hammer2 - slave sync work
[dragonfly.git] / contrib / libpcap / optimize.c
blobdcb104ec2a7d12e70d100347aafb8a201d78b2d7
1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
23 #ifndef lint
24 static const char rcsid[] _U_ =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp $ (LBL)";
26 #endif
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
32 #ifdef WIN32
33 #include <pcap-stdinc.h>
34 #else /* WIN32 */
35 #if HAVE_INTTYPES_H
36 #include <inttypes.h>
37 #elif HAVE_STDINT_H
38 #include <stdint.h>
39 #endif
40 #ifdef HAVE_SYS_BITYPES_H
41 #include <sys/bitypes.h>
42 #endif
43 #include <sys/types.h>
44 #endif /* WIN32 */
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <memory.h>
49 #include <string.h>
51 #include <errno.h>
53 #include "pcap-int.h"
55 #include "gencode.h"
57 #ifdef HAVE_OS_PROTO_H
58 #include "os-proto.h"
59 #endif
61 #ifdef BDEBUG
62 extern int dflag;
63 #endif
65 #if defined(MSDOS) && !defined(__DJGPP__)
66 extern int _w32_ffs (int mask);
67 #define ffs _w32_ffs
68 #endif
70 #if defined(WIN32) && defined (_MSC_VER)
71 int ffs(int mask);
72 #endif
75 * Represents a deleted instruction.
77 #define NOP -1
80 * Register numbers for use-def values.
81 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
82 * location. A_ATOM is the accumulator and X_ATOM is the index
83 * register.
85 #define A_ATOM BPF_MEMWORDS
86 #define X_ATOM (BPF_MEMWORDS+1)
89 * This define is used to represent *both* the accumulator and
90 * x register in use-def computations.
91 * Currently, the use-def code assumes only one definition per instruction.
93 #define AX_ATOM N_ATOMS
96 * A flag to indicate that further optimization is needed.
97 * Iterative passes are continued until a given pass yields no
98 * branch movement.
100 static int done;
103 * A block is marked if only if its mark equals the current mark.
104 * Rather than traverse the code array, marking each item, 'cur_mark' is
105 * incremented. This automatically makes each element unmarked.
107 static int cur_mark;
108 #define isMarked(p) ((p)->mark == cur_mark)
109 #define unMarkAll() cur_mark += 1
110 #define Mark(p) ((p)->mark = cur_mark)
112 static void opt_init(struct block *);
113 static void opt_cleanup(void);
115 static void intern_blocks(struct block *);
117 static void find_inedges(struct block *);
118 #ifdef BDEBUG
119 static void opt_dump(struct block *);
120 #endif
122 static int n_blocks;
123 struct block **blocks;
124 static int n_edges;
125 struct edge **edges;
128 * A bit vector set representation of the dominators.
129 * We round up the set size to the next power of two.
131 static int nodewords;
132 static int edgewords;
133 struct block **levels;
134 bpf_u_int32 *space;
135 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
137 * True if a is in uset {p}
139 #define SET_MEMBER(p, a) \
140 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
143 * Add 'a' to uset p.
145 #define SET_INSERT(p, a) \
146 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
149 * Delete 'a' from uset p.
151 #define SET_DELETE(p, a) \
152 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
155 * a := a intersect b
157 #define SET_INTERSECT(a, b, n)\
159 register bpf_u_int32 *_x = a, *_y = b;\
160 register int _n = n;\
161 while (--_n >= 0) *_x++ &= *_y++;\
165 * a := a - b
167 #define SET_SUBTRACT(a, b, n)\
169 register bpf_u_int32 *_x = a, *_y = b;\
170 register int _n = n;\
171 while (--_n >= 0) *_x++ &=~ *_y++;\
175 * a := a union b
177 #define SET_UNION(a, b, n)\
179 register bpf_u_int32 *_x = a, *_y = b;\
180 register int _n = n;\
181 while (--_n >= 0) *_x++ |= *_y++;\
184 static uset all_dom_sets;
185 static uset all_closure_sets;
186 static uset all_edge_sets;
188 #ifndef MAX
189 #define MAX(a,b) ((a)>(b)?(a):(b))
190 #endif
192 static void
193 find_levels_r(struct block *b)
195 int level;
197 if (isMarked(b))
198 return;
200 Mark(b);
201 b->link = 0;
203 if (JT(b)) {
204 find_levels_r(JT(b));
205 find_levels_r(JF(b));
206 level = MAX(JT(b)->level, JF(b)->level) + 1;
207 } else
208 level = 0;
209 b->level = level;
210 b->link = levels[level];
211 levels[level] = b;
215 * Level graph. The levels go from 0 at the leaves to
216 * N_LEVELS at the root. The levels[] array points to the
217 * first node of the level list, whose elements are linked
218 * with the 'link' field of the struct block.
220 static void
221 find_levels(struct block *root)
223 memset((char *)levels, 0, n_blocks * sizeof(*levels));
224 unMarkAll();
225 find_levels_r(root);
229 * Find dominator relationships.
230 * Assumes graph has been leveled.
232 static void
233 find_dom(struct block *root)
235 int i;
236 struct block *b;
237 bpf_u_int32 *x;
240 * Initialize sets to contain all nodes.
242 x = all_dom_sets;
243 i = n_blocks * nodewords;
244 while (--i >= 0)
245 *x++ = ~0;
246 /* Root starts off empty. */
247 for (i = nodewords; --i >= 0;)
248 root->dom[i] = 0;
250 /* root->level is the highest level no found. */
251 for (i = root->level; i >= 0; --i) {
252 for (b = levels[i]; b; b = b->link) {
253 SET_INSERT(b->dom, b->id);
254 if (JT(b) == 0)
255 continue;
256 SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
257 SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
262 static void
263 propedom(struct edge *ep)
265 SET_INSERT(ep->edom, ep->id);
266 if (ep->succ) {
267 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
268 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
273 * Compute edge dominators.
274 * Assumes graph has been leveled and predecessors established.
276 static void
277 find_edom(struct block *root)
279 int i;
280 uset x;
281 struct block *b;
283 x = all_edge_sets;
284 for (i = n_edges * edgewords; --i >= 0; )
285 x[i] = ~0;
287 /* root->level is the highest level no found. */
288 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
289 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
290 for (i = root->level; i >= 0; --i) {
291 for (b = levels[i]; b != 0; b = b->link) {
292 propedom(&b->et);
293 propedom(&b->ef);
299 * Find the backwards transitive closure of the flow graph. These sets
300 * are backwards in the sense that we find the set of nodes that reach
301 * a given node, not the set of nodes that can be reached by a node.
303 * Assumes graph has been leveled.
305 static void
306 find_closure(struct block *root)
308 int i;
309 struct block *b;
312 * Initialize sets to contain no nodes.
314 memset((char *)all_closure_sets, 0,
315 n_blocks * nodewords * sizeof(*all_closure_sets));
317 /* root->level is the highest level no found. */
318 for (i = root->level; i >= 0; --i) {
319 for (b = levels[i]; b; b = b->link) {
320 SET_INSERT(b->closure, b->id);
321 if (JT(b) == 0)
322 continue;
323 SET_UNION(JT(b)->closure, b->closure, nodewords);
324 SET_UNION(JF(b)->closure, b->closure, nodewords);
330 * Return the register number that is used by s. If A and X are both
331 * used, return AX_ATOM. If no register is used, return -1.
333 * The implementation should probably change to an array access.
335 static int
336 atomuse(struct stmt *s)
338 register int c = s->code;
340 if (c == NOP)
341 return -1;
343 switch (BPF_CLASS(c)) {
345 case BPF_RET:
346 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
347 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
349 case BPF_LD:
350 case BPF_LDX:
351 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
352 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
354 case BPF_ST:
355 return A_ATOM;
357 case BPF_STX:
358 return X_ATOM;
360 case BPF_JMP:
361 case BPF_ALU:
362 if (BPF_SRC(c) == BPF_X)
363 return AX_ATOM;
364 return A_ATOM;
366 case BPF_MISC:
367 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
369 abort();
370 /* NOTREACHED */
374 * Return the register number that is defined by 's'. We assume that
375 * a single stmt cannot define more than one register. If no register
376 * is defined, return -1.
378 * The implementation should probably change to an array access.
380 static int
381 atomdef(struct stmt *s)
383 if (s->code == NOP)
384 return -1;
386 switch (BPF_CLASS(s->code)) {
388 case BPF_LD:
389 case BPF_ALU:
390 return A_ATOM;
392 case BPF_LDX:
393 return X_ATOM;
395 case BPF_ST:
396 case BPF_STX:
397 return s->k;
399 case BPF_MISC:
400 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
402 return -1;
406 * Compute the sets of registers used, defined, and killed by 'b'.
408 * "Used" means that a statement in 'b' uses the register before any
409 * statement in 'b' defines it, i.e. it uses the value left in
410 * that register by a predecessor block of this block.
411 * "Defined" means that a statement in 'b' defines it.
412 * "Killed" means that a statement in 'b' defines it before any
413 * statement in 'b' uses it, i.e. it kills the value left in that
414 * register by a predecessor block of this block.
416 static void
417 compute_local_ud(struct block *b)
419 struct slist *s;
420 atomset def = 0, use = 0, kill = 0;
421 int atom;
423 for (s = b->stmts; s; s = s->next) {
424 if (s->s.code == NOP)
425 continue;
426 atom = atomuse(&s->s);
427 if (atom >= 0) {
428 if (atom == AX_ATOM) {
429 if (!ATOMELEM(def, X_ATOM))
430 use |= ATOMMASK(X_ATOM);
431 if (!ATOMELEM(def, A_ATOM))
432 use |= ATOMMASK(A_ATOM);
434 else if (atom < N_ATOMS) {
435 if (!ATOMELEM(def, atom))
436 use |= ATOMMASK(atom);
438 else
439 abort();
441 atom = atomdef(&s->s);
442 if (atom >= 0) {
443 if (!ATOMELEM(use, atom))
444 kill |= ATOMMASK(atom);
445 def |= ATOMMASK(atom);
448 if (BPF_CLASS(b->s.code) == BPF_JMP) {
450 * XXX - what about RET?
452 atom = atomuse(&b->s);
453 if (atom >= 0) {
454 if (atom == AX_ATOM) {
455 if (!ATOMELEM(def, X_ATOM))
456 use |= ATOMMASK(X_ATOM);
457 if (!ATOMELEM(def, A_ATOM))
458 use |= ATOMMASK(A_ATOM);
460 else if (atom < N_ATOMS) {
461 if (!ATOMELEM(def, atom))
462 use |= ATOMMASK(atom);
464 else
465 abort();
469 b->def = def;
470 b->kill = kill;
471 b->in_use = use;
475 * Assume graph is already leveled.
477 static void
478 find_ud(struct block *root)
480 int i, maxlevel;
481 struct block *p;
484 * root->level is the highest level no found;
485 * count down from there.
487 maxlevel = root->level;
488 for (i = maxlevel; i >= 0; --i)
489 for (p = levels[i]; p; p = p->link) {
490 compute_local_ud(p);
491 p->out_use = 0;
494 for (i = 1; i <= maxlevel; ++i) {
495 for (p = levels[i]; p; p = p->link) {
496 p->out_use |= JT(p)->in_use | JF(p)->in_use;
497 p->in_use |= p->out_use &~ p->kill;
503 * These data structures are used in a Cocke and Shwarz style
504 * value numbering scheme. Since the flowgraph is acyclic,
505 * exit values can be propagated from a node's predecessors
506 * provided it is uniquely defined.
508 struct valnode {
509 int code;
510 int v0, v1;
511 int val;
512 struct valnode *next;
515 #define MODULUS 213
516 static struct valnode *hashtbl[MODULUS];
517 static int curval;
518 static int maxval;
520 /* Integer constants mapped with the load immediate opcode. */
521 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
523 struct vmapinfo {
524 int is_const;
525 bpf_int32 const_val;
528 struct vmapinfo *vmap;
529 struct valnode *vnode_base;
530 struct valnode *next_vnode;
532 static void
533 init_val(void)
535 curval = 0;
536 next_vnode = vnode_base;
537 memset((char *)vmap, 0, maxval * sizeof(*vmap));
538 memset((char *)hashtbl, 0, sizeof hashtbl);
541 /* Because we really don't have an IR, this stuff is a little messy. */
542 static int
543 F(int code, int v0, int v1)
545 u_int hash;
546 int val;
547 struct valnode *p;
549 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
550 hash %= MODULUS;
552 for (p = hashtbl[hash]; p; p = p->next)
553 if (p->code == code && p->v0 == v0 && p->v1 == v1)
554 return p->val;
556 val = ++curval;
557 if (BPF_MODE(code) == BPF_IMM &&
558 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
559 vmap[val].const_val = v0;
560 vmap[val].is_const = 1;
562 p = next_vnode++;
563 p->val = val;
564 p->code = code;
565 p->v0 = v0;
566 p->v1 = v1;
567 p->next = hashtbl[hash];
568 hashtbl[hash] = p;
570 return val;
573 static inline void
574 vstore(struct stmt *s, int *valp, int newval, int alter)
576 if (alter && *valp == newval)
577 s->code = NOP;
578 else
579 *valp = newval;
582 static void
583 fold_op(struct stmt *s, int v0, int v1)
585 bpf_u_int32 a, b;
587 a = vmap[v0].const_val;
588 b = vmap[v1].const_val;
590 switch (BPF_OP(s->code)) {
591 case BPF_ADD:
592 a += b;
593 break;
595 case BPF_SUB:
596 a -= b;
597 break;
599 case BPF_MUL:
600 a *= b;
601 break;
603 case BPF_DIV:
604 if (b == 0)
605 bpf_error("division by zero");
606 a /= b;
607 break;
609 case BPF_AND:
610 a &= b;
611 break;
613 case BPF_OR:
614 a |= b;
615 break;
617 case BPF_LSH:
618 a <<= b;
619 break;
621 case BPF_RSH:
622 a >>= b;
623 break;
625 case BPF_NEG:
626 a = -a;
627 break;
629 default:
630 abort();
632 s->k = a;
633 s->code = BPF_LD|BPF_IMM;
634 done = 0;
637 static inline struct slist *
638 this_op(struct slist *s)
640 while (s != 0 && s->s.code == NOP)
641 s = s->next;
642 return s;
645 static void
646 opt_not(struct block *b)
648 struct block *tmp = JT(b);
650 JT(b) = JF(b);
651 JF(b) = tmp;
654 static void
655 opt_peep(struct block *b)
657 struct slist *s;
658 struct slist *next, *last;
659 int val;
661 s = b->stmts;
662 if (s == 0)
663 return;
665 last = s;
666 for (/*empty*/; /*empty*/; s = next) {
668 * Skip over nops.
670 s = this_op(s);
671 if (s == 0)
672 break; /* nothing left in the block */
675 * Find the next real instruction after that one
676 * (skipping nops).
678 next = this_op(s->next);
679 if (next == 0)
680 break; /* no next instruction */
681 last = next;
684 * st M[k] --> st M[k]
685 * ldx M[k] tax
687 if (s->s.code == BPF_ST &&
688 next->s.code == (BPF_LDX|BPF_MEM) &&
689 s->s.k == next->s.k) {
690 done = 0;
691 next->s.code = BPF_MISC|BPF_TAX;
694 * ld #k --> ldx #k
695 * tax txa
697 if (s->s.code == (BPF_LD|BPF_IMM) &&
698 next->s.code == (BPF_MISC|BPF_TAX)) {
699 s->s.code = BPF_LDX|BPF_IMM;
700 next->s.code = BPF_MISC|BPF_TXA;
701 done = 0;
704 * This is an ugly special case, but it happens
705 * when you say tcp[k] or udp[k] where k is a constant.
707 if (s->s.code == (BPF_LD|BPF_IMM)) {
708 struct slist *add, *tax, *ild;
711 * Check that X isn't used on exit from this
712 * block (which the optimizer might cause).
713 * We know the code generator won't generate
714 * any local dependencies.
716 if (ATOMELEM(b->out_use, X_ATOM))
717 continue;
720 * Check that the instruction following the ldi
721 * is an addx, or it's an ldxms with an addx
722 * following it (with 0 or more nops between the
723 * ldxms and addx).
725 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
726 add = next;
727 else
728 add = this_op(next->next);
729 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
730 continue;
733 * Check that a tax follows that (with 0 or more
734 * nops between them).
736 tax = this_op(add->next);
737 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
738 continue;
741 * Check that an ild follows that (with 0 or more
742 * nops between them).
744 ild = this_op(tax->next);
745 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
746 BPF_MODE(ild->s.code) != BPF_IND)
747 continue;
749 * We want to turn this sequence:
751 * (004) ldi #0x2 {s}
752 * (005) ldxms [14] {next} -- optional
753 * (006) addx {add}
754 * (007) tax {tax}
755 * (008) ild [x+0] {ild}
757 * into this sequence:
759 * (004) nop
760 * (005) ldxms [14]
761 * (006) nop
762 * (007) nop
763 * (008) ild [x+2]
765 * XXX We need to check that X is not
766 * subsequently used, because we want to change
767 * what'll be in it after this sequence.
769 * We know we can eliminate the accumulator
770 * modifications earlier in the sequence since
771 * it is defined by the last stmt of this sequence
772 * (i.e., the last statement of the sequence loads
773 * a value into the accumulator, so we can eliminate
774 * earlier operations on the accumulator).
776 ild->s.k += s->s.k;
777 s->s.code = NOP;
778 add->s.code = NOP;
779 tax->s.code = NOP;
780 done = 0;
784 * If the comparison at the end of a block is an equality
785 * comparison against a constant, and nobody uses the value
786 * we leave in the A register at the end of a block, and
787 * the operation preceding the comparison is an arithmetic
788 * operation, we can sometime optimize it away.
790 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
791 !ATOMELEM(b->out_use, A_ATOM)) {
793 * We can optimize away certain subtractions of the
794 * X register.
796 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
797 val = b->val[X_ATOM];
798 if (vmap[val].is_const) {
800 * If we have a subtract to do a comparison,
801 * and the X register is a known constant,
802 * we can merge this value into the
803 * comparison:
805 * sub x -> nop
806 * jeq #y jeq #(x+y)
808 b->s.k += vmap[val].const_val;
809 last->s.code = NOP;
810 done = 0;
811 } else if (b->s.k == 0) {
813 * If the X register isn't a constant,
814 * and the comparison in the test is
815 * against 0, we can compare with the
816 * X register, instead:
818 * sub x -> nop
819 * jeq #0 jeq x
821 last->s.code = NOP;
822 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
823 done = 0;
827 * Likewise, a constant subtract can be simplified:
829 * sub #x -> nop
830 * jeq #y -> jeq #(x+y)
832 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
833 last->s.code = NOP;
834 b->s.k += last->s.k;
835 done = 0;
838 * And, similarly, a constant AND can be simplified
839 * if we're testing against 0, i.e.:
841 * and #k nop
842 * jeq #0 -> jset #k
844 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
845 b->s.k == 0) {
846 b->s.k = last->s.k;
847 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
848 last->s.code = NOP;
849 done = 0;
850 opt_not(b);
854 * jset #0 -> never
855 * jset #ffffffff -> always
857 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
858 if (b->s.k == 0)
859 JT(b) = JF(b);
860 if (b->s.k == 0xffffffff)
861 JF(b) = JT(b);
864 * If we're comparing against the index register, and the index
865 * register is a known constant, we can just compare against that
866 * constant.
868 val = b->val[X_ATOM];
869 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
870 bpf_int32 v = vmap[val].const_val;
871 b->s.code &= ~BPF_X;
872 b->s.k = v;
875 * If the accumulator is a known constant, we can compute the
876 * comparison result.
878 val = b->val[A_ATOM];
879 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
880 bpf_int32 v = vmap[val].const_val;
881 switch (BPF_OP(b->s.code)) {
883 case BPF_JEQ:
884 v = v == b->s.k;
885 break;
887 case BPF_JGT:
888 v = (unsigned)v > b->s.k;
889 break;
891 case BPF_JGE:
892 v = (unsigned)v >= b->s.k;
893 break;
895 case BPF_JSET:
896 v &= b->s.k;
897 break;
899 default:
900 abort();
902 if (JF(b) != JT(b))
903 done = 0;
904 if (v)
905 JF(b) = JT(b);
906 else
907 JT(b) = JF(b);
912 * Compute the symbolic value of expression of 's', and update
913 * anything it defines in the value table 'val'. If 'alter' is true,
914 * do various optimizations. This code would be cleaner if symbolic
915 * evaluation and code transformations weren't folded together.
917 static void
918 opt_stmt(struct stmt *s, int val[], int alter)
920 int op;
921 int v;
923 switch (s->code) {
925 case BPF_LD|BPF_ABS|BPF_W:
926 case BPF_LD|BPF_ABS|BPF_H:
927 case BPF_LD|BPF_ABS|BPF_B:
928 v = F(s->code, s->k, 0L);
929 vstore(s, &val[A_ATOM], v, alter);
930 break;
932 case BPF_LD|BPF_IND|BPF_W:
933 case BPF_LD|BPF_IND|BPF_H:
934 case BPF_LD|BPF_IND|BPF_B:
935 v = val[X_ATOM];
936 if (alter && vmap[v].is_const) {
937 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
938 s->k += vmap[v].const_val;
939 v = F(s->code, s->k, 0L);
940 done = 0;
942 else
943 v = F(s->code, s->k, v);
944 vstore(s, &val[A_ATOM], v, alter);
945 break;
947 case BPF_LD|BPF_LEN:
948 v = F(s->code, 0L, 0L);
949 vstore(s, &val[A_ATOM], v, alter);
950 break;
952 case BPF_LD|BPF_IMM:
953 v = K(s->k);
954 vstore(s, &val[A_ATOM], v, alter);
955 break;
957 case BPF_LDX|BPF_IMM:
958 v = K(s->k);
959 vstore(s, &val[X_ATOM], v, alter);
960 break;
962 case BPF_LDX|BPF_MSH|BPF_B:
963 v = F(s->code, s->k, 0L);
964 vstore(s, &val[X_ATOM], v, alter);
965 break;
967 case BPF_ALU|BPF_NEG:
968 if (alter && vmap[val[A_ATOM]].is_const) {
969 s->code = BPF_LD|BPF_IMM;
970 s->k = -vmap[val[A_ATOM]].const_val;
971 val[A_ATOM] = K(s->k);
973 else
974 val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
975 break;
977 case BPF_ALU|BPF_ADD|BPF_K:
978 case BPF_ALU|BPF_SUB|BPF_K:
979 case BPF_ALU|BPF_MUL|BPF_K:
980 case BPF_ALU|BPF_DIV|BPF_K:
981 case BPF_ALU|BPF_AND|BPF_K:
982 case BPF_ALU|BPF_OR|BPF_K:
983 case BPF_ALU|BPF_LSH|BPF_K:
984 case BPF_ALU|BPF_RSH|BPF_K:
985 op = BPF_OP(s->code);
986 if (alter) {
987 if (s->k == 0) {
988 /* don't optimize away "sub #0"
989 * as it may be needed later to
990 * fixup the generated math code */
991 if (op == BPF_ADD ||
992 op == BPF_LSH || op == BPF_RSH ||
993 op == BPF_OR) {
994 s->code = NOP;
995 break;
997 if (op == BPF_MUL || op == BPF_AND) {
998 s->code = BPF_LD|BPF_IMM;
999 val[A_ATOM] = K(s->k);
1000 break;
1003 if (vmap[val[A_ATOM]].is_const) {
1004 fold_op(s, val[A_ATOM], K(s->k));
1005 val[A_ATOM] = K(s->k);
1006 break;
1009 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1010 break;
1012 case BPF_ALU|BPF_ADD|BPF_X:
1013 case BPF_ALU|BPF_SUB|BPF_X:
1014 case BPF_ALU|BPF_MUL|BPF_X:
1015 case BPF_ALU|BPF_DIV|BPF_X:
1016 case BPF_ALU|BPF_AND|BPF_X:
1017 case BPF_ALU|BPF_OR|BPF_X:
1018 case BPF_ALU|BPF_LSH|BPF_X:
1019 case BPF_ALU|BPF_RSH|BPF_X:
1020 op = BPF_OP(s->code);
1021 if (alter && vmap[val[X_ATOM]].is_const) {
1022 if (vmap[val[A_ATOM]].is_const) {
1023 fold_op(s, val[A_ATOM], val[X_ATOM]);
1024 val[A_ATOM] = K(s->k);
1026 else {
1027 s->code = BPF_ALU|BPF_K|op;
1028 s->k = vmap[val[X_ATOM]].const_val;
1029 done = 0;
1030 val[A_ATOM] =
1031 F(s->code, val[A_ATOM], K(s->k));
1033 break;
1036 * Check if we're doing something to an accumulator
1037 * that is 0, and simplify. This may not seem like
1038 * much of a simplification but it could open up further
1039 * optimizations.
1040 * XXX We could also check for mul by 1, etc.
1042 if (alter && vmap[val[A_ATOM]].is_const
1043 && vmap[val[A_ATOM]].const_val == 0) {
1044 if (op == BPF_ADD || op == BPF_OR) {
1045 s->code = BPF_MISC|BPF_TXA;
1046 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1047 break;
1049 else if (op == BPF_MUL || op == BPF_DIV ||
1050 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1051 s->code = BPF_LD|BPF_IMM;
1052 s->k = 0;
1053 vstore(s, &val[A_ATOM], K(s->k), alter);
1054 break;
1056 else if (op == BPF_NEG) {
1057 s->code = NOP;
1058 break;
1061 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1062 break;
1064 case BPF_MISC|BPF_TXA:
1065 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1066 break;
1068 case BPF_LD|BPF_MEM:
1069 v = val[s->k];
1070 if (alter && vmap[v].is_const) {
1071 s->code = BPF_LD|BPF_IMM;
1072 s->k = vmap[v].const_val;
1073 done = 0;
1075 vstore(s, &val[A_ATOM], v, alter);
1076 break;
1078 case BPF_MISC|BPF_TAX:
1079 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1080 break;
1082 case BPF_LDX|BPF_MEM:
1083 v = val[s->k];
1084 if (alter && vmap[v].is_const) {
1085 s->code = BPF_LDX|BPF_IMM;
1086 s->k = vmap[v].const_val;
1087 done = 0;
1089 vstore(s, &val[X_ATOM], v, alter);
1090 break;
1092 case BPF_ST:
1093 vstore(s, &val[s->k], val[A_ATOM], alter);
1094 break;
1096 case BPF_STX:
1097 vstore(s, &val[s->k], val[X_ATOM], alter);
1098 break;
1102 static void
1103 deadstmt(register struct stmt *s, register struct stmt *last[])
1105 register int atom;
1107 atom = atomuse(s);
1108 if (atom >= 0) {
1109 if (atom == AX_ATOM) {
1110 last[X_ATOM] = 0;
1111 last[A_ATOM] = 0;
1113 else
1114 last[atom] = 0;
1116 atom = atomdef(s);
1117 if (atom >= 0) {
1118 if (last[atom]) {
1119 done = 0;
1120 last[atom]->code = NOP;
1122 last[atom] = s;
1126 static void
1127 opt_deadstores(register struct block *b)
1129 register struct slist *s;
1130 register int atom;
1131 struct stmt *last[N_ATOMS];
1133 memset((char *)last, 0, sizeof last);
1135 for (s = b->stmts; s != 0; s = s->next)
1136 deadstmt(&s->s, last);
1137 deadstmt(&b->s, last);
1139 for (atom = 0; atom < N_ATOMS; ++atom)
1140 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1141 last[atom]->code = NOP;
1142 done = 0;
1146 static void
1147 opt_blk(struct block *b, int do_stmts)
1149 struct slist *s;
1150 struct edge *p;
1151 int i;
1152 bpf_int32 aval, xval;
1154 #if 0
1155 for (s = b->stmts; s && s->next; s = s->next)
1156 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1157 do_stmts = 0;
1158 break;
1160 #endif
1163 * Initialize the atom values.
1165 p = b->in_edges;
1166 if (p == 0) {
1168 * We have no predecessors, so everything is undefined
1169 * upon entry to this block.
1171 memset((char *)b->val, 0, sizeof(b->val));
1172 } else {
1174 * Inherit values from our predecessors.
1176 * First, get the values from the predecessor along the
1177 * first edge leading to this node.
1179 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1181 * Now look at all the other nodes leading to this node.
1182 * If, for the predecessor along that edge, a register
1183 * has a different value from the one we have (i.e.,
1184 * control paths are merging, and the merging paths
1185 * assign different values to that register), give the
1186 * register the undefined value of 0.
1188 while ((p = p->next) != NULL) {
1189 for (i = 0; i < N_ATOMS; ++i)
1190 if (b->val[i] != p->pred->val[i])
1191 b->val[i] = 0;
1194 aval = b->val[A_ATOM];
1195 xval = b->val[X_ATOM];
1196 for (s = b->stmts; s; s = s->next)
1197 opt_stmt(&s->s, b->val, do_stmts);
1200 * This is a special case: if we don't use anything from this
1201 * block, and we load the accumulator or index register with a
1202 * value that is already there, or if this block is a return,
1203 * eliminate all the statements.
1205 * XXX - what if it does a store?
1207 * XXX - why does it matter whether we use anything from this
1208 * block? If the accumulator or index register doesn't change
1209 * its value, isn't that OK even if we use that value?
1211 * XXX - if we load the accumulator with a different value,
1212 * and the block ends with a conditional branch, we obviously
1213 * can't eliminate it, as the branch depends on that value.
1214 * For the index register, the conditional branch only depends
1215 * on the index register value if the test is against the index
1216 * register value rather than a constant; if nothing uses the
1217 * value we put into the index register, and we're not testing
1218 * against the index register's value, and there aren't any
1219 * other problems that would keep us from eliminating this
1220 * block, can we eliminate it?
1222 if (do_stmts &&
1223 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1224 xval != 0 && b->val[X_ATOM] == xval) ||
1225 BPF_CLASS(b->s.code) == BPF_RET)) {
1226 if (b->stmts != 0) {
1227 b->stmts = 0;
1228 done = 0;
1230 } else {
1231 opt_peep(b);
1232 opt_deadstores(b);
1235 * Set up values for branch optimizer.
1237 if (BPF_SRC(b->s.code) == BPF_K)
1238 b->oval = K(b->s.k);
1239 else
1240 b->oval = b->val[X_ATOM];
1241 b->et.code = b->s.code;
1242 b->ef.code = -b->s.code;
1246 * Return true if any register that is used on exit from 'succ', has
1247 * an exit value that is different from the corresponding exit value
1248 * from 'b'.
1250 static int
1251 use_conflict(struct block *b, struct block *succ)
1253 int atom;
1254 atomset use = succ->out_use;
1256 if (use == 0)
1257 return 0;
1259 for (atom = 0; atom < N_ATOMS; ++atom)
1260 if (ATOMELEM(use, atom))
1261 if (b->val[atom] != succ->val[atom])
1262 return 1;
1263 return 0;
1266 static struct block *
1267 fold_edge(struct block *child, struct edge *ep)
1269 int sense;
1270 int aval0, aval1, oval0, oval1;
1271 int code = ep->code;
1273 if (code < 0) {
1274 code = -code;
1275 sense = 0;
1276 } else
1277 sense = 1;
1279 if (child->s.code != code)
1280 return 0;
1282 aval0 = child->val[A_ATOM];
1283 oval0 = child->oval;
1284 aval1 = ep->pred->val[A_ATOM];
1285 oval1 = ep->pred->oval;
1287 if (aval0 != aval1)
1288 return 0;
1290 if (oval0 == oval1)
1292 * The operands of the branch instructions are
1293 * identical, so the result is true if a true
1294 * branch was taken to get here, otherwise false.
1296 return sense ? JT(child) : JF(child);
1298 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1300 * At this point, we only know the comparison if we
1301 * came down the true branch, and it was an equality
1302 * comparison with a constant.
1304 * I.e., if we came down the true branch, and the branch
1305 * was an equality comparison with a constant, we know the
1306 * accumulator contains that constant. If we came down
1307 * the false branch, or the comparison wasn't with a
1308 * constant, we don't know what was in the accumulator.
1310 * We rely on the fact that distinct constants have distinct
1311 * value numbers.
1313 return JF(child);
1315 return 0;
1318 static void
1319 opt_j(struct edge *ep)
1321 register int i, k;
1322 register struct block *target;
1324 if (JT(ep->succ) == 0)
1325 return;
1327 if (JT(ep->succ) == JF(ep->succ)) {
1329 * Common branch targets can be eliminated, provided
1330 * there is no data dependency.
1332 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1333 done = 0;
1334 ep->succ = JT(ep->succ);
1338 * For each edge dominator that matches the successor of this
1339 * edge, promote the edge successor to the its grandchild.
1341 * XXX We violate the set abstraction here in favor a reasonably
1342 * efficient loop.
1344 top:
1345 for (i = 0; i < edgewords; ++i) {
1346 register bpf_u_int32 x = ep->edom[i];
1348 while (x != 0) {
1349 k = ffs(x) - 1;
1350 x &=~ (1 << k);
1351 k += i * BITS_PER_WORD;
1353 target = fold_edge(ep->succ, edges[k]);
1355 * Check that there is no data dependency between
1356 * nodes that will be violated if we move the edge.
1358 if (target != 0 && !use_conflict(ep->pred, target)) {
1359 done = 0;
1360 ep->succ = target;
1361 if (JT(target) != 0)
1363 * Start over unless we hit a leaf.
1365 goto top;
1366 return;
1373 static void
1374 or_pullup(struct block *b)
1376 int val, at_top;
1377 struct block *pull;
1378 struct block **diffp, **samep;
1379 struct edge *ep;
1381 ep = b->in_edges;
1382 if (ep == 0)
1383 return;
1386 * Make sure each predecessor loads the same value.
1387 * XXX why?
1389 val = ep->pred->val[A_ATOM];
1390 for (ep = ep->next; ep != 0; ep = ep->next)
1391 if (val != ep->pred->val[A_ATOM])
1392 return;
1394 if (JT(b->in_edges->pred) == b)
1395 diffp = &JT(b->in_edges->pred);
1396 else
1397 diffp = &JF(b->in_edges->pred);
1399 at_top = 1;
1400 while (1) {
1401 if (*diffp == 0)
1402 return;
1404 if (JT(*diffp) != JT(b))
1405 return;
1407 if (!SET_MEMBER((*diffp)->dom, b->id))
1408 return;
1410 if ((*diffp)->val[A_ATOM] != val)
1411 break;
1413 diffp = &JF(*diffp);
1414 at_top = 0;
1416 samep = &JF(*diffp);
1417 while (1) {
1418 if (*samep == 0)
1419 return;
1421 if (JT(*samep) != JT(b))
1422 return;
1424 if (!SET_MEMBER((*samep)->dom, b->id))
1425 return;
1427 if ((*samep)->val[A_ATOM] == val)
1428 break;
1430 /* XXX Need to check that there are no data dependencies
1431 between dp0 and dp1. Currently, the code generator
1432 will not produce such dependencies. */
1433 samep = &JF(*samep);
1435 #ifdef notdef
1436 /* XXX This doesn't cover everything. */
1437 for (i = 0; i < N_ATOMS; ++i)
1438 if ((*samep)->val[i] != pred->val[i])
1439 return;
1440 #endif
1441 /* Pull up the node. */
1442 pull = *samep;
1443 *samep = JF(pull);
1444 JF(pull) = *diffp;
1447 * At the top of the chain, each predecessor needs to point at the
1448 * pulled up node. Inside the chain, there is only one predecessor
1449 * to worry about.
1451 if (at_top) {
1452 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1453 if (JT(ep->pred) == b)
1454 JT(ep->pred) = pull;
1455 else
1456 JF(ep->pred) = pull;
1459 else
1460 *diffp = pull;
1462 done = 0;
1465 static void
1466 and_pullup(struct block *b)
1468 int val, at_top;
1469 struct block *pull;
1470 struct block **diffp, **samep;
1471 struct edge *ep;
1473 ep = b->in_edges;
1474 if (ep == 0)
1475 return;
1478 * Make sure each predecessor loads the same value.
1480 val = ep->pred->val[A_ATOM];
1481 for (ep = ep->next; ep != 0; ep = ep->next)
1482 if (val != ep->pred->val[A_ATOM])
1483 return;
1485 if (JT(b->in_edges->pred) == b)
1486 diffp = &JT(b->in_edges->pred);
1487 else
1488 diffp = &JF(b->in_edges->pred);
1490 at_top = 1;
1491 while (1) {
1492 if (*diffp == 0)
1493 return;
1495 if (JF(*diffp) != JF(b))
1496 return;
1498 if (!SET_MEMBER((*diffp)->dom, b->id))
1499 return;
1501 if ((*diffp)->val[A_ATOM] != val)
1502 break;
1504 diffp = &JT(*diffp);
1505 at_top = 0;
1507 samep = &JT(*diffp);
1508 while (1) {
1509 if (*samep == 0)
1510 return;
1512 if (JF(*samep) != JF(b))
1513 return;
1515 if (!SET_MEMBER((*samep)->dom, b->id))
1516 return;
1518 if ((*samep)->val[A_ATOM] == val)
1519 break;
1521 /* XXX Need to check that there are no data dependencies
1522 between diffp and samep. Currently, the code generator
1523 will not produce such dependencies. */
1524 samep = &JT(*samep);
1526 #ifdef notdef
1527 /* XXX This doesn't cover everything. */
1528 for (i = 0; i < N_ATOMS; ++i)
1529 if ((*samep)->val[i] != pred->val[i])
1530 return;
1531 #endif
1532 /* Pull up the node. */
1533 pull = *samep;
1534 *samep = JT(pull);
1535 JT(pull) = *diffp;
1538 * At the top of the chain, each predecessor needs to point at the
1539 * pulled up node. Inside the chain, there is only one predecessor
1540 * to worry about.
1542 if (at_top) {
1543 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1544 if (JT(ep->pred) == b)
1545 JT(ep->pred) = pull;
1546 else
1547 JF(ep->pred) = pull;
1550 else
1551 *diffp = pull;
1553 done = 0;
1556 static void
1557 opt_blks(struct block *root, int do_stmts)
1559 int i, maxlevel;
1560 struct block *p;
1562 init_val();
1563 maxlevel = root->level;
1565 find_inedges(root);
1566 for (i = maxlevel; i >= 0; --i)
1567 for (p = levels[i]; p; p = p->link)
1568 opt_blk(p, do_stmts);
1570 if (do_stmts)
1572 * No point trying to move branches; it can't possibly
1573 * make a difference at this point.
1575 return;
1577 for (i = 1; i <= maxlevel; ++i) {
1578 for (p = levels[i]; p; p = p->link) {
1579 opt_j(&p->et);
1580 opt_j(&p->ef);
1584 find_inedges(root);
1585 for (i = 1; i <= maxlevel; ++i) {
1586 for (p = levels[i]; p; p = p->link) {
1587 or_pullup(p);
1588 and_pullup(p);
1593 static inline void
1594 link_inedge(struct edge *parent, struct block *child)
1596 parent->next = child->in_edges;
1597 child->in_edges = parent;
1600 static void
1601 find_inedges(struct block *root)
1603 int i;
1604 struct block *b;
1606 for (i = 0; i < n_blocks; ++i)
1607 blocks[i]->in_edges = 0;
1610 * Traverse the graph, adding each edge to the predecessor
1611 * list of its successors. Skip the leaves (i.e. level 0).
1613 for (i = root->level; i > 0; --i) {
1614 for (b = levels[i]; b != 0; b = b->link) {
1615 link_inedge(&b->et, JT(b));
1616 link_inedge(&b->ef, JF(b));
1621 static void
1622 opt_root(struct block **b)
1624 struct slist *tmp, *s;
1626 s = (*b)->stmts;
1627 (*b)->stmts = 0;
1628 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1629 *b = JT(*b);
1631 tmp = (*b)->stmts;
1632 if (tmp != 0)
1633 sappend(s, tmp);
1634 (*b)->stmts = s;
1637 * If the root node is a return, then there is no
1638 * point executing any statements (since the bpf machine
1639 * has no side effects).
1641 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1642 (*b)->stmts = 0;
1645 static void
1646 opt_loop(struct block *root, int do_stmts)
1649 #ifdef BDEBUG
1650 if (dflag > 1) {
1651 printf("opt_loop(root, %d) begin\n", do_stmts);
1652 opt_dump(root);
1654 #endif
1655 do {
1656 done = 1;
1657 find_levels(root);
1658 find_dom(root);
1659 find_closure(root);
1660 find_ud(root);
1661 find_edom(root);
1662 opt_blks(root, do_stmts);
1663 #ifdef BDEBUG
1664 if (dflag > 1) {
1665 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1666 opt_dump(root);
1668 #endif
1669 } while (!done);
1673 * Optimize the filter code in its dag representation.
1675 void
1676 bpf_optimize(struct block **rootp)
1678 struct block *root;
1680 root = *rootp;
1682 opt_init(root);
1683 opt_loop(root, 0);
1684 opt_loop(root, 1);
1685 intern_blocks(root);
1686 #ifdef BDEBUG
1687 if (dflag > 1) {
1688 printf("after intern_blocks()\n");
1689 opt_dump(root);
1691 #endif
1692 opt_root(rootp);
1693 #ifdef BDEBUG
1694 if (dflag > 1) {
1695 printf("after opt_root()\n");
1696 opt_dump(root);
1698 #endif
1699 opt_cleanup();
1702 static void
1703 make_marks(struct block *p)
1705 if (!isMarked(p)) {
1706 Mark(p);
1707 if (BPF_CLASS(p->s.code) != BPF_RET) {
1708 make_marks(JT(p));
1709 make_marks(JF(p));
1715 * Mark code array such that isMarked(i) is true
1716 * only for nodes that are alive.
1718 static void
1719 mark_code(struct block *p)
1721 cur_mark += 1;
1722 make_marks(p);
1726 * True iff the two stmt lists load the same value from the packet into
1727 * the accumulator.
1729 static int
1730 eq_slist(struct slist *x, struct slist *y)
1732 while (1) {
1733 while (x && x->s.code == NOP)
1734 x = x->next;
1735 while (y && y->s.code == NOP)
1736 y = y->next;
1737 if (x == 0)
1738 return y == 0;
1739 if (y == 0)
1740 return x == 0;
1741 if (x->s.code != y->s.code || x->s.k != y->s.k)
1742 return 0;
1743 x = x->next;
1744 y = y->next;
1748 static inline int
1749 eq_blk(struct block *b0, struct block *b1)
1751 if (b0->s.code == b1->s.code &&
1752 b0->s.k == b1->s.k &&
1753 b0->et.succ == b1->et.succ &&
1754 b0->ef.succ == b1->ef.succ)
1755 return eq_slist(b0->stmts, b1->stmts);
1756 return 0;
1759 static void
1760 intern_blocks(struct block *root)
1762 struct block *p;
1763 int i, j;
1764 int done1; /* don't shadow global */
1765 top:
1766 done1 = 1;
1767 for (i = 0; i < n_blocks; ++i)
1768 blocks[i]->link = 0;
1770 mark_code(root);
1772 for (i = n_blocks - 1; --i >= 0; ) {
1773 if (!isMarked(blocks[i]))
1774 continue;
1775 for (j = i + 1; j < n_blocks; ++j) {
1776 if (!isMarked(blocks[j]))
1777 continue;
1778 if (eq_blk(blocks[i], blocks[j])) {
1779 blocks[i]->link = blocks[j]->link ?
1780 blocks[j]->link : blocks[j];
1781 break;
1785 for (i = 0; i < n_blocks; ++i) {
1786 p = blocks[i];
1787 if (JT(p) == 0)
1788 continue;
1789 if (JT(p)->link) {
1790 done1 = 0;
1791 JT(p) = JT(p)->link;
1793 if (JF(p)->link) {
1794 done1 = 0;
1795 JF(p) = JF(p)->link;
1798 if (!done1)
1799 goto top;
1802 static void
1803 opt_cleanup(void)
1805 free((void *)vnode_base);
1806 free((void *)vmap);
1807 free((void *)edges);
1808 free((void *)space);
1809 free((void *)levels);
1810 free((void *)blocks);
1814 * Return the number of stmts in 's'.
1816 static u_int
1817 slength(struct slist *s)
1819 u_int n = 0;
1821 for (; s; s = s->next)
1822 if (s->s.code != NOP)
1823 ++n;
1824 return n;
1828 * Return the number of nodes reachable by 'p'.
1829 * All nodes should be initially unmarked.
1831 static int
1832 count_blocks(struct block *p)
1834 if (p == 0 || isMarked(p))
1835 return 0;
1836 Mark(p);
1837 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1841 * Do a depth first search on the flow graph, numbering the
1842 * the basic blocks, and entering them into the 'blocks' array.`
1844 static void
1845 number_blks_r(struct block *p)
1847 int n;
1849 if (p == 0 || isMarked(p))
1850 return;
1852 Mark(p);
1853 n = n_blocks++;
1854 p->id = n;
1855 blocks[n] = p;
1857 number_blks_r(JT(p));
1858 number_blks_r(JF(p));
1862 * Return the number of stmts in the flowgraph reachable by 'p'.
1863 * The nodes should be unmarked before calling.
1865 * Note that "stmts" means "instructions", and that this includes
1867 * side-effect statements in 'p' (slength(p->stmts));
1869 * statements in the true branch from 'p' (count_stmts(JT(p)));
1871 * statements in the false branch from 'p' (count_stmts(JF(p)));
1873 * the conditional jump itself (1);
1875 * an extra long jump if the true branch requires it (p->longjt);
1877 * an extra long jump if the false branch requires it (p->longjf).
1879 static u_int
1880 count_stmts(struct block *p)
1882 u_int n;
1884 if (p == 0 || isMarked(p))
1885 return 0;
1886 Mark(p);
1887 n = count_stmts(JT(p)) + count_stmts(JF(p));
1888 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1892 * Allocate memory. All allocation is done before optimization
1893 * is begun. A linear bound on the size of all data structures is computed
1894 * from the total number of blocks and/or statements.
1896 static void
1897 opt_init(struct block *root)
1899 bpf_u_int32 *p;
1900 int i, n, max_stmts;
1903 * First, count the blocks, so we can malloc an array to map
1904 * block number to block. Then, put the blocks into the array.
1906 unMarkAll();
1907 n = count_blocks(root);
1908 blocks = (struct block **)calloc(n, sizeof(*blocks));
1909 if (blocks == NULL)
1910 bpf_error("malloc");
1911 unMarkAll();
1912 n_blocks = 0;
1913 number_blks_r(root);
1915 n_edges = 2 * n_blocks;
1916 edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1917 if (edges == NULL)
1918 bpf_error("malloc");
1921 * The number of levels is bounded by the number of nodes.
1923 levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1924 if (levels == NULL)
1925 bpf_error("malloc");
1927 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1928 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1930 /* XXX */
1931 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1932 + n_edges * edgewords * sizeof(*space));
1933 if (space == NULL)
1934 bpf_error("malloc");
1935 p = space;
1936 all_dom_sets = p;
1937 for (i = 0; i < n; ++i) {
1938 blocks[i]->dom = p;
1939 p += nodewords;
1941 all_closure_sets = p;
1942 for (i = 0; i < n; ++i) {
1943 blocks[i]->closure = p;
1944 p += nodewords;
1946 all_edge_sets = p;
1947 for (i = 0; i < n; ++i) {
1948 register struct block *b = blocks[i];
1950 b->et.edom = p;
1951 p += edgewords;
1952 b->ef.edom = p;
1953 p += edgewords;
1954 b->et.id = i;
1955 edges[i] = &b->et;
1956 b->ef.id = n_blocks + i;
1957 edges[n_blocks + i] = &b->ef;
1958 b->et.pred = b;
1959 b->ef.pred = b;
1961 max_stmts = 0;
1962 for (i = 0; i < n; ++i)
1963 max_stmts += slength(blocks[i]->stmts) + 1;
1965 * We allocate at most 3 value numbers per statement,
1966 * so this is an upper bound on the number of valnodes
1967 * we'll need.
1969 maxval = 3 * max_stmts;
1970 vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
1971 vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
1972 if (vmap == NULL || vnode_base == NULL)
1973 bpf_error("malloc");
1977 * Some pointers used to convert the basic block form of the code,
1978 * into the array form that BPF requires. 'fstart' will point to
1979 * the malloc'd array while 'ftail' is used during the recursive traversal.
1981 static struct bpf_insn *fstart;
1982 static struct bpf_insn *ftail;
1984 #ifdef BDEBUG
1985 int bids[1000];
1986 #endif
1989 * Returns true if successful. Returns false if a branch has
1990 * an offset that is too large. If so, we have marked that
1991 * branch so that on a subsequent iteration, it will be treated
1992 * properly.
1994 static int
1995 convert_code_r(struct block *p)
1997 struct bpf_insn *dst;
1998 struct slist *src;
1999 int slen;
2000 u_int off;
2001 int extrajmps; /* number of extra jumps inserted */
2002 struct slist **offset = NULL;
2004 if (p == 0 || isMarked(p))
2005 return (1);
2006 Mark(p);
2008 if (convert_code_r(JF(p)) == 0)
2009 return (0);
2010 if (convert_code_r(JT(p)) == 0)
2011 return (0);
2013 slen = slength(p->stmts);
2014 dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2015 /* inflate length by any extra jumps */
2017 p->offset = dst - fstart;
2019 /* generate offset[] for convenience */
2020 if (slen) {
2021 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2022 if (!offset) {
2023 bpf_error("not enough core");
2024 /*NOTREACHED*/
2027 src = p->stmts;
2028 for (off = 0; off < slen && src; off++) {
2029 #if 0
2030 printf("off=%d src=%x\n", off, src);
2031 #endif
2032 offset[off] = src;
2033 src = src->next;
2036 off = 0;
2037 for (src = p->stmts; src; src = src->next) {
2038 if (src->s.code == NOP)
2039 continue;
2040 dst->code = (u_short)src->s.code;
2041 dst->k = src->s.k;
2043 /* fill block-local relative jump */
2044 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2045 #if 0
2046 if (src->s.jt || src->s.jf) {
2047 bpf_error("illegal jmp destination");
2048 /*NOTREACHED*/
2050 #endif
2051 goto filled;
2053 if (off == slen - 2) /*???*/
2054 goto filled;
2057 int i;
2058 int jt, jf;
2059 const char *ljerr = "%s for block-local relative jump: off=%d";
2061 #if 0
2062 printf("code=%x off=%d %x %x\n", src->s.code,
2063 off, src->s.jt, src->s.jf);
2064 #endif
2066 if (!src->s.jt || !src->s.jf) {
2067 bpf_error(ljerr, "no jmp destination", off);
2068 /*NOTREACHED*/
2071 jt = jf = 0;
2072 for (i = 0; i < slen; i++) {
2073 if (offset[i] == src->s.jt) {
2074 if (jt) {
2075 bpf_error(ljerr, "multiple matches", off);
2076 /*NOTREACHED*/
2079 dst->jt = i - off - 1;
2080 jt++;
2082 if (offset[i] == src->s.jf) {
2083 if (jf) {
2084 bpf_error(ljerr, "multiple matches", off);
2085 /*NOTREACHED*/
2087 dst->jf = i - off - 1;
2088 jf++;
2091 if (!jt || !jf) {
2092 bpf_error(ljerr, "no destination found", off);
2093 /*NOTREACHED*/
2096 filled:
2097 ++dst;
2098 ++off;
2100 if (offset)
2101 free(offset);
2103 #ifdef BDEBUG
2104 bids[dst - fstart] = p->id + 1;
2105 #endif
2106 dst->code = (u_short)p->s.code;
2107 dst->k = p->s.k;
2108 if (JT(p)) {
2109 extrajmps = 0;
2110 off = JT(p)->offset - (p->offset + slen) - 1;
2111 if (off >= 256) {
2112 /* offset too large for branch, must add a jump */
2113 if (p->longjt == 0) {
2114 /* mark this instruction and retry */
2115 p->longjt++;
2116 return(0);
2118 /* branch if T to following jump */
2119 dst->jt = extrajmps;
2120 extrajmps++;
2121 dst[extrajmps].code = BPF_JMP|BPF_JA;
2122 dst[extrajmps].k = off - extrajmps;
2124 else
2125 dst->jt = off;
2126 off = JF(p)->offset - (p->offset + slen) - 1;
2127 if (off >= 256) {
2128 /* offset too large for branch, must add a jump */
2129 if (p->longjf == 0) {
2130 /* mark this instruction and retry */
2131 p->longjf++;
2132 return(0);
2134 /* branch if F to following jump */
2135 /* if two jumps are inserted, F goes to second one */
2136 dst->jf = extrajmps;
2137 extrajmps++;
2138 dst[extrajmps].code = BPF_JMP|BPF_JA;
2139 dst[extrajmps].k = off - extrajmps;
2141 else
2142 dst->jf = off;
2144 return (1);
2149 * Convert flowgraph intermediate representation to the
2150 * BPF array representation. Set *lenp to the number of instructions.
2152 * This routine does *NOT* leak the memory pointed to by fp. It *must
2153 * not* do free(fp) before returning fp; doing so would make no sense,
2154 * as the BPF array pointed to by the return value of icode_to_fcode()
2155 * must be valid - it's being returned for use in a bpf_program structure.
2157 * If it appears that icode_to_fcode() is leaking, the problem is that
2158 * the program using pcap_compile() is failing to free the memory in
2159 * the BPF program when it's done - the leak is in the program, not in
2160 * the routine that happens to be allocating the memory. (By analogy, if
2161 * a program calls fopen() without ever calling fclose() on the FILE *,
2162 * it will leak the FILE structure; the leak is not in fopen(), it's in
2163 * the program.) Change the program to use pcap_freecode() when it's
2164 * done with the filter program. See the pcap man page.
2166 struct bpf_insn *
2167 icode_to_fcode(struct block *root, u_int *lenp)
2169 u_int n;
2170 struct bpf_insn *fp;
2173 * Loop doing convert_code_r() until no branches remain
2174 * with too-large offsets.
2176 while (1) {
2177 unMarkAll();
2178 n = *lenp = count_stmts(root);
2180 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2181 if (fp == NULL)
2182 bpf_error("malloc");
2183 memset((char *)fp, 0, sizeof(*fp) * n);
2184 fstart = fp;
2185 ftail = fp + n;
2187 unMarkAll();
2188 if (convert_code_r(root))
2189 break;
2190 free(fp);
2193 return fp;
2197 * Make a copy of a BPF program and put it in the "fcode" member of
2198 * a "pcap_t".
2200 * If we fail to allocate memory for the copy, fill in the "errbuf"
2201 * member of the "pcap_t" with an error message, and return -1;
2202 * otherwise, return 0.
2205 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2207 size_t prog_size;
2210 * Validate the program.
2212 if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2213 snprintf(p->errbuf, sizeof(p->errbuf),
2214 "BPF program is not valid");
2215 return (-1);
2219 * Free up any already installed program.
2221 pcap_freecode(&p->fcode);
2223 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2224 p->fcode.bf_len = fp->bf_len;
2225 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2226 if (p->fcode.bf_insns == NULL) {
2227 snprintf(p->errbuf, sizeof(p->errbuf),
2228 "malloc: %s", pcap_strerror(errno));
2229 return (-1);
2231 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2232 return (0);
2235 #ifdef BDEBUG
2236 static void
2237 opt_dump(struct block *root)
2239 struct bpf_program f;
2241 memset(bids, 0, sizeof bids);
2242 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2243 bpf_dump(&f, 1);
2244 putchar('\n');
2245 free((char *)f.bf_insns);
2247 #endif