bootstrap: Remove helpers for upgrading directly from pre 4.0
[dragonfly.git] / sys / kern / vfs_subr.c
blobf81a0e70bcdc54b8677c8521973d83e3ed74fc8d
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/buf.h>
48 #include <sys/conf.h>
49 #include <sys/dirent.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/mount.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/reboot.h>
61 #include <sys/socket.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/unistd.h>
66 #include <sys/vmmeter.h>
67 #include <sys/vnode.h>
69 #include <machine/limits.h>
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_zone.h>
82 #include <sys/buf2.h>
83 #include <sys/thread2.h>
84 #include <sys/mplock2.h>
85 #include <vm/vm_page2.h>
87 #include <netinet/in.h>
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
91 int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93 "Number of vnodes allocated");
94 int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96 "Output filename of reclaimed vnode(s)");
98 enum vtype iftovt_tab[16] = {
99 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102 int vttoif_tab[9] = {
103 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 S_IFSOCK, S_IFIFO, S_IFMT,
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109 0, "Number of times buffers have been reassigned to the proper list");
111 static int check_buf_overlap = 2; /* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113 0, "Enable overlapping buffer checks");
115 int nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub; /* publicly exported FS */
119 int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 &maxvnodes, 0, "Maximum number of vnodes");
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 struct netexport *nep);
125 static void vfs_free_addrlist (struct netexport *nep);
126 static int vfs_free_netcred (struct radix_node *rn, void *w);
127 static void vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 const struct export_args *argp);
131 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
134 * Red black tree functions
136 static int rb_buf_compare(struct buf *b1, struct buf *b2);
137 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
138 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
143 if (b1->b_loffset < b2->b_loffset)
144 return(-1);
145 if (b1->b_loffset > b2->b_loffset)
146 return(1);
147 return(0);
151 * Initialize the vnode management data structures.
153 * Called from vfsinit()
155 void
156 vfs_subr_init(void)
158 int factor1;
159 int factor2;
162 * Desiredvnodes is kern.maxvnodes. We want to scale it
163 * according to available system memory but we may also have
164 * to limit it based on available KVM, which is capped on 32 bit
165 * systems, to ~80K vnodes or so.
167 * WARNING! For machines with 64-256M of ram we have to be sure
168 * that the default limit scales down well due to HAMMER
169 * taking up significantly more memory per-vnode vs UFS.
170 * We want around ~5800 on a 128M machine.
172 factor1 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
173 factor2 = 30 * (sizeof(struct vm_object) + sizeof(struct vnode));
174 maxvnodes = imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
175 KvaSize / factor2);
176 maxvnodes = imax(maxvnodes, maxproc * 8);
178 lwkt_token_init(&spechash_token, "spechash");
182 * Knob to control the precision of file timestamps:
184 * 0 = seconds only; nanoseconds zeroed.
185 * 1 = seconds and nanoseconds, accurate within 1/HZ.
186 * 2 = seconds and nanoseconds, truncated to microseconds.
187 * >=3 = seconds and nanoseconds, maximum precision.
189 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
191 static int timestamp_precision = TSP_SEC;
192 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
193 &timestamp_precision, 0, "Precision of file timestamps");
196 * Get a current timestamp.
198 * MPSAFE
200 void
201 vfs_timestamp(struct timespec *tsp)
203 struct timeval tv;
205 switch (timestamp_precision) {
206 case TSP_SEC:
207 tsp->tv_sec = time_second;
208 tsp->tv_nsec = 0;
209 break;
210 case TSP_HZ:
211 getnanotime(tsp);
212 break;
213 case TSP_USEC:
214 microtime(&tv);
215 TIMEVAL_TO_TIMESPEC(&tv, tsp);
216 break;
217 case TSP_NSEC:
218 default:
219 nanotime(tsp);
220 break;
225 * Set vnode attributes to VNOVAL
227 void
228 vattr_null(struct vattr *vap)
230 vap->va_type = VNON;
231 vap->va_size = VNOVAL;
232 vap->va_bytes = VNOVAL;
233 vap->va_mode = VNOVAL;
234 vap->va_nlink = VNOVAL;
235 vap->va_uid = VNOVAL;
236 vap->va_gid = VNOVAL;
237 vap->va_fsid = VNOVAL;
238 vap->va_fileid = VNOVAL;
239 vap->va_blocksize = VNOVAL;
240 vap->va_rmajor = VNOVAL;
241 vap->va_rminor = VNOVAL;
242 vap->va_atime.tv_sec = VNOVAL;
243 vap->va_atime.tv_nsec = VNOVAL;
244 vap->va_mtime.tv_sec = VNOVAL;
245 vap->va_mtime.tv_nsec = VNOVAL;
246 vap->va_ctime.tv_sec = VNOVAL;
247 vap->va_ctime.tv_nsec = VNOVAL;
248 vap->va_flags = VNOVAL;
249 vap->va_gen = VNOVAL;
250 vap->va_vaflags = 0;
251 /* va_*_uuid fields are only valid if related flags are set */
255 * Flush out and invalidate all buffers associated with a vnode.
257 * vp must be locked.
259 static int vinvalbuf_bp(struct buf *bp, void *data);
261 struct vinvalbuf_bp_info {
262 struct vnode *vp;
263 int slptimeo;
264 int lkflags;
265 int flags;
266 int clean;
270 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
272 struct vinvalbuf_bp_info info;
273 vm_object_t object;
274 int error;
276 lwkt_gettoken(&vp->v_token);
279 * If we are being asked to save, call fsync to ensure that the inode
280 * is updated.
282 if (flags & V_SAVE) {
283 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
284 if (error)
285 goto done;
286 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
287 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
288 goto done;
289 #if 0
291 * Dirty bufs may be left or generated via races
292 * in circumstances where vinvalbuf() is called on
293 * a vnode not undergoing reclamation. Only
294 * panic if we are trying to reclaim the vnode.
296 if ((vp->v_flag & VRECLAIMED) &&
297 (bio_track_active(&vp->v_track_write) ||
298 !RB_EMPTY(&vp->v_rbdirty_tree))) {
299 panic("vinvalbuf: dirty bufs");
301 #endif
304 info.slptimeo = slptimeo;
305 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
306 if (slpflag & PCATCH)
307 info.lkflags |= LK_PCATCH;
308 info.flags = flags;
309 info.vp = vp;
312 * Flush the buffer cache until nothing is left, wait for all I/O
313 * to complete. At least one pass is required. We might block
314 * in the pip code so we have to re-check. Order is important.
316 do {
318 * Flush buffer cache
320 if (!RB_EMPTY(&vp->v_rbclean_tree)) {
321 info.clean = 1;
322 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
323 NULL, vinvalbuf_bp, &info);
325 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
326 info.clean = 0;
327 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
328 NULL, vinvalbuf_bp, &info);
332 * Wait for I/O completion.
334 bio_track_wait(&vp->v_track_write, 0, 0);
335 if ((object = vp->v_object) != NULL)
336 refcount_wait(&object->paging_in_progress, "vnvlbx");
337 } while (bio_track_active(&vp->v_track_write) ||
338 !RB_EMPTY(&vp->v_rbclean_tree) ||
339 !RB_EMPTY(&vp->v_rbdirty_tree));
342 * Destroy the copy in the VM cache, too.
344 if ((object = vp->v_object) != NULL) {
345 vm_object_page_remove(object, 0, 0,
346 (flags & V_SAVE) ? TRUE : FALSE);
349 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
350 panic("vinvalbuf: flush failed");
351 if (!RB_EMPTY(&vp->v_rbhash_tree))
352 panic("vinvalbuf: flush failed, buffers still present");
353 error = 0;
354 done:
355 lwkt_reltoken(&vp->v_token);
356 return (error);
359 static int
360 vinvalbuf_bp(struct buf *bp, void *data)
362 struct vinvalbuf_bp_info *info = data;
363 int error;
365 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
366 atomic_add_int(&bp->b_refs, 1);
367 error = BUF_TIMELOCK(bp, info->lkflags,
368 "vinvalbuf", info->slptimeo);
369 atomic_subtract_int(&bp->b_refs, 1);
370 if (error == 0) {
371 BUF_UNLOCK(bp);
372 error = ENOLCK;
374 if (error == ENOLCK)
375 return(0);
376 return (-error);
378 KKASSERT(bp->b_vp == info->vp);
381 * Must check clean/dirty status after successfully locking as
382 * it may race.
384 if ((info->clean && (bp->b_flags & B_DELWRI)) ||
385 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
386 BUF_UNLOCK(bp);
387 return(0);
391 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
392 * check. This code will write out the buffer, period.
394 bremfree(bp);
395 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
396 (info->flags & V_SAVE)) {
397 cluster_awrite(bp);
398 } else if (info->flags & V_SAVE) {
400 * Cannot set B_NOCACHE on a clean buffer as this will
401 * destroy the VM backing store which might actually
402 * be dirty (and unsynchronized).
404 bp->b_flags |= (B_INVAL | B_RELBUF);
405 brelse(bp);
406 } else {
407 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
408 brelse(bp);
410 return(0);
414 * Truncate a file's buffer and pages to a specified length. This
415 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
416 * sync activity.
418 * The vnode must be locked.
420 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
421 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
422 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
423 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
425 struct vtruncbuf_info {
426 struct vnode *vp;
427 off_t truncloffset;
428 int clean;
432 vtruncbuf(struct vnode *vp, off_t length, int blksize)
434 struct vtruncbuf_info info;
435 const char *filename;
436 int count;
439 * Round up to the *next* block, then destroy the buffers in question.
440 * Since we are only removing some of the buffers we must rely on the
441 * scan count to determine whether a loop is necessary.
443 if ((count = (int)(length % blksize)) != 0)
444 info.truncloffset = length + (blksize - count);
445 else
446 info.truncloffset = length;
447 info.vp = vp;
449 lwkt_gettoken(&vp->v_token);
450 do {
451 info.clean = 1;
452 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
453 vtruncbuf_bp_trunc_cmp,
454 vtruncbuf_bp_trunc, &info);
455 info.clean = 0;
456 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
457 vtruncbuf_bp_trunc_cmp,
458 vtruncbuf_bp_trunc, &info);
459 } while(count);
462 * For safety, fsync any remaining metadata if the file is not being
463 * truncated to 0. Since the metadata does not represent the entire
464 * dirty list we have to rely on the hit count to ensure that we get
465 * all of it.
467 if (length > 0) {
468 do {
469 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
470 vtruncbuf_bp_metasync_cmp,
471 vtruncbuf_bp_metasync, &info);
472 } while (count);
476 * Clean out any left over VM backing store.
478 * It is possible to have in-progress I/O from buffers that were
479 * not part of the truncation. This should not happen if we
480 * are truncating to 0-length.
482 vnode_pager_setsize(vp, length);
483 bio_track_wait(&vp->v_track_write, 0, 0);
486 * Debugging only
488 spin_lock(&vp->v_spin);
489 filename = TAILQ_FIRST(&vp->v_namecache) ?
490 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
491 spin_unlock(&vp->v_spin);
494 * Make sure no buffers were instantiated while we were trying
495 * to clean out the remaining VM pages. This could occur due
496 * to busy dirty VM pages being flushed out to disk.
498 do {
499 info.clean = 1;
500 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
501 vtruncbuf_bp_trunc_cmp,
502 vtruncbuf_bp_trunc, &info);
503 info.clean = 0;
504 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
505 vtruncbuf_bp_trunc_cmp,
506 vtruncbuf_bp_trunc, &info);
507 if (count) {
508 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
509 "left over buffers in %s\n", count, filename);
511 } while(count);
513 lwkt_reltoken(&vp->v_token);
515 return (0);
519 * The callback buffer is beyond the new file EOF and must be destroyed.
520 * Note that the compare function must conform to the RB_SCAN's requirements.
522 static
524 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
526 struct vtruncbuf_info *info = data;
528 if (bp->b_loffset >= info->truncloffset)
529 return(0);
530 return(-1);
533 static
534 int
535 vtruncbuf_bp_trunc(struct buf *bp, void *data)
537 struct vtruncbuf_info *info = data;
540 * Do not try to use a buffer we cannot immediately lock, but sleep
541 * anyway to prevent a livelock. The code will loop until all buffers
542 * can be acted upon.
544 * We must always revalidate the buffer after locking it to deal
545 * with MP races.
547 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
548 atomic_add_int(&bp->b_refs, 1);
549 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
550 BUF_UNLOCK(bp);
551 atomic_subtract_int(&bp->b_refs, 1);
552 } else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
553 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
554 bp->b_vp != info->vp ||
555 vtruncbuf_bp_trunc_cmp(bp, data)) {
556 BUF_UNLOCK(bp);
557 } else {
558 bremfree(bp);
559 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
560 brelse(bp);
562 return(1);
566 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
567 * blocks (with a negative loffset) are scanned.
568 * Note that the compare function must conform to the RB_SCAN's requirements.
570 static int
571 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
573 if (bp->b_loffset < 0)
574 return(0);
575 return(1);
578 static int
579 vtruncbuf_bp_metasync(struct buf *bp, void *data)
581 struct vtruncbuf_info *info = data;
583 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
584 atomic_add_int(&bp->b_refs, 1);
585 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
586 BUF_UNLOCK(bp);
587 atomic_subtract_int(&bp->b_refs, 1);
588 } else if ((bp->b_flags & B_DELWRI) == 0 ||
589 bp->b_vp != info->vp ||
590 vtruncbuf_bp_metasync_cmp(bp, data)) {
591 BUF_UNLOCK(bp);
592 } else {
593 bremfree(bp);
594 if (bp->b_vp == info->vp)
595 bawrite(bp);
596 else
597 bwrite(bp);
599 return(1);
603 * vfsync - implements a multipass fsync on a file which understands
604 * dependancies and meta-data. The passed vnode must be locked. The
605 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
607 * When fsyncing data asynchronously just do one consolidated pass starting
608 * with the most negative block number. This may not get all the data due
609 * to dependancies.
611 * When fsyncing data synchronously do a data pass, then a metadata pass,
612 * then do additional data+metadata passes to try to get all the data out.
614 * Caller must ref the vnode but does not have to lock it.
616 static int vfsync_wait_output(struct vnode *vp,
617 int (*waitoutput)(struct vnode *, struct thread *));
618 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
619 static int vfsync_data_only_cmp(struct buf *bp, void *data);
620 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
621 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
622 static int vfsync_bp(struct buf *bp, void *data);
624 struct vfsync_info {
625 struct vnode *vp;
626 int fastpass;
627 int synchronous;
628 int syncdeps;
629 int lazycount;
630 int lazylimit;
631 int skippedbufs;
632 int (*checkdef)(struct buf *);
633 int (*cmpfunc)(struct buf *, void *);
637 vfsync(struct vnode *vp, int waitfor, int passes,
638 int (*checkdef)(struct buf *),
639 int (*waitoutput)(struct vnode *, struct thread *))
641 struct vfsync_info info;
642 int error;
644 bzero(&info, sizeof(info));
645 info.vp = vp;
646 if ((info.checkdef = checkdef) == NULL)
647 info.syncdeps = 1;
649 lwkt_gettoken(&vp->v_token);
651 switch(waitfor) {
652 case MNT_LAZY | MNT_NOWAIT:
653 case MNT_LAZY:
655 * Lazy (filesystem syncer typ) Asynchronous plus limit the
656 * number of data (not meta) pages we try to flush to 1MB.
657 * A non-zero return means that lazy limit was reached.
659 info.lazylimit = 1024 * 1024;
660 info.syncdeps = 1;
661 info.cmpfunc = vfsync_lazy_range_cmp;
662 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
663 vfsync_lazy_range_cmp, vfsync_bp, &info);
664 info.cmpfunc = vfsync_meta_only_cmp;
665 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
666 vfsync_meta_only_cmp, vfsync_bp, &info);
667 if (error == 0)
668 vp->v_lazyw = 0;
669 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
670 vn_syncer_add(vp, 1);
671 error = 0;
672 break;
673 case MNT_NOWAIT:
675 * Asynchronous. Do a data-only pass and a meta-only pass.
677 info.syncdeps = 1;
678 info.cmpfunc = vfsync_data_only_cmp;
679 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
680 vfsync_bp, &info);
681 info.cmpfunc = vfsync_meta_only_cmp;
682 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
683 vfsync_bp, &info);
684 error = 0;
685 break;
686 default:
688 * Synchronous. Do a data-only pass, then a meta-data+data
689 * pass, then additional integrated passes to try to get
690 * all the dependancies flushed.
692 info.cmpfunc = vfsync_data_only_cmp;
693 info.fastpass = 1;
694 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
695 vfsync_bp, &info);
696 info.fastpass = 0;
697 error = vfsync_wait_output(vp, waitoutput);
698 if (error == 0) {
699 info.skippedbufs = 0;
700 info.cmpfunc = vfsync_dummy_cmp;
701 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
702 vfsync_bp, &info);
703 error = vfsync_wait_output(vp, waitoutput);
704 if (info.skippedbufs) {
705 kprintf("Warning: vfsync skipped %d dirty "
706 "buf%s in pass2!\n",
707 info.skippedbufs,
708 ((info.skippedbufs > 1) ? "s" : ""));
711 while (error == 0 && passes > 0 &&
712 !RB_EMPTY(&vp->v_rbdirty_tree)
714 info.skippedbufs = 0;
715 if (--passes == 0) {
716 info.synchronous = 1;
717 info.syncdeps = 1;
719 info.cmpfunc = vfsync_dummy_cmp;
720 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
721 vfsync_bp, &info);
722 if (error < 0)
723 error = -error;
724 info.syncdeps = 1;
725 if (error == 0)
726 error = vfsync_wait_output(vp, waitoutput);
727 if (info.skippedbufs && passes == 0) {
728 kprintf("Warning: vfsync skipped %d dirty "
729 "buf%s in final pass!\n",
730 info.skippedbufs,
731 ((info.skippedbufs > 1) ? "s" : ""));
734 #if 0
736 * This case can occur normally because vnode lock might
737 * not be held.
739 if (!RB_EMPTY(&vp->v_rbdirty_tree))
740 kprintf("dirty bufs left after final pass\n");
741 #endif
742 break;
744 lwkt_reltoken(&vp->v_token);
746 return(error);
749 static int
750 vfsync_wait_output(struct vnode *vp,
751 int (*waitoutput)(struct vnode *, struct thread *))
753 int error;
755 error = bio_track_wait(&vp->v_track_write, 0, 0);
756 if (waitoutput)
757 error = waitoutput(vp, curthread);
758 return(error);
761 static int
762 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
764 return(0);
767 static int
768 vfsync_data_only_cmp(struct buf *bp, void *data)
770 if (bp->b_loffset < 0)
771 return(-1);
772 return(0);
775 static int
776 vfsync_meta_only_cmp(struct buf *bp, void *data)
778 if (bp->b_loffset < 0)
779 return(0);
780 return(1);
783 static int
784 vfsync_lazy_range_cmp(struct buf *bp, void *data)
786 struct vfsync_info *info = data;
788 if (bp->b_loffset < info->vp->v_lazyw)
789 return(-1);
790 return(0);
793 static int
794 vfsync_bp(struct buf *bp, void *data)
796 struct vfsync_info *info = data;
797 struct vnode *vp = info->vp;
798 int error;
800 if (info->fastpass) {
802 * Ignore buffers that we cannot immediately lock.
804 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
805 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst1", 1)) {
806 ++info->skippedbufs;
807 return(0);
810 } else if (info->synchronous == 0) {
812 * Normal pass, give the buffer a little time to become
813 * available to us.
815 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
816 ++info->skippedbufs;
817 return(0);
819 } else {
821 * Synchronous pass, give the buffer a lot of time before
822 * giving up.
824 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
825 ++info->skippedbufs;
826 return(0);
831 * We must revalidate the buffer after locking.
833 if ((bp->b_flags & B_DELWRI) == 0 ||
834 bp->b_vp != info->vp ||
835 info->cmpfunc(bp, data)) {
836 BUF_UNLOCK(bp);
837 return(0);
841 * If syncdeps is not set we do not try to write buffers which have
842 * dependancies.
844 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
845 BUF_UNLOCK(bp);
846 return(0);
850 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
851 * has been written but an additional handshake with the device
852 * is required before we can dispose of the buffer. We have no idea
853 * how to do this so we have to skip these buffers.
855 if (bp->b_flags & B_NEEDCOMMIT) {
856 BUF_UNLOCK(bp);
857 return(0);
861 * Ask bioops if it is ok to sync. If not the VFS may have
862 * set B_LOCKED so we have to cycle the buffer.
864 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
865 bremfree(bp);
866 brelse(bp);
867 return(0);
870 if (info->synchronous) {
872 * Synchronous flush. An error may be returned and will
873 * stop the scan.
875 bremfree(bp);
876 error = bwrite(bp);
877 } else {
879 * Asynchronous flush. We use the error return to support
880 * MNT_LAZY flushes.
882 * In low-memory situations we revert to synchronous
883 * operation. This should theoretically prevent the I/O
884 * path from exhausting memory in a non-recoverable way.
886 vp->v_lazyw = bp->b_loffset;
887 bremfree(bp);
888 if (vm_page_count_min(0)) {
889 /* low memory */
890 info->lazycount += bp->b_bufsize;
891 bwrite(bp);
892 } else {
893 /* normal */
894 info->lazycount += cluster_awrite(bp);
895 waitrunningbufspace();
896 /*vm_wait_nominal();*/
898 if (info->lazylimit && info->lazycount >= info->lazylimit)
899 error = 1;
900 else
901 error = 0;
903 return(-error);
907 * Associate a buffer with a vnode.
909 * MPSAFE
912 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
914 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
915 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
918 * Insert onto list for new vnode.
920 lwkt_gettoken(&vp->v_token);
922 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
923 lwkt_reltoken(&vp->v_token);
924 return (EEXIST);
928 * Diagnostics (mainly for HAMMER debugging). Check for
929 * overlapping buffers.
931 if (check_buf_overlap) {
932 struct buf *bx;
933 bx = buf_rb_hash_RB_PREV(bp);
934 if (bx) {
935 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
936 kprintf("bgetvp: overlapl %016jx/%d %016jx "
937 "bx %p bp %p\n",
938 (intmax_t)bx->b_loffset,
939 bx->b_bufsize,
940 (intmax_t)bp->b_loffset,
941 bx, bp);
942 if (check_buf_overlap > 1)
943 panic("bgetvp - overlapping buffer");
946 bx = buf_rb_hash_RB_NEXT(bp);
947 if (bx) {
948 if (bp->b_loffset + testsize > bx->b_loffset) {
949 kprintf("bgetvp: overlapr %016jx/%d %016jx "
950 "bp %p bx %p\n",
951 (intmax_t)bp->b_loffset,
952 testsize,
953 (intmax_t)bx->b_loffset,
954 bp, bx);
955 if (check_buf_overlap > 1)
956 panic("bgetvp - overlapping buffer");
960 bp->b_vp = vp;
961 bp->b_flags |= B_HASHED;
962 bp->b_flags |= B_VNCLEAN;
963 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
964 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
965 /*vhold(vp);*/
966 lwkt_reltoken(&vp->v_token);
967 return(0);
971 * Disassociate a buffer from a vnode.
973 * MPSAFE
975 void
976 brelvp(struct buf *bp)
978 struct vnode *vp;
980 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
983 * Delete from old vnode list, if on one.
985 vp = bp->b_vp;
986 lwkt_gettoken(&vp->v_token);
987 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
988 if (bp->b_flags & B_VNDIRTY)
989 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
990 else
991 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
992 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
994 if (bp->b_flags & B_HASHED) {
995 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
996 bp->b_flags &= ~B_HASHED;
1000 * Only remove from synclist when no dirty buffers are left AND
1001 * the VFS has not flagged the vnode's inode as being dirty.
1003 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1004 RB_EMPTY(&vp->v_rbdirty_tree)) {
1005 vn_syncer_remove(vp, 0);
1007 bp->b_vp = NULL;
1009 lwkt_reltoken(&vp->v_token);
1011 /*vdrop(vp);*/
1015 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1016 * This routine is called when the state of the B_DELWRI bit is changed.
1018 * Must be called with vp->v_token held.
1019 * MPSAFE
1021 void
1022 reassignbuf(struct buf *bp)
1024 struct vnode *vp = bp->b_vp;
1025 int delay;
1027 ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1028 ++reassignbufcalls;
1031 * B_PAGING flagged buffers cannot be reassigned because their vp
1032 * is not fully linked in.
1034 if (bp->b_flags & B_PAGING)
1035 panic("cannot reassign paging buffer");
1037 if (bp->b_flags & B_DELWRI) {
1039 * Move to the dirty list, add the vnode to the worklist
1041 if (bp->b_flags & B_VNCLEAN) {
1042 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1043 bp->b_flags &= ~B_VNCLEAN;
1045 if ((bp->b_flags & B_VNDIRTY) == 0) {
1046 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1047 panic("reassignbuf: dup lblk vp %p bp %p",
1048 vp, bp);
1050 bp->b_flags |= B_VNDIRTY;
1052 if ((vp->v_flag & VONWORKLST) == 0) {
1053 switch (vp->v_type) {
1054 case VDIR:
1055 delay = dirdelay;
1056 break;
1057 case VCHR:
1058 case VBLK:
1059 if (vp->v_rdev &&
1060 vp->v_rdev->si_mountpoint != NULL) {
1061 delay = metadelay;
1062 break;
1064 /* fall through */
1065 default:
1066 delay = filedelay;
1068 vn_syncer_add(vp, delay);
1070 } else {
1072 * Move to the clean list, remove the vnode from the worklist
1073 * if no dirty blocks remain.
1075 if (bp->b_flags & B_VNDIRTY) {
1076 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1077 bp->b_flags &= ~B_VNDIRTY;
1079 if ((bp->b_flags & B_VNCLEAN) == 0) {
1080 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1081 panic("reassignbuf: dup lblk vp %p bp %p",
1082 vp, bp);
1084 bp->b_flags |= B_VNCLEAN;
1088 * Only remove from synclist when no dirty buffers are left
1089 * AND the VFS has not flagged the vnode's inode as being
1090 * dirty.
1092 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1093 VONWORKLST &&
1094 RB_EMPTY(&vp->v_rbdirty_tree)) {
1095 vn_syncer_remove(vp, 0);
1101 * Create a vnode for a block device. Used for mounting the root file
1102 * system.
1104 * A vref()'d vnode is returned.
1106 extern struct vop_ops *devfs_vnode_dev_vops_p;
1108 bdevvp(cdev_t dev, struct vnode **vpp)
1110 struct vnode *vp;
1111 struct vnode *nvp;
1112 int error;
1114 if (dev == NULL) {
1115 *vpp = NULLVP;
1116 return (ENXIO);
1118 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1119 &nvp, 0, 0);
1120 if (error) {
1121 *vpp = NULLVP;
1122 return (error);
1124 vp = nvp;
1125 vp->v_type = VCHR;
1126 #if 0
1127 vp->v_rdev = dev;
1128 #endif
1129 v_associate_rdev(vp, dev);
1130 vp->v_umajor = dev->si_umajor;
1131 vp->v_uminor = dev->si_uminor;
1132 vx_unlock(vp);
1133 *vpp = vp;
1134 return (0);
1138 v_associate_rdev(struct vnode *vp, cdev_t dev)
1140 if (dev == NULL)
1141 return(ENXIO);
1142 if (dev_is_good(dev) == 0)
1143 return(ENXIO);
1144 KKASSERT(vp->v_rdev == NULL);
1145 vp->v_rdev = reference_dev(dev);
1146 lwkt_gettoken(&spechash_token);
1147 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1148 lwkt_reltoken(&spechash_token);
1149 return(0);
1152 void
1153 v_release_rdev(struct vnode *vp)
1155 cdev_t dev;
1157 if ((dev = vp->v_rdev) != NULL) {
1158 lwkt_gettoken(&spechash_token);
1159 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1160 vp->v_rdev = NULL;
1161 release_dev(dev);
1162 lwkt_reltoken(&spechash_token);
1167 * Add a vnode to the alias list hung off the cdev_t. We only associate
1168 * the device number with the vnode. The actual device is not associated
1169 * until the vnode is opened (usually in spec_open()), and will be
1170 * disassociated on last close.
1172 void
1173 addaliasu(struct vnode *nvp, int x, int y)
1175 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1176 panic("addaliasu on non-special vnode");
1177 nvp->v_umajor = x;
1178 nvp->v_uminor = y;
1182 * Simple call that a filesystem can make to try to get rid of a
1183 * vnode. It will fail if anyone is referencing the vnode (including
1184 * the caller).
1186 * The filesystem can check whether its in-memory inode structure still
1187 * references the vp on return.
1189 * May only be called if the vnode is in a known state (i.e. being prevented
1190 * from being deallocated by some other condition such as a vfs inode hold).
1192 void
1193 vclean_unlocked(struct vnode *vp)
1195 vx_get(vp);
1196 if (VREFCNT(vp) <= 1)
1197 vgone_vxlocked(vp);
1198 vx_put(vp);
1202 * Disassociate a vnode from its underlying filesystem.
1204 * The vnode must be VX locked and referenced. In all normal situations
1205 * there are no active references. If vclean_vxlocked() is called while
1206 * there are active references, the vnode is being ripped out and we have
1207 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1209 void
1210 vclean_vxlocked(struct vnode *vp, int flags)
1212 int active;
1213 int n;
1214 vm_object_t object;
1215 struct namecache *ncp;
1218 * If the vnode has already been reclaimed we have nothing to do.
1220 if (vp->v_flag & VRECLAIMED)
1221 return;
1224 * Set flag to interlock operation, flag finalization to ensure
1225 * that the vnode winds up on the inactive list, and set v_act to 0.
1227 vsetflags(vp, VRECLAIMED);
1228 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1229 vp->v_act = 0;
1231 if (verbose_reclaims) {
1232 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1233 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1237 * Scrap the vfs cache
1239 while (cache_inval_vp(vp, 0) != 0) {
1240 kprintf("Warning: vnode %p clean/cache_resolution "
1241 "race detected\n", vp);
1242 tsleep(vp, 0, "vclninv", 2);
1246 * Check to see if the vnode is in use. If so we have to reference it
1247 * before we clean it out so that its count cannot fall to zero and
1248 * generate a race against ourselves to recycle it.
1250 active = (VREFCNT(vp) > 0);
1253 * Clean out any buffers associated with the vnode and destroy its
1254 * object, if it has one.
1256 vinvalbuf(vp, V_SAVE, 0, 0);
1259 * If purging an active vnode (typically during a forced unmount
1260 * or reboot), it must be closed and deactivated before being
1261 * reclaimed. This isn't really all that safe, but what can
1262 * we do? XXX.
1264 * Note that neither of these routines unlocks the vnode.
1266 if (active && (flags & DOCLOSE)) {
1267 while ((n = vp->v_opencount) != 0) {
1268 if (vp->v_writecount)
1269 VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1270 else
1271 VOP_CLOSE(vp, FNONBLOCK, NULL);
1272 if (vp->v_opencount == n) {
1273 kprintf("Warning: unable to force-close"
1274 " vnode %p\n", vp);
1275 break;
1281 * If the vnode has not been deactivated, deactivated it. Deactivation
1282 * can create new buffers and VM pages so we have to call vinvalbuf()
1283 * again to make sure they all get flushed.
1285 * This can occur if a file with a link count of 0 needs to be
1286 * truncated.
1288 * If the vnode is already dead don't try to deactivate it.
1290 if ((vp->v_flag & VINACTIVE) == 0) {
1291 vsetflags(vp, VINACTIVE);
1292 if (vp->v_mount)
1293 VOP_INACTIVE(vp);
1294 vinvalbuf(vp, V_SAVE, 0, 0);
1298 * If the vnode has an object, destroy it.
1300 while ((object = vp->v_object) != NULL) {
1301 vm_object_hold(object);
1302 if (object == vp->v_object)
1303 break;
1304 vm_object_drop(object);
1307 if (object != NULL) {
1308 if (object->ref_count == 0) {
1309 if ((object->flags & OBJ_DEAD) == 0)
1310 vm_object_terminate(object);
1311 vm_object_drop(object);
1312 vclrflags(vp, VOBJBUF);
1313 } else {
1314 vm_pager_deallocate(object);
1315 vclrflags(vp, VOBJBUF);
1316 vm_object_drop(object);
1319 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1322 * Reclaim the vnode if not already dead.
1324 if (vp->v_mount && VOP_RECLAIM(vp))
1325 panic("vclean: cannot reclaim");
1328 * Done with purge, notify sleepers of the grim news.
1330 vp->v_ops = &dead_vnode_vops_p;
1331 vn_gone(vp);
1332 vp->v_tag = VT_NON;
1335 * If we are destroying an active vnode, reactivate it now that
1336 * we have reassociated it with deadfs. This prevents the system
1337 * from crashing on the vnode due to it being unexpectedly marked
1338 * as inactive or reclaimed.
1340 if (active && (flags & DOCLOSE)) {
1341 vclrflags(vp, VINACTIVE | VRECLAIMED);
1346 * Eliminate all activity associated with the requested vnode
1347 * and with all vnodes aliased to the requested vnode.
1349 * The vnode must be referenced but should not be locked.
1352 vrevoke(struct vnode *vp, struct ucred *cred)
1354 struct vnode *vq;
1355 struct vnode *vqn;
1356 cdev_t dev;
1357 int error;
1360 * If the vnode has a device association, scrap all vnodes associated
1361 * with the device. Don't let the device disappear on us while we
1362 * are scrapping the vnodes.
1364 * The passed vp will probably show up in the list, do not VX lock
1365 * it twice!
1367 * Releasing the vnode's rdev here can mess up specfs's call to
1368 * device close, so don't do it. The vnode has been disassociated
1369 * and the device will be closed after the last ref on the related
1370 * fp goes away (if not still open by e.g. the kernel).
1372 if (vp->v_type != VCHR) {
1373 error = fdrevoke(vp, DTYPE_VNODE, cred);
1374 return (error);
1376 if ((dev = vp->v_rdev) == NULL) {
1377 return(0);
1379 reference_dev(dev);
1380 lwkt_gettoken(&spechash_token);
1382 restart:
1383 vqn = SLIST_FIRST(&dev->si_hlist);
1384 if (vqn)
1385 vhold(vqn);
1386 while ((vq = vqn) != NULL) {
1387 if (VREFCNT(vq) > 0) {
1388 vref(vq);
1389 fdrevoke(vq, DTYPE_VNODE, cred);
1390 /*v_release_rdev(vq);*/
1391 vrele(vq);
1392 if (vq->v_rdev != dev) {
1393 vdrop(vq);
1394 goto restart;
1397 vqn = SLIST_NEXT(vq, v_cdevnext);
1398 if (vqn)
1399 vhold(vqn);
1400 vdrop(vq);
1402 lwkt_reltoken(&spechash_token);
1403 dev_drevoke(dev);
1404 release_dev(dev);
1405 return (0);
1409 * This is called when the object underlying a vnode is being destroyed,
1410 * such as in a remove(). Try to recycle the vnode immediately if the
1411 * only active reference is our reference.
1413 * Directory vnodes in the namecache with children cannot be immediately
1414 * recycled because numerous VOP_N*() ops require them to be stable.
1416 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1417 * function is a NOP if VRECLAIMED is already set.
1420 vrecycle(struct vnode *vp)
1422 if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1423 if (cache_inval_vp_nonblock(vp))
1424 return(0);
1425 vgone_vxlocked(vp);
1426 return (1);
1428 return (0);
1432 * Return the maximum I/O size allowed for strategy calls on VP.
1434 * If vp is VCHR or VBLK we dive the device, otherwise we use
1435 * the vp's mount info.
1437 * The returned value is clamped at MAXPHYS as most callers cannot use
1438 * buffers larger than that size.
1441 vmaxiosize(struct vnode *vp)
1443 int maxiosize;
1445 if (vp->v_type == VBLK || vp->v_type == VCHR)
1446 maxiosize = vp->v_rdev->si_iosize_max;
1447 else
1448 maxiosize = vp->v_mount->mnt_iosize_max;
1450 if (maxiosize > MAXPHYS)
1451 maxiosize = MAXPHYS;
1452 return (maxiosize);
1456 * Eliminate all activity associated with a vnode in preparation for
1457 * destruction.
1459 * The vnode must be VX locked and refd and will remain VX locked and refd
1460 * on return. This routine may be called with the vnode in any state, as
1461 * long as it is VX locked. The vnode will be cleaned out and marked
1462 * VRECLAIMED but will not actually be reused until all existing refs and
1463 * holds go away.
1465 * NOTE: This routine may be called on a vnode which has not yet been
1466 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1467 * already been reclaimed.
1469 * This routine is not responsible for placing us back on the freelist.
1470 * Instead, it happens automatically when the caller releases the VX lock
1471 * (assuming there aren't any other references).
1473 void
1474 vgone_vxlocked(struct vnode *vp)
1477 * assert that the VX lock is held. This is an absolute requirement
1478 * now for vgone_vxlocked() to be called.
1480 KKASSERT(lockinuse(&vp->v_lock));
1483 * Clean out the filesystem specific data and set the VRECLAIMED
1484 * bit. Also deactivate the vnode if necessary.
1486 * The vnode should have automatically been removed from the syncer
1487 * list as syncer/dirty flags cleared during the cleaning.
1489 vclean_vxlocked(vp, DOCLOSE);
1492 * Normally panic if the vnode is still dirty, unless we are doing
1493 * a forced unmount (tmpfs typically).
1495 if (vp->v_flag & VONWORKLST) {
1496 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1497 /* force removal */
1498 vn_syncer_remove(vp, 1);
1499 } else {
1500 panic("vp %p still dirty in vgone after flush", vp);
1505 * Delete from old mount point vnode list, if on one.
1507 if (vp->v_mount != NULL) {
1508 KKASSERT(vp->v_data == NULL);
1509 insmntque(vp, NULL);
1513 * If special device, remove it from special device alias list
1514 * if it is on one. This should normally only occur if a vnode is
1515 * being revoked as the device should otherwise have been released
1516 * naturally.
1518 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1519 v_release_rdev(vp);
1523 * Set us to VBAD
1525 vp->v_type = VBAD;
1529 * Lookup a vnode by device number.
1531 * Returns non-zero and *vpp set to a vref'd vnode on success.
1532 * Returns zero on failure.
1535 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1537 struct vnode *vp;
1539 lwkt_gettoken(&spechash_token);
1540 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1541 if (type == vp->v_type) {
1542 *vpp = vp;
1543 vref(vp);
1544 lwkt_reltoken(&spechash_token);
1545 return (1);
1548 lwkt_reltoken(&spechash_token);
1549 return (0);
1553 * Calculate the total number of references to a special device. This
1554 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1555 * an overloaded field. Since udev2dev can now return NULL, we have
1556 * to check for a NULL v_rdev.
1559 count_dev(cdev_t dev)
1561 struct vnode *vp;
1562 int count = 0;
1564 if (SLIST_FIRST(&dev->si_hlist)) {
1565 lwkt_gettoken(&spechash_token);
1566 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1567 count += vp->v_opencount;
1569 lwkt_reltoken(&spechash_token);
1571 return(count);
1575 vcount(struct vnode *vp)
1577 if (vp->v_rdev == NULL)
1578 return(0);
1579 return(count_dev(vp->v_rdev));
1583 * Initialize VMIO for a vnode. This routine MUST be called before a
1584 * VFS can issue buffer cache ops on a vnode. It is typically called
1585 * when a vnode is initialized from its inode.
1588 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1590 vm_object_t object;
1591 int error = 0;
1593 object = vp->v_object;
1594 if (object) {
1595 vm_object_hold(object);
1596 KKASSERT(vp->v_object == object);
1599 if (object == NULL) {
1600 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1603 * Dereference the reference we just created. This assumes
1604 * that the object is associated with the vp. Allow it to
1605 * have zero refs. It cannot be destroyed as long as it
1606 * is associated with the vnode.
1608 vm_object_hold(object);
1609 atomic_add_int(&object->ref_count, -1);
1610 vrele(vp);
1611 } else {
1612 KKASSERT((object->flags & OBJ_DEAD) == 0);
1614 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1615 vsetflags(vp, VOBJBUF);
1616 vm_object_drop(object);
1618 return (error);
1623 * Print out a description of a vnode.
1625 static char *typename[] =
1626 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1628 void
1629 vprint(char *label, struct vnode *vp)
1631 char buf[96];
1633 if (label != NULL)
1634 kprintf("%s: %p: ", label, (void *)vp);
1635 else
1636 kprintf("%p: ", (void *)vp);
1637 kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1638 typename[vp->v_type],
1639 vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1640 buf[0] = '\0';
1641 if (vp->v_flag & VROOT)
1642 strcat(buf, "|VROOT");
1643 if (vp->v_flag & VPFSROOT)
1644 strcat(buf, "|VPFSROOT");
1645 if (vp->v_flag & VTEXT)
1646 strcat(buf, "|VTEXT");
1647 if (vp->v_flag & VSYSTEM)
1648 strcat(buf, "|VSYSTEM");
1649 if (vp->v_flag & VOBJBUF)
1650 strcat(buf, "|VOBJBUF");
1651 if (buf[0] != '\0')
1652 kprintf(" flags (%s)", &buf[1]);
1653 if (vp->v_data == NULL) {
1654 kprintf("\n");
1655 } else {
1656 kprintf("\n\t");
1657 VOP_PRINT(vp);
1662 * Do the usual access checking.
1663 * file_mode, uid and gid are from the vnode in question,
1664 * while acc_mode and cred are from the VOP_ACCESS parameter list
1667 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1668 mode_t acc_mode, struct ucred *cred)
1670 mode_t mask;
1671 int ismember;
1674 * Super-user always gets read/write access, but execute access depends
1675 * on at least one execute bit being set.
1677 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1678 if ((acc_mode & VEXEC) && type != VDIR &&
1679 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1680 return (EACCES);
1681 return (0);
1684 mask = 0;
1686 /* Otherwise, check the owner. */
1687 if (cred->cr_uid == uid) {
1688 if (acc_mode & VEXEC)
1689 mask |= S_IXUSR;
1690 if (acc_mode & VREAD)
1691 mask |= S_IRUSR;
1692 if (acc_mode & VWRITE)
1693 mask |= S_IWUSR;
1694 return ((file_mode & mask) == mask ? 0 : EACCES);
1697 /* Otherwise, check the groups. */
1698 ismember = groupmember(gid, cred);
1699 if (cred->cr_svgid == gid || ismember) {
1700 if (acc_mode & VEXEC)
1701 mask |= S_IXGRP;
1702 if (acc_mode & VREAD)
1703 mask |= S_IRGRP;
1704 if (acc_mode & VWRITE)
1705 mask |= S_IWGRP;
1706 return ((file_mode & mask) == mask ? 0 : EACCES);
1709 /* Otherwise, check everyone else. */
1710 if (acc_mode & VEXEC)
1711 mask |= S_IXOTH;
1712 if (acc_mode & VREAD)
1713 mask |= S_IROTH;
1714 if (acc_mode & VWRITE)
1715 mask |= S_IWOTH;
1716 return ((file_mode & mask) == mask ? 0 : EACCES);
1719 #ifdef DDB
1720 #include <ddb/ddb.h>
1722 static int db_show_locked_vnodes(struct mount *mp, void *data);
1725 * List all of the locked vnodes in the system.
1726 * Called when debugging the kernel.
1728 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1730 kprintf("Locked vnodes\n");
1731 mountlist_scan(db_show_locked_vnodes, NULL,
1732 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1735 static int
1736 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1738 struct vnode *vp;
1740 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1741 if (vn_islocked(vp))
1742 vprint(NULL, vp);
1744 return(0);
1746 #endif
1749 * Top level filesystem related information gathering.
1751 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1753 static int
1754 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1756 int *name = (int *)arg1 - 1; /* XXX */
1757 u_int namelen = arg2 + 1; /* XXX */
1758 struct vfsconf *vfsp;
1759 int maxtypenum;
1761 #if 1 || defined(COMPAT_PRELITE2)
1762 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1763 if (namelen == 1)
1764 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1765 #endif
1767 #ifdef notyet
1768 /* all sysctl names at this level are at least name and field */
1769 if (namelen < 2)
1770 return (ENOTDIR); /* overloaded */
1771 if (name[0] != VFS_GENERIC) {
1772 vfsp = vfsconf_find_by_typenum(name[0]);
1773 if (vfsp == NULL)
1774 return (EOPNOTSUPP);
1775 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1776 oldp, oldlenp, newp, newlen, p));
1778 #endif
1779 switch (name[1]) {
1780 case VFS_MAXTYPENUM:
1781 if (namelen != 2)
1782 return (ENOTDIR);
1783 maxtypenum = vfsconf_get_maxtypenum();
1784 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1785 case VFS_CONF:
1786 if (namelen != 3)
1787 return (ENOTDIR); /* overloaded */
1788 vfsp = vfsconf_find_by_typenum(name[2]);
1789 if (vfsp == NULL)
1790 return (EOPNOTSUPP);
1791 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1793 return (EOPNOTSUPP);
1796 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1797 "Generic filesystem");
1799 #if 1 || defined(COMPAT_PRELITE2)
1801 static int
1802 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1804 int error;
1805 struct ovfsconf ovfs;
1806 struct sysctl_req *req = (struct sysctl_req*) data;
1808 bzero(&ovfs, sizeof(ovfs));
1809 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1810 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1811 ovfs.vfc_index = vfsp->vfc_typenum;
1812 ovfs.vfc_refcount = vfsp->vfc_refcount;
1813 ovfs.vfc_flags = vfsp->vfc_flags;
1814 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1815 if (error)
1816 return error; /* abort iteration with error code */
1817 else
1818 return 0; /* continue iterating with next element */
1821 static int
1822 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1824 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1827 #endif /* 1 || COMPAT_PRELITE2 */
1830 * Check to see if a filesystem is mounted on a block device.
1833 vfs_mountedon(struct vnode *vp)
1835 cdev_t dev;
1837 if ((dev = vp->v_rdev) == NULL) {
1838 /* if (vp->v_type != VBLK)
1839 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1841 if (dev != NULL && dev->si_mountpoint)
1842 return (EBUSY);
1843 return (0);
1847 * Unmount all filesystems. The list is traversed in reverse order
1848 * of mounting to avoid dependencies.
1850 * We want the umountall to be able to break out of its loop if a
1851 * failure occurs, after scanning all possible mounts, so the callback
1852 * returns 0 on error.
1854 * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1855 * confuse mountlist_scan()'s unbusy check.
1857 static int vfs_umountall_callback(struct mount *mp, void *data);
1859 void
1860 vfs_unmountall(void)
1862 int count;
1864 do {
1865 count = mountlist_scan(vfs_umountall_callback,
1866 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1867 } while (count);
1870 static
1872 vfs_umountall_callback(struct mount *mp, void *data)
1874 int error;
1876 error = dounmount(mp, MNT_FORCE);
1877 if (error) {
1878 kprintf("unmount of filesystem mounted from %s failed (",
1879 mp->mnt_stat.f_mntfromname);
1880 if (error == EBUSY)
1881 kprintf("BUSY)\n");
1882 else
1883 kprintf("%d)\n", error);
1884 return 0;
1885 } else {
1886 return 1;
1891 * Checks the mount flags for parameter mp and put the names comma-separated
1892 * into a string buffer buf with a size limit specified by len.
1894 * It returns the number of bytes written into buf, and (*errorp) will be
1895 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1896 * not large enough). The buffer will be 0-terminated if len was not 0.
1898 size_t
1899 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1900 char *buf, size_t len, int *errorp)
1902 static const struct mountctl_opt optnames[] = {
1903 { MNT_RDONLY, "read-only" },
1904 { MNT_SYNCHRONOUS, "synchronous" },
1905 { MNT_NOEXEC, "noexec" },
1906 { MNT_NOSUID, "nosuid" },
1907 { MNT_NODEV, "nodev" },
1908 { MNT_AUTOMOUNTED, "automounted" },
1909 { MNT_ASYNC, "asynchronous" },
1910 { MNT_SUIDDIR, "suiddir" },
1911 { MNT_SOFTDEP, "soft-updates" },
1912 { MNT_NOSYMFOLLOW, "nosymfollow" },
1913 { MNT_TRIM, "trim" },
1914 { MNT_NOATIME, "noatime" },
1915 { MNT_NOCLUSTERR, "noclusterr" },
1916 { MNT_NOCLUSTERW, "noclusterw" },
1917 { MNT_EXRDONLY, "NFS read-only" },
1918 { MNT_EXPORTED, "NFS exported" },
1919 /* Remaining NFS flags could come here */
1920 { MNT_LOCAL, "local" },
1921 { MNT_QUOTA, "with-quotas" },
1922 /* { MNT_ROOTFS, "rootfs" }, */
1923 /* { MNT_IGNORE, "ignore" }, */
1924 { 0, NULL}
1926 int bwritten;
1927 int bleft;
1928 int optlen;
1929 int actsize;
1931 *errorp = 0;
1932 bwritten = 0;
1933 bleft = len - 1; /* leave room for trailing \0 */
1936 * Checks the size of the string. If it contains
1937 * any data, then we will append the new flags to
1938 * it.
1940 actsize = strlen(buf);
1941 if (actsize > 0)
1942 buf += actsize;
1944 /* Default flags if no flags passed */
1945 if (optp == NULL)
1946 optp = optnames;
1948 if (bleft < 0) { /* degenerate case, 0-length buffer */
1949 *errorp = EINVAL;
1950 return(0);
1953 for (; flags && optp->o_opt; ++optp) {
1954 if ((flags & optp->o_opt) == 0)
1955 continue;
1956 optlen = strlen(optp->o_name);
1957 if (bwritten || actsize > 0) {
1958 if (bleft < 2) {
1959 *errorp = ENOSPC;
1960 break;
1962 buf[bwritten++] = ',';
1963 buf[bwritten++] = ' ';
1964 bleft -= 2;
1966 if (bleft < optlen) {
1967 *errorp = ENOSPC;
1968 break;
1970 bcopy(optp->o_name, buf + bwritten, optlen);
1971 bwritten += optlen;
1972 bleft -= optlen;
1973 flags &= ~optp->o_opt;
1977 * Space already reserved for trailing \0
1979 buf[bwritten] = 0;
1980 return (bwritten);
1984 * Build hash lists of net addresses and hang them off the mount point.
1985 * Called by ufs_mount() to set up the lists of export addresses.
1987 static int
1988 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1989 const struct export_args *argp)
1991 struct netcred *np;
1992 struct radix_node_head *rnh;
1993 int i;
1994 struct radix_node *rn;
1995 struct sockaddr *saddr, *smask = NULL;
1996 int error;
1998 if (argp->ex_addrlen == 0) {
1999 if (mp->mnt_flag & MNT_DEFEXPORTED)
2000 return (EPERM);
2001 np = &nep->ne_defexported;
2002 np->netc_exflags = argp->ex_flags;
2003 np->netc_anon = argp->ex_anon;
2004 np->netc_anon.cr_ref = 1;
2005 mp->mnt_flag |= MNT_DEFEXPORTED;
2006 return (0);
2009 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2010 return (EINVAL);
2011 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2012 return (EINVAL);
2014 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2015 np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2016 saddr = (struct sockaddr *) (np + 1);
2017 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2018 goto out;
2019 if (saddr->sa_len > argp->ex_addrlen)
2020 saddr->sa_len = argp->ex_addrlen;
2021 if (argp->ex_masklen) {
2022 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2023 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2024 if (error)
2025 goto out;
2026 if (smask->sa_len > argp->ex_masklen)
2027 smask->sa_len = argp->ex_masklen;
2029 NE_LOCK(nep);
2030 if (nep->ne_maskhead == NULL) {
2031 if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2032 error = ENOBUFS;
2033 goto out;
2036 if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2037 error = ENOBUFS;
2038 goto out;
2040 rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2041 np->netc_rnodes);
2042 NE_UNLOCK(nep);
2043 if (rn == NULL || np != (struct netcred *)rn) { /* already exists */
2044 error = EPERM;
2045 goto out;
2047 np->netc_exflags = argp->ex_flags;
2048 np->netc_anon = argp->ex_anon;
2049 np->netc_anon.cr_ref = 1;
2050 return (0);
2052 out:
2053 kfree(np, M_NETCRED);
2054 return (error);
2058 * Free netcred structures installed in the netexport
2060 static int
2061 vfs_free_netcred(struct radix_node *rn, void *w)
2063 struct radix_node_head *rnh = (struct radix_node_head *)w;
2065 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2066 kfree(rn, M_NETCRED);
2068 return (0);
2072 * callback to free an element of the mask table installed in the
2073 * netexport. These may be created indirectly and are not netcred
2074 * structures.
2076 static int
2077 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2079 struct radix_node_head *rnh = (struct radix_node_head *)w;
2081 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2082 kfree(rn, M_RTABLE);
2084 return (0);
2087 static struct radix_node_head *
2088 vfs_create_addrlist_af(int af, struct netexport *nep)
2090 struct radix_node_head *rnh = NULL;
2091 #if defined(INET) || defined(INET6)
2092 struct radix_node_head *maskhead = nep->ne_maskhead;
2093 int off;
2094 #endif
2096 NE_ASSERT_LOCKED(nep);
2097 KKASSERT(maskhead != NULL);
2098 switch (af) {
2099 #ifdef INET
2100 case AF_INET:
2101 if ((rnh = nep->ne_inethead) == NULL) {
2102 off = offsetof(struct sockaddr_in, sin_addr) << 3;
2103 if (!rn_inithead((void **)&rnh, maskhead, off))
2104 return (NULL);
2105 nep->ne_inethead = rnh;
2107 break;
2108 #endif
2109 #ifdef INET6
2110 case AF_INET6:
2111 if ((rnh = nep->ne_inet6head) == NULL) {
2112 off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2113 if (!rn_inithead((void **)&rnh, maskhead, off))
2114 return (NULL);
2115 nep->ne_inet6head = rnh;
2117 break;
2118 #endif
2120 return (rnh);
2124 * helper function for freeing netcred elements
2126 static void
2127 vfs_free_addrlist_af(struct radix_node_head **prnh)
2129 struct radix_node_head *rnh = *prnh;
2131 (*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2132 kfree(rnh, M_RTABLE);
2133 *prnh = NULL;
2137 * helper function for freeing mask elements
2139 static void
2140 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2142 struct radix_node_head *rnh = *prnh;
2144 (*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2145 kfree(rnh, M_RTABLE);
2146 *prnh = NULL;
2150 * Free the net address hash lists that are hanging off the mount points.
2152 static void
2153 vfs_free_addrlist(struct netexport *nep)
2155 NE_LOCK(nep);
2156 if (nep->ne_inethead != NULL)
2157 vfs_free_addrlist_af(&nep->ne_inethead);
2158 if (nep->ne_inet6head != NULL)
2159 vfs_free_addrlist_af(&nep->ne_inet6head);
2160 if (nep->ne_maskhead)
2161 vfs_free_addrlist_masks(&nep->ne_maskhead);
2162 NE_UNLOCK(nep);
2166 vfs_export(struct mount *mp, struct netexport *nep,
2167 const struct export_args *argp)
2169 int error;
2171 if (argp->ex_flags & MNT_DELEXPORT) {
2172 if (mp->mnt_flag & MNT_EXPUBLIC) {
2173 vfs_setpublicfs(NULL, NULL, NULL);
2174 mp->mnt_flag &= ~MNT_EXPUBLIC;
2176 vfs_free_addrlist(nep);
2177 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2179 if (argp->ex_flags & MNT_EXPORTED) {
2180 if (argp->ex_flags & MNT_EXPUBLIC) {
2181 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2182 return (error);
2183 mp->mnt_flag |= MNT_EXPUBLIC;
2185 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2186 return (error);
2187 mp->mnt_flag |= MNT_EXPORTED;
2189 return (0);
2194 * Set the publicly exported filesystem (WebNFS). Currently, only
2195 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2198 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2199 const struct export_args *argp)
2201 int error;
2202 struct vnode *rvp;
2203 char *cp;
2206 * mp == NULL -> invalidate the current info, the FS is
2207 * no longer exported. May be called from either vfs_export
2208 * or unmount, so check if it hasn't already been done.
2210 if (mp == NULL) {
2211 if (nfs_pub.np_valid) {
2212 nfs_pub.np_valid = 0;
2213 if (nfs_pub.np_index != NULL) {
2214 kfree(nfs_pub.np_index, M_TEMP);
2215 nfs_pub.np_index = NULL;
2218 return (0);
2222 * Only one allowed at a time.
2224 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2225 return (EBUSY);
2228 * Get real filehandle for root of exported FS.
2230 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2231 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2233 if ((error = VFS_ROOT(mp, &rvp)))
2234 return (error);
2236 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2237 return (error);
2239 vput(rvp);
2242 * If an indexfile was specified, pull it in.
2244 if (argp->ex_indexfile != NULL) {
2245 int namelen;
2247 error = vn_get_namelen(rvp, &namelen);
2248 if (error)
2249 return (error);
2250 nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2251 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2252 namelen, NULL);
2253 if (!error) {
2255 * Check for illegal filenames.
2257 for (cp = nfs_pub.np_index; *cp; cp++) {
2258 if (*cp == '/') {
2259 error = EINVAL;
2260 break;
2264 if (error) {
2265 kfree(nfs_pub.np_index, M_TEMP);
2266 return (error);
2270 nfs_pub.np_mount = mp;
2271 nfs_pub.np_valid = 1;
2272 return (0);
2275 struct netcred *
2276 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2277 struct sockaddr *nam)
2279 struct netcred *np;
2280 struct radix_node_head *rnh;
2281 struct sockaddr *saddr;
2283 np = NULL;
2284 if (mp->mnt_flag & MNT_EXPORTED) {
2286 * Lookup in the export list first.
2288 NE_LOCK(nep);
2289 if (nam != NULL) {
2290 saddr = nam;
2291 switch (saddr->sa_family) {
2292 #ifdef INET
2293 case AF_INET:
2294 rnh = nep->ne_inethead;
2295 break;
2296 #endif
2297 #ifdef INET6
2298 case AF_INET6:
2299 rnh = nep->ne_inet6head;
2300 break;
2301 #endif
2302 default:
2303 rnh = NULL;
2305 if (rnh != NULL) {
2306 np = (struct netcred *)
2307 (*rnh->rnh_matchaddr)((char *)saddr,
2308 rnh);
2309 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2310 np = NULL;
2313 NE_UNLOCK(nep);
2315 * If no address match, use the default if it exists.
2317 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2318 np = &nep->ne_defexported;
2320 return (np);
2324 * perform msync on all vnodes under a mount point. The mount point must
2325 * be locked. This code is also responsible for lazy-freeing unreferenced
2326 * vnodes whos VM objects no longer contain pages.
2328 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2330 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2331 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2332 * way up in this high level function.
2334 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2335 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2337 void
2338 vfs_msync(struct mount *mp, int flags)
2340 int vmsc_flags;
2343 * tmpfs sets this flag to prevent msync(), sync, and the
2344 * filesystem periodic syncer from trying to flush VM pages
2345 * to swap. Only pure memory pressure flushes tmpfs VM pages
2346 * to swap.
2348 if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2349 return;
2352 * Ok, scan the vnodes for work. If the filesystem is using the
2353 * syncer thread feature we can use vsyncscan() instead of
2354 * vmntvnodescan(), which is much faster.
2356 vmsc_flags = VMSC_GETVP;
2357 if (flags != MNT_WAIT)
2358 vmsc_flags |= VMSC_NOWAIT;
2360 if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2361 vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2362 (void *)(intptr_t)flags);
2363 } else {
2364 vmntvnodescan(mp, vmsc_flags,
2365 vfs_msync_scan1, vfs_msync_scan2,
2366 (void *)(intptr_t)flags);
2371 * scan1 is a fast pre-check. There could be hundreds of thousands of
2372 * vnodes, we cannot afford to do anything heavy weight until we have a
2373 * fairly good indication that there is work to do.
2375 static
2377 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2379 int flags = (int)(intptr_t)data;
2381 if ((vp->v_flag & VRECLAIMED) == 0) {
2382 if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 &&
2383 vp->v_object) {
2384 return(0); /* call scan2 */
2386 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2387 (vp->v_flag & VOBJDIRTY) &&
2388 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2389 return(0); /* call scan2 */
2394 * do not call scan2, continue the loop
2396 return(-1);
2400 * This callback is handed a locked vnode.
2402 static
2404 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2406 vm_object_t obj;
2407 int flags = (int)(intptr_t)data;
2409 if (vp->v_flag & VRECLAIMED)
2410 return(0);
2412 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2413 if ((obj = vp->v_object) != NULL) {
2414 vm_object_page_clean(obj, 0, 0,
2415 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2418 return(0);
2422 * Wake up anyone interested in vp because it is being revoked.
2424 void
2425 vn_gone(struct vnode *vp)
2427 lwkt_gettoken(&vp->v_token);
2428 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2429 lwkt_reltoken(&vp->v_token);
2433 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2434 * (or v_rdev might be NULL).
2436 cdev_t
2437 vn_todev(struct vnode *vp)
2439 if (vp->v_type != VBLK && vp->v_type != VCHR)
2440 return (NULL);
2441 KKASSERT(vp->v_rdev != NULL);
2442 return (vp->v_rdev);
2446 * Check if vnode represents a disk device. The vnode does not need to be
2447 * opened.
2449 * MPALMOSTSAFE
2452 vn_isdisk(struct vnode *vp, int *errp)
2454 cdev_t dev;
2456 if (vp->v_type != VCHR) {
2457 if (errp != NULL)
2458 *errp = ENOTBLK;
2459 return (0);
2462 dev = vp->v_rdev;
2464 if (dev == NULL) {
2465 if (errp != NULL)
2466 *errp = ENXIO;
2467 return (0);
2469 if (dev_is_good(dev) == 0) {
2470 if (errp != NULL)
2471 *errp = ENXIO;
2472 return (0);
2474 if ((dev_dflags(dev) & D_DISK) == 0) {
2475 if (errp != NULL)
2476 *errp = ENOTBLK;
2477 return (0);
2479 if (errp != NULL)
2480 *errp = 0;
2481 return (1);
2485 vn_get_namelen(struct vnode *vp, int *namelen)
2487 int error;
2488 register_t retval[2];
2490 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2491 if (error)
2492 return (error);
2493 *namelen = (int)retval[0];
2494 return (0);
2498 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2499 uint16_t d_namlen, const char *d_name)
2501 struct dirent *dp;
2502 size_t len;
2504 len = _DIRENT_RECLEN(d_namlen);
2505 if (len > uio->uio_resid)
2506 return(1);
2508 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2510 dp->d_ino = d_ino;
2511 dp->d_namlen = d_namlen;
2512 dp->d_type = d_type;
2513 bcopy(d_name, dp->d_name, d_namlen);
2515 *error = uiomove((caddr_t)dp, len, uio);
2517 kfree(dp, M_TEMP);
2519 return(0);
2522 void
2523 vn_mark_atime(struct vnode *vp, struct thread *td)
2525 struct proc *p = td->td_proc;
2526 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2528 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2529 VOP_MARKATIME(vp, cred);
2534 * Calculate the number of entries in an inode-related chained hash table.
2535 * With today's memory sizes, maxvnodes can wind up being a very large
2536 * number. There is no reason to waste memory, so tolerate some stacking.
2539 vfs_inodehashsize(void)
2541 int hsize;
2543 hsize = 32;
2544 while (hsize < maxvnodes)
2545 hsize <<= 1;
2546 while (hsize > maxvnodes * 2)
2547 hsize >>= 1; /* nominal 2x stacking */
2549 if (maxvnodes > 1024 * 1024)
2550 hsize >>= 1; /* nominal 8x stacking */
2552 if (maxvnodes > 128 * 1024)
2553 hsize >>= 1; /* nominal 4x stacking */
2555 if (hsize < 16)
2556 hsize = 16;
2558 return hsize;