4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
66 * Kernel memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
77 #include <vm/vm_param.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pageout.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_extern.h>
87 struct vm_map kernel_map
;
88 struct vm_map clean_map
;
89 struct vm_map buffer_map
;
95 if ((kmflags
& KM_CPU_SPEC
) == 0)
97 return VM_ALLOC_CPU(KM_GETCPU(kmflags
));
101 * Allocate pageable swap-backed anonymous memory
104 kmem_alloc_swapbacked(kmem_anon_desc_t
*kp
, vm_size_t size
, vm_subsys_t id
)
109 size
= round_page(size
);
110 npages
= size
/ PAGE_SIZE
;
113 kp
->map
= &kernel_map
;
114 kp
->data
= vm_map_min(&kernel_map
);
116 kp
->object
= vm_object_allocate(OBJT_DEFAULT
, npages
);
118 error
= vm_map_find(kp
->map
, kp
->object
, NULL
, 0,
121 VM_MAPTYPE_NORMAL
, id
,
122 VM_PROT_ALL
, VM_PROT_ALL
, 0);
124 kprintf("kmem_alloc_swapbacked: %zd bytes failed %d\n",
126 kp
->data
= (vm_offset_t
)0;
127 kmem_free_swapbacked(kp
);
130 return ((void *)(intptr_t)kp
->data
);
134 kmem_free_swapbacked(kmem_anon_desc_t
*kp
)
138 * The object will be deallocated by kmem_free().
140 kmem_free(kp
->map
, kp
->data
, kp
->size
);
141 kp
->data
= (vm_offset_t
)0;
144 * Failure during allocation, object must be deallocated
147 vm_object_deallocate(kp
->object
);
153 * Allocate pageable memory to the kernel's address map. "map" must
154 * be kernel_map or a submap of kernel_map. Caller must adjust map or
155 * enter VM pages itself.
160 kmem_alloc_pageable(vm_map_t map
, vm_size_t size
, vm_subsys_t id
)
165 size
= round_page(size
);
166 addr
= vm_map_min(map
);
167 result
= vm_map_find(map
, NULL
, NULL
,
168 (vm_offset_t
) 0, &addr
, size
,
170 VM_MAPTYPE_NORMAL
, id
,
171 VM_PROT_ALL
, VM_PROT_ALL
, 0);
172 if (result
!= KERN_SUCCESS
)
178 * Same as kmem_alloc_pageable, except that it create a nofault entry.
183 kmem_alloc_nofault(vm_map_t map
, vm_size_t size
, vm_subsys_t id
,
189 size
= round_page(size
);
190 addr
= vm_map_min(map
);
191 result
= vm_map_find(map
, NULL
, NULL
,
192 (vm_offset_t
) 0, &addr
, size
,
194 VM_MAPTYPE_NORMAL
, id
,
195 VM_PROT_ALL
, VM_PROT_ALL
, MAP_NOFAULT
);
196 if (result
!= KERN_SUCCESS
)
202 * Allocate wired-down memory in the kernel's address map or a submap.
207 kmem_alloc3(vm_map_t map
, vm_size_t size
, vm_subsys_t id
, int kmflags
)
215 size
= round_page(size
);
217 if (kmflags
& KM_KRESERVE
)
218 count
= vm_map_entry_kreserve(MAP_RESERVE_COUNT
);
220 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
222 if (kmflags
& KM_STACK
) {
231 * Use the kernel object for wired-down kernel pages. Assume that no
232 * region of the kernel object is referenced more than once.
234 * Locate sufficient space in the map. This will give us the final
235 * virtual address for the new memory, and thus will tell us the
236 * offset within the kernel map.
239 if (vm_map_findspace(map
, vm_map_min(map
), size
, PAGE_SIZE
, 0, &addr
)) {
241 if (kmflags
& KM_KRESERVE
)
242 vm_map_entry_krelease(count
);
244 vm_map_entry_release(count
);
247 vm_object_hold(&kernel_object
);
248 vm_object_reference_locked(&kernel_object
);
249 vm_map_insert(map
, &count
,
250 &kernel_object
, NULL
,
251 addr
, addr
, addr
+ size
,
252 VM_MAPTYPE_NORMAL
, id
,
253 VM_PROT_ALL
, VM_PROT_ALL
, cow
);
254 vm_object_drop(&kernel_object
);
257 if (kmflags
& KM_KRESERVE
)
258 vm_map_entry_krelease(count
);
260 vm_map_entry_release(count
);
263 * Guarantee that there are pages already in this object before
264 * calling vm_map_wire. This is to prevent the following
267 * 1) Threads have swapped out, so that there is a pager for the
268 * kernel_object. 2) The kmsg zone is empty, and so we are
269 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
270 * there is no page, but there is a pager, so we call
271 * pager_data_request. But the kmsg zone is empty, so we must
272 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
273 * we get the data back from the pager, it will be (very stale)
274 * non-zero data. kmem_alloc is defined to return zero-filled memory.
276 * We're intentionally not activating the pages we allocate to prevent a
277 * race with page-out. vm_map_wire will wire the pages.
279 vm_object_hold(&kernel_object
);
280 for (i
= gstart
; i
< size
; i
+= PAGE_SIZE
) {
283 mem
= vm_page_grab(&kernel_object
, OFF_TO_IDX(addr
+ i
),
284 VM_ALLOC_FORCE_ZERO
| VM_ALLOC_NORMAL
|
285 VM_ALLOC_RETRY
| KMVMCPU(kmflags
));
286 vm_page_unqueue_nowakeup(mem
);
289 vm_object_drop(&kernel_object
);
292 * And finally, mark the data as non-pageable.
294 * NOTE: vm_map_wire() handles any kstack guard.
296 vm_map_wire(map
, addr
, addr
+ size
, kmflags
);
302 * Release a region of kernel virtual memory allocated with kmem_alloc,
303 * and return the physical pages associated with that region.
305 * WARNING! If the caller entered pages into the region using pmap_kenter()
306 * it must remove the pages using pmap_kremove[_quick]() before freeing the
307 * underlying kmem, otherwise resident_count will be mistabulated.
312 kmem_free(vm_map_t map
, vm_offset_t addr
, vm_size_t size
)
314 vm_map_remove(map
, trunc_page(addr
), round_page(addr
+ size
));
318 * Used to break a system map into smaller maps, usually to reduce
319 * contention and to provide large KVA spaces for subsystems like the
322 * parent Map to take range from
324 * size Size of range to find
325 * min, max Returned endpoints of map
326 * pageable Can the region be paged
331 kmem_suballoc(vm_map_t parent
, vm_map_t result
,
332 vm_offset_t
*min
, vm_offset_t
*max
, vm_size_t size
)
336 size
= round_page(size
);
338 *min
= (vm_offset_t
) vm_map_min(parent
);
339 ret
= vm_map_find(parent
, NULL
, NULL
,
340 (vm_offset_t
) 0, min
, size
,
342 VM_MAPTYPE_UNSPECIFIED
, VM_SUBSYS_SYSMAP
,
343 VM_PROT_ALL
, VM_PROT_ALL
, 0);
344 if (ret
!= KERN_SUCCESS
) {
345 kprintf("kmem_suballoc: bad status return of %d.\n", ret
);
346 panic("kmem_suballoc");
349 pmap_reference(vm_map_pmap(parent
));
350 vm_map_init(result
, *min
, *max
, vm_map_pmap(parent
));
351 if ((ret
= vm_map_submap(parent
, *min
, *max
, result
)) != KERN_SUCCESS
)
352 panic("kmem_suballoc: unable to change range to submap");
356 * Allocates pageable memory from a sub-map of the kernel. If the submap
357 * has no room, the caller sleeps waiting for more memory in the submap.
362 kmem_alloc_wait(vm_map_t map
, vm_size_t size
, vm_subsys_t id
)
367 size
= round_page(size
);
369 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
373 * To make this work for more than one map, use the map's lock
374 * to lock out sleepers/wakers.
377 if (vm_map_findspace(map
, vm_map_min(map
),
378 size
, PAGE_SIZE
, 0, &addr
) == 0) {
381 /* no space now; see if we can ever get space */
382 if (vm_map_max(map
) - vm_map_min(map
) < size
) {
383 vm_map_entry_release(count
);
388 tsleep(map
, 0, "kmaw", 0);
390 vm_map_insert(map
, &count
,
392 (vm_offset_t
) 0, addr
, addr
+ size
,
393 VM_MAPTYPE_NORMAL
, id
,
394 VM_PROT_ALL
, VM_PROT_ALL
, 0);
396 vm_map_entry_release(count
);
402 * Allocates a region from the kernel address map and physical pages
403 * within the specified address range to the kernel object. Creates a
404 * wired mapping from this region to these pages, and returns the
405 * region's starting virtual address. The allocated pages are not
406 * necessarily physically contiguous. If M_ZERO is specified through the
407 * given flags, then the pages are zeroed before they are mapped.
410 kmem_alloc_attr(vm_map_t map
, vm_size_t size
, vm_subsys_t id
,
411 int flags
, vm_paddr_t low
,
412 vm_paddr_t high
, vm_memattr_t memattr
)
414 vm_offset_t addr
, i
, offset
;
418 size
= round_page(size
);
419 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
421 if (vm_map_findspace(map
, vm_map_min(map
), size
, PAGE_SIZE
,
424 vm_map_entry_release(count
);
427 offset
= addr
- vm_map_min(&kernel_map
);
428 vm_object_hold(&kernel_object
);
429 vm_object_reference_locked(&kernel_object
);
430 vm_map_insert(map
, &count
,
431 &kernel_object
, NULL
,
432 offset
, addr
, addr
+ size
,
433 VM_MAPTYPE_NORMAL
, id
,
434 VM_PROT_ALL
, VM_PROT_ALL
, 0);
436 vm_map_entry_release(count
);
437 vm_object_drop(&kernel_object
);
438 for (i
= 0; i
< size
; i
+= PAGE_SIZE
) {
439 m
= vm_page_alloc_contig(low
, high
, PAGE_SIZE
, 0, PAGE_SIZE
, memattr
);
443 vm_object_hold(&kernel_object
);
444 vm_page_insert(m
, &kernel_object
, OFF_TO_IDX(offset
+ i
));
445 vm_object_drop(&kernel_object
);
447 pmap_zero_page(VM_PAGE_TO_PHYS(m
));
448 m
->valid
= VM_PAGE_BITS_ALL
;
450 vm_map_wire(map
, addr
, addr
+ size
, 0);
456 * Returns memory to a submap of the kernel, and wakes up any processes
457 * waiting for memory in that map.
462 kmem_free_wakeup(vm_map_t map
, vm_offset_t addr
, vm_size_t size
)
466 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
468 vm_map_delete(map
, trunc_page(addr
), round_page(addr
+ size
), &count
);
471 vm_map_entry_release(count
);
475 * Create the kernel_ma for (KvaStart,KvaEnd) and insert mappings to
476 * cover areas already allocated or reserved thus far.
478 * The areas (virtual_start, virtual_end) and (virtual2_start, virtual2_end)
479 * are available so the cutouts are the areas around these ranges between
480 * KvaStart and KvaEnd.
482 * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
483 * Called from the low level boot code only.
493 vm_map_init(m
, KvaStart
, KvaEnd
, &kernel_pmap
);
495 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
497 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
499 if (virtual2_start
) {
500 if (addr
< virtual2_start
) {
501 vm_map_insert(m
, &count
,
503 (vm_offset_t
) 0, addr
, virtual2_start
,
504 VM_MAPTYPE_NORMAL
, VM_SUBSYS_RESERVED
,
505 VM_PROT_ALL
, VM_PROT_ALL
, 0);
509 if (addr
< virtual_start
) {
510 vm_map_insert(m
, &count
,
512 (vm_offset_t
) 0, addr
, virtual_start
,
513 VM_MAPTYPE_NORMAL
, VM_SUBSYS_RESERVED
,
514 VM_PROT_ALL
, VM_PROT_ALL
, 0);
518 vm_map_insert(m
, &count
,
520 (vm_offset_t
) 0, addr
, KvaEnd
,
521 VM_MAPTYPE_NORMAL
, VM_SUBSYS_RESERVED
,
522 VM_PROT_ALL
, VM_PROT_ALL
, 0);
524 /* ... and ending with the completion of the above `insert' */
526 vm_map_entry_release(count
);
533 kvm_size(SYSCTL_HANDLER_ARGS
)
535 unsigned long ksize
= KvaSize
;
537 return sysctl_handle_long(oidp
, &ksize
, 0, req
);
539 SYSCTL_PROC(_vm
, OID_AUTO
, kvm_size
, CTLTYPE_ULONG
|CTLFLAG_RD
,
540 0, 0, kvm_size
, "LU", "Size of KVM");
546 kvm_free(SYSCTL_HANDLER_ARGS
)
548 unsigned long kfree
= virtual_end
- kernel_vm_end
;
550 return sysctl_handle_long(oidp
, &kfree
, 0, req
);
552 SYSCTL_PROC(_vm
, OID_AUTO
, kvm_free
, CTLTYPE_ULONG
|CTLFLAG_RD
,
553 0, 0, kvm_free
, "LU", "Amount of KVM free");