2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <vm/vm_page2.h>
74 BQUEUE_NONE
, /* not on any queue */
75 BQUEUE_LOCKED
, /* locked buffers */
76 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY
, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW
, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTY
, /* empty buffer headers */
81 BUFFER_QUEUES
/* number of buffer queues */
84 typedef enum bufq_type bufq_type_t
;
86 #define BD_WAKE_SIZE 16384
87 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
89 TAILQ_HEAD(bqueues
, buf
);
93 struct bqueues bufqueues
[BUFFER_QUEUES
];
96 struct bufpcpu bufpcpu
[MAXCPU
];
98 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
100 struct buf
*buf
; /* buffer header pool */
102 static void vfs_clean_pages(struct buf
*bp
);
103 static void vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
105 static void vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
107 static void vfs_vmio_release(struct buf
*bp
);
108 static int flushbufqueues(struct buf
*marker
, bufq_type_t q
);
109 static vm_page_t
bio_page_alloc(struct buf
*bp
, vm_object_t obj
,
110 vm_pindex_t pg
, int deficit
);
112 static void bd_signal(long totalspace
);
113 static void buf_daemon(void);
114 static void buf_daemon_hw(void);
117 * bogus page -- for I/O to/from partially complete buffers
118 * this is a temporary solution to the problem, but it is not
119 * really that bad. it would be better to split the buffer
120 * for input in the case of buffers partially already in memory,
121 * but the code is intricate enough already.
123 vm_page_t bogus_page
;
126 * These are all static, but make the ones we export globals so we do
127 * not need to use compiler magic.
129 long bufspace
; /* atomic ops */
131 static long bufmallocspace
; /* atomic ops */
132 long maxbufmallocspace
, lobufspace
, hibufspace
;
133 static long lorunningspace
;
134 static long hirunningspace
;
135 static long dirtykvaspace
; /* atomic */
136 long dirtybufspace
; /* atomic (global for systat) */
137 static long dirtybufcount
; /* atomic */
138 static long dirtybufspacehw
; /* atomic */
139 static long dirtybufcounthw
; /* atomic */
140 static long runningbufspace
; /* atomic */
141 static long runningbufcount
; /* atomic */
142 long lodirtybufspace
;
143 long hidirtybufspace
;
144 static int getnewbufcalls
;
145 static int recoverbufcalls
;
146 static int needsbuffer
; /* atomic */
147 static int runningbufreq
; /* atomic */
148 static int bd_request
; /* atomic */
149 static int bd_request_hw
; /* atomic */
150 static u_int bd_wake_ary
[BD_WAKE_SIZE
];
151 static u_int bd_wake_index
;
152 static u_int vm_cycle_point
= 40; /* 23-36 will migrate more act->inact */
153 static int debug_commit
;
154 static int debug_bufbio
;
155 static int debug_kvabio
;
156 static long bufcache_bw
= 200 * 1024 * 1024;
158 static struct thread
*bufdaemon_td
;
159 static struct thread
*bufdaemonhw_td
;
160 static u_int lowmempgallocs
;
161 static u_int lowmempgfails
;
162 static u_int flushperqueue
= 1024;
165 * Sysctls for operational control of the buffer cache.
167 SYSCTL_UINT(_vfs
, OID_AUTO
, flushperqueue
, CTLFLAG_RW
, &flushperqueue
, 0,
168 "Number of buffers to flush from each per-cpu queue");
169 SYSCTL_LONG(_vfs
, OID_AUTO
, lodirtybufspace
, CTLFLAG_RW
, &lodirtybufspace
, 0,
170 "Number of dirty buffers to flush before bufdaemon becomes inactive");
171 SYSCTL_LONG(_vfs
, OID_AUTO
, hidirtybufspace
, CTLFLAG_RW
, &hidirtybufspace
, 0,
172 "High watermark used to trigger explicit flushing of dirty buffers");
173 SYSCTL_LONG(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
174 "Minimum amount of buffer space required for active I/O");
175 SYSCTL_LONG(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
176 "Maximum amount of buffer space to usable for active I/O");
177 SYSCTL_LONG(_vfs
, OID_AUTO
, bufcache_bw
, CTLFLAG_RW
, &bufcache_bw
, 0,
178 "Buffer-cache -> VM page cache transfer bandwidth");
179 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgallocs
, CTLFLAG_RW
, &lowmempgallocs
, 0,
180 "Page allocations done during periods of very low free memory");
181 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgfails
, CTLFLAG_RW
, &lowmempgfails
, 0,
182 "Page allocations which failed during periods of very low free memory");
183 SYSCTL_UINT(_vfs
, OID_AUTO
, vm_cycle_point
, CTLFLAG_RW
, &vm_cycle_point
, 0,
184 "Recycle pages to active or inactive queue transition pt 0-64");
186 * Sysctls determining current state of the buffer cache.
188 SYSCTL_LONG(_vfs
, OID_AUTO
, nbuf
, CTLFLAG_RD
, &nbuf
, 0,
189 "Total number of buffers in buffer cache");
190 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtykvaspace
, CTLFLAG_RD
, &dirtykvaspace
, 0,
191 "KVA reserved by dirty buffers (all)");
192 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspace
, CTLFLAG_RD
, &dirtybufspace
, 0,
193 "Pending bytes of dirty buffers (all)");
194 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspacehw
, CTLFLAG_RD
, &dirtybufspacehw
, 0,
195 "Pending bytes of dirty buffers (heavy weight)");
196 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcount
, CTLFLAG_RD
, &dirtybufcount
, 0,
197 "Pending number of dirty buffers");
198 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcounthw
, CTLFLAG_RD
, &dirtybufcounthw
, 0,
199 "Pending number of dirty buffers (heavy weight)");
200 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
201 "I/O bytes currently in progress due to asynchronous writes");
202 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufcount
, CTLFLAG_RD
, &runningbufcount
, 0,
203 "I/O buffers currently in progress due to asynchronous writes");
204 SYSCTL_LONG(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
205 "Hard limit on maximum amount of memory usable for buffer space");
206 SYSCTL_LONG(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
207 "Soft limit on maximum amount of memory usable for buffer space");
208 SYSCTL_LONG(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
209 "Minimum amount of memory to reserve for system buffer space");
210 SYSCTL_LONG(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
211 "Amount of memory available for buffers");
212 SYSCTL_LONG(_vfs
, OID_AUTO
, maxmallocbufspace
, CTLFLAG_RD
, &maxbufmallocspace
,
213 0, "Maximum amount of memory reserved for buffers using malloc");
214 SYSCTL_LONG(_vfs
, OID_AUTO
, bufmallocspace
, CTLFLAG_RD
, &bufmallocspace
, 0,
215 "Amount of memory left for buffers using malloc-scheme");
216 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
217 "New buffer header acquisition requests");
218 SYSCTL_INT(_vfs
, OID_AUTO
, recoverbufcalls
, CTLFLAG_RD
, &recoverbufcalls
, 0,
219 "Recover VM space in an emergency");
220 SYSCTL_INT(_vfs
, OID_AUTO
, debug_commit
, CTLFLAG_RW
, &debug_commit
, 0, "");
221 SYSCTL_INT(_vfs
, OID_AUTO
, debug_bufbio
, CTLFLAG_RW
, &debug_bufbio
, 0, "");
222 SYSCTL_INT(_vfs
, OID_AUTO
, debug_kvabio
, CTLFLAG_RW
, &debug_kvabio
, 0, "");
223 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
224 "sizeof(struct buf)");
226 char *buf_wmesg
= BUF_WMESG
;
228 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
229 #define VFS_BIO_NEED_UNUSED02 0x02
230 #define VFS_BIO_NEED_UNUSED04 0x04
231 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
234 * Called when buffer space is potentially available for recovery.
235 * getnewbuf() will block on this flag when it is unable to free
236 * sufficient buffer space. Buffer space becomes recoverable when
237 * bp's get placed back in the queues.
243 * If someone is waiting for BUF space, wake them up. Even
244 * though we haven't freed the kva space yet, the waiting
245 * process will be able to now.
248 int flags
= needsbuffer
;
250 if ((flags
& VFS_BIO_NEED_BUFSPACE
) == 0)
252 if (atomic_cmpset_int(&needsbuffer
, flags
,
253 flags
& ~VFS_BIO_NEED_BUFSPACE
)) {
254 wakeup(&needsbuffer
);
264 * Accounting for I/O in progress.
268 runningbufwakeup(struct buf
*bp
)
273 if ((totalspace
= bp
->b_runningbufspace
) != 0) {
274 atomic_add_long(&runningbufspace
, -totalspace
);
275 atomic_add_long(&runningbufcount
, -1);
276 bp
->b_runningbufspace
= 0;
279 * see waitrunningbufspace() for limit test.
282 flags
= runningbufreq
;
286 if (atomic_cmpset_int(&runningbufreq
, flags
, 0)) {
287 wakeup(&runningbufreq
);
292 bd_signal(totalspace
);
299 * Called when a buffer has been added to one of the free queues to
300 * account for the buffer and to wakeup anyone waiting for free buffers.
301 * This typically occurs when large amounts of metadata are being handled
302 * by the buffer cache ( else buffer space runs out first, usually ).
313 if (atomic_cmpset_int(&needsbuffer
, flags
,
314 (flags
& ~VFS_BIO_NEED_ANY
))) {
315 wakeup(&needsbuffer
);
323 * waitrunningbufspace()
325 * If runningbufspace exceeds 4/6 hirunningspace we block until
326 * runningbufspace drops to 3/6 hirunningspace. We also block if another
327 * thread blocked here in order to be fair, even if runningbufspace
328 * is now lower than the limit.
330 * The caller may be using this function to block in a tight loop, we
331 * must block while runningbufspace is greater than at least
332 * hirunningspace * 3 / 6.
335 waitrunningbufspace(void)
337 long limit
= hirunningspace
* 4 / 6;
340 while (runningbufspace
> limit
|| runningbufreq
) {
341 tsleep_interlock(&runningbufreq
, 0);
342 flags
= atomic_fetchadd_int(&runningbufreq
, 1);
343 if (runningbufspace
> limit
|| flags
)
344 tsleep(&runningbufreq
, PINTERLOCKED
, "wdrn1", hz
);
349 * buf_dirty_count_severe:
351 * Return true if we have too many dirty buffers.
354 buf_dirty_count_severe(void)
356 return (runningbufspace
+ dirtykvaspace
>= hidirtybufspace
||
357 dirtybufcount
>= nbuf
/ 2);
361 * Return true if the amount of running I/O is severe and BIOQ should
365 buf_runningbufspace_severe(void)
367 return (runningbufspace
>= hirunningspace
* 4 / 6);
371 * vfs_buf_test_cache:
373 * Called when a buffer is extended. This function clears the B_CACHE
374 * bit if the newly extended portion of the buffer does not contain
377 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
378 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
379 * them while a clean buffer was present.
383 vfs_buf_test_cache(struct buf
*bp
,
384 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
387 if (bp
->b_flags
& B_CACHE
) {
388 int base
= (foff
+ off
) & PAGE_MASK
;
389 if (vm_page_is_valid(m
, base
, size
) == 0)
390 bp
->b_flags
&= ~B_CACHE
;
397 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
404 if (dirtykvaspace
< lodirtybufspace
&& dirtybufcount
< nbuf
/ 2)
407 if (bd_request
== 0 &&
408 (dirtykvaspace
> lodirtybufspace
/ 2 ||
409 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2)) {
410 if (atomic_fetchadd_int(&bd_request
, 1) == 0)
413 if (bd_request_hw
== 0 &&
414 (dirtykvaspace
> lodirtybufspace
/ 2 ||
415 dirtybufcounthw
>= nbuf
/ 2)) {
416 if (atomic_fetchadd_int(&bd_request_hw
, 1) == 0)
417 wakeup(&bd_request_hw
);
424 * Get the buf_daemon heated up when the number of running and dirty
425 * buffers exceeds the mid-point.
427 * Return the total number of dirty bytes past the second mid point
428 * as a measure of how much excess dirty data there is in the system.
437 mid1
= lodirtybufspace
+ (hidirtybufspace
- lodirtybufspace
) / 2;
439 totalspace
= runningbufspace
+ dirtykvaspace
;
440 if (totalspace
>= mid1
|| dirtybufcount
>= nbuf
/ 2) {
442 mid2
= mid1
+ (hidirtybufspace
- mid1
) / 2;
443 if (totalspace
>= mid2
)
444 return(totalspace
- mid2
);
452 * Wait for the buffer cache to flush (totalspace) bytes worth of
453 * buffers, then return.
455 * Regardless this function blocks while the number of dirty buffers
456 * exceeds hidirtybufspace.
459 bd_wait(long totalspace
)
466 if (curthread
== bufdaemonhw_td
|| curthread
== bufdaemon_td
)
469 while (totalspace
> 0) {
473 * Order is important. Suppliers adjust bd_wake_index after
474 * updating runningbufspace/dirtykvaspace. We want to fetch
475 * bd_wake_index before accessing. Any error should thus
478 i
= atomic_fetchadd_int(&bd_wake_index
, 0);
479 if (totalspace
> runningbufspace
+ dirtykvaspace
)
480 totalspace
= runningbufspace
+ dirtykvaspace
;
481 count
= totalspace
/ MAXBSIZE
;
482 if (count
>= BD_WAKE_SIZE
/ 2)
483 count
= BD_WAKE_SIZE
/ 2;
485 mi
= i
& BD_WAKE_MASK
;
488 * This is not a strict interlock, so we play a bit loose
489 * with locking access to dirtybufspace*. We have to re-check
490 * bd_wake_index to ensure that it hasn't passed us.
492 tsleep_interlock(&bd_wake_ary
[mi
], 0);
493 atomic_add_int(&bd_wake_ary
[mi
], 1);
494 j
= atomic_fetchadd_int(&bd_wake_index
, 0);
495 if ((int)(i
- j
) >= 0)
496 tsleep(&bd_wake_ary
[mi
], PINTERLOCKED
, "flstik", hz
);
498 totalspace
= runningbufspace
+ dirtykvaspace
- hidirtybufspace
;
505 * This function is called whenever runningbufspace or dirtykvaspace
506 * is reduced. Track threads waiting for run+dirty buffer I/O
510 bd_signal(long totalspace
)
514 if (totalspace
> 0) {
515 if (totalspace
> MAXBSIZE
* BD_WAKE_SIZE
)
516 totalspace
= MAXBSIZE
* BD_WAKE_SIZE
;
517 while (totalspace
> 0) {
518 i
= atomic_fetchadd_int(&bd_wake_index
, 1);
520 if (atomic_readandclear_int(&bd_wake_ary
[i
]))
521 wakeup(&bd_wake_ary
[i
]);
522 totalspace
-= MAXBSIZE
;
528 * BIO tracking support routines.
530 * Release a ref on a bio_track. Wakeup requests are atomically released
531 * along with the last reference so bk_active will never wind up set to
536 bio_track_rel(struct bio_track
*track
)
544 active
= track
->bk_active
;
545 if (active
== 1 && atomic_cmpset_int(&track
->bk_active
, 1, 0))
549 * Full-on. Note that the wait flag is only atomically released on
550 * the 1->0 count transition.
552 * We check for a negative count transition using bit 30 since bit 31
553 * has a different meaning.
556 desired
= (active
& 0x7FFFFFFF) - 1;
558 desired
|= active
& 0x80000000;
559 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
560 if (desired
& 0x40000000)
561 panic("bio_track_rel: bad count: %p", track
);
562 if (active
& 0x80000000)
566 active
= track
->bk_active
;
571 * Wait for the tracking count to reach 0.
573 * Use atomic ops such that the wait flag is only set atomically when
574 * bk_active is non-zero.
577 bio_track_wait(struct bio_track
*track
, int slp_flags
, int slp_timo
)
586 if (track
->bk_active
== 0)
590 * Full-on. Note that the wait flag may only be atomically set if
591 * the active count is non-zero.
593 * NOTE: We cannot optimize active == desired since a wakeup could
594 * clear active prior to our tsleep_interlock().
597 while ((active
= track
->bk_active
) != 0) {
599 desired
= active
| 0x80000000;
600 tsleep_interlock(track
, slp_flags
);
601 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
602 error
= tsleep(track
, slp_flags
| PINTERLOCKED
,
614 * Load time initialisation of the buffer cache, called from machine
615 * dependant initialization code.
619 bufinit(void *dummy __unused
)
621 struct bufpcpu
*pcpu
;
623 vm_offset_t bogus_offset
;
628 /* next, make a null set of free lists */
629 for (i
= 0; i
< ncpus
; ++i
) {
631 spin_init(&pcpu
->spin
, "bufinit");
632 for (j
= 0; j
< BUFFER_QUEUES
; j
++)
633 TAILQ_INIT(&pcpu
->bufqueues
[j
]);
637 * Finally, initialize each buffer header and stick on empty q.
638 * Each buffer gets its own KVA reservation.
643 for (n
= 0; n
< nbuf
; n
++) {
645 bzero(bp
, sizeof *bp
);
646 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
647 bp
->b_cmd
= BUF_CMD_DONE
;
648 bp
->b_qindex
= BQUEUE_EMPTY
;
650 bp
->b_kvabase
= (void *)(vm_map_min(&buffer_map
) +
652 bp
->b_kvasize
= MAXBSIZE
;
654 xio_init(&bp
->b_xio
);
656 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
664 * maxbufspace is the absolute maximum amount of buffer space we are
665 * allowed to reserve in KVM and in real terms. The absolute maximum
666 * is nominally used by buf_daemon. hibufspace is the nominal maximum
667 * used by most other processes. The differential is required to
668 * ensure that buf_daemon is able to run when other processes might
669 * be blocked waiting for buffer space.
671 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
672 * too large or we might lockup a cpu for too long a period of
673 * time in our tight loop.
675 maxbufspace
= nbuf
* NBUFCALCSIZE
;
676 hibufspace
= lmax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
677 lobufspace
= hibufspace
* 7 / 8;
678 if (hibufspace
- lobufspace
> 64 * 1024 * 1024)
679 lobufspace
= hibufspace
- 64 * 1024 * 1024;
680 if (lobufspace
> hibufspace
- MAXBSIZE
)
681 lobufspace
= hibufspace
- MAXBSIZE
;
683 lorunningspace
= 512 * 1024;
684 /* hirunningspace -- see below */
687 * Limit the amount of malloc memory since it is wired permanently
688 * into the kernel space. Even though this is accounted for in
689 * the buffer allocation, we don't want the malloced region to grow
690 * uncontrolled. The malloc scheme improves memory utilization
691 * significantly on average (small) directories.
693 maxbufmallocspace
= hibufspace
/ 20;
696 * Reduce the chance of a deadlock occuring by limiting the number
697 * of delayed-write dirty buffers we allow to stack up.
699 * We don't want too much actually queued to the device at once
700 * (XXX this needs to be per-mount!), because the buffers will
701 * wind up locked for a very long period of time while the I/O
704 hidirtybufspace
= hibufspace
/ 2; /* dirty + running */
705 hirunningspace
= hibufspace
/ 16; /* locked & queued to device */
706 if (hirunningspace
< 1024 * 1024)
707 hirunningspace
= 1024 * 1024;
713 lodirtybufspace
= hidirtybufspace
/ 2;
716 * Maximum number of async ops initiated per buf_daemon loop. This is
717 * somewhat of a hack at the moment, we really need to limit ourselves
718 * based on the number of bytes of I/O in-transit that were initiated
722 bogus_offset
= kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
,
724 vm_object_hold(&kernel_object
);
725 bogus_page
= vm_page_alloc(&kernel_object
,
726 (bogus_offset
>> PAGE_SHIFT
),
728 vm_object_drop(&kernel_object
);
729 vmstats
.v_wire_count
++;
733 SYSINIT(do_bufinit
, SI_BOOT2_MACHDEP
, SI_ORDER_FIRST
, bufinit
, NULL
);
736 * Initialize the embedded bio structures, typically used by
737 * deprecated code which tries to allocate its own struct bufs.
740 initbufbio(struct buf
*bp
)
742 bp
->b_bio1
.bio_buf
= bp
;
743 bp
->b_bio1
.bio_prev
= NULL
;
744 bp
->b_bio1
.bio_offset
= NOOFFSET
;
745 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
746 bp
->b_bio1
.bio_done
= NULL
;
747 bp
->b_bio1
.bio_flags
= 0;
749 bp
->b_bio2
.bio_buf
= bp
;
750 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
751 bp
->b_bio2
.bio_offset
= NOOFFSET
;
752 bp
->b_bio2
.bio_next
= NULL
;
753 bp
->b_bio2
.bio_done
= NULL
;
754 bp
->b_bio2
.bio_flags
= 0;
760 * Reinitialize the embedded bio structures as well as any additional
761 * translation cache layers.
764 reinitbufbio(struct buf
*bp
)
768 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
769 bio
->bio_done
= NULL
;
770 bio
->bio_offset
= NOOFFSET
;
775 * Undo the effects of an initbufbio().
778 uninitbufbio(struct buf
*bp
)
785 * Push another BIO layer onto an existing BIO and return it. The new
786 * BIO layer may already exist, holding cached translation data.
789 push_bio(struct bio
*bio
)
793 if ((nbio
= bio
->bio_next
) == NULL
) {
794 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
795 if (index
>= NBUF_BIO
- 1) {
796 panic("push_bio: too many layers %d for bp %p",
797 index
, bio
->bio_buf
);
799 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
800 bio
->bio_next
= nbio
;
801 nbio
->bio_prev
= bio
;
802 nbio
->bio_buf
= bio
->bio_buf
;
803 nbio
->bio_offset
= NOOFFSET
;
804 nbio
->bio_done
= NULL
;
805 nbio
->bio_next
= NULL
;
807 KKASSERT(nbio
->bio_done
== NULL
);
812 * Pop a BIO translation layer, returning the previous layer. The
813 * must have been previously pushed.
816 pop_bio(struct bio
*bio
)
818 return(bio
->bio_prev
);
822 clearbiocache(struct bio
*bio
)
825 bio
->bio_offset
= NOOFFSET
;
831 * Remove the buffer from the appropriate free list.
832 * (caller must be locked)
835 _bremfree(struct buf
*bp
)
837 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
839 if (bp
->b_qindex
!= BQUEUE_NONE
) {
840 KASSERT(BUF_LOCKINUSE(bp
), ("bremfree: bp %p not locked", bp
));
841 TAILQ_REMOVE(&pcpu
->bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
842 bp
->b_qindex
= BQUEUE_NONE
;
844 if (!BUF_LOCKINUSE(bp
))
845 panic("bremfree: removing a buffer not on a queue");
850 * bremfree() - must be called with a locked buffer
853 bremfree(struct buf
*bp
)
855 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
857 spin_lock(&pcpu
->spin
);
859 spin_unlock(&pcpu
->spin
);
863 * bremfree_locked - must be called with pcpu->spin locked
866 bremfree_locked(struct buf
*bp
)
872 * This version of bread issues any required I/O asyncnronously and
873 * makes a callback on completion.
875 * The callback must check whether BIO_DONE is set in the bio and issue
876 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
877 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
880 breadcb(struct vnode
*vp
, off_t loffset
, int size
, int bflags
,
881 void (*func
)(struct bio
*), void *arg
)
885 bp
= getblk(vp
, loffset
, size
, 0, 0);
887 /* if not found in cache, do some I/O */
888 if ((bp
->b_flags
& B_CACHE
) == 0) {
889 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
| B_NOTMETA
);
890 bp
->b_flags
|= bflags
;
891 bp
->b_cmd
= BUF_CMD_READ
;
892 bp
->b_bio1
.bio_done
= func
;
893 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
894 vfs_busy_pages(vp
, bp
);
896 vn_strategy(vp
, &bp
->b_bio1
);
899 * Since we are issuing the callback synchronously it cannot
900 * race the BIO_DONE, so no need for atomic ops here.
902 /*bp->b_bio1.bio_done = func;*/
903 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
904 bp
->b_bio1
.bio_flags
|= BIO_DONE
;
912 * breadnx() - Terminal function for bread() and breadn().
914 * This function will start asynchronous I/O on read-ahead blocks as well
915 * as satisfy the primary request.
917 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
918 * set, the buffer is valid and we do not have to do anything.
921 breadnx(struct vnode
*vp
, off_t loffset
, int size
, int bflags
,
922 off_t
*raoffset
, int *rabsize
,
923 int cnt
, struct buf
**bpp
)
925 struct buf
*bp
, *rabp
;
927 int rv
= 0, readwait
= 0;
928 int blkflags
= (bflags
& B_KVABIO
) ? GETBLK_KVABIO
: 0;
933 *bpp
= bp
= getblk(vp
, loffset
, size
, blkflags
, 0);
935 /* if not found in cache, do some I/O */
936 if ((bp
->b_flags
& B_CACHE
) == 0) {
937 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
| B_NOTMETA
);
938 bp
->b_flags
|= bflags
;
939 bp
->b_cmd
= BUF_CMD_READ
;
940 bp
->b_bio1
.bio_done
= biodone_sync
;
941 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
942 vfs_busy_pages(vp
, bp
);
943 vn_strategy(vp
, &bp
->b_bio1
);
947 for (i
= 0; i
< cnt
; i
++, raoffset
++, rabsize
++) {
948 if (inmem(vp
, *raoffset
))
950 rabp
= getblk(vp
, *raoffset
, *rabsize
, GETBLK_KVABIO
, 0);
952 if ((rabp
->b_flags
& B_CACHE
) == 0) {
953 rabp
->b_flags
&= ~(B_ERROR
| B_EINTR
|
954 B_INVAL
| B_NOTMETA
);
955 rabp
->b_flags
|= (bflags
& ~B_KVABIO
);
956 rabp
->b_cmd
= BUF_CMD_READ
;
957 vfs_busy_pages(vp
, rabp
);
959 vn_strategy(vp
, &rabp
->b_bio1
);
965 rv
= biowait(&bp
->b_bio1
, "biord");
972 * Synchronous write, waits for completion.
974 * Write, release buffer on completion. (Done by iodone
975 * if async). Do not bother writing anything if the buffer
978 * Note that we set B_CACHE here, indicating that buffer is
979 * fully valid and thus cacheable. This is true even of NFS
980 * now so we set it generally. This could be set either here
981 * or in biodone() since the I/O is synchronous. We put it
985 bwrite(struct buf
*bp
)
989 if (bp
->b_flags
& B_INVAL
) {
993 if (BUF_LOCKINUSE(bp
) == 0)
994 panic("bwrite: buffer is not busy???");
997 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
998 * call because it will remove the buffer from the vnode's
999 * dirty buffer list prematurely and possibly cause filesystem
1000 * checks to race buffer flushes. This is now handled in
1003 * bundirty(bp); REMOVED
1006 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1007 bp
->b_flags
|= B_CACHE
;
1008 bp
->b_cmd
= BUF_CMD_WRITE
;
1009 bp
->b_bio1
.bio_done
= biodone_sync
;
1010 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
1011 vfs_busy_pages(bp
->b_vp
, bp
);
1014 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1015 * valid for vnode-backed buffers.
1017 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1018 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1019 error
= biowait(&bp
->b_bio1
, "biows");
1028 * Asynchronous write. Start output on a buffer, but do not wait for
1029 * it to complete. The buffer is released when the output completes.
1031 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1032 * B_INVAL buffers. Not us.
1035 bawrite(struct buf
*bp
)
1037 if (bp
->b_flags
& B_INVAL
) {
1041 if (BUF_LOCKINUSE(bp
) == 0)
1042 panic("bawrite: buffer is not busy???");
1045 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1046 * call because it will remove the buffer from the vnode's
1047 * dirty buffer list prematurely and possibly cause filesystem
1048 * checks to race buffer flushes. This is now handled in
1051 * bundirty(bp); REMOVED
1053 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1054 bp
->b_flags
|= B_CACHE
;
1055 bp
->b_cmd
= BUF_CMD_WRITE
;
1056 KKASSERT(bp
->b_bio1
.bio_done
== NULL
);
1057 vfs_busy_pages(bp
->b_vp
, bp
);
1060 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1061 * valid for vnode-backed buffers.
1063 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1065 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1071 * Delayed write. (Buffer is marked dirty). Do not bother writing
1072 * anything if the buffer is marked invalid.
1074 * Note that since the buffer must be completely valid, we can safely
1075 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1076 * biodone() in order to prevent getblk from writing the buffer
1077 * out synchronously.
1080 bdwrite(struct buf
*bp
)
1082 if (BUF_LOCKINUSE(bp
) == 0)
1083 panic("bdwrite: buffer is not busy");
1085 if (bp
->b_flags
& B_INVAL
) {
1091 dsched_buf_enter(bp
); /* might stack */
1094 * Set B_CACHE, indicating that the buffer is fully valid. This is
1095 * true even of NFS now.
1097 bp
->b_flags
|= B_CACHE
;
1100 * This bmap keeps the system from needing to do the bmap later,
1101 * perhaps when the system is attempting to do a sync. Since it
1102 * is likely that the indirect block -- or whatever other datastructure
1103 * that the filesystem needs is still in memory now, it is a good
1104 * thing to do this. Note also, that if the pageout daemon is
1105 * requesting a sync -- there might not be enough memory to do
1106 * the bmap then... So, this is important to do.
1108 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
1109 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
, &bp
->b_bio2
.bio_offset
,
1110 NULL
, NULL
, BUF_CMD_WRITE
);
1114 * Because the underlying pages may still be mapped and
1115 * writable trying to set the dirty buffer (b_dirtyoff/end)
1116 * range here will be inaccurate.
1118 * However, we must still clean the pages to satisfy the
1119 * vnode_pager and pageout daemon, so they think the pages
1120 * have been "cleaned". What has really occured is that
1121 * they've been earmarked for later writing by the buffer
1124 * So we get the b_dirtyoff/end update but will not actually
1125 * depend on it (NFS that is) until the pages are busied for
1128 vfs_clean_pages(bp
);
1132 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1133 * due to the softdep code.
1138 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1139 * This is used by tmpfs.
1141 * It is important for any VFS using this routine to NOT use it for
1142 * IO_SYNC or IO_ASYNC operations which occur when the system really
1143 * wants to flush VM pages to backing store.
1146 buwrite(struct buf
*bp
)
1152 * Only works for VMIO buffers. If the buffer is already
1153 * marked for delayed-write we can't avoid the bdwrite().
1155 if ((bp
->b_flags
& B_VMIO
) == 0 || (bp
->b_flags
& B_DELWRI
)) {
1161 * Mark as needing a commit.
1163 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1164 m
= bp
->b_xio
.xio_pages
[i
];
1165 vm_page_need_commit(m
);
1173 * Turn buffer into delayed write request by marking it B_DELWRI.
1174 * B_RELBUF and B_NOCACHE must be cleared.
1176 * We reassign the buffer to itself to properly update it in the
1177 * dirty/clean lists.
1179 * Must be called from a critical section.
1180 * The buffer must be on BQUEUE_NONE.
1183 bdirty(struct buf
*bp
)
1185 KASSERT(bp
->b_qindex
== BQUEUE_NONE
,
1186 ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
1187 if (bp
->b_flags
& B_NOCACHE
) {
1188 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp
);
1189 bp
->b_flags
&= ~B_NOCACHE
;
1191 if (bp
->b_flags
& B_INVAL
) {
1192 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp
);
1194 bp
->b_flags
&= ~B_RELBUF
;
1196 if ((bp
->b_flags
& B_DELWRI
) == 0) {
1197 lwkt_gettoken(&bp
->b_vp
->v_token
);
1198 bp
->b_flags
|= B_DELWRI
;
1200 lwkt_reltoken(&bp
->b_vp
->v_token
);
1202 atomic_add_long(&dirtybufcount
, 1);
1203 atomic_add_long(&dirtykvaspace
, bp
->b_kvasize
);
1204 atomic_add_long(&dirtybufspace
, bp
->b_bufsize
);
1205 if (bp
->b_flags
& B_HEAVY
) {
1206 atomic_add_long(&dirtybufcounthw
, 1);
1207 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1214 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1215 * needs to be flushed with a different buf_daemon thread to avoid
1216 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1219 bheavy(struct buf
*bp
)
1221 if ((bp
->b_flags
& B_HEAVY
) == 0) {
1222 bp
->b_flags
|= B_HEAVY
;
1223 if (bp
->b_flags
& B_DELWRI
) {
1224 atomic_add_long(&dirtybufcounthw
, 1);
1225 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1233 * Clear B_DELWRI for buffer.
1235 * Must be called from a critical section.
1237 * The buffer is typically on BQUEUE_NONE but there is one case in
1238 * brelse() that calls this function after placing the buffer on
1239 * a different queue.
1242 bundirty(struct buf
*bp
)
1244 if (bp
->b_flags
& B_DELWRI
) {
1245 lwkt_gettoken(&bp
->b_vp
->v_token
);
1246 bp
->b_flags
&= ~B_DELWRI
;
1248 lwkt_reltoken(&bp
->b_vp
->v_token
);
1250 atomic_add_long(&dirtybufcount
, -1);
1251 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1252 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1253 if (bp
->b_flags
& B_HEAVY
) {
1254 atomic_add_long(&dirtybufcounthw
, -1);
1255 atomic_add_long(&dirtybufspacehw
, -bp
->b_bufsize
);
1257 bd_signal(bp
->b_bufsize
);
1260 * Since it is now being written, we can clear its deferred write flag.
1262 bp
->b_flags
&= ~B_DEFERRED
;
1266 * Set the b_runningbufspace field, used to track how much I/O is
1267 * in progress at any given moment.
1270 bsetrunningbufspace(struct buf
*bp
, int bytes
)
1272 bp
->b_runningbufspace
= bytes
;
1274 atomic_add_long(&runningbufspace
, bytes
);
1275 atomic_add_long(&runningbufcount
, 1);
1282 * Release a busy buffer and, if requested, free its resources. The
1283 * buffer will be stashed in the appropriate bufqueue[] allowing it
1284 * to be accessed later as a cache entity or reused for other purposes.
1287 brelse(struct buf
*bp
)
1289 struct bufpcpu
*pcpu
;
1291 int saved_flags
= bp
->b_flags
;
1294 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1295 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1298 * If B_NOCACHE is set we are being asked to destroy the buffer and
1299 * its backing store. Clear B_DELWRI.
1301 * B_NOCACHE is set in two cases: (1) when the caller really wants
1302 * to destroy the buffer and backing store and (2) when the caller
1303 * wants to destroy the buffer and backing store after a write
1306 if ((bp
->b_flags
& (B_NOCACHE
|B_DELWRI
)) == (B_NOCACHE
|B_DELWRI
)) {
1310 if ((bp
->b_flags
& (B_INVAL
| B_DELWRI
)) == B_DELWRI
) {
1312 * A re-dirtied buffer is only subject to destruction
1313 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1315 /* leave buffer intact */
1316 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
)) ||
1317 (bp
->b_bufsize
<= 0)) {
1319 * Either a failed read or we were asked to free or not
1320 * cache the buffer. This path is reached with B_DELWRI
1321 * set only if B_INVAL is already set. B_NOCACHE governs
1322 * backing store destruction.
1324 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1325 * buffer cannot be immediately freed.
1327 bp
->b_flags
|= B_INVAL
;
1328 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1330 if (bp
->b_flags
& B_DELWRI
) {
1331 atomic_add_long(&dirtybufcount
, -1);
1332 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1333 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1334 if (bp
->b_flags
& B_HEAVY
) {
1335 atomic_add_long(&dirtybufcounthw
, -1);
1336 atomic_add_long(&dirtybufspacehw
,
1339 bd_signal(bp
->b_bufsize
);
1341 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
);
1345 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1346 * or if b_refs is non-zero.
1348 * If vfs_vmio_release() is called with either bit set, the
1349 * underlying pages may wind up getting freed causing a previous
1350 * write (bdwrite()) to get 'lost' because pages associated with
1351 * a B_DELWRI bp are marked clean. Pages associated with a
1352 * B_LOCKED buffer may be mapped by the filesystem.
1354 * If we want to release the buffer ourselves (rather then the
1355 * originator asking us to release it), give the originator a
1356 * chance to countermand the release by setting B_LOCKED.
1358 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1359 * if B_DELWRI is set.
1361 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1362 * on pages to return pages to the VM page queues.
1364 if ((bp
->b_flags
& (B_DELWRI
| B_LOCKED
)) || bp
->b_refs
) {
1365 bp
->b_flags
&= ~B_RELBUF
;
1366 } else if (vm_page_count_min(0)) {
1367 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1368 buf_deallocate(bp
); /* can set B_LOCKED */
1369 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
))
1370 bp
->b_flags
&= ~B_RELBUF
;
1372 bp
->b_flags
|= B_RELBUF
;
1376 * Make sure b_cmd is clear. It may have already been cleared by
1379 * At this point destroying the buffer is governed by the B_INVAL
1380 * or B_RELBUF flags.
1382 bp
->b_cmd
= BUF_CMD_DONE
;
1383 dsched_buf_exit(bp
);
1386 * VMIO buffer rundown. Make sure the VM page array is restored
1387 * after an I/O may have replaces some of the pages with bogus pages
1388 * in order to not destroy dirty pages in a fill-in read.
1390 * Note that due to the code above, if a buffer is marked B_DELWRI
1391 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1392 * B_INVAL may still be set, however.
1394 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1395 * but not the backing store. B_NOCACHE will destroy the backing
1398 * Note that dirty NFS buffers contain byte-granular write ranges
1399 * and should not be destroyed w/ B_INVAL even if the backing store
1402 if (bp
->b_flags
& B_VMIO
) {
1404 * Rundown for VMIO buffers which are not dirty NFS buffers.
1416 * Get the base offset and length of the buffer. Note that
1417 * in the VMIO case if the buffer block size is not
1418 * page-aligned then b_data pointer may not be page-aligned.
1419 * But our b_xio.xio_pages array *IS* page aligned.
1421 * block sizes less then DEV_BSIZE (usually 512) are not
1422 * supported due to the page granularity bits (m->valid,
1423 * m->dirty, etc...).
1425 * See man buf(9) for more information
1428 resid
= bp
->b_bufsize
;
1429 foff
= bp
->b_loffset
;
1431 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1432 m
= bp
->b_xio
.xio_pages
[i
];
1435 * If we hit a bogus page, fixup *all* of them
1436 * now. Note that we left these pages wired
1437 * when we removed them so they had better exist,
1438 * and they cannot be ripped out from under us so
1439 * no critical section protection is necessary.
1441 if (m
== bogus_page
) {
1443 poff
= OFF_TO_IDX(bp
->b_loffset
);
1445 vm_object_hold(obj
);
1446 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1449 mtmp
= bp
->b_xio
.xio_pages
[j
];
1450 if (mtmp
== bogus_page
) {
1451 if ((bp
->b_flags
& B_HASBOGUS
) == 0)
1452 panic("brelse: bp %p corrupt bogus", bp
);
1453 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1455 panic("brelse: bp %p page %d missing", bp
, j
);
1456 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1459 vm_object_drop(obj
);
1461 if ((bp
->b_flags
& B_HASBOGUS
) ||
1462 (bp
->b_flags
& B_INVAL
) == 0) {
1463 pmap_qenter_noinval(
1464 trunc_page((vm_offset_t
)bp
->b_data
),
1465 bp
->b_xio
.xio_pages
,
1466 bp
->b_xio
.xio_npages
);
1467 bp
->b_flags
&= ~B_HASBOGUS
;
1468 bp
->b_flags
|= B_KVABIO
;
1471 m
= bp
->b_xio
.xio_pages
[i
];
1475 * Invalidate the backing store if B_NOCACHE is set
1476 * (e.g. used with vinvalbuf()). If this is NFS
1477 * we impose a requirement that the block size be
1478 * a multiple of PAGE_SIZE and create a temporary
1479 * hack to basically invalidate the whole page. The
1480 * problem is that NFS uses really odd buffer sizes
1481 * especially when tracking piecemeal writes and
1482 * it also vinvalbuf()'s a lot, which would result
1483 * in only partial page validation and invalidation
1484 * here. If the file page is mmap()'d, however,
1485 * all the valid bits get set so after we invalidate
1486 * here we would end up with weird m->valid values
1487 * like 0xfc. nfs_getpages() can't handle this so
1488 * we clear all the valid bits for the NFS case
1489 * instead of just some of them.
1491 * The real bug is the VM system having to set m->valid
1492 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1493 * itself is an artifact of the whole 512-byte
1494 * granular mess that exists to support odd block
1495 * sizes and UFS meta-data block sizes (e.g. 6144).
1496 * A complete rewrite is required.
1500 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1501 int poffset
= foff
& PAGE_MASK
;
1504 presid
= PAGE_SIZE
- poffset
;
1505 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1506 bp
->b_vp
->v_type
== VREG
) {
1508 } else if (presid
> resid
) {
1511 KASSERT(presid
>= 0, ("brelse: extra page"));
1512 vm_page_set_invalid(m
, poffset
, presid
);
1515 * Also make sure any swap cache is removed
1516 * as it is now stale (HAMMER in particular
1517 * uses B_NOCACHE to deal with buffer
1520 swap_pager_unswapped(m
);
1522 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1523 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1525 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1526 vfs_vmio_release(bp
);
1529 * Rundown for non-VMIO buffers.
1531 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1534 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1540 if (bp
->b_qindex
!= BQUEUE_NONE
)
1541 panic("brelse: free buffer onto another queue???");
1544 * Figure out the correct queue to place the cleaned up buffer on.
1545 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1546 * disassociated from their vnode.
1548 * Return the buffer to its original pcpu area
1550 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1551 spin_lock(&pcpu
->spin
);
1553 if (bp
->b_flags
& B_LOCKED
) {
1555 * Buffers that are locked are placed in the locked queue
1556 * immediately, regardless of their state.
1558 bp
->b_qindex
= BQUEUE_LOCKED
;
1559 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1561 } else if (bp
->b_bufsize
== 0) {
1563 * Buffers with no memory. Due to conditionals near the top
1564 * of brelse() such buffers should probably already be
1565 * marked B_INVAL and disassociated from their vnode.
1567 bp
->b_flags
|= B_INVAL
;
1568 KASSERT(bp
->b_vp
== NULL
,
1569 ("bp1 %p flags %08x/%08x vnode %p "
1570 "unexpectededly still associated!",
1571 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1572 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1573 bp
->b_qindex
= BQUEUE_EMPTY
;
1574 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1576 } else if (bp
->b_flags
& (B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1578 * Buffers with junk contents. Again these buffers had better
1579 * already be disassociated from their vnode.
1581 KASSERT(bp
->b_vp
== NULL
,
1582 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1583 "still associated!",
1584 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1585 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1586 bp
->b_flags
|= B_INVAL
;
1587 bp
->b_qindex
= BQUEUE_CLEAN
;
1588 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1592 * Remaining buffers. These buffers are still associated with
1595 switch(bp
->b_flags
& (B_DELWRI
|B_HEAVY
)) {
1597 bp
->b_qindex
= BQUEUE_DIRTY
;
1598 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1601 case B_DELWRI
| B_HEAVY
:
1602 bp
->b_qindex
= BQUEUE_DIRTY_HW
;
1603 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1608 * NOTE: Buffers are always placed at the end of the
1609 * queue. If B_AGE is not set the buffer will cycle
1610 * through the queue twice.
1612 bp
->b_qindex
= BQUEUE_CLEAN
;
1613 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1618 spin_unlock(&pcpu
->spin
);
1621 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1622 * on the correct queue but we have not yet unlocked it.
1624 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1628 * The bp is on an appropriate queue unless locked. If it is not
1629 * locked or dirty we can wakeup threads waiting for buffer space.
1631 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1632 * if B_INVAL is set ).
1634 if ((bp
->b_flags
& (B_LOCKED
|B_DELWRI
)) == 0)
1638 * Something we can maybe free or reuse
1640 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1644 * Clean up temporary flags and unlock the buffer.
1646 bp
->b_flags
&= ~(B_NOCACHE
| B_RELBUF
| B_DIRECT
);
1653 * Release a buffer back to the appropriate queue but do not try to free
1654 * it. The buffer is expected to be used again soon.
1656 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1657 * biodone() to requeue an async I/O on completion. It is also used when
1658 * known good buffers need to be requeued but we think we may need the data
1661 * XXX we should be able to leave the B_RELBUF hint set on completion.
1664 bqrelse(struct buf
*bp
)
1666 struct bufpcpu
*pcpu
;
1668 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1669 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1671 if (bp
->b_qindex
!= BQUEUE_NONE
)
1672 panic("bqrelse: free buffer onto another queue???");
1674 buf_act_advance(bp
);
1676 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1677 spin_lock(&pcpu
->spin
);
1679 if (bp
->b_flags
& B_LOCKED
) {
1681 * Locked buffers are released to the locked queue. However,
1682 * if the buffer is dirty it will first go into the dirty
1683 * queue and later on after the I/O completes successfully it
1684 * will be released to the locked queue.
1686 bp
->b_qindex
= BQUEUE_LOCKED
;
1687 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1689 } else if (bp
->b_flags
& B_DELWRI
) {
1690 bp
->b_qindex
= (bp
->b_flags
& B_HEAVY
) ?
1691 BQUEUE_DIRTY_HW
: BQUEUE_DIRTY
;
1692 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1694 } else if (vm_page_count_min(0)) {
1696 * We are too low on memory, we have to try to free the
1697 * buffer (most importantly: the wired pages making up its
1698 * backing store) *now*.
1700 spin_unlock(&pcpu
->spin
);
1704 bp
->b_qindex
= BQUEUE_CLEAN
;
1705 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1708 spin_unlock(&pcpu
->spin
);
1711 * We have now placed the buffer on the proper queue, but have yet
1714 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1715 ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0)) {
1720 * Something we can maybe free or reuse.
1722 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1726 * Final cleanup and unlock. Clear bits that are only used while a
1727 * buffer is actively locked.
1729 bp
->b_flags
&= ~(B_NOCACHE
| B_RELBUF
);
1730 dsched_buf_exit(bp
);
1735 * Hold a buffer, preventing it from being reused. This will prevent
1736 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1737 * operations. If a B_INVAL operation occurs the buffer will remain held
1738 * but the underlying pages may get ripped out.
1740 * These functions are typically used in VOP_READ/VOP_WRITE functions
1741 * to hold a buffer during a copyin or copyout, preventing deadlocks
1742 * or recursive lock panics when read()/write() is used over mmap()'d
1745 * NOTE: bqhold() requires that the buffer be locked at the time of the
1746 * hold. bqdrop() has no requirements other than the buffer having
1747 * previously been held.
1750 bqhold(struct buf
*bp
)
1752 atomic_add_int(&bp
->b_refs
, 1);
1756 bqdrop(struct buf
*bp
)
1758 KKASSERT(bp
->b_refs
> 0);
1759 atomic_add_int(&bp
->b_refs
, -1);
1763 * Return backing pages held by the buffer 'bp' back to the VM system.
1764 * This routine is called when the bp is invalidated, released, or
1767 * The KVA mapping (b_data) for the underlying pages is removed by
1770 * WARNING! This routine is integral to the low memory critical path
1771 * when a buffer is B_RELBUF'd. If the system has a severe page
1772 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1773 * queues so they can be reused in the current pageout daemon
1777 vfs_vmio_release(struct buf
*bp
)
1782 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1783 m
= bp
->b_xio
.xio_pages
[i
];
1784 bp
->b_xio
.xio_pages
[i
] = NULL
;
1787 * We need to own the page in order to safely unwire it.
1789 vm_page_busy_wait(m
, FALSE
, "vmiopg");
1792 * The VFS is telling us this is not a meta-data buffer
1793 * even if it is backed by a block device.
1795 if (bp
->b_flags
& B_NOTMETA
)
1796 vm_page_flag_set(m
, PG_NOTMETA
);
1799 * This is a very important bit of code. We try to track
1800 * VM page use whether the pages are wired into the buffer
1801 * cache or not. While wired into the buffer cache the
1802 * bp tracks the act_count.
1804 * We can choose to place unwired pages on the inactive
1805 * queue (0) or active queue (1). If we place too many
1806 * on the active queue the queue will cycle the act_count
1807 * on pages we'd like to keep, just from single-use pages
1808 * (such as when doing a tar-up or file scan).
1810 if (bp
->b_act_count
< vm_cycle_point
)
1811 vm_page_unwire(m
, 0);
1813 vm_page_unwire(m
, 1);
1816 * If the wire_count has dropped to 0 we may need to take
1817 * further action before unbusying the page.
1819 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1821 if (m
->wire_count
== 0) {
1822 if (bp
->b_flags
& B_DIRECT
) {
1824 * Attempt to free the page if B_DIRECT is
1825 * set, the caller does not desire the page
1829 vm_page_try_to_free(m
);
1830 } else if ((bp
->b_flags
& B_NOTMETA
) ||
1831 vm_page_count_min(0)) {
1833 * Attempt to move the page to PQ_CACHE
1834 * if B_NOTMETA is set. This flag is set
1835 * by HAMMER to remove one of the two pages
1836 * present when double buffering is enabled.
1838 * Attempt to move the page to PQ_CACHE
1839 * If we have a severe page deficit. This
1840 * will cause buffer cache operations related
1841 * to pageouts to recycle the related pages
1842 * in order to avoid a low memory deadlock.
1844 m
->act_count
= bp
->b_act_count
;
1845 vm_page_try_to_cache(m
);
1848 * Nominal case, leave the page on the
1849 * queue the original unwiring placed it on
1850 * (active or inactive).
1852 m
->act_count
= bp
->b_act_count
;
1861 * Zero out the pmap pte's for the mapping, but don't bother
1862 * invalidating the TLB. The range will be properly invalidating
1863 * when new pages are entered into the mapping.
1865 * This in particular reduces tmpfs tear-down overhead and reduces
1866 * buffer cache re-use overhead (one invalidation sequence instead
1867 * of two per re-use).
1869 pmap_qremove_noinval(trunc_page((vm_offset_t
) bp
->b_data
),
1870 bp
->b_xio
.xio_npages
);
1871 CPUMASK_ASSZERO(bp
->b_cpumask
);
1872 if (bp
->b_bufsize
) {
1873 atomic_add_long(&bufspace
, -bp
->b_bufsize
);
1877 bp
->b_xio
.xio_npages
= 0;
1878 bp
->b_flags
&= ~B_VMIO
;
1879 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1885 * Find and initialize a new buffer header, freeing up existing buffers
1886 * in the bufqueues as necessary. The new buffer is returned locked.
1888 * Important: B_INVAL is not set. If the caller wishes to throw the
1889 * buffer away, the caller must set B_INVAL prior to calling brelse().
1892 * We have insufficient buffer headers
1893 * We have insufficient buffer space
1895 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1896 * Instead we ask the buf daemon to do it for us. We attempt to
1897 * avoid piecemeal wakeups of the pageout daemon.
1900 getnewbuf(int blkflags
, int slptimeo
, int size
, int maxsize
)
1902 struct bufpcpu
*pcpu
;
1907 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
1908 int maxloops
= 200000;
1909 int restart_reason
= 0;
1910 struct buf
*restart_bp
= NULL
;
1911 static char flushingbufs
[MAXCPU
];
1915 * We can't afford to block since we might be holding a vnode lock,
1916 * which may prevent system daemons from running. We deal with
1917 * low-memory situations by proactively returning memory and running
1918 * async I/O rather then sync I/O.
1922 nqcpu
= mycpu
->gd_cpuid
;
1923 flushingp
= &flushingbufs
[nqcpu
];
1925 if (bufspace
< lobufspace
)
1928 if (debug_bufbio
&& --maxloops
== 0)
1929 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1930 mycpu
->gd_cpuid
, restart_reason
, restart_bp
);
1933 * Setup for scan. If we do not have enough free buffers,
1934 * we setup a degenerate case that immediately fails. Note
1935 * that if we are specially marked process, we are allowed to
1936 * dip into our reserves.
1938 * The scanning sequence is nominally: EMPTY->CLEAN
1940 pcpu
= &bufpcpu
[nqcpu
];
1941 spin_lock(&pcpu
->spin
);
1944 * Prime the scan for this cpu. Locate the first buffer to
1945 * check. If we are flushing buffers we must skip the
1948 nqindex
= BQUEUE_EMPTY
;
1949 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_EMPTY
]);
1950 if (nbp
== NULL
|| *flushingp
) {
1951 nqindex
= BQUEUE_CLEAN
;
1952 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
]);
1956 * Run scan, possibly freeing data and/or kva mappings on the fly,
1959 * WARNING! spin is held!
1961 while ((bp
= nbp
) != NULL
) {
1962 int qindex
= nqindex
;
1964 nbp
= TAILQ_NEXT(bp
, b_freelist
);
1967 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1968 * cycles through the queue twice before being selected.
1970 if (qindex
== BQUEUE_CLEAN
&&
1971 (bp
->b_flags
& B_AGE
) == 0 && nbp
) {
1972 bp
->b_flags
|= B_AGE
;
1973 TAILQ_REMOVE(&pcpu
->bufqueues
[qindex
],
1975 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[qindex
],
1981 * Calculate next bp ( we can only use it if we do not block
1982 * or do other fancy things ).
1987 nqindex
= BQUEUE_CLEAN
;
1988 if ((nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
])))
2002 KASSERT(bp
->b_qindex
== qindex
,
2003 ("getnewbuf: inconsistent queue %d bp %p", qindex
, bp
));
2006 * Note: we no longer distinguish between VMIO and non-VMIO
2009 KASSERT((bp
->b_flags
& B_DELWRI
) == 0,
2010 ("delwri buffer %p found in queue %d", bp
, qindex
));
2013 * Do not try to reuse a buffer with a non-zero b_refs.
2014 * This is an unsynchronized test. A synchronized test
2015 * is also performed after we lock the buffer.
2021 * Start freeing the bp. This is somewhat involved. nbp
2022 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2023 * on the clean list must be disassociated from their
2024 * current vnode. Buffers on the empty lists have
2025 * already been disassociated.
2027 * b_refs is checked after locking along with queue changes.
2028 * We must check here to deal with zero->nonzero transitions
2029 * made by the owner of the buffer lock, which is used by
2030 * VFS's to hold the buffer while issuing an unlocked
2031 * uiomove()s. We cannot invalidate the buffer's pages
2032 * for this case. Once we successfully lock a buffer the
2033 * only 0->1 transitions of b_refs will occur via findblk().
2035 * We must also check for queue changes after successful
2036 * locking as the current lock holder may dispose of the
2037 * buffer and change its queue.
2039 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
2040 spin_unlock(&pcpu
->spin
);
2041 tsleep(&bd_request
, 0, "gnbxxx", (hz
+ 99) / 100);
2046 if (bp
->b_qindex
!= qindex
|| bp
->b_refs
) {
2047 spin_unlock(&pcpu
->spin
);
2053 bremfree_locked(bp
);
2054 spin_unlock(&pcpu
->spin
);
2057 * Dependancies must be handled before we disassociate the
2060 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2061 * be immediately disassociated. HAMMER then becomes
2062 * responsible for releasing the buffer.
2064 * NOTE: spin is UNLOCKED now.
2066 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
2068 if (bp
->b_flags
& B_LOCKED
) {
2074 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2078 * CLEAN buffers have content or associations that must be
2079 * cleaned out if not repurposing.
2081 if (qindex
== BQUEUE_CLEAN
) {
2082 if (bp
->b_flags
& B_VMIO
)
2083 vfs_vmio_release(bp
);
2089 * NOTE: nbp is now entirely invalid. We can only restart
2090 * the scan from this point on.
2092 * Get the rest of the buffer freed up. b_kva* is still
2093 * valid after this operation.
2095 KASSERT(bp
->b_vp
== NULL
,
2096 ("bp3 %p flags %08x vnode %p qindex %d "
2097 "unexpectededly still associated!",
2098 bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
2099 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2104 if (bp
->b_flags
& (B_VNDIRTY
| B_VNCLEAN
| B_HASHED
)) {
2105 kprintf("getnewbuf: caught bug vp queue "
2106 "%p/%08x qidx %d\n",
2107 bp
, bp
->b_flags
, qindex
);
2110 bp
->b_flags
= B_BNOCLIP
;
2111 bp
->b_cmd
= BUF_CMD_DONE
;
2116 bp
->b_xio
.xio_npages
= 0;
2117 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2118 bp
->b_act_count
= ACT_INIT
;
2120 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2122 if (blkflags
& GETBLK_BHEAVY
)
2123 bp
->b_flags
|= B_HEAVY
;
2125 if (bufspace
>= hibufspace
)
2127 if (bufspace
< lobufspace
)
2130 bp
->b_flags
|= B_INVAL
;
2138 * b_refs can transition to a non-zero value while we hold
2139 * the buffer locked due to a findblk(). Our brelvp() above
2140 * interlocked any future possible transitions due to
2143 * If we find b_refs to be non-zero we can destroy the
2144 * buffer's contents but we cannot yet reuse the buffer.
2147 bp
->b_flags
|= B_INVAL
;
2156 * We found our buffer!
2162 * If we exhausted our list, iterate other cpus. If that fails,
2163 * sleep as appropriate. We may have to wakeup various daemons
2164 * and write out some dirty buffers.
2166 * Generally we are sleeping due to insufficient buffer space.
2168 * NOTE: spin is held if bp is NULL, else it is not held.
2174 spin_unlock(&pcpu
->spin
);
2176 nqcpu
= (nqcpu
+ 1) % ncpus
;
2177 if (nqcpu
!= mycpu
->gd_cpuid
) {
2183 if (bufspace
>= hibufspace
) {
2185 flags
= VFS_BIO_NEED_BUFSPACE
;
2188 flags
= VFS_BIO_NEED_ANY
;
2191 bd_speedup(); /* heeeelp */
2192 atomic_set_int(&needsbuffer
, flags
);
2193 while (needsbuffer
& flags
) {
2196 tsleep_interlock(&needsbuffer
, 0);
2197 value
= atomic_fetchadd_int(&needsbuffer
, 0);
2198 if (value
& flags
) {
2199 if (tsleep(&needsbuffer
, PINTERLOCKED
|slpflags
,
2200 waitmsg
, slptimeo
)) {
2207 * We finally have a valid bp. Reset b_data.
2209 * (spin is not held)
2211 bp
->b_data
= bp
->b_kvabase
;
2219 * Buffer flushing daemon. Buffers are normally flushed by the
2220 * update daemon but if it cannot keep up this process starts to
2221 * take the load in an attempt to prevent getnewbuf() from blocking.
2223 * Once a flush is initiated it does not stop until the number
2224 * of buffers falls below lodirtybuffers, but we will wake up anyone
2225 * waiting at the mid-point.
2227 static struct kproc_desc buf_kp
= {
2232 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2233 kproc_start
, &buf_kp
);
2235 static struct kproc_desc bufhw_kp
= {
2240 SYSINIT(bufdaemon_hw
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2241 kproc_start
, &bufhw_kp
);
2244 buf_daemon1(struct thread
*td
, int queue
, int (*buf_limit_fn
)(long),
2250 marker
= kmalloc(sizeof(*marker
), M_BIOBUF
, M_WAITOK
| M_ZERO
);
2251 marker
->b_flags
|= B_MARKER
;
2252 marker
->b_qindex
= BQUEUE_NONE
;
2256 * This process needs to be suspended prior to shutdown sync.
2258 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2259 td
, SHUTDOWN_PRI_LAST
);
2260 curthread
->td_flags
|= TDF_SYSTHREAD
;
2263 * This process is allowed to take the buffer cache to the limit
2266 kproc_suspend_loop();
2269 * Do the flush as long as the number of dirty buffers
2270 * (including those running) exceeds lodirtybufspace.
2272 * When flushing limit running I/O to hirunningspace
2273 * Do the flush. Limit the amount of in-transit I/O we
2274 * allow to build up, otherwise we would completely saturate
2275 * the I/O system. Wakeup any waiting processes before we
2276 * normally would so they can run in parallel with our drain.
2278 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2279 * but because we split the operation into two threads we
2280 * have to cut it in half for each thread.
2282 waitrunningbufspace();
2283 limit
= lodirtybufspace
/ 2;
2284 while (buf_limit_fn(limit
)) {
2285 if (flushbufqueues(marker
, queue
) == 0)
2287 if (runningbufspace
< hirunningspace
)
2289 waitrunningbufspace();
2293 * We reached our low water mark, reset the
2294 * request and sleep until we are needed again.
2295 * The sleep is just so the suspend code works.
2297 tsleep_interlock(bd_req
, 0);
2298 if (atomic_swap_int(bd_req
, 0) == 0)
2299 tsleep(bd_req
, PINTERLOCKED
, "psleep", hz
);
2302 /*kfree(marker, M_BIOBUF);*/
2306 buf_daemon_limit(long limit
)
2308 return (runningbufspace
+ dirtykvaspace
> limit
||
2309 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2);
2313 buf_daemon_hw_limit(long limit
)
2315 return (runningbufspace
+ dirtykvaspace
> limit
||
2316 dirtybufcounthw
>= nbuf
/ 2);
2322 buf_daemon1(bufdaemon_td
, BQUEUE_DIRTY
, buf_daemon_limit
,
2329 buf_daemon1(bufdaemonhw_td
, BQUEUE_DIRTY_HW
, buf_daemon_hw_limit
,
2334 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2335 * localized version of the queue. Each call made to this function iterates
2336 * to another cpu. It is desireable to flush several buffers from the same
2337 * cpu's queue at once, as these are likely going to be linear.
2339 * We must be careful to free up B_INVAL buffers instead of write them, which
2340 * NFS is particularly sensitive to.
2342 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2343 * really want to try to get the buffer out and reuse it due to the write
2344 * load on the machine.
2346 * We must lock the buffer in order to check its validity before we can mess
2347 * with its contents. spin isn't enough.
2350 flushbufqueues(struct buf
*marker
, bufq_type_t q
)
2352 struct bufpcpu
*pcpu
;
2355 u_int loops
= flushperqueue
;
2356 int lcpu
= marker
->b_qcpu
;
2358 KKASSERT(marker
->b_qindex
== BQUEUE_NONE
);
2359 KKASSERT(marker
->b_flags
& B_MARKER
);
2363 * Spinlock needed to perform operations on the queue and may be
2364 * held through a non-blocking BUF_LOCK(), but cannot be held when
2365 * BUF_UNLOCK()ing or through any other major operation.
2367 pcpu
= &bufpcpu
[marker
->b_qcpu
];
2368 spin_lock(&pcpu
->spin
);
2369 marker
->b_qindex
= q
;
2370 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2373 while ((bp
= TAILQ_NEXT(bp
, b_freelist
)) != NULL
) {
2375 * NOTE: spinlock is always held at the top of the loop
2377 if (bp
->b_flags
& B_MARKER
)
2379 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2380 kprintf("Unexpected clean buffer %p\n", bp
);
2383 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
))
2385 KKASSERT(bp
->b_qcpu
== marker
->b_qcpu
&& bp
->b_qindex
== q
);
2388 * Once the buffer is locked we will have no choice but to
2389 * unlock the spinlock around a later BUF_UNLOCK and re-set
2390 * bp = marker when looping. Move the marker now to make
2393 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2394 TAILQ_INSERT_AFTER(&pcpu
->bufqueues
[q
], bp
, marker
, b_freelist
);
2397 * Must recheck B_DELWRI after successfully locking
2400 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2401 spin_unlock(&pcpu
->spin
);
2403 spin_lock(&pcpu
->spin
);
2409 * Remove the buffer from its queue. We still own the
2415 * Disposing of an invalid buffer counts as a flush op
2417 if (bp
->b_flags
& B_INVAL
) {
2418 spin_unlock(&pcpu
->spin
);
2424 * Release the spinlock for the more complex ops we
2425 * are now going to do.
2427 spin_unlock(&pcpu
->spin
);
2431 * This is a bit messy
2433 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2434 (bp
->b_flags
& B_DEFERRED
) == 0 &&
2435 buf_countdeps(bp
, 0)) {
2436 spin_lock(&pcpu
->spin
);
2437 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[q
], bp
, b_freelist
);
2439 bp
->b_flags
|= B_DEFERRED
;
2440 spin_unlock(&pcpu
->spin
);
2442 spin_lock(&pcpu
->spin
);
2448 * spinlock not held here.
2450 * If the buffer has a dependancy, buf_checkwrite() must
2451 * also return 0 for us to be able to initate the write.
2453 * If the buffer is flagged B_ERROR it may be requeued
2454 * over and over again, we try to avoid a live lock.
2456 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
2458 } else if (bp
->b_flags
& B_ERROR
) {
2459 tsleep(bp
, 0, "bioer", 1);
2460 bp
->b_flags
&= ~B_AGE
;
2463 bp
->b_flags
|= B_AGE
| B_KVABIO
;
2466 /* bp invalid but needs to be NULL-tested if we break out */
2468 spin_lock(&pcpu
->spin
);
2474 /* bp is invalid here but can be NULL-tested to advance */
2476 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2477 marker
->b_qindex
= BQUEUE_NONE
;
2478 spin_unlock(&pcpu
->spin
);
2481 * Advance the marker to be fair.
2483 marker
->b_qcpu
= (marker
->b_qcpu
+ 1) % ncpus
;
2485 if (marker
->b_qcpu
!= lcpu
)
2495 * Returns true if no I/O is needed to access the associated VM object.
2496 * This is like findblk except it also hunts around in the VM system for
2499 * Note that we ignore vm_page_free() races from interrupts against our
2500 * lookup, since if the caller is not protected our return value will not
2501 * be any more valid then otherwise once we exit the critical section.
2504 inmem(struct vnode
*vp
, off_t loffset
)
2507 vm_offset_t toff
, tinc
, size
;
2511 if (findblk(vp
, loffset
, FINDBLK_TEST
))
2513 if (vp
->v_mount
== NULL
)
2515 if ((obj
= vp
->v_object
) == NULL
)
2519 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
2520 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
2522 vm_object_hold(obj
);
2523 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
2524 m
= vm_page_lookup(obj
, OFF_TO_IDX(loffset
+ toff
));
2530 if (tinc
> PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
))
2531 tinc
= PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
);
2532 if (vm_page_is_valid(m
,
2533 (vm_offset_t
) ((toff
+ loffset
) & PAGE_MASK
), tinc
) == 0) {
2538 vm_object_drop(obj
);
2545 * Locate and return the specified buffer. Unless flagged otherwise,
2546 * a locked buffer will be returned if it exists or NULL if it does not.
2548 * findblk()'d buffers are still on the bufqueues and if you intend
2549 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2550 * and possibly do other stuff to it.
2552 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2553 * for locking the buffer and ensuring that it remains
2554 * the desired buffer after locking.
2556 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2557 * to acquire the lock we return NULL, even if the
2560 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2561 * reuse by getnewbuf() but does not prevent
2562 * disassociation (B_INVAL). Used to avoid deadlocks
2563 * against random (vp,loffset)s due to reassignment.
2565 * FINDBLK_KVABIO - Only applicable when returning a locked buffer.
2566 * Indicates that the caller supports B_KVABIO.
2568 * (0) - Lock the buffer blocking.
2571 findblk(struct vnode
*vp
, off_t loffset
, int flags
)
2576 lkflags
= LK_EXCLUSIVE
;
2577 if (flags
& FINDBLK_NBLOCK
)
2578 lkflags
|= LK_NOWAIT
;
2582 * Lookup. Ref the buf while holding v_token to prevent
2583 * reuse (but does not prevent diassociation).
2585 lwkt_gettoken_shared(&vp
->v_token
);
2586 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, loffset
);
2588 lwkt_reltoken(&vp
->v_token
);
2592 lwkt_reltoken(&vp
->v_token
);
2595 * If testing only break and return bp, do not lock.
2597 if (flags
& FINDBLK_TEST
)
2601 * Lock the buffer, return an error if the lock fails.
2602 * (only FINDBLK_NBLOCK can cause the lock to fail).
2604 if (BUF_LOCK(bp
, lkflags
)) {
2605 atomic_subtract_int(&bp
->b_refs
, 1);
2606 /* bp = NULL; not needed */
2611 * Revalidate the locked buf before allowing it to be
2614 * B_KVABIO is only set/cleared when locking. When
2615 * clearing B_KVABIO, we must ensure that the buffer
2616 * is synchronized to all cpus.
2618 if (bp
->b_vp
== vp
&& bp
->b_loffset
== loffset
) {
2619 if (flags
& FINDBLK_KVABIO
)
2620 bp
->b_flags
|= B_KVABIO
;
2625 atomic_subtract_int(&bp
->b_refs
, 1);
2632 if ((flags
& FINDBLK_REF
) == 0)
2633 atomic_subtract_int(&bp
->b_refs
, 1);
2640 * Similar to getblk() except only returns the buffer if it is
2641 * B_CACHE and requires no other manipulation. Otherwise NULL
2642 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2643 * and the getblk() would block.
2645 * If B_RAM is set the buffer might be just fine, but we return
2646 * NULL anyway because we want the code to fall through to the
2647 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2649 * If blksize is 0 the buffer cache buffer must already be fully
2652 * If blksize is non-zero getblk() will be used, allowing a buffer
2653 * to be reinstantiated from its VM backing store. The buffer must
2654 * still be fully cached after reinstantiation to be returned.
2657 getcacheblk(struct vnode
*vp
, off_t loffset
, int blksize
, int blkflags
)
2662 if (blkflags
& GETBLK_NOWAIT
)
2663 fndflags
|= FINDBLK_NBLOCK
;
2664 if (blkflags
& GETBLK_KVABIO
)
2665 fndflags
|= FINDBLK_KVABIO
;
2668 bp
= getblk(vp
, loffset
, blksize
, blkflags
, 0);
2670 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
)) == B_CACHE
) {
2671 bp
->b_flags
&= ~B_AGE
;
2672 if (bp
->b_flags
& B_RAM
) {
2682 bp
= findblk(vp
, loffset
, fndflags
);
2684 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2686 bp
->b_flags
&= ~B_AGE
;
2700 * Get a block given a specified block and offset into a file/device.
2701 * B_INVAL may or may not be set on return. The caller should clear
2702 * B_INVAL prior to initiating a READ.
2704 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2705 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2706 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2707 * without doing any of those things the system will likely believe
2708 * the buffer to be valid (especially if it is not B_VMIO), and the
2709 * next getblk() will return the buffer with B_CACHE set.
2711 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2712 * an existing buffer.
2714 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2715 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2716 * and then cleared based on the backing VM. If the previous buffer is
2717 * non-0-sized but invalid, B_CACHE will be cleared.
2719 * If getblk() must create a new buffer, the new buffer is returned with
2720 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2721 * case it is returned with B_INVAL clear and B_CACHE set based on the
2724 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2725 * B_CACHE bit is clear.
2727 * What this means, basically, is that the caller should use B_CACHE to
2728 * determine whether the buffer is fully valid or not and should clear
2729 * B_INVAL prior to issuing a read. If the caller intends to validate
2730 * the buffer by loading its data area with something, the caller needs
2731 * to clear B_INVAL. If the caller does this without issuing an I/O,
2732 * the caller should set B_CACHE ( as an optimization ), else the caller
2733 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2734 * a write attempt or if it was a successfull read. If the caller
2735 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2736 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2740 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2741 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2744 getblk(struct vnode
*vp
, off_t loffset
, int size
, int blkflags
, int slptimeo
)
2747 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
2751 if (size
> MAXBSIZE
)
2752 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2753 if (vp
->v_object
== NULL
)
2754 panic("getblk: vnode %p has no object!", vp
);
2757 * NOTE: findblk does not try to resolve KVABIO in REF-only mode.
2758 * we still have to handle that ourselves.
2761 if ((bp
= findblk(vp
, loffset
, FINDBLK_REF
| FINDBLK_TEST
)) != NULL
) {
2763 * The buffer was found in the cache, but we need to lock it.
2764 * We must acquire a ref on the bp to prevent reuse, but
2765 * this will not prevent disassociation (brelvp()) so we
2766 * must recheck (vp,loffset) after acquiring the lock.
2768 * Without the ref the buffer could potentially be reused
2769 * before we acquire the lock and create a deadlock
2770 * situation between the thread trying to reuse the buffer
2771 * and us due to the fact that we would wind up blocking
2772 * on a random (vp,loffset).
2774 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2775 if (blkflags
& GETBLK_NOWAIT
) {
2779 lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2780 if (blkflags
& GETBLK_PCATCH
)
2781 lkflags
|= LK_PCATCH
;
2782 error
= BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
);
2785 if (error
== ENOLCK
)
2789 /* buffer may have changed on us */
2794 * Once the buffer has been locked, make sure we didn't race
2795 * a buffer recyclement. Buffers that are no longer hashed
2796 * will have b_vp == NULL, so this takes care of that check
2799 if (bp
->b_vp
!= vp
|| bp
->b_loffset
!= loffset
) {
2801 kprintf("Warning buffer %p (vp %p loffset %lld) "
2803 bp
, vp
, (long long)loffset
);
2810 * If SZMATCH any pre-existing buffer must be of the requested
2811 * size or NULL is returned. The caller absolutely does not
2812 * want getblk() to bwrite() the buffer on a size mismatch.
2814 if ((blkflags
& GETBLK_SZMATCH
) && size
!= bp
->b_bcount
) {
2820 * All vnode-based buffers must be backed by a VM object.
2822 * Set B_KVABIO for any incidental work, we will fix it
2825 KKASSERT(bp
->b_flags
& B_VMIO
);
2826 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2827 bp
->b_flags
&= ~B_AGE
;
2828 bp
->b_flags
|= B_KVABIO
;
2831 * Make sure that B_INVAL buffers do not have a cached
2832 * block number translation.
2834 if ((bp
->b_flags
& B_INVAL
) &&
2835 (bp
->b_bio2
.bio_offset
!= NOOFFSET
)) {
2836 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2837 " did not have cleared bio_offset cache\n",
2838 bp
, vp
, (long long)loffset
);
2839 clearbiocache(&bp
->b_bio2
);
2843 * The buffer is locked. B_CACHE is cleared if the buffer is
2846 * After the bremfree(), disposals must use b[q]relse().
2848 if (bp
->b_flags
& B_INVAL
)
2849 bp
->b_flags
&= ~B_CACHE
;
2853 * Any size inconsistancy with a dirty buffer or a buffer
2854 * with a softupdates dependancy must be resolved. Resizing
2855 * the buffer in such circumstances can lead to problems.
2857 * Dirty or dependant buffers are written synchronously.
2858 * Other types of buffers are simply released and
2859 * reconstituted as they may be backed by valid, dirty VM
2860 * pages (but not marked B_DELWRI).
2862 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2863 * and may be left over from a prior truncation (and thus
2864 * no longer represent the actual EOF point), so we
2865 * definitely do not want to B_NOCACHE the backing store.
2867 if (size
!= bp
->b_bcount
) {
2868 if (bp
->b_flags
& B_DELWRI
) {
2869 bp
->b_flags
|= B_RELBUF
;
2871 } else if (LIST_FIRST(&bp
->b_dep
)) {
2872 bp
->b_flags
|= B_RELBUF
;
2875 bp
->b_flags
|= B_RELBUF
;
2880 KKASSERT(size
<= bp
->b_kvasize
);
2881 KASSERT(bp
->b_loffset
!= NOOFFSET
,
2882 ("getblk: no buffer offset"));
2885 * A buffer with B_DELWRI set and B_CACHE clear must
2886 * be committed before we can return the buffer in
2887 * order to prevent the caller from issuing a read
2888 * ( due to B_CACHE not being set ) and overwriting
2891 * Most callers, including NFS and FFS, need this to
2892 * operate properly either because they assume they
2893 * can issue a read if B_CACHE is not set, or because
2894 * ( for example ) an uncached B_DELWRI might loop due
2895 * to softupdates re-dirtying the buffer. In the latter
2896 * case, B_CACHE is set after the first write completes,
2897 * preventing further loops.
2899 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2900 * above while extending the buffer, we cannot allow the
2901 * buffer to remain with B_CACHE set after the write
2902 * completes or it will represent a corrupt state. To
2903 * deal with this we set B_NOCACHE to scrap the buffer
2906 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2907 * I'm not even sure this state is still possible
2908 * now that getblk() writes out any dirty buffers
2911 * We might be able to do something fancy, like setting
2912 * B_CACHE in bwrite() except if B_DELWRI is already set,
2913 * so the below call doesn't set B_CACHE, but that gets real
2914 * confusing. This is much easier.
2916 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
2917 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2918 "and CACHE clear, b_flags %08x\n",
2919 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_flags
);
2920 bp
->b_flags
|= B_NOCACHE
;
2926 * Buffer is not in-core, create new buffer. The buffer
2927 * returned by getnewbuf() is locked. Note that the returned
2928 * buffer is also considered valid (not marked B_INVAL).
2930 * Calculating the offset for the I/O requires figuring out
2931 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2932 * the mount's f_iosize otherwise. If the vnode does not
2933 * have an associated mount we assume that the passed size is
2936 * Note that vn_isdisk() cannot be used here since it may
2937 * return a failure for numerous reasons. Note that the
2938 * buffer size may be larger then the block size (the caller
2939 * will use block numbers with the proper multiple). Beware
2940 * of using any v_* fields which are part of unions. In
2941 * particular, in DragonFly the mount point overloading
2942 * mechanism uses the namecache only and the underlying
2943 * directory vnode is not a special case.
2947 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
2949 else if (vp
->v_mount
)
2950 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
2954 maxsize
= size
+ (loffset
& PAGE_MASK
);
2955 maxsize
= imax(maxsize
, bsize
);
2957 bp
= getnewbuf(blkflags
, slptimeo
, size
, maxsize
);
2959 if (slpflags
|| slptimeo
)
2965 * Atomically insert the buffer into the hash, so that it can
2966 * be found by findblk().
2968 * If bgetvp() returns non-zero a collision occured, and the
2969 * bp will not be associated with the vnode.
2971 * Make sure the translation layer has been cleared.
2973 bp
->b_loffset
= loffset
;
2974 bp
->b_bio2
.bio_offset
= NOOFFSET
;
2975 /* bp->b_bio2.bio_next = NULL; */
2977 if (bgetvp(vp
, bp
, size
)) {
2978 bp
->b_flags
|= B_INVAL
;
2984 * All vnode-based buffers must be backed by a VM object.
2986 * Set B_KVABIO for incidental work
2988 KKASSERT(vp
->v_object
!= NULL
);
2989 bp
->b_flags
|= B_VMIO
| B_KVABIO
;
2990 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2996 * Do the nasty smp broadcast (if the buffer needs it) when KVABIO
2999 if (bp
&& (blkflags
& GETBLK_KVABIO
) == 0) {
3008 * Reacquire a buffer that was previously released to the locked queue,
3009 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3010 * set B_LOCKED (which handles the acquisition race).
3012 * To this end, either B_LOCKED must be set or the dependancy list must be
3016 regetblk(struct buf
*bp
)
3018 KKASSERT((bp
->b_flags
& B_LOCKED
) || LIST_FIRST(&bp
->b_dep
) != NULL
);
3019 BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_RETRY
);
3026 * This code constitutes the buffer memory from either anonymous system
3027 * memory (in the case of non-VMIO operations) or from an associated
3028 * VM object (in the case of VMIO operations). This code is able to
3029 * resize a buffer up or down.
3031 * Note that this code is tricky, and has many complications to resolve
3032 * deadlock or inconsistant data situations. Tread lightly!!!
3033 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3034 * the caller. Calling this code willy nilly can result in the loss of
3037 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3038 * B_CACHE for the non-VMIO case.
3040 * This routine does not need to be called from a critical section but you
3041 * must own the buffer.
3044 allocbuf(struct buf
*bp
, int size
)
3051 if (BUF_LOCKINUSE(bp
) == 0)
3052 panic("allocbuf: buffer not busy");
3054 if (bp
->b_kvasize
< size
)
3055 panic("allocbuf: buffer too small");
3057 KKASSERT(bp
->b_flags
& B_VMIO
);
3059 newbsize
= roundup2(size
, DEV_BSIZE
);
3060 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
3061 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
3062 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
3065 * Set B_CACHE initially if buffer is 0 length or will become
3068 if (size
== 0 || bp
->b_bufsize
== 0)
3069 bp
->b_flags
|= B_CACHE
;
3071 if (newbsize
< bp
->b_bufsize
) {
3073 * DEV_BSIZE aligned new buffer size is less then the
3074 * DEV_BSIZE aligned existing buffer size. Figure out
3075 * if we have to remove any pages.
3077 if (desiredpages
< bp
->b_xio
.xio_npages
) {
3078 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
3080 * the page is not freed here -- it
3081 * is the responsibility of
3082 * vnode_pager_setsize
3084 m
= bp
->b_xio
.xio_pages
[i
];
3085 KASSERT(m
!= bogus_page
,
3086 ("allocbuf: bogus page found"));
3087 vm_page_busy_wait(m
, TRUE
, "biodep");
3088 bp
->b_xio
.xio_pages
[i
] = NULL
;
3089 vm_page_unwire(m
, 0);
3092 pmap_qremove_noinval((vm_offset_t
)
3093 trunc_page((vm_offset_t
)bp
->b_data
) +
3094 (desiredpages
<< PAGE_SHIFT
),
3095 (bp
->b_xio
.xio_npages
- desiredpages
));
3096 bp
->b_xio
.xio_npages
= desiredpages
;
3099 * Don't bother invalidating the pmap changes
3100 * (which wastes global SMP invalidation IPIs)
3101 * when setting the size to 0. This case occurs
3102 * when called via getnewbuf() during buffer
3105 if (desiredpages
== 0) {
3106 CPUMASK_ASSZERO(bp
->b_cpumask
);
3111 } else if (size
> bp
->b_bcount
) {
3113 * We are growing the buffer, possibly in a
3114 * byte-granular fashion.
3122 * Step 1, bring in the VM pages from the object,
3123 * allocating them if necessary. We must clear
3124 * B_CACHE if these pages are not valid for the
3125 * range covered by the buffer.
3130 vm_object_hold(obj
);
3131 while (bp
->b_xio
.xio_npages
< desiredpages
) {
3136 pi
= OFF_TO_IDX(bp
->b_loffset
) +
3137 bp
->b_xio
.xio_npages
;
3140 * Blocking on m->busy_count might lead to a
3143 * vm_fault->getpages->cluster_read->allocbuf
3145 m
= vm_page_lookup_busy_try(obj
, pi
, FALSE
,
3148 vm_page_sleep_busy(m
, FALSE
, "pgtblk");
3153 * note: must allocate system pages
3154 * since blocking here could intefere
3155 * with paging I/O, no matter which
3158 m
= bio_page_alloc(bp
, obj
, pi
,
3160 bp
->b_xio
.xio_npages
);
3164 bp
->b_flags
&= ~B_CACHE
;
3165 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3166 ++bp
->b_xio
.xio_npages
;
3172 * We found a page and were able to busy it.
3176 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3177 ++bp
->b_xio
.xio_npages
;
3178 if (bp
->b_act_count
< m
->act_count
)
3179 bp
->b_act_count
= m
->act_count
;
3181 vm_object_drop(obj
);
3184 * Step 2. We've loaded the pages into the buffer,
3185 * we have to figure out if we can still have B_CACHE
3186 * set. Note that B_CACHE is set according to the
3187 * byte-granular range ( bcount and size ), not the
3188 * aligned range ( newbsize ).
3190 * The VM test is against m->valid, which is DEV_BSIZE
3191 * aligned. Needless to say, the validity of the data
3192 * needs to also be DEV_BSIZE aligned. Note that this
3193 * fails with NFS if the server or some other client
3194 * extends the file's EOF. If our buffer is resized,
3195 * B_CACHE may remain set! XXX
3198 toff
= bp
->b_bcount
;
3199 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
3201 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
3204 if (tinc
> (size
- toff
))
3207 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
3215 bp
->b_xio
.xio_pages
[pi
]
3222 * Step 3, fixup the KVM pmap. Remember that
3223 * bp->b_data is relative to bp->b_loffset, but
3224 * bp->b_loffset may be offset into the first page.
3226 bp
->b_data
= (caddr_t
)trunc_page((vm_offset_t
)bp
->b_data
);
3227 pmap_qenter_noinval((vm_offset_t
)bp
->b_data
,
3228 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3229 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
3230 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3233 atomic_add_long(&bufspace
, newbsize
- bp
->b_bufsize
);
3235 /* adjust space use on already-dirty buffer */
3236 if (bp
->b_flags
& B_DELWRI
) {
3237 /* dirtykvaspace unchanged */
3238 atomic_add_long(&dirtybufspace
, newbsize
- bp
->b_bufsize
);
3239 if (bp
->b_flags
& B_HEAVY
) {
3240 atomic_add_long(&dirtybufspacehw
,
3241 newbsize
- bp
->b_bufsize
);
3244 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3245 bp
->b_bcount
= size
; /* requested buffer size */
3252 * Wait for buffer I/O completion, returning error status. B_EINTR
3253 * is converted into an EINTR error but not cleared (since a chain
3254 * of biowait() calls may occur).
3256 * On return bpdone() will have been called but the buffer will remain
3257 * locked and will not have been brelse()'d.
3259 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3260 * likely still in progress on return.
3262 * NOTE! This operation is on a BIO, not a BUF.
3264 * NOTE! BIO_DONE is cleared by vn_strategy()
3267 _biowait(struct bio
*bio
, const char *wmesg
, int to
)
3269 struct buf
*bp
= bio
->bio_buf
;
3274 KKASSERT(bio
== &bp
->b_bio1
);
3276 flags
= bio
->bio_flags
;
3277 if (flags
& BIO_DONE
)
3279 nflags
= flags
| BIO_WANT
;
3280 tsleep_interlock(bio
, 0);
3281 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3283 error
= tsleep(bio
, PINTERLOCKED
, wmesg
, to
);
3284 else if (bp
->b_cmd
== BUF_CMD_READ
)
3285 error
= tsleep(bio
, PINTERLOCKED
, "biord", to
);
3287 error
= tsleep(bio
, PINTERLOCKED
, "biowr", to
);
3289 kprintf("tsleep error biowait %d\n", error
);
3298 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3299 bio
->bio_flags
&= ~(BIO_DONE
| BIO_SYNC
);
3300 if (bp
->b_flags
& B_EINTR
)
3302 if (bp
->b_flags
& B_ERROR
)
3303 return (bp
->b_error
? bp
->b_error
: EIO
);
3308 biowait(struct bio
*bio
, const char *wmesg
)
3310 return(_biowait(bio
, wmesg
, 0));
3314 biowait_timeout(struct bio
*bio
, const char *wmesg
, int to
)
3316 return(_biowait(bio
, wmesg
, to
));
3320 * This associates a tracking count with an I/O. vn_strategy() and
3321 * dev_dstrategy() do this automatically but there are a few cases
3322 * where a vnode or device layer is bypassed when a block translation
3323 * is cached. In such cases bio_start_transaction() may be called on
3324 * the bypassed layers so the system gets an I/O in progress indication
3325 * for those higher layers.
3328 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
3330 bio
->bio_track
= track
;
3331 bio_track_ref(track
);
3332 dsched_buf_enter(bio
->bio_buf
); /* might stack */
3336 * Initiate I/O on a vnode.
3338 * SWAPCACHE OPERATION:
3340 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3341 * devfs also uses b_vp for fake buffers so we also have to check
3342 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3343 * underlying block device. The swap assignments are related to the
3344 * buffer cache buffer's b_vp, not the passed vp.
3346 * The passed vp == bp->b_vp only in the case where the strategy call
3347 * is made on the vp itself for its own buffers (a regular file or
3348 * block device vp). The filesystem usually then re-calls vn_strategy()
3349 * after translating the request to an underlying device.
3351 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3352 * underlying buffer cache buffers.
3354 * We can only deal with page-aligned buffers at the moment, because
3355 * we can't tell what the real dirty state for pages straddling a buffer
3358 * In order to call swap_pager_strategy() we must provide the VM object
3359 * and base offset for the underlying buffer cache pages so it can find
3363 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
3365 struct bio_track
*track
;
3366 struct buf
*bp
= bio
->bio_buf
;
3368 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3371 * Set when an I/O is issued on the bp. Cleared by consumers
3372 * (aka HAMMER), allowing the consumer to determine if I/O had
3373 * actually occurred.
3375 bp
->b_flags
|= B_IOISSUED
;
3378 * Handle the swapcache intercept.
3380 * NOTE: The swapcache itself always supports KVABIO and will
3381 * do the right thing if its underlying devices do not.
3383 if (vn_cache_strategy(vp
, bio
))
3387 * If the vnode does not support KVABIO and the buffer is using
3388 * KVABIO, we must synchronize b_data to all cpus before dispatching.
3390 if ((vp
->v_flag
& VKVABIO
) == 0 && (bp
->b_flags
& B_KVABIO
))
3394 * Otherwise do the operation through the filesystem
3396 if (bp
->b_cmd
== BUF_CMD_READ
)
3397 track
= &vp
->v_track_read
;
3399 track
= &vp
->v_track_write
;
3400 KKASSERT((bio
->bio_flags
& BIO_DONE
) == 0);
3401 bio
->bio_track
= track
;
3402 bio_track_ref(track
);
3403 dsched_buf_enter(bp
); /* might stack */
3404 vop_strategy(*vp
->v_ops
, vp
, bio
);
3408 * vn_cache_strategy()
3410 * NOTE: This function supports the KVABIO API wherein b_data might not
3411 * be synchronized to the current cpu.
3413 static void vn_cache_strategy_callback(struct bio
*bio
);
3416 vn_cache_strategy(struct vnode
*vp
, struct bio
*bio
)
3418 struct buf
*bp
= bio
->bio_buf
;
3425 * Stop using swapcache if paniced, dumping, or dumped
3427 if (panicstr
|| dumping
)
3431 * Is this buffer cache buffer suitable for reading from
3434 if (vm_swapcache_read_enable
== 0 ||
3435 bp
->b_cmd
!= BUF_CMD_READ
||
3436 ((bp
->b_flags
& B_CLUSTER
) == 0 &&
3437 (bp
->b_vp
== NULL
|| (bp
->b_flags
& B_PAGING
))) ||
3438 ((int)bp
->b_loffset
& PAGE_MASK
) != 0 ||
3439 (bp
->b_bcount
& PAGE_MASK
) != 0) {
3444 * Figure out the original VM object (it will match the underlying
3445 * VM pages). Note that swap cached data uses page indices relative
3446 * to that object, not relative to bio->bio_offset.
3448 if (bp
->b_flags
& B_CLUSTER
)
3449 object
= vp
->v_object
;
3451 object
= bp
->b_vp
->v_object
;
3454 * In order to be able to use the swap cache all underlying VM
3455 * pages must be marked as such, and we can't have any bogus pages.
3457 for (i
= 0; i
< bp
->b_xio
.xio_npages
; ++i
) {
3458 m
= bp
->b_xio
.xio_pages
[i
];
3459 if ((m
->flags
& PG_SWAPPED
) == 0)
3461 if (m
== bogus_page
)
3466 * If we are good then issue the I/O using swap_pager_strategy().
3468 * We can only do this if the buffer actually supports object-backed
3469 * I/O. If it doesn't npages will be 0.
3471 if (i
&& i
== bp
->b_xio
.xio_npages
) {
3472 m
= bp
->b_xio
.xio_pages
[0];
3473 nbio
= push_bio(bio
);
3474 nbio
->bio_done
= vn_cache_strategy_callback
;
3475 nbio
->bio_offset
= ptoa(m
->pindex
);
3476 KKASSERT(m
->object
== object
);
3477 swap_pager_strategy(object
, nbio
);
3484 * This is a bit of a hack but since the vn_cache_strategy() function can
3485 * override a VFS's strategy function we must make sure that the bio, which
3486 * is probably bio2, doesn't leak an unexpected offset value back to the
3487 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3488 * bio went through its own file strategy function and the the bio2 offset
3489 * is a cached disk offset when, in fact, it isn't.
3492 vn_cache_strategy_callback(struct bio
*bio
)
3494 bio
->bio_offset
= NOOFFSET
;
3495 biodone(pop_bio(bio
));
3501 * Finish I/O on a buffer after all BIOs have been processed.
3502 * Called when the bio chain is exhausted or by biowait. If called
3503 * by biowait, elseit is typically 0.
3505 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3506 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3507 * assuming B_INVAL is clear.
3509 * For the VMIO case, we set B_CACHE if the op was a read and no
3510 * read error occured, or if the op was a write. B_CACHE is never
3511 * set if the buffer is invalid or otherwise uncacheable.
3513 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3514 * initiator to leave B_INVAL set to brelse the buffer out of existance
3515 * in the biodone routine.
3517 * bpdone is responsible for calling bundirty() on the buffer after a
3518 * successful write. We previously did this prior to initiating the
3519 * write under the assumption that the buffer might be dirtied again
3520 * while the write was in progress, however doing it before-hand creates
3521 * a race condition prior to the call to vn_strategy() where the
3522 * filesystem may not be aware that a dirty buffer is present.
3523 * It should not be possible for the buffer or its underlying pages to
3524 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3528 bpdone(struct buf
*bp
, int elseit
)
3532 KASSERT(BUF_LOCKINUSE(bp
), ("bpdone: bp %p not busy", bp
));
3533 KASSERT(bp
->b_cmd
!= BUF_CMD_DONE
,
3534 ("bpdone: bp %p already done!", bp
));
3537 * No more BIOs are left. All completion functions have been dealt
3538 * with, now we clean up the buffer.
3541 bp
->b_cmd
= BUF_CMD_DONE
;
3544 * Only reads and writes are processed past this point.
3546 if (cmd
!= BUF_CMD_READ
&& cmd
!= BUF_CMD_WRITE
) {
3547 if (cmd
== BUF_CMD_FREEBLKS
)
3548 bp
->b_flags
|= B_NOCACHE
;
3555 * A failed write must re-dirty the buffer unless B_INVAL
3558 * A successful write must clear the dirty flag. This is done after
3559 * the write to ensure that the buffer remains on the vnode's dirty
3560 * list for filesystem interlocks / checks until the write is actually
3561 * complete. HAMMER2 is sensitive to this issue.
3563 * Only applicable to normal buffers (with VPs). vinum buffers may
3566 * Must be done prior to calling buf_complete() as the callback might
3567 * re-dirty the buffer.
3569 if (cmd
== BUF_CMD_WRITE
) {
3570 if ((bp
->b_flags
& (B_ERROR
| B_INVAL
)) == B_ERROR
) {
3571 bp
->b_flags
&= ~B_NOCACHE
;
3581 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3582 * a lot worse. XXX - move this above the clearing of b_cmd
3584 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
3587 if (bp
->b_flags
& B_VMIO
) {
3593 struct vnode
*vp
= bp
->b_vp
;
3597 #if defined(VFS_BIO_DEBUG)
3598 if (vp
->v_auxrefs
== 0)
3599 panic("bpdone: zero vnode hold count");
3600 if ((vp
->v_flag
& VOBJBUF
) == 0)
3601 panic("bpdone: vnode is not setup for merged cache");
3604 foff
= bp
->b_loffset
;
3605 KASSERT(foff
!= NOOFFSET
, ("bpdone: no buffer offset"));
3606 KASSERT(obj
!= NULL
, ("bpdone: missing VM object"));
3608 #if defined(VFS_BIO_DEBUG)
3609 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
3610 kprintf("bpdone: paging in progress(%d) < "
3611 "bp->b_xio.xio_npages(%d)\n",
3612 obj
->paging_in_progress
,
3613 bp
->b_xio
.xio_npages
);
3618 * Set B_CACHE if the op was a normal read and no error
3619 * occured. B_CACHE is set for writes in the b*write()
3622 iosize
= bp
->b_bcount
- bp
->b_resid
;
3623 if (cmd
== BUF_CMD_READ
&&
3624 (bp
->b_flags
& (B_INVAL
|B_NOCACHE
|B_ERROR
)) == 0) {
3625 bp
->b_flags
|= B_CACHE
;
3628 vm_object_hold(obj
);
3629 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3633 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
3638 * cleanup bogus pages, restoring the originals. Since
3639 * the originals should still be wired, we don't have
3640 * to worry about interrupt/freeing races destroying
3641 * the VM object association.
3643 m
= bp
->b_xio
.xio_pages
[i
];
3644 if (m
== bogus_page
) {
3645 if ((bp
->b_flags
& B_HASBOGUS
) == 0)
3646 panic("bpdone: bp %p corrupt bogus", bp
);
3647 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
3649 panic("bpdone: page disappeared");
3650 bp
->b_xio
.xio_pages
[i
] = m
;
3655 #if defined(VFS_BIO_DEBUG)
3656 if (OFF_TO_IDX(foff
) != m
->pindex
) {
3657 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3659 (unsigned long)foff
, (long)m
->pindex
);
3664 * In the write case, the valid and clean bits are
3665 * already changed correctly (see bdwrite()), so we
3666 * only need to do this here in the read case.
3668 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
3669 if (cmd
== BUF_CMD_READ
&& isbogus
== 0 && resid
> 0)
3670 vfs_clean_one_page(bp
, i
, m
);
3673 * when debugging new filesystems or buffer I/O
3674 * methods, this is the most common error that pops
3675 * up. if you see this, you have not set the page
3676 * busy flag correctly!!!
3678 if ((m
->busy_count
& PBUSY_MASK
) == 0) {
3679 kprintf("bpdone: page busy < 0, "
3680 "pindex: %d, foff: 0x(%x,%x), "
3681 "resid: %d, index: %d\n",
3682 (int) m
->pindex
, (int)(foff
>> 32),
3683 (int) foff
& 0xffffffff, resid
, i
);
3684 if (!vn_isdisk(vp
, NULL
))
3685 kprintf(" iosize: %ld, loffset: %lld, "
3686 "flags: 0x%08x, npages: %d\n",
3687 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
3688 (long long)bp
->b_loffset
,
3689 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3691 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3692 (long long)bp
->b_loffset
,
3693 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3694 kprintf(" valid: 0x%x, dirty: 0x%x, "
3698 panic("bpdone: page busy < 0");
3700 vm_page_io_finish(m
);
3702 vm_object_pip_wakeup(obj
);
3703 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3706 if (bp
->b_flags
& B_HASBOGUS
) {
3707 pmap_qenter_noinval(trunc_page((vm_offset_t
)bp
->b_data
),
3708 bp
->b_xio
.xio_pages
,
3709 bp
->b_xio
.xio_npages
);
3710 bp
->b_flags
&= ~B_HASBOGUS
;
3713 vm_object_drop(obj
);
3717 * Finish up by releasing the buffer. There are no more synchronous
3718 * or asynchronous completions, those were handled by bio_done
3722 if (bp
->b_flags
& (B_NOCACHE
|B_INVAL
|B_ERROR
|B_RELBUF
))
3733 biodone(struct bio
*bio
)
3735 struct buf
*bp
= bio
->bio_buf
;
3737 runningbufwakeup(bp
);
3740 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3743 biodone_t
*done_func
;
3744 struct bio_track
*track
;
3747 * BIO tracking. Most but not all BIOs are tracked.
3749 if ((track
= bio
->bio_track
) != NULL
) {
3750 bio_track_rel(track
);
3751 bio
->bio_track
= NULL
;
3755 * A bio_done function terminates the loop. The function
3756 * will be responsible for any further chaining and/or
3757 * buffer management.
3759 * WARNING! The done function can deallocate the buffer!
3761 if ((done_func
= bio
->bio_done
) != NULL
) {
3762 bio
->bio_done
= NULL
;
3766 bio
= bio
->bio_prev
;
3770 * If we've run out of bio's do normal [a]synchronous completion.
3776 * Synchronous biodone - this terminates a synchronous BIO.
3778 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3779 * but still locked. The caller must brelse() the buffer after waiting
3783 biodone_sync(struct bio
*bio
)
3785 struct buf
*bp
= bio
->bio_buf
;
3789 KKASSERT(bio
== &bp
->b_bio1
);
3793 flags
= bio
->bio_flags
;
3794 nflags
= (flags
| BIO_DONE
) & ~BIO_WANT
;
3796 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3797 if (flags
& BIO_WANT
)
3807 * This routine is called in lieu of iodone in the case of
3808 * incomplete I/O. This keeps the busy status for pages
3812 vfs_unbusy_pages(struct buf
*bp
)
3816 runningbufwakeup(bp
);
3818 if (bp
->b_flags
& B_VMIO
) {
3819 struct vnode
*vp
= bp
->b_vp
;
3823 vm_object_hold(obj
);
3825 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3826 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3829 * When restoring bogus changes the original pages
3830 * should still be wired, so we are in no danger of
3831 * losing the object association and do not need
3832 * critical section protection particularly.
3834 if (m
== bogus_page
) {
3835 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
3837 panic("vfs_unbusy_pages: page missing");
3839 bp
->b_xio
.xio_pages
[i
] = m
;
3841 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
3842 vm_page_io_finish(m
);
3844 vm_object_pip_wakeup(obj
);
3846 if (bp
->b_flags
& B_HASBOGUS
) {
3847 pmap_qenter_noinval(trunc_page((vm_offset_t
)bp
->b_data
),
3848 bp
->b_xio
.xio_pages
,
3849 bp
->b_xio
.xio_npages
);
3850 bp
->b_flags
&= ~B_HASBOGUS
;
3853 vm_object_drop(obj
);
3860 * This routine is called before a device strategy routine.
3861 * It is used to tell the VM system that paging I/O is in
3862 * progress, and treat the pages associated with the buffer
3863 * almost as being PBUSY_LOCKED. Also the object 'paging_in_progress'
3864 * flag is handled to make sure that the object doesn't become
3867 * Since I/O has not been initiated yet, certain buffer flags
3868 * such as B_ERROR or B_INVAL may be in an inconsistant state
3869 * and should be ignored.
3872 vfs_busy_pages(struct vnode
*vp
, struct buf
*bp
)
3875 struct lwp
*lp
= curthread
->td_lwp
;
3878 * The buffer's I/O command must already be set. If reading,
3879 * B_CACHE must be 0 (double check against callers only doing
3880 * I/O when B_CACHE is 0).
3882 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3883 KKASSERT(bp
->b_cmd
== BUF_CMD_WRITE
|| (bp
->b_flags
& B_CACHE
) == 0);
3885 if (bp
->b_flags
& B_VMIO
) {
3889 KASSERT(bp
->b_loffset
!= NOOFFSET
,
3890 ("vfs_busy_pages: no buffer offset"));
3893 * Busy all the pages. We have to busy them all at once
3894 * to avoid deadlocks.
3897 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3898 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3900 if (vm_page_busy_try(m
, FALSE
)) {
3901 vm_page_sleep_busy(m
, FALSE
, "vbpage");
3903 vm_page_wakeup(bp
->b_xio
.xio_pages
[i
]);
3909 * Setup for I/O, soft-busy the page right now because
3910 * the next loop may block.
3912 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3913 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3915 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
3916 vm_object_pip_add(obj
, 1);
3917 vm_page_io_start(m
);
3922 * Adjust protections for I/O and do bogus-page mapping.
3923 * Assume that vm_page_protect() can block (it can block
3924 * if VM_PROT_NONE, don't take any chances regardless).
3926 * In particular note that for writes we must incorporate
3927 * page dirtyness from the VM system into the buffer's
3930 * For reads we theoretically must incorporate page dirtyness
3931 * from the VM system to determine if the page needs bogus
3932 * replacement, but we shortcut the test by simply checking
3933 * that all m->valid bits are set, indicating that the page
3934 * is fully valid and does not need to be re-read. For any
3935 * VM system dirtyness the page will also be fully valid
3936 * since it was mapped at one point.
3939 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3940 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3942 if (bp
->b_cmd
== BUF_CMD_WRITE
) {
3944 * When readying a vnode-backed buffer for
3945 * a write we must zero-fill any invalid
3946 * portions of the backing VM pages, mark
3947 * it valid and clear related dirty bits.
3949 * vfs_clean_one_page() incorporates any
3950 * VM dirtyness and updates the b_dirtyoff
3951 * range (after we've made the page RO).
3953 * It is also expected that the pmap modified
3954 * bit has already been cleared by the
3955 * vm_page_protect(). We may not be able
3956 * to clear all dirty bits for a page if it
3957 * was also memory mapped (NFS).
3959 * Finally be sure to unassign any swap-cache
3960 * backing store as it is now stale.
3962 vm_page_protect(m
, VM_PROT_READ
);
3963 vfs_clean_one_page(bp
, i
, m
);
3964 swap_pager_unswapped(m
);
3965 } else if (m
->valid
== VM_PAGE_BITS_ALL
) {
3967 * When readying a vnode-backed buffer for
3968 * read we must replace any dirty pages with
3969 * a bogus page so dirty data is not destroyed
3970 * when filling gaps.
3972 * To avoid testing whether the page is
3973 * dirty we instead test that the page was
3974 * at some point mapped (m->valid fully
3975 * valid) with the understanding that
3976 * this also covers the dirty case.
3978 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
3979 bp
->b_flags
|= B_HASBOGUS
;
3981 } else if (m
->valid
& m
->dirty
) {
3983 * This case should not occur as partial
3984 * dirtyment can only happen if the buffer
3985 * is B_CACHE, and this code is not entered
3986 * if the buffer is B_CACHE.
3988 kprintf("Warning: vfs_busy_pages - page not "
3989 "fully valid! loff=%jx bpf=%08x "
3990 "idx=%d val=%02x dir=%02x\n",
3991 (uintmax_t)bp
->b_loffset
, bp
->b_flags
,
3992 i
, m
->valid
, m
->dirty
);
3993 vm_page_protect(m
, VM_PROT_NONE
);
3996 * The page is not valid and can be made
3999 vm_page_protect(m
, VM_PROT_NONE
);
4004 pmap_qenter_noinval(trunc_page((vm_offset_t
)bp
->b_data
),
4005 bp
->b_xio
.xio_pages
,
4006 bp
->b_xio
.xio_npages
);
4012 * This is the easiest place to put the process accounting for the I/O
4016 if (bp
->b_cmd
== BUF_CMD_READ
)
4017 lp
->lwp_ru
.ru_inblock
++;
4019 lp
->lwp_ru
.ru_oublock
++;
4024 * Tell the VM system that the pages associated with this buffer
4025 * are clean. This is used for delayed writes where the data is
4026 * going to go to disk eventually without additional VM intevention.
4028 * NOTE: While we only really need to clean through to b_bcount, we
4029 * just go ahead and clean through to b_bufsize.
4032 vfs_clean_pages(struct buf
*bp
)
4037 if ((bp
->b_flags
& B_VMIO
) == 0)
4040 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4041 ("vfs_clean_pages: no buffer offset"));
4043 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4044 m
= bp
->b_xio
.xio_pages
[i
];
4045 vfs_clean_one_page(bp
, i
, m
);
4050 * vfs_clean_one_page:
4052 * Set the valid bits and clear the dirty bits in a page within a
4053 * buffer. The range is restricted to the buffer's size and the
4054 * buffer's logical offset might index into the first page.
4056 * The caller has busied or soft-busied the page and it is not mapped,
4057 * test and incorporate the dirty bits into b_dirtyoff/end before
4058 * clearing them. Note that we need to clear the pmap modified bits
4059 * after determining the the page was dirty, vm_page_set_validclean()
4060 * does not do it for us.
4062 * This routine is typically called after a read completes (dirty should
4063 * be zero in that case as we are not called on bogus-replace pages),
4064 * or before a write is initiated.
4067 vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4075 * Calculate offset range within the page but relative to buffer's
4076 * loffset. loffset might be offset into the first page.
4078 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4079 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4085 soff
= (pageno
<< PAGE_SHIFT
);
4086 eoff
= soff
+ PAGE_SIZE
;
4094 * Test dirty bits and adjust b_dirtyoff/end.
4096 * If dirty pages are incorporated into the bp any prior
4097 * B_NEEDCOMMIT state (NFS) must be cleared because the
4098 * caller has not taken into account the new dirty data.
4100 * If the page was memory mapped the dirty bits might go beyond the
4101 * end of the buffer, but we can't really make the assumption that
4102 * a file EOF straddles the buffer (even though this is the case for
4103 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4104 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4105 * This also saves some console spam.
4107 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4108 * NFS can handle huge commits but not huge writes.
4110 vm_page_test_dirty(m
);
4112 if ((bp
->b_flags
& B_NEEDCOMMIT
) &&
4113 (m
->dirty
& vm_page_bits(soff
& PAGE_MASK
, eoff
- soff
))) {
4115 kprintf("Warning: vfs_clean_one_page: bp %p "
4116 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4117 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4119 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_bcount
,
4120 bp
->b_flags
, bp
->b_cmd
,
4121 m
->valid
, m
->dirty
, xoff
, soff
, eoff
,
4122 bp
->b_dirtyoff
, bp
->b_dirtyend
);
4123 bp
->b_flags
&= ~(B_NEEDCOMMIT
| B_CLUSTEROK
);
4125 print_backtrace(-1);
4128 * Only clear the pmap modified bits if ALL the dirty bits
4129 * are set, otherwise the system might mis-clear portions
4132 if (m
->dirty
== VM_PAGE_BITS_ALL
&&
4133 (bp
->b_flags
& B_NEEDCOMMIT
) == 0) {
4134 pmap_clear_modify(m
);
4136 if (bp
->b_dirtyoff
> soff
- xoff
)
4137 bp
->b_dirtyoff
= soff
- xoff
;
4138 if (bp
->b_dirtyend
< eoff
- xoff
)
4139 bp
->b_dirtyend
= eoff
- xoff
;
4143 * Set related valid bits, clear related dirty bits.
4144 * Does not mess with the pmap modified bit.
4146 * WARNING! We cannot just clear all of m->dirty here as the
4147 * buffer cache buffers may use a DEV_BSIZE'd aligned
4148 * block size, or have an odd size (e.g. NFS at file EOF).
4149 * The putpages code can clear m->dirty to 0.
4151 * If a VOP_WRITE generates a buffer cache buffer which
4152 * covers the same space as mapped writable pages the
4153 * buffer flush might not be able to clear all the dirty
4154 * bits and still require a putpages from the VM system
4157 * WARNING! vm_page_set_validclean() currently assumes vm_token
4158 * is held. The page might not be busied (bdwrite() case).
4159 * XXX remove this comment once we've validated that this
4160 * is no longer an issue.
4162 vm_page_set_validclean(m
, soff
& PAGE_MASK
, eoff
- soff
);
4167 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4168 * The page data is assumed to be valid (there is no zeroing here).
4171 vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4179 * Calculate offset range within the page but relative to buffer's
4180 * loffset. loffset might be offset into the first page.
4182 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4183 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4189 soff
= (pageno
<< PAGE_SHIFT
);
4190 eoff
= soff
+ PAGE_SIZE
;
4196 vm_page_set_validdirty(m
, soff
& PAGE_MASK
, eoff
- soff
);
4203 * Clear a buffer. This routine essentially fakes an I/O, so we need
4204 * to clear B_ERROR and B_INVAL.
4206 * Note that while we only theoretically need to clear through b_bcount,
4207 * we go ahead and clear through b_bufsize.
4210 vfs_bio_clrbuf(struct buf
*bp
)
4214 KKASSERT(bp
->b_flags
& B_VMIO
);
4216 bp
->b_flags
&= ~(B_INVAL
| B_EINTR
| B_ERROR
);
4219 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
4220 (bp
->b_loffset
& PAGE_MASK
) == 0) {
4221 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
4222 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
4226 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0) {
4227 bzero(bp
->b_data
, bp
->b_bufsize
);
4228 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
4234 for(i
= 0; i
< bp
->b_xio
.xio_npages
; i
++, sa
=ea
) {
4235 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
4236 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
4237 ea
= (caddr_t
)(vm_offset_t
)ulmin(
4238 (u_long
)(vm_offset_t
)ea
,
4239 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
4240 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
4241 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
4243 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
4246 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
4247 if ((bp
->b_xio
.xio_pages
[i
]->valid
&
4249 bzero(sa
, DEV_BSIZE
);
4253 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
4259 * Allocate a page for a buffer cache buffer.
4261 * If NULL is returned the caller is expected to retry (typically check if
4262 * the page already exists on retry before trying to allocate one).
4264 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4265 * function will use the system reserve with the hope that the page
4266 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4267 * is done with the buffer.
4269 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4270 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4271 * is capable of retiring pages (to swap). For TMPFS we don't dig
4272 * into the system reserve because doing so could stall out pretty
4273 * much every process running on the system.
4277 bio_page_alloc(struct buf
*bp
, vm_object_t obj
, vm_pindex_t pg
, int deficit
)
4279 int vmflags
= VM_ALLOC_NORMAL
| VM_ALLOC_NULL_OK
;
4282 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj
));
4285 * Try a normal allocation first.
4287 p
= vm_page_alloc(obj
, pg
, vmflags
);
4290 if (vm_page_lookup(obj
, pg
))
4292 vm_pageout_deficit
+= deficit
;
4295 * Try again, digging into the system reserve.
4297 * Trying to recover pages from the buffer cache here can deadlock
4298 * against other threads trying to busy underlying pages so we
4299 * depend on the code in brelse() and bqrelse() to free/cache the
4300 * underlying buffer cache pages when memory is low.
4302 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4303 vmflags
|= VM_ALLOC_SYSTEM
| VM_ALLOC_INTERRUPT
;
4304 else if (bp
->b_vp
&& bp
->b_vp
->v_tag
== VT_TMPFS
)
4307 vmflags
|= VM_ALLOC_SYSTEM
;
4309 /*recoverbufpages();*/
4310 p
= vm_page_alloc(obj
, pg
, vmflags
);
4313 if (vm_page_lookup(obj
, pg
))
4317 * Wait for memory to free up and try again
4319 if (vm_page_count_severe())
4321 vm_wait(hz
/ 20 + 1);
4323 p
= vm_page_alloc(obj
, pg
, vmflags
);
4326 if (vm_page_lookup(obj
, pg
))
4330 * Ok, now we are really in trouble.
4333 static struct krate biokrate
= { .freq
= 1 };
4334 krateprintf(&biokrate
,
4335 "Warning: bio_page_alloc: memory exhausted "
4336 "during buffer cache page allocation from %s\n",
4337 curthread
->td_comm
);
4339 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4340 vm_wait(hz
/ 20 + 1);
4342 vm_wait(hz
/ 2 + 1);
4347 * The buffer's mapping has changed. Adjust the buffer's memory
4348 * synchronization. The caller is the exclusive holder of the buffer
4349 * and has set or cleared B_KVABIO according to preference.
4351 * WARNING! If the caller is using B_KVABIO mode, this function will
4352 * not map the data to the current cpu. The caller must also
4353 * call bkvasync(bp).
4356 bkvareset(struct buf
*bp
)
4358 if (bp
->b_flags
& B_KVABIO
) {
4359 CPUMASK_ASSZERO(bp
->b_cpumask
);
4361 CPUMASK_ORMASK(bp
->b_cpumask
, smp_active_mask
);
4368 * The buffer will be used by the caller on the caller's cpu, synchronize
4369 * its data to the current cpu.
4371 * If B_KVABIO is not set, the buffer is already fully synchronized.
4374 bkvasync(struct buf
*bp
)
4376 int cpuid
= mycpu
->gd_cpuid
;
4379 if ((bp
->b_flags
& B_KVABIO
) &&
4380 CPUMASK_TESTBIT(bp
->b_cpumask
, cpuid
) == 0) {
4382 while (bdata
< bp
->b_data
+ bp
->b_bufsize
) {
4384 bdata
+= PAGE_SIZE
-
4385 ((intptr_t)bdata
& PAGE_MASK
);
4387 ATOMIC_CPUMASK_ORBIT(bp
->b_cpumask
, cpuid
);
4392 * The buffer will be used by a subsystem that does not understand
4393 * the KVABIO API. Make sure its data is synchronized to all cpus.
4395 * If B_KVABIO is not set, the buffer is already fully synchronized.
4397 * NOTE! This is the only safe way to clear B_KVABIO on a buffer.
4400 bkvasync_all(struct buf
*bp
)
4402 if (debug_kvabio
> 0) {
4404 print_backtrace(10);
4407 if ((bp
->b_flags
& B_KVABIO
) &&
4408 CPUMASK_CMPMASKNEQ(bp
->b_cpumask
, smp_active_mask
)) {
4411 ATOMIC_CPUMASK_ORMASK(bp
->b_cpumask
, smp_active_mask
);
4413 bp
->b_flags
&= ~B_KVABIO
;
4417 * Scan all buffers in the system and issue the callback.
4420 scan_all_buffers(int (*callback
)(struct buf
*, void *), void *info
)
4426 for (n
= 0; n
< nbuf
; ++n
) {
4427 if ((error
= callback(&buf
[n
], info
)) < 0) {
4437 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4438 * completion to the master buffer.
4441 nestiobuf_iodone(struct bio
*bio
)
4444 struct buf
*mbp
, *bp
;
4445 struct devstat
*stats
;
4450 mbio
= bio
->bio_caller_info1
.ptr
;
4451 stats
= bio
->bio_caller_info2
.ptr
;
4452 mbp
= mbio
->bio_buf
;
4454 KKASSERT(bp
->b_bcount
<= bp
->b_bufsize
);
4455 KKASSERT(mbp
!= bp
);
4457 error
= bp
->b_error
;
4458 if (bp
->b_error
== 0 &&
4459 (bp
->b_bcount
< bp
->b_bufsize
|| bp
->b_resid
> 0)) {
4461 * Not all got transfered, raise an error. We have no way to
4462 * propagate these conditions to mbp.
4467 donebytes
= bp
->b_bufsize
;
4471 nestiobuf_done(mbio
, donebytes
, error
, stats
);
4475 nestiobuf_done(struct bio
*mbio
, int donebytes
, int error
, struct devstat
*stats
)
4479 mbp
= mbio
->bio_buf
;
4481 KKASSERT((int)(intptr_t)mbio
->bio_driver_info
> 0);
4484 * If an error occured, propagate it to the master buffer.
4486 * Several biodone()s may wind up running concurrently so
4487 * use an atomic op to adjust b_flags.
4490 mbp
->b_error
= error
;
4491 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4495 * Decrement the operations in progress counter and terminate the
4496 * I/O if this was the last bit.
4498 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4501 devstat_end_transaction_buf(stats
, mbp
);
4507 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4508 * the mbio from being biodone()'d while we are still adding sub-bios to
4512 nestiobuf_init(struct bio
*bio
)
4514 bio
->bio_driver_info
= (void *)1;
4518 * The BIOs added to the nestedio have already been started, remove the
4519 * count that placeheld our mbio and biodone() it if the count would
4523 nestiobuf_start(struct bio
*mbio
)
4525 struct buf
*mbp
= mbio
->bio_buf
;
4528 * Decrement the operations in progress counter and terminate the
4529 * I/O if this was the last bit.
4531 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4532 if (mbp
->b_flags
& B_ERROR
)
4533 mbp
->b_resid
= mbp
->b_bcount
;
4541 * Set an intermediate error prior to calling nestiobuf_start()
4544 nestiobuf_error(struct bio
*mbio
, int error
)
4546 struct buf
*mbp
= mbio
->bio_buf
;
4549 mbp
->b_error
= error
;
4550 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4555 * nestiobuf_add: setup a "nested" buffer.
4557 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4558 * => 'bp' should be a buffer allocated by getiobuf.
4559 * => 'offset' is a byte offset in the master buffer.
4560 * => 'size' is a size in bytes of this nested buffer.
4563 nestiobuf_add(struct bio
*mbio
, struct buf
*bp
, int offset
, size_t size
, struct devstat
*stats
)
4565 struct buf
*mbp
= mbio
->bio_buf
;
4566 struct vnode
*vp
= mbp
->b_vp
;
4568 KKASSERT(mbp
->b_bcount
>= offset
+ size
);
4570 atomic_add_int((int *)&mbio
->bio_driver_info
, 1);
4572 /* kernel needs to own the lock for it to be released in biodone */
4575 bp
->b_cmd
= mbp
->b_cmd
;
4576 bp
->b_bio1
.bio_done
= nestiobuf_iodone
;
4577 bp
->b_data
= (char *)mbp
->b_data
+ offset
;
4578 bp
->b_resid
= bp
->b_bcount
= size
;
4579 bp
->b_bufsize
= bp
->b_bcount
;
4581 bp
->b_bio1
.bio_track
= NULL
;
4582 bp
->b_bio1
.bio_caller_info1
.ptr
= mbio
;
4583 bp
->b_bio1
.bio_caller_info2
.ptr
= stats
;
4588 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
4591 struct buf
*bp
= (struct buf
*)addr
;
4594 db_printf("usage: show buffer <addr>\n");
4598 db_printf("b_flags = 0x%b\n", (u_int
)bp
->b_flags
, PRINT_BUF_FLAGS
);
4599 db_printf("b_cmd = %d\n", bp
->b_cmd
);
4600 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4601 "b_resid = %d\n, b_data = %p, "
4602 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4603 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
4605 (long long)bp
->b_bio2
.bio_offset
,
4606 (long long)(bp
->b_bio2
.bio_next
?
4607 bp
->b_bio2
.bio_next
->bio_offset
: (off_t
)-1));
4608 if (bp
->b_xio
.xio_npages
) {
4610 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4611 bp
->b_xio
.xio_npages
);
4612 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4614 m
= bp
->b_xio
.xio_pages
[i
];
4615 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
4616 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
4617 if ((i
+ 1) < bp
->b_xio
.xio_npages
)