SENSE",
5560 "PROBE_SERIAL_NUM_0",
5561 "PROBE_SERIAL_NUM_1",
5562 "PROBE_TUR_FOR_NEGOTIATION",
5563 "PROBE_INQUIRY_BASIC_DV1",
5564 "PROBE_INQUIRY_BASIC_DV2",
5565 "PROBE_DV_EXIT",
5566 "PROBE_INVALID"
5569 #define PROBE_SET_ACTION(softc, newaction) \
5570 do { \
5571 char **text; \
5572 text = probe_action_text; \
5573 CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO, \
5574 ("Probe %s to %s\n", text[(softc)->action], \
5575 text[(newaction)])); \
5576 (softc)->action = (newaction); \
5577 } while(0)
5579 typedef enum {
5580 PROBE_INQUIRY_CKSUM = 0x01,
5581 PROBE_SERIAL_CKSUM = 0x02,
5582 PROBE_NO_ANNOUNCE = 0x04
5583 } probe_flags;
5585 typedef struct {
5586 TAILQ_HEAD(, ccb_hdr) request_ccbs;
5587 probe_action action;
5588 union ccb saved_ccb;
5589 probe_flags flags;
5590 MD5_CTX context;
5591 u_int8_t digest[16];
5592 struct cam_periph *periph;
5593 } probe_softc;
5595 static void
5596 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5597 cam_flags flags, union ccb *request_ccb)
5599 struct ccb_pathinq cpi;
5600 cam_status status;
5601 struct cam_path *new_path;
5602 struct cam_periph *old_periph;
5604 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5605 ("xpt_scan_lun\n"));
5607 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5608 cpi.ccb_h.func_code = XPT_PATH_INQ;
5609 xpt_action((union ccb *)&cpi);
5611 if (cpi.ccb_h.status != CAM_REQ_CMP) {
5612 if (request_ccb != NULL) {
5613 request_ccb->ccb_h.status = cpi.ccb_h.status;
5614 xpt_done(request_ccb);
5616 return;
5619 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5621 * Can't scan the bus on an adapter that
5622 * cannot perform the initiator role.
5624 if (request_ccb != NULL) {
5625 request_ccb->ccb_h.status = CAM_REQ_CMP;
5626 xpt_done(request_ccb);
5628 return;
5631 if (request_ccb == NULL) {
5632 request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5633 new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5634 status = xpt_compile_path(new_path, xpt_periph,
5635 path->bus->path_id,
5636 path->target->target_id,
5637 path->device->lun_id);
5639 if (status != CAM_REQ_CMP) {
5640 xpt_print(path, "xpt_scan_lun: can't compile path, "
5641 "can't continue\n");
5642 kfree(request_ccb, M_CAMXPT);
5643 kfree(new_path, M_CAMXPT);
5644 return;
5646 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5647 request_ccb->ccb_h.cbfcnp = xptscandone;
5648 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5649 request_ccb->crcn.flags = flags;
5652 if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5653 probe_softc *softc;
5655 softc = (probe_softc *)old_periph->softc;
5656 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5657 periph_links.tqe);
5658 } else {
5659 status = cam_periph_alloc(proberegister, NULL, probecleanup,
5660 probestart, "probe",
5661 CAM_PERIPH_BIO,
5662 request_ccb->ccb_h.path, NULL, 0,
5663 request_ccb);
5665 if (status != CAM_REQ_CMP) {
5666 xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5667 "returned an error, can't continue probe\n");
5668 request_ccb->ccb_h.status = status;
5669 xpt_done(request_ccb);
5674 static void
5675 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5677 xpt_release_path(done_ccb->ccb_h.path);
5678 kfree(done_ccb->ccb_h.path, M_CAMXPT);
5679 kfree(done_ccb, M_CAMXPT);
5682 static cam_status
5683 proberegister(struct cam_periph *periph, void *arg)
5685 union ccb *request_ccb; /* CCB representing the probe request */
5686 cam_status status;
5687 probe_softc *softc;
5689 request_ccb = (union ccb *)arg;
5690 if (periph == NULL) {
5691 kprintf("proberegister: periph was NULL!!\n");
5692 return(CAM_REQ_CMP_ERR);
5695 if (request_ccb == NULL) {
5696 kprintf("proberegister: no probe CCB, "
5697 "can't register device\n");
5698 return(CAM_REQ_CMP_ERR);
5701 softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5702 TAILQ_INIT(&softc->request_ccbs);
5703 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5704 periph_links.tqe);
5705 softc->flags = 0;
5706 periph->softc = softc;
5707 softc->periph = periph;
5708 softc->action = PROBE_INVALID;
5709 status = cam_periph_acquire(periph);
5710 if (status != CAM_REQ_CMP) {
5711 return (status);
5716 * Ensure we've waited at least a bus settle
5717 * delay before attempting to probe the device.
5718 * For HBAs that don't do bus resets, this won't make a difference.
5720 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5721 scsi_delay);
5722 probeschedule(periph);
5723 return(CAM_REQ_CMP);
5726 static void
5727 probeschedule(struct cam_periph *periph)
5729 struct ccb_pathinq cpi;
5730 union ccb *ccb;
5731 probe_softc *softc;
5733 softc = (probe_softc *)periph->softc;
5734 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5736 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5737 cpi.ccb_h.func_code = XPT_PATH_INQ;
5738 xpt_action((union ccb *)&cpi);
5741 * If a device has gone away and another device, or the same one,
5742 * is back in the same place, it should have a unit attention
5743 * condition pending. It will not report the unit attention in
5744 * response to an inquiry, which may leave invalid transfer
5745 * negotiations in effect. The TUR will reveal the unit attention
5746 * condition. Only send the TUR for lun 0, since some devices
5747 * will get confused by commands other than inquiry to non-existent
5748 * luns. If you think a device has gone away start your scan from
5749 * lun 0. This will insure that any bogus transfer settings are
5750 * invalidated.
5752 * If we haven't seen the device before and the controller supports
5753 * some kind of transfer negotiation, negotiate with the first
5754 * sent command if no bus reset was performed at startup. This
5755 * ensures that the device is not confused by transfer negotiation
5756 * settings left over by loader or BIOS action.
5758 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5759 && (ccb->ccb_h.target_lun == 0)) {
5760 PROBE_SET_ACTION(softc, PROBE_TUR);
5761 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5762 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5763 proberequestdefaultnegotiation(periph);
5764 PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5765 } else {
5766 PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5769 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5770 softc->flags |= PROBE_NO_ANNOUNCE;
5771 else
5772 softc->flags &= ~PROBE_NO_ANNOUNCE;
5774 xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5777 static void
5778 probestart(struct cam_periph *periph, union ccb *start_ccb)
5780 /* Probe the device that our peripheral driver points to */
5781 struct ccb_scsiio *csio;
5782 probe_softc *softc;
5784 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5786 softc = (probe_softc *)periph->softc;
5787 csio = &start_ccb->csio;
5789 switch (softc->action) {
5790 case PROBE_TUR:
5791 case PROBE_TUR_FOR_NEGOTIATION:
5792 case PROBE_DV_EXIT:
5794 scsi_test_unit_ready(csio,
5795 /*retries*/4,
5796 probedone,
5797 MSG_SIMPLE_Q_TAG,
5798 SSD_FULL_SIZE,
5799 /*timeout*/60000);
5800 break;
5802 case PROBE_INQUIRY:
5803 case PROBE_FULL_INQUIRY:
5804 case PROBE_INQUIRY_BASIC_DV1:
5805 case PROBE_INQUIRY_BASIC_DV2:
5807 u_int inquiry_len;
5808 struct scsi_inquiry_data *inq_buf;
5810 inq_buf = &periph->path->device->inq_data;
5813 * If the device is currently configured, we calculate an
5814 * MD5 checksum of the inquiry data, and if the serial number
5815 * length is greater than 0, add the serial number data
5816 * into the checksum as well. Once the inquiry and the
5817 * serial number check finish, we attempt to figure out
5818 * whether we still have the same device.
5820 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5822 MD5Init(&softc->context);
5823 MD5Update(&softc->context, (unsigned char *)inq_buf,
5824 sizeof(struct scsi_inquiry_data));
5825 softc->flags |= PROBE_INQUIRY_CKSUM;
5826 if (periph->path->device->serial_num_len > 0) {
5827 MD5Update(&softc->context,
5828 periph->path->device->serial_num,
5829 periph->path->device->serial_num_len);
5830 softc->flags |= PROBE_SERIAL_CKSUM;
5832 MD5Final(softc->digest, &softc->context);
5835 if (softc->action == PROBE_INQUIRY)
5836 inquiry_len = SHORT_INQUIRY_LENGTH;
5837 else
5838 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5841 * Some parallel SCSI devices fail to send an
5842 * ignore wide residue message when dealing with
5843 * odd length inquiry requests. Round up to be
5844 * safe.
5846 inquiry_len = roundup2(inquiry_len, 2);
5848 if (softc->action == PROBE_INQUIRY_BASIC_DV1
5849 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5850 inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5852 scsi_inquiry(csio,
5853 /*retries*/4,
5854 probedone,
5855 MSG_SIMPLE_Q_TAG,
5856 (u_int8_t *)inq_buf,
5857 inquiry_len,
5858 /*evpd*/FALSE,
5859 /*page_code*/0,
5860 SSD_MIN_SIZE,
5861 /*timeout*/60 * 1000);
5862 break;
5864 case PROBE_MODE_SENSE:
5866 void *mode_buf;
5867 int mode_buf_len;
5869 mode_buf_len = sizeof(struct scsi_mode_header_6)
5870 + sizeof(struct scsi_mode_blk_desc)
5871 + sizeof(struct scsi_control_page);
5872 mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5873 scsi_mode_sense(csio,
5874 /*retries*/4,
5875 probedone,
5876 MSG_SIMPLE_Q_TAG,
5877 /*dbd*/FALSE,
5878 SMS_PAGE_CTRL_CURRENT,
5879 SMS_CONTROL_MODE_PAGE,
5880 mode_buf,
5881 mode_buf_len,
5882 SSD_FULL_SIZE,
5883 /*timeout*/60000);
5884 break;
5886 case PROBE_SERIAL_NUM_0:
5888 struct scsi_vpd_supported_page_list *vpd_list = NULL;
5889 struct cam_ed *device;
5891 device = periph->path->device;
5892 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5893 vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5894 M_INTWAIT | M_ZERO);
5897 if (vpd_list != NULL) {
5898 scsi_inquiry(csio,
5899 /*retries*/4,
5900 probedone,
5901 MSG_SIMPLE_Q_TAG,
5902 (u_int8_t *)vpd_list,
5903 sizeof(*vpd_list),
5904 /*evpd*/TRUE,
5905 SVPD_SUPPORTED_PAGE_LIST,
5906 SSD_MIN_SIZE,
5907 /*timeout*/60 * 1000);
5908 break;
5911 * We'll have to do without, let our probedone
5912 * routine finish up for us.
5914 start_ccb->csio.data_ptr = NULL;
5915 probedone(periph, start_ccb);
5916 return;
5918 case PROBE_SERIAL_NUM_1:
5920 struct scsi_vpd_unit_serial_number *serial_buf;
5921 struct cam_ed* device;
5923 serial_buf = NULL;
5924 device = periph->path->device;
5925 device->serial_num = NULL;
5926 device->serial_num_len = 0;
5928 serial_buf = (struct scsi_vpd_unit_serial_number *)
5929 kmalloc(sizeof(*serial_buf), M_CAMXPT,
5930 M_INTWAIT | M_ZERO);
5931 scsi_inquiry(csio,
5932 /*retries*/4,
5933 probedone,
5934 MSG_SIMPLE_Q_TAG,
5935 (u_int8_t *)serial_buf,
5936 sizeof(*serial_buf),
5937 /*evpd*/TRUE,
5938 SVPD_UNIT_SERIAL_NUMBER,
5939 SSD_MIN_SIZE,
5940 /*timeout*/60 * 1000);
5941 break;
5943 case PROBE_INVALID:
5944 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5945 ("probestart: invalid action state\n"));
5946 default:
5947 break;
5949 xpt_action(start_ccb);
5952 static void
5953 proberequestdefaultnegotiation(struct cam_periph *periph)
5955 struct ccb_trans_settings cts;
5957 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5958 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5959 cts.type = CTS_TYPE_USER_SETTINGS;
5960 xpt_action((union ccb *)&cts);
5961 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5962 return;
5964 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5965 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5966 xpt_action((union ccb *)&cts);
5970 * Backoff Negotiation Code- only pertinent for SPI devices.
5972 static int
5973 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5975 struct ccb_trans_settings cts;
5976 struct ccb_trans_settings_spi *spi;
5978 memset(&cts, 0, sizeof (cts));
5979 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5980 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5981 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5982 xpt_action((union ccb *)&cts);
5983 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5984 if (bootverbose) {
5985 xpt_print(periph->path,
5986 "failed to get current device settings\n");
5988 return (0);
5990 if (cts.transport != XPORT_SPI) {
5991 if (bootverbose) {
5992 xpt_print(periph->path, "not SPI transport\n");
5994 return (0);
5996 spi = &cts.xport_specific.spi;
5999 * We cannot renegotiate sync rate if we don't have one.
6001 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
6002 if (bootverbose) {
6003 xpt_print(periph->path, "no sync rate known\n");
6005 return (0);
6009 * We'll assert that we don't have to touch PPR options- the
6010 * SIM will see what we do with period and offset and adjust
6011 * the PPR options as appropriate.
6015 * A sync rate with unknown or zero offset is nonsensical.
6016 * A sync period of zero means Async.
6018 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
6019 || spi->sync_offset == 0 || spi->sync_period == 0) {
6020 if (bootverbose) {
6021 xpt_print(periph->path, "no sync rate available\n");
6023 return (0);
6026 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
6027 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6028 ("hit async: giving up on DV\n"));
6029 return (0);
6034 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
6035 * We don't try to remember 'last' settings to see if the SIM actually
6036 * gets into the speed we want to set. We check on the SIM telling
6037 * us that a requested speed is bad, but otherwise don't try and
6038 * check the speed due to the asynchronous and handshake nature
6039 * of speed setting.
6041 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
6042 for (;;) {
6043 spi->sync_period++;
6044 if (spi->sync_period >= 0xf) {
6045 spi->sync_period = 0;
6046 spi->sync_offset = 0;
6047 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6048 ("setting to async for DV\n"));
6050 * Once we hit async, we don't want to try
6051 * any more settings.
6053 device->flags |= CAM_DEV_DV_HIT_BOTTOM;
6054 } else if (bootverbose) {
6055 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6056 ("DV: period 0x%x\n", spi->sync_period));
6057 kprintf("setting period to 0x%x\n", spi->sync_period);
6059 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6060 cts.type = CTS_TYPE_CURRENT_SETTINGS;
6061 xpt_action((union ccb *)&cts);
6062 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6063 break;
6065 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6066 ("DV: failed to set period 0x%x\n", spi->sync_period));
6067 if (spi->sync_period == 0) {
6068 return (0);
6071 return (1);
6074 static void
6075 probedone(struct cam_periph *periph, union ccb *done_ccb)
6077 probe_softc *softc;
6078 struct cam_path *path;
6079 u_int32_t priority;
6081 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6083 softc = (probe_softc *)periph->softc;
6084 path = done_ccb->ccb_h.path;
6085 priority = done_ccb->ccb_h.pinfo.priority;
6087 switch (softc->action) {
6088 case PROBE_TUR:
6090 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6092 if (cam_periph_error(done_ccb, 0,
6093 SF_NO_PRINT, NULL) == ERESTART)
6094 return;
6095 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6096 /* Don't wedge the queue */
6097 xpt_release_devq(done_ccb->ccb_h.path,
6098 /*count*/1,
6099 /*run_queue*/TRUE);
6101 PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6102 xpt_release_ccb(done_ccb);
6103 xpt_schedule(periph, priority);
6104 return;
6106 case PROBE_INQUIRY:
6107 case PROBE_FULL_INQUIRY:
6109 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6110 struct scsi_inquiry_data *inq_buf;
6111 u_int8_t periph_qual;
6113 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6114 inq_buf = &path->device->inq_data;
6116 periph_qual = SID_QUAL(inq_buf);
6118 switch(periph_qual) {
6119 case SID_QUAL_LU_CONNECTED:
6121 u_int8_t len;
6124 * We conservatively request only
6125 * SHORT_INQUIRY_LEN bytes of inquiry
6126 * information during our first try
6127 * at sending an INQUIRY. If the device
6128 * has more information to give,
6129 * perform a second request specifying
6130 * the amount of information the device
6131 * is willing to give.
6133 len = inq_buf->additional_length
6134 + offsetof(struct scsi_inquiry_data,
6135 additional_length) + 1;
6136 if (softc->action == PROBE_INQUIRY
6137 && len > SHORT_INQUIRY_LENGTH) {
6138 PROBE_SET_ACTION(softc,
6139 PROBE_FULL_INQUIRY);
6140 xpt_release_ccb(done_ccb);
6141 xpt_schedule(periph, priority);
6142 return;
6145 xpt_find_quirk(path->device);
6147 xpt_devise_transport(path);
6148 if (INQ_DATA_TQ_ENABLED(inq_buf))
6149 PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6150 else
6151 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6153 path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6154 xpt_reference_device(path->device);
6156 xpt_release_ccb(done_ccb);
6157 xpt_schedule(periph, priority);
6158 return;
6160 default:
6161 break;
6163 } else if (cam_periph_error(done_ccb, 0,
6164 done_ccb->ccb_h.target_lun > 0
6165 ? SF_RETRY_UA|SF_QUIET_IR|SF_NO_PRINT
6166 : SF_RETRY_UA|SF_NO_PRINT,
6167 &softc->saved_ccb) == ERESTART) {
6168 return;
6169 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6170 /* Don't wedge the queue */
6171 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6172 /*run_queue*/TRUE);
6175 * If we get to this point, we got an error status back
6176 * from the inquiry and the error status doesn't require
6177 * automatically retrying the command. Therefore, the
6178 * inquiry failed. If we had inquiry information before
6179 * for this device, but this latest inquiry command failed,
6180 * the device has probably gone away. If this device isn't
6181 * already marked unconfigured, notify the peripheral
6182 * drivers that this device is no more.
6184 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6185 /* Send the async notification. */
6186 xpt_async(AC_LOST_DEVICE, path, NULL);
6189 xpt_release_ccb(done_ccb);
6190 break;
6192 case PROBE_MODE_SENSE:
6194 struct ccb_scsiio *csio;
6195 struct scsi_mode_header_6 *mode_hdr;
6197 csio = &done_ccb->csio;
6198 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6199 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6200 struct scsi_control_page *page;
6201 u_int8_t *offset;
6203 offset = ((u_int8_t *)&mode_hdr[1])
6204 + mode_hdr->blk_desc_len;
6205 page = (struct scsi_control_page *)offset;
6206 path->device->queue_flags = page->queue_flags;
6207 } else if (cam_periph_error(done_ccb, 0,
6208 SF_RETRY_UA|SF_NO_PRINT,
6209 &softc->saved_ccb) == ERESTART) {
6210 return;
6211 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6212 /* Don't wedge the queue */
6213 xpt_release_devq(done_ccb->ccb_h.path,
6214 /*count*/1, /*run_queue*/TRUE);
6216 xpt_release_ccb(done_ccb);
6217 kfree(mode_hdr, M_CAMXPT);
6218 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6219 xpt_schedule(periph, priority);
6220 return;
6222 case PROBE_SERIAL_NUM_0:
6224 struct ccb_scsiio *csio;
6225 struct scsi_vpd_supported_page_list *page_list;
6226 int length, serialnum_supported, i;
6228 serialnum_supported = 0;
6229 csio = &done_ccb->csio;
6230 page_list =
6231 (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6233 if (page_list == NULL) {
6235 * Don't process the command as it was never sent
6237 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6238 && (page_list->length > 0)) {
6239 length = min(page_list->length,
6240 SVPD_SUPPORTED_PAGES_SIZE);
6241 for (i = 0; i < length; i++) {
6242 if (page_list->list[i] ==
6243 SVPD_UNIT_SERIAL_NUMBER) {
6244 serialnum_supported = 1;
6245 break;
6248 } else if (cam_periph_error(done_ccb, 0,
6249 SF_RETRY_UA|SF_NO_PRINT,
6250 &softc->saved_ccb) == ERESTART) {
6251 return;
6252 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6253 /* Don't wedge the queue */
6254 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6255 /*run_queue*/TRUE);
6258 if (page_list != NULL)
6259 kfree(page_list, M_DEVBUF);
6261 if (serialnum_supported) {
6262 xpt_release_ccb(done_ccb);
6263 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6264 xpt_schedule(periph, priority);
6265 return;
6268 csio->data_ptr = NULL;
6269 /* FALLTHROUGH */
6272 case PROBE_SERIAL_NUM_1:
6274 struct ccb_scsiio *csio;
6275 struct scsi_vpd_unit_serial_number *serial_buf;
6276 u_int32_t priority;
6277 int changed;
6278 int have_serialnum;
6280 changed = 1;
6281 have_serialnum = 0;
6282 csio = &done_ccb->csio;
6283 priority = done_ccb->ccb_h.pinfo.priority;
6284 serial_buf =
6285 (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6287 /* Clean up from previous instance of this device */
6288 if (path->device->serial_num != NULL) {
6289 kfree(path->device->serial_num, M_CAMXPT);
6290 path->device->serial_num = NULL;
6291 path->device->serial_num_len = 0;
6294 if (serial_buf == NULL) {
6296 * Don't process the command as it was never sent
6298 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6299 && (serial_buf->length > 0)) {
6301 have_serialnum = 1;
6302 path->device->serial_num =
6303 kmalloc((serial_buf->length + 1),
6304 M_CAMXPT, M_INTWAIT);
6305 bcopy(serial_buf->serial_num,
6306 path->device->serial_num,
6307 serial_buf->length);
6308 path->device->serial_num_len = serial_buf->length;
6309 path->device->serial_num[serial_buf->length] = '\0';
6310 } else if (cam_periph_error(done_ccb, 0,
6311 SF_RETRY_UA|SF_NO_PRINT,
6312 &softc->saved_ccb) == ERESTART) {
6313 return;
6314 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6315 /* Don't wedge the queue */
6316 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6317 /*run_queue*/TRUE);
6321 * Let's see if we have seen this device before.
6323 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6324 MD5_CTX context;
6325 u_int8_t digest[16];
6327 MD5Init(&context);
6329 MD5Update(&context,
6330 (unsigned char *)&path->device->inq_data,
6331 sizeof(struct scsi_inquiry_data));
6333 if (have_serialnum)
6334 MD5Update(&context, serial_buf->serial_num,
6335 serial_buf->length);
6337 MD5Final(digest, &context);
6338 if (bcmp(softc->digest, digest, 16) == 0)
6339 changed = 0;
6342 * XXX Do we need to do a TUR in order to ensure
6343 * that the device really hasn't changed???
6345 if ((changed != 0)
6346 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6347 xpt_async(AC_LOST_DEVICE, path, NULL);
6349 if (serial_buf != NULL)
6350 kfree(serial_buf, M_CAMXPT);
6352 if (changed != 0) {
6354 * Now that we have all the necessary
6355 * information to safely perform transfer
6356 * negotiations... Controllers don't perform
6357 * any negotiation or tagged queuing until
6358 * after the first XPT_SET_TRAN_SETTINGS ccb is
6359 * received. So, on a new device, just retrieve
6360 * the user settings, and set them as the current
6361 * settings to set the device up.
6363 proberequestdefaultnegotiation(periph);
6364 xpt_release_ccb(done_ccb);
6367 * Perform a TUR to allow the controller to
6368 * perform any necessary transfer negotiation.
6370 PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6371 xpt_schedule(periph, priority);
6372 return;
6374 xpt_release_ccb(done_ccb);
6375 break;
6377 case PROBE_TUR_FOR_NEGOTIATION:
6378 case PROBE_DV_EXIT:
6379 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6380 /* Don't wedge the queue */
6381 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6382 /*run_queue*/TRUE);
6385 xpt_reference_device(path->device);
6387 * Do Domain Validation for lun 0 on devices that claim
6388 * to support Synchronous Transfer modes.
6390 if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6391 && done_ccb->ccb_h.target_lun == 0
6392 && (path->device->inq_data.flags & SID_Sync) != 0
6393 && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6394 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6395 ("Begin Domain Validation\n"));
6396 path->device->flags |= CAM_DEV_IN_DV;
6397 xpt_release_ccb(done_ccb);
6398 PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6399 xpt_schedule(periph, priority);
6400 return;
6402 if (softc->action == PROBE_DV_EXIT) {
6403 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6404 ("Leave Domain Validation\n"));
6406 path->device->flags &=
6407 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6408 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6409 /* Inform the XPT that a new device has been found */
6410 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6411 xpt_action(done_ccb);
6412 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6413 done_ccb);
6415 xpt_release_ccb(done_ccb);
6416 break;
6417 case PROBE_INQUIRY_BASIC_DV1:
6418 case PROBE_INQUIRY_BASIC_DV2:
6420 struct scsi_inquiry_data *nbuf;
6421 struct ccb_scsiio *csio;
6423 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6424 /* Don't wedge the queue */
6425 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6426 /*run_queue*/TRUE);
6428 csio = &done_ccb->csio;
6429 nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6430 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6431 xpt_print(path,
6432 "inquiry data fails comparison at DV%d step\n",
6433 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6434 if (proberequestbackoff(periph, path->device)) {
6435 path->device->flags &= ~CAM_DEV_IN_DV;
6436 PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6437 } else {
6438 /* give up */
6439 PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6441 kfree(nbuf, M_CAMXPT);
6442 xpt_release_ccb(done_ccb);
6443 xpt_schedule(periph, priority);
6444 return;
6446 kfree(nbuf, M_CAMXPT);
6447 if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6448 PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6449 xpt_release_ccb(done_ccb);
6450 xpt_schedule(periph, priority);
6451 return;
6453 if (softc->action == PROBE_DV_EXIT) {
6454 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6455 ("Leave Domain Validation Successfully\n"));
6457 path->device->flags &=
6458 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6459 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6460 /* Inform the XPT that a new device has been found */
6461 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6462 xpt_action(done_ccb);
6463 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6464 done_ccb);
6466 xpt_release_ccb(done_ccb);
6467 break;
6469 case PROBE_INVALID:
6470 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6471 ("probedone: invalid action state\n"));
6472 default:
6473 break;
6475 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6476 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6477 done_ccb->ccb_h.status = CAM_REQ_CMP;
6478 xpt_done(done_ccb);
6479 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6480 cam_periph_invalidate(periph);
6481 cam_periph_release(periph);
6482 } else {
6483 probeschedule(periph);
6487 static void
6488 probecleanup(struct cam_periph *periph)
6490 kfree(periph->softc, M_CAMXPT);
6493 static void
6494 xpt_find_quirk(struct cam_ed *device)
6496 caddr_t match;
6498 match = cam_quirkmatch((caddr_t)&device->inq_data,
6499 (caddr_t)xpt_quirk_table,
6500 NELEM(xpt_quirk_table),
6501 sizeof(*xpt_quirk_table), scsi_inquiry_match);
6503 if (match == NULL)
6504 panic("xpt_find_quirk: device didn't match wildcard entry!!");
6506 device->quirk = (struct xpt_quirk_entry *)match;
6509 static int
6510 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6512 int error, lbool;
6514 lbool = cam_srch_hi;
6515 error = sysctl_handle_int(oidp, &lbool, 0, req);
6516 if (error != 0 || req->newptr == NULL)
6517 return (error);
6518 if (lbool == 0 || lbool == 1) {
6519 cam_srch_hi = lbool;
6520 return (0);
6521 } else {
6522 return (EINVAL);
6526 static void
6527 xpt_devise_transport(struct cam_path *path)
6529 struct ccb_pathinq cpi;
6530 struct ccb_trans_settings cts;
6531 struct scsi_inquiry_data *inq_buf;
6533 /* Get transport information from the SIM */
6534 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6535 cpi.ccb_h.func_code = XPT_PATH_INQ;
6536 xpt_action((union ccb *)&cpi);
6538 inq_buf = NULL;
6539 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6540 inq_buf = &path->device->inq_data;
6541 path->device->protocol = PROTO_SCSI;
6542 path->device->protocol_version =
6543 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6544 path->device->transport = cpi.transport;
6545 path->device->transport_version = cpi.transport_version;
6548 * Any device not using SPI3 features should
6549 * be considered SPI2 or lower.
6551 if (inq_buf != NULL) {
6552 if (path->device->transport == XPORT_SPI
6553 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6554 && path->device->transport_version > 2)
6555 path->device->transport_version = 2;
6556 } else {
6557 struct cam_ed* otherdev;
6559 for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6560 otherdev != NULL;
6561 otherdev = TAILQ_NEXT(otherdev, links)) {
6562 if (otherdev != path->device)
6563 break;
6566 if (otherdev != NULL) {
6568 * Initially assume the same versioning as
6569 * prior luns for this target.
6571 path->device->protocol_version =
6572 otherdev->protocol_version;
6573 path->device->transport_version =
6574 otherdev->transport_version;
6575 } else {
6576 /* Until we know better, opt for safty */
6577 path->device->protocol_version = 2;
6578 if (path->device->transport == XPORT_SPI)
6579 path->device->transport_version = 2;
6580 else
6581 path->device->transport_version = 0;
6586 * XXX
6587 * For a device compliant with SPC-2 we should be able
6588 * to determine the transport version supported by
6589 * scrutinizing the version descriptors in the
6590 * inquiry buffer.
6593 /* Tell the controller what we think */
6594 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6595 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6596 cts.type = CTS_TYPE_CURRENT_SETTINGS;
6597 cts.transport = path->device->transport;
6598 cts.transport_version = path->device->transport_version;
6599 cts.protocol = path->device->protocol;
6600 cts.protocol_version = path->device->protocol_version;
6601 cts.proto_specific.valid = 0;
6602 cts.xport_specific.valid = 0;
6603 xpt_action((union ccb *)&cts);
6606 static void
6607 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6608 int async_update)
6610 struct ccb_pathinq cpi;
6611 struct ccb_trans_settings cur_cts;
6612 struct ccb_trans_settings_scsi *scsi;
6613 struct ccb_trans_settings_scsi *cur_scsi;
6614 struct cam_sim *sim;
6615 struct scsi_inquiry_data *inq_data;
6617 if (device == NULL) {
6618 cts->ccb_h.status = CAM_PATH_INVALID;
6619 xpt_done((union ccb *)cts);
6620 return;
6623 if (cts->protocol == PROTO_UNKNOWN
6624 || cts->protocol == PROTO_UNSPECIFIED) {
6625 cts->protocol = device->protocol;
6626 cts->protocol_version = device->protocol_version;
6629 if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6630 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6631 cts->protocol_version = device->protocol_version;
6633 if (cts->protocol != device->protocol) {
6634 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6635 cts->protocol, device->protocol);
6636 cts->protocol = device->protocol;
6639 if (cts->protocol_version > device->protocol_version) {
6640 if (bootverbose) {
6641 xpt_print(cts->ccb_h.path, "Down reving Protocol "
6642 "Version from %d to %d?\n", cts->protocol_version,
6643 device->protocol_version);
6645 cts->protocol_version = device->protocol_version;
6648 if (cts->transport == XPORT_UNKNOWN
6649 || cts->transport == XPORT_UNSPECIFIED) {
6650 cts->transport = device->transport;
6651 cts->transport_version = device->transport_version;
6654 if (cts->transport_version == XPORT_VERSION_UNKNOWN
6655 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6656 cts->transport_version = device->transport_version;
6658 if (cts->transport != device->transport) {
6659 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6660 cts->transport, device->transport);
6661 cts->transport = device->transport;
6664 if (cts->transport_version > device->transport_version) {
6665 if (bootverbose) {
6666 xpt_print(cts->ccb_h.path, "Down reving Transport "
6667 "Version from %d to %d?\n", cts->transport_version,
6668 device->transport_version);
6670 cts->transport_version = device->transport_version;
6673 sim = cts->ccb_h.path->bus->sim;
6676 * Nothing more of interest to do unless
6677 * this is a device connected via the
6678 * SCSI protocol.
6680 if (cts->protocol != PROTO_SCSI) {
6681 if (async_update == FALSE)
6682 (*(sim->sim_action))(sim, (union ccb *)cts);
6683 return;
6686 inq_data = &device->inq_data;
6687 scsi = &cts->proto_specific.scsi;
6688 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6689 cpi.ccb_h.func_code = XPT_PATH_INQ;
6690 xpt_action((union ccb *)&cpi);
6692 /* SCSI specific sanity checking */
6693 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6694 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6695 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6696 || (device->quirk->mintags == 0)) {
6698 * Can't tag on hardware that doesn't support tags,
6699 * doesn't have it enabled, or has broken tag support.
6701 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6704 if (async_update == FALSE) {
6706 * Perform sanity checking against what the
6707 * controller and device can do.
6709 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6710 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6711 cur_cts.type = cts->type;
6712 xpt_action((union ccb *)&cur_cts);
6713 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6714 return;
6716 cur_scsi = &cur_cts.proto_specific.scsi;
6717 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6718 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6719 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6721 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6722 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6725 /* SPI specific sanity checking */
6726 if (cts->transport == XPORT_SPI && async_update == FALSE) {
6727 u_int spi3caps;
6728 struct ccb_trans_settings_spi *spi;
6729 struct ccb_trans_settings_spi *cur_spi;
6731 spi = &cts->xport_specific.spi;
6733 cur_spi = &cur_cts.xport_specific.spi;
6735 /* Fill in any gaps in what the user gave us */
6736 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6737 spi->sync_period = cur_spi->sync_period;
6738 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6739 spi->sync_period = 0;
6740 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6741 spi->sync_offset = cur_spi->sync_offset;
6742 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6743 spi->sync_offset = 0;
6744 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6745 spi->ppr_options = cur_spi->ppr_options;
6746 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6747 spi->ppr_options = 0;
6748 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6749 spi->bus_width = cur_spi->bus_width;
6750 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6751 spi->bus_width = 0;
6752 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6753 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6754 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6756 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6757 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6758 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6759 && (inq_data->flags & SID_Sync) == 0
6760 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6761 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
6762 /* Force async */
6763 spi->sync_period = 0;
6764 spi->sync_offset = 0;
6767 switch (spi->bus_width) {
6768 case MSG_EXT_WDTR_BUS_32_BIT:
6769 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6770 || (inq_data->flags & SID_WBus32) != 0
6771 || cts->type == CTS_TYPE_USER_SETTINGS)
6772 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6773 break;
6774 /* Fall Through to 16-bit */
6775 case MSG_EXT_WDTR_BUS_16_BIT:
6776 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6777 || (inq_data->flags & SID_WBus16) != 0
6778 || cts->type == CTS_TYPE_USER_SETTINGS)
6779 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6780 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6781 break;
6783 /* Fall Through to 8-bit */
6784 default: /* New bus width?? */
6785 case MSG_EXT_WDTR_BUS_8_BIT:
6786 /* All targets can do this */
6787 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6788 break;
6791 spi3caps = cpi.xport_specific.spi.ppr_options;
6792 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6793 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6794 spi3caps &= inq_data->spi3data;
6796 if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6797 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6799 if ((spi3caps & SID_SPI_IUS) == 0)
6800 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6802 if ((spi3caps & SID_SPI_QAS) == 0)
6803 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6805 /* No SPI Transfer settings are allowed unless we are wide */
6806 if (spi->bus_width == 0)
6807 spi->ppr_options = 0;
6809 if ((spi->valid & CTS_SPI_VALID_DISC)
6810 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6812 * Can't tag queue without disconnection.
6814 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6815 scsi->valid |= CTS_SCSI_VALID_TQ;
6819 * If we are currently performing tagged transactions to
6820 * this device and want to change its negotiation parameters,
6821 * go non-tagged for a bit to give the controller a chance to
6822 * negotiate unhampered by tag messages.
6824 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6825 && (device->inq_flags & SID_CmdQue) != 0
6826 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6827 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6828 CTS_SPI_VALID_SYNC_OFFSET|
6829 CTS_SPI_VALID_BUS_WIDTH)) != 0)
6830 xpt_toggle_tags(cts->ccb_h.path);
6833 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6834 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6835 int device_tagenb;
6838 * If we are transitioning from tags to no-tags or
6839 * vice-versa, we need to carefully freeze and restart
6840 * the queue so that we don't overlap tagged and non-tagged
6841 * commands. We also temporarily stop tags if there is
6842 * a change in transfer negotiation settings to allow
6843 * "tag-less" negotiation.
6845 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6846 || (device->inq_flags & SID_CmdQue) != 0)
6847 device_tagenb = TRUE;
6848 else
6849 device_tagenb = FALSE;
6851 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6852 && device_tagenb == FALSE)
6853 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6854 && device_tagenb == TRUE)) {
6856 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6858 * Delay change to use tags until after a
6859 * few commands have gone to this device so
6860 * the controller has time to perform transfer
6861 * negotiations without tagged messages getting
6862 * in the way.
6864 device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6865 device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6866 } else {
6867 struct ccb_relsim crs;
6869 xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6870 device->inq_flags &= ~SID_CmdQue;
6871 xpt_dev_ccbq_resize(cts->ccb_h.path,
6872 sim->max_dev_openings);
6873 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6874 device->tag_delay_count = 0;
6876 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6877 /*priority*/1);
6878 crs.ccb_h.func_code = XPT_REL_SIMQ;
6879 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6880 crs.openings
6881 = crs.release_timeout
6882 = crs.qfrozen_cnt
6883 = 0;
6884 xpt_action((union ccb *)&crs);
6888 if (async_update == FALSE)
6889 (*(sim->sim_action))(sim, (union ccb *)cts);
6892 static void
6893 xpt_toggle_tags(struct cam_path *path)
6895 struct cam_ed *dev;
6898 * Give controllers a chance to renegotiate
6899 * before starting tag operations. We
6900 * "toggle" tagged queuing off then on
6901 * which causes the tag enable command delay
6902 * counter to come into effect.
6904 dev = path->device;
6905 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6906 || ((dev->inq_flags & SID_CmdQue) != 0
6907 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6908 struct ccb_trans_settings cts;
6910 xpt_setup_ccb(&cts.ccb_h, path, 1);
6911 cts.protocol = PROTO_SCSI;
6912 cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6913 cts.transport = XPORT_UNSPECIFIED;
6914 cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6915 cts.proto_specific.scsi.flags = 0;
6916 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6917 xpt_set_transfer_settings(&cts, path->device,
6918 /*async_update*/TRUE);
6919 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6920 xpt_set_transfer_settings(&cts, path->device,
6921 /*async_update*/TRUE);
6925 static void
6926 xpt_start_tags(struct cam_path *path)
6928 struct ccb_relsim crs;
6929 struct cam_ed *device;
6930 struct cam_sim *sim;
6931 int newopenings;
6933 device = path->device;
6934 sim = path->bus->sim;
6935 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6936 xpt_freeze_devq(path, /*count*/1);
6937 device->inq_flags |= SID_CmdQue;
6938 if (device->tag_saved_openings != 0)
6939 newopenings = device->tag_saved_openings;
6940 else
6941 newopenings = min(device->quirk->maxtags,
6942 sim->max_tagged_dev_openings);
6943 xpt_dev_ccbq_resize(path, newopenings);
6944 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6945 crs.ccb_h.func_code = XPT_REL_SIMQ;
6946 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6947 crs.openings
6948 = crs.release_timeout
6949 = crs.qfrozen_cnt
6950 = 0;
6951 xpt_action((union ccb *)&crs);
6954 static int busses_to_config;
6955 static int busses_to_reset;
6957 static int
6958 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6960 sim_lock_assert_owned(bus->sim->lock);
6962 if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6963 struct cam_path path;
6964 struct ccb_pathinq cpi;
6965 int can_negotiate;
6967 if (bootverbose) {
6968 kprintf("CAM: Configuring bus:");
6969 if (bus->sim) {
6970 kprintf(" %s%d\n",
6971 bus->sim->sim_name,
6972 bus->sim->unit_number);
6973 } else {
6974 kprintf(" (unknown)\n");
6977 atomic_add_int(&busses_to_config, 1);
6978 bus->counted_to_config = 1;
6979 xpt_compile_path(&path, NULL, bus->path_id,
6980 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6981 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6982 cpi.ccb_h.func_code = XPT_PATH_INQ;
6983 xpt_action((union ccb *)&cpi);
6984 can_negotiate = cpi.hba_inquiry;
6985 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6986 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6987 busses_to_reset++;
6988 xpt_release_path(&path);
6989 } else
6990 if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6991 /* this is our dummy periph/bus */
6992 atomic_add_int(&busses_to_config, 1);
6993 bus->counted_to_config = 1;
6996 return(1);
6999 static int
7000 xptconfigfunc(struct cam_eb *bus, void *arg)
7002 struct cam_path *path;
7003 union ccb *work_ccb;
7005 sim_lock_assert_owned(bus->sim->lock);
7007 if (bus->path_id != CAM_XPT_PATH_ID) {
7008 cam_status status;
7009 int can_negotiate;
7011 work_ccb = xpt_alloc_ccb();
7012 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
7013 CAM_TARGET_WILDCARD,
7014 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
7015 kprintf("xptconfigfunc: xpt_create_path failed with "
7016 "status %#x for bus %d\n", status, bus->path_id);
7017 kprintf("xptconfigfunc: halting bus configuration\n");
7018 xpt_free_ccb(work_ccb);
7019 xpt_uncount_bus(bus);
7020 return(0);
7022 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7023 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
7024 xpt_action(work_ccb);
7025 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
7026 kprintf("xptconfigfunc: CPI failed on bus %d "
7027 "with status %d\n", bus->path_id,
7028 work_ccb->ccb_h.status);
7029 xpt_finishconfig(xpt_periph, work_ccb);
7030 return(1);
7033 can_negotiate = work_ccb->cpi.hba_inquiry;
7034 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
7035 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
7036 && (can_negotiate != 0)) {
7037 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7038 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7039 work_ccb->ccb_h.cbfcnp = NULL;
7040 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
7041 ("Resetting Bus\n"));
7042 xpt_action(work_ccb);
7043 xpt_finishconfig(xpt_periph, work_ccb);
7044 } else {
7045 /* Act as though we performed a successful BUS RESET */
7046 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7047 xpt_finishconfig(xpt_periph, work_ccb);
7049 } else {
7050 xpt_uncount_bus(bus);
7053 return(1);
7057 * Now that interrupts are enabled, go find our devices.
7059 * This hook function is called once by run_interrupt_driven_config_hooks().
7060 * XPT is expected to disestablish its hook when done.
7062 static void
7063 xpt_config(void *arg)
7066 #ifdef CAMDEBUG
7067 /* Setup debugging flags and path */
7068 #ifdef CAM_DEBUG_FLAGS
7069 cam_dflags = CAM_DEBUG_FLAGS;
7070 #else /* !CAM_DEBUG_FLAGS */
7071 cam_dflags = CAM_DEBUG_NONE;
7072 #endif /* CAM_DEBUG_FLAGS */
7073 #ifdef CAM_DEBUG_BUS
7074 if (cam_dflags != CAM_DEBUG_NONE) {
7076 * Locking is specifically omitted here. No SIMs have
7077 * registered yet, so xpt_create_path will only be searching
7078 * empty lists of targets and devices.
7080 if (xpt_create_path(&cam_dpath, xpt_periph,
7081 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
7082 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
7083 kprintf("xpt_config: xpt_create_path() failed for debug"
7084 " target %d:%d:%d, debugging disabled\n",
7085 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
7086 cam_dflags = CAM_DEBUG_NONE;
7088 } else {
7089 cam_dpath = NULL;
7091 #else /* !CAM_DEBUG_BUS */
7092 cam_dpath = NULL;
7093 #endif /* CAM_DEBUG_BUS */
7094 #endif /* CAMDEBUG */
7097 * Scan all installed busses. This will also add a count
7098 * for our dummy placeholder (xpt_periph).
7100 xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7102 kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7103 if (busses_to_reset > 0 && scsi_delay >= 2000) {
7104 kprintf("Waiting %d seconds for SCSI "
7105 "devices to settle\n",
7106 scsi_delay/1000);
7108 xpt_for_all_busses(xptconfigfunc, NULL);
7112 * If the given device only has one peripheral attached to it, and if that
7113 * peripheral is the passthrough driver, announce it. This insures that the
7114 * user sees some sort of announcement for every peripheral in their system.
7116 static int
7117 xptpassannouncefunc(struct cam_ed *device, void *arg)
7119 struct cam_periph *periph;
7120 int i;
7122 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7123 periph = SLIST_NEXT(periph, periph_links), i++);
7125 periph = SLIST_FIRST(&device->periphs);
7126 if ((i == 1)
7127 && (strncmp(periph->periph_name, "pass", 4) == 0))
7128 xpt_announce_periph(periph, NULL);
7130 return(1);
7133 static void
7134 xpt_finishconfig_task(void *context, int pending)
7136 struct periph_driver **p_drv;
7137 int i;
7139 kprintf("CAM: finished configuring all busses\n");
7141 if (busses_to_config == 0) {
7142 /* Register all the peripheral drivers */
7143 /* XXX This will have to change when we have loadable modules */
7144 p_drv = periph_drivers;
7145 for (i = 0; p_drv[i] != NULL; i++) {
7146 (*p_drv[i]->init)();
7150 * Check for devices with no "standard" peripheral driver
7151 * attached. For any devices like that, announce the
7152 * passthrough driver so the user will see something.
7154 xpt_for_all_devices(xptpassannouncefunc, NULL);
7156 /* Release our hook so that the boot can continue. */
7157 config_intrhook_disestablish(xsoftc.xpt_config_hook);
7158 kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7159 xsoftc.xpt_config_hook = NULL;
7161 kfree(context, M_CAMXPT);
7164 static void
7165 xpt_uncount_bus (struct cam_eb *bus)
7167 struct xpt_task *task;
7169 if (bus->counted_to_config) {
7170 bus->counted_to_config = 0;
7171 if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7172 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7173 M_INTWAIT | M_ZERO);
7174 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7175 taskqueue_enqueue(taskqueue_thread[mycpuid],
7176 &task->task);
7181 static void
7182 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7184 struct cam_path *path;
7186 path = done_ccb->ccb_h.path;
7187 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7189 switch(done_ccb->ccb_h.func_code) {
7190 case XPT_RESET_BUS:
7191 if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7192 done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7193 done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7194 done_ccb->crcn.flags = 0;
7195 xpt_action(done_ccb);
7196 return;
7198 /* FALLTHROUGH */
7199 case XPT_SCAN_BUS:
7200 default:
7201 if (bootverbose) {
7202 kprintf("CAM: Finished configuring bus:");
7203 if (path->bus->sim) {
7204 kprintf(" %s%d\n",
7205 path->bus->sim->sim_name,
7206 path->bus->sim->unit_number);
7207 } else {
7208 kprintf(" (unknown)\n");
7211 xpt_uncount_bus(path->bus);
7212 xpt_free_path(path);
7213 xpt_free_ccb(done_ccb);
7214 break;
7218 cam_status
7219 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7220 struct cam_path *path)
7222 struct ccb_setasync csa;
7223 cam_status status;
7224 int xptpath = 0;
7226 if (path == NULL) {
7227 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7228 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7229 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7230 if (status != CAM_REQ_CMP) {
7231 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7232 return (status);
7234 xptpath = 1;
7237 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7238 csa.ccb_h.func_code = XPT_SASYNC_CB;
7239 csa.event_enable = event;
7240 csa.callback = cbfunc;
7241 csa.callback_arg = cbarg;
7242 xpt_action((union ccb *)&csa);
7243 status = csa.ccb_h.status;
7244 if (xptpath) {
7245 xpt_free_path(path);
7246 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7248 return (status);
7251 static void
7252 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7254 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7256 switch (work_ccb->ccb_h.func_code) {
7257 /* Common cases first */
7258 case XPT_PATH_INQ: /* Path routing inquiry */
7260 struct ccb_pathinq *cpi;
7262 cpi = &work_ccb->cpi;
7263 cpi->version_num = 1; /* XXX??? */
7264 cpi->hba_inquiry = 0;
7265 cpi->target_sprt = 0;
7266 cpi->hba_misc = 0;
7267 cpi->hba_eng_cnt = 0;
7268 cpi->max_target = 0;
7269 cpi->max_lun = 0;
7270 cpi->initiator_id = 0;
7271 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7272 strncpy(cpi->hba_vid, "", HBA_IDLEN);
7273 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7274 cpi->unit_number = sim->unit_number;
7275 cpi->bus_id = sim->bus_id;
7276 cpi->base_transfer_speed = 0;
7277 cpi->protocol = PROTO_UNSPECIFIED;
7278 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7279 cpi->transport = XPORT_UNSPECIFIED;
7280 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7281 cpi->ccb_h.status = CAM_REQ_CMP;
7282 xpt_done(work_ccb);
7283 break;
7285 default:
7286 work_ccb->ccb_h.status = CAM_REQ_INVALID;
7287 xpt_done(work_ccb);
7288 break;
7293 * The xpt as a "controller" has no interrupt sources, so polling
7294 * is a no-op.
7296 static void
7297 xptpoll(struct cam_sim *sim)
7301 void
7302 xpt_lock_buses(void)
7304 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7307 void
7308 xpt_unlock_buses(void)
7310 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7315 * Should only be called by the machine interrupt dispatch routines,
7316 * so put these prototypes here instead of in the header.
7319 static void
7320 swi_cambio(void *arg, void *frame)
7322 camisr(NULL);
7325 static void
7326 camisr(void *dummy)
7328 cam_simq_t queue;
7329 struct cam_sim *sim;
7331 spin_lock(&cam_simq_spin);
7332 TAILQ_INIT(&queue);
7333 TAILQ_CONCAT(&queue, &cam_simq, links);
7334 spin_unlock(&cam_simq_spin);
7336 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7337 TAILQ_REMOVE(&queue, sim, links);
7338 CAM_SIM_LOCK(sim);
7339 sim->flags &= ~CAM_SIM_ON_DONEQ;
7340 camisr_runqueue(sim);
7341 CAM_SIM_UNLOCK(sim);
7345 static void
7346 camisr_runqueue(struct cam_sim *sim)
7348 struct ccb_hdr *ccb_h;
7349 int runq;
7351 spin_lock(&sim->sim_spin);
7352 while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7353 TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7354 spin_unlock(&sim->sim_spin);
7355 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7357 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7358 ("camisr\n"));
7360 runq = FALSE;
7362 if (ccb_h->flags & CAM_HIGH_POWER) {
7363 struct highpowerlist *hphead;
7364 union ccb *send_ccb;
7366 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7367 hphead = &xsoftc.highpowerq;
7369 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7372 * Increment the count since this command is done.
7374 xsoftc.num_highpower++;
7377 * Any high powered commands queued up?
7379 if (send_ccb != NULL) {
7380 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7381 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7383 xpt_release_devq(send_ccb->ccb_h.path,
7384 /*count*/1, /*runqueue*/TRUE);
7385 } else
7386 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7389 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7390 struct cam_ed *dev;
7392 dev = ccb_h->path->device;
7394 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7397 * devq may be NULL if this is cam_dead_sim
7399 if (ccb_h->path->bus->sim->devq) {
7400 ccb_h->path->bus->sim->devq->send_active--;
7401 ccb_h->path->bus->sim->devq->send_openings++;
7404 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7405 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7406 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7407 && (dev->ccbq.dev_active == 0))) {
7409 xpt_release_devq(ccb_h->path, /*count*/1,
7410 /*run_queue*/TRUE);
7413 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7414 && (--dev->tag_delay_count == 0))
7415 xpt_start_tags(ccb_h->path);
7417 if ((dev->ccbq.queue.entries > 0)
7418 && (dev->qfrozen_cnt == 0)
7419 && (device_is_send_queued(dev) == 0)) {
7420 runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7421 dev);
7425 if (ccb_h->status & CAM_RELEASE_SIMQ) {
7426 xpt_release_simq(ccb_h->path->bus->sim,
7427 /*run_queue*/TRUE);
7428 ccb_h->status &= ~CAM_RELEASE_SIMQ;
7429 runq = FALSE;
7432 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7433 && (ccb_h->status & CAM_DEV_QFRZN)) {
7434 xpt_release_devq(ccb_h->path, /*count*/1,
7435 /*run_queue*/TRUE);
7436 ccb_h->status &= ~CAM_DEV_QFRZN;
7437 } else if (runq) {
7438 xpt_run_dev_sendq(ccb_h->path->bus);
7441 /* Call the peripheral driver's callback */
7442 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7443 spin_lock(&sim->sim_spin);
7445 spin_unlock(&sim->sim_spin);
7449 * The dead_sim isn't completely hooked into CAM, we have to make sure
7450 * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7451 * doesn't block.
7453 static void
7454 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7457 ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7458 xpt_done(ccb);
7459 camisr_runqueue(sim);
7462 static void
7463 dead_sim_poll(struct cam_sim *sim)