hammer2 - Work on concurrent bulkfree stability
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
blobc0dc220a3abc497648bf1757b45fadbdf651f056
1 /*
2 * Copyright (c) 2011-2015 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 * This subsystem implements most of the core support functions for
37 * the hammer2_chain structure.
39 * Chains are the in-memory version on media objects (volume header, inodes,
40 * indirect blocks, data blocks, etc). Chains represent a portion of the
41 * HAMMER2 topology.
43 * Chains are no-longer delete-duplicated. Instead, the original in-memory
44 * chain will be moved along with its block reference (e.g. for things like
45 * renames, hardlink operations, modifications, etc), and will be indexed
46 * on a secondary list for flush handling instead of propagating a flag
47 * upward to the root.
49 * Concurrent front-end operations can still run against backend flushes
50 * as long as they do not cross the current flush boundary. An operation
51 * running above the current flush (in areas not yet flushed) can become
52 * part of the current flush while ano peration running below the current
53 * flush can become part of the next flush.
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
63 #include <crypto/sha2/sha2.h>
65 #include "hammer2.h"
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 hammer2_chain_t *parent,
69 hammer2_key_t key, int keybits,
70 hammer2_tid_t mtid, int for_type, int *errorp);
71 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain,
72 int lastdrop);
73 static hammer2_chain_t *hammer2_combined_find(
74 hammer2_chain_t *parent,
75 hammer2_blockref_t *base, int count,
76 int *cache_indexp, hammer2_key_t *key_nextp,
77 hammer2_key_t key_beg, hammer2_key_t key_end,
78 hammer2_blockref_t **bresp);
81 * Basic RBTree for chains (core->rbtree and core->dbtree). Chains cannot
82 * overlap in the RB trees. Deleted chains are moved from rbtree to either
83 * dbtree or to dbq.
85 * Chains in delete-duplicate sequences can always iterate through core_entry
86 * to locate the live version of the chain.
88 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
90 extern int h2timer[32];
91 extern int h2last;
92 extern int h2lid;
94 #define TIMER(which) do { \
95 if (h2last) \
96 h2timer[h2lid] += (int)(ticks - h2last);\
97 h2last = ticks; \
98 h2lid = which; \
99 } while(0)
102 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
104 hammer2_key_t c1_beg;
105 hammer2_key_t c1_end;
106 hammer2_key_t c2_beg;
107 hammer2_key_t c2_end;
110 * Compare chains. Overlaps are not supposed to happen and catch
111 * any software issues early we count overlaps as a match.
113 c1_beg = chain1->bref.key;
114 c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
115 c2_beg = chain2->bref.key;
116 c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
118 if (c1_end < c2_beg) /* fully to the left */
119 return(-1);
120 if (c1_beg > c2_end) /* fully to the right */
121 return(1);
122 return(0); /* overlap (must not cross edge boundary) */
126 * Make a chain visible to the flusher. The flusher needs to be able to
127 * do flushes of subdirectory chains or single files so it does a top-down
128 * recursion using the ONFLUSH flag for the recursion. It locates MODIFIED
129 * or UPDATE chains and flushes back up the chain to the volume root.
131 * This routine sets ONFLUSH upward until it hits the volume root. For
132 * simplicity we ignore PFSROOT boundaries whos rules can be complex.
133 * Extra ONFLUSH flagging doesn't hurt the filesystem.
135 void
136 hammer2_chain_setflush(hammer2_chain_t *chain)
138 hammer2_chain_t *parent;
140 if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
141 hammer2_spin_sh(&chain->core.spin);
142 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
143 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
144 if ((parent = chain->parent) == NULL)
145 break;
146 hammer2_spin_sh(&parent->core.spin);
147 hammer2_spin_unsh(&chain->core.spin);
148 chain = parent;
150 hammer2_spin_unsh(&chain->core.spin);
155 * Allocate a new disconnected chain element representing the specified
156 * bref. chain->refs is set to 1 and the passed bref is copied to
157 * chain->bref. chain->bytes is derived from the bref.
159 * chain->pmp inherits pmp unless the chain is an inode (other than the
160 * super-root inode).
162 * NOTE: Returns a referenced but unlocked (because there is no core) chain.
164 hammer2_chain_t *
165 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
166 hammer2_blockref_t *bref)
168 hammer2_chain_t *chain;
169 u_int bytes;
172 * Special case - radix of 0 indicates a chain that does not
173 * need a data reference (context is completely embedded in the
174 * bref).
176 if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
177 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
178 else
179 bytes = 0;
181 atomic_add_long(&hammer2_chain_allocs, 1);
184 * Construct the appropriate system structure.
186 switch(bref->type) {
187 case HAMMER2_BREF_TYPE_DIRENT:
188 case HAMMER2_BREF_TYPE_INODE:
189 case HAMMER2_BREF_TYPE_INDIRECT:
190 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
191 case HAMMER2_BREF_TYPE_DATA:
192 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
194 * Chain's are really only associated with the hmp but we
195 * maintain a pmp association for per-mount memory tracking
196 * purposes. The pmp can be NULL.
198 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
199 break;
200 case HAMMER2_BREF_TYPE_VOLUME:
201 case HAMMER2_BREF_TYPE_FREEMAP:
203 * Only hammer2_chain_bulksnap() calls this function with these
204 * types.
206 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
207 break;
208 default:
209 chain = NULL;
210 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
211 bref->type);
215 * Initialize the new chain structure. pmp must be set to NULL for
216 * chains belonging to the super-root topology of a device mount.
218 if (pmp == hmp->spmp)
219 chain->pmp = NULL;
220 else
221 chain->pmp = pmp;
222 chain->hmp = hmp;
223 chain->bref = *bref;
224 chain->bytes = bytes;
225 chain->refs = 1;
226 chain->flags = HAMMER2_CHAIN_ALLOCATED;
229 * Set the PFS boundary flag if this chain represents a PFS root.
231 if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
232 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
233 hammer2_chain_core_init(chain);
235 return (chain);
239 * Initialize a chain's core structure. This structure used to be allocated
240 * but is now embedded.
242 * The core is not locked. No additional refs on the chain are made.
243 * (trans) must not be NULL if (core) is not NULL.
245 void
246 hammer2_chain_core_init(hammer2_chain_t *chain)
249 * Fresh core under nchain (no multi-homing of ochain's
250 * sub-tree).
252 RB_INIT(&chain->core.rbtree); /* live chains */
253 hammer2_mtx_init(&chain->lock, "h2chain");
257 * Add a reference to a chain element, preventing its destruction.
259 * (can be called with spinlock held)
261 void
262 hammer2_chain_ref(hammer2_chain_t *chain)
264 if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
266 * 0->non-zero transition must ensure that chain is removed
267 * from the LRU list.
269 * NOTE: Already holding lru_spin here so we cannot call
270 * hammer2_chain_ref() to get it off lru_list, do
271 * it manually.
273 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
274 hammer2_pfs_t *pmp = chain->pmp;
275 hammer2_spin_ex(&pmp->lru_spin);
276 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
277 atomic_add_int(&pmp->lru_count, -1);
278 atomic_clear_int(&chain->flags,
279 HAMMER2_CHAIN_ONLRU);
280 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
282 hammer2_spin_unex(&pmp->lru_spin);
285 #if 0
286 kprintf("REFC %p %d %08x\n", chain, chain->refs - 1, chain->flags);
287 print_backtrace(8);
288 #endif
292 * Ref a locked chain and force the data to be held across an unlock.
293 * Chain must be currently locked. The user of the chain who desires
294 * to release the hold must call hammer2_chain_lock_unhold() to relock
295 * and unhold the chain, then unlock normally, or may simply call
296 * hammer2_chain_drop_unhold() (which is safer against deadlocks).
298 void
299 hammer2_chain_ref_hold(hammer2_chain_t *chain)
301 atomic_add_int(&chain->lockcnt, 1);
302 hammer2_chain_ref(chain);
306 * Insert the chain in the core rbtree.
308 * Normal insertions are placed in the live rbtree. Insertion of a deleted
309 * chain is a special case used by the flush code that is placed on the
310 * unstaged deleted list to avoid confusing the live view.
312 #define HAMMER2_CHAIN_INSERT_SPIN 0x0001
313 #define HAMMER2_CHAIN_INSERT_LIVE 0x0002
314 #define HAMMER2_CHAIN_INSERT_RACE 0x0004
316 static
318 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
319 int flags, int generation)
321 hammer2_chain_t *xchain;
322 int error = 0;
324 if (flags & HAMMER2_CHAIN_INSERT_SPIN)
325 hammer2_spin_ex(&parent->core.spin);
328 * Interlocked by spinlock, check for race
330 if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
331 parent->core.generation != generation) {
332 error = EAGAIN;
333 goto failed;
337 * Insert chain
339 xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
340 KASSERT(xchain == NULL,
341 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
342 chain, xchain, chain->bref.key));
343 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
344 chain->parent = parent;
345 ++parent->core.chain_count;
346 ++parent->core.generation; /* XXX incs for _get() too, XXX */
349 * We have to keep track of the effective live-view blockref count
350 * so the create code knows when to push an indirect block.
352 if (flags & HAMMER2_CHAIN_INSERT_LIVE)
353 atomic_add_int(&parent->core.live_count, 1);
354 failed:
355 if (flags & HAMMER2_CHAIN_INSERT_SPIN)
356 hammer2_spin_unex(&parent->core.spin);
357 return error;
361 * Drop the caller's reference to the chain. When the ref count drops to
362 * zero this function will try to disassociate the chain from its parent and
363 * deallocate it, then recursely drop the parent using the implied ref
364 * from the chain's chain->parent.
366 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
368 void
369 hammer2_chain_drop(hammer2_chain_t *chain)
371 u_int refs;
373 if (hammer2_debug & 0x200000)
374 Debugger("drop");
375 #if 0
376 kprintf("DROP %p %d %08x\n", chain, chain->refs - 1, chain->flags);
377 print_backtrace(8);
378 #endif
380 KKASSERT(chain->refs > 0);
382 while (chain) {
383 refs = chain->refs;
384 cpu_ccfence();
385 KKASSERT(refs > 0);
387 if (refs == 1) {
388 chain = hammer2_chain_lastdrop(chain);
389 } else {
390 if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
391 break;
392 /* retry the same chain */
398 * Unhold a held and probably not-locked chain, ensure that the data is
399 * dropped on the 1->0 transition of lockcnt by obtaing an exclusive
400 * lock and then simply unlocking the chain.
402 void
403 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
405 u_int lockcnt;
406 int iter = 0;
408 for (;;) {
409 lockcnt = chain->lockcnt;
410 cpu_ccfence();
411 if (lockcnt > 1) {
412 if (atomic_cmpset_int(&chain->lockcnt,
413 lockcnt, lockcnt - 1)) {
414 break;
416 } else if (mtx_lock_ex_try(&chain->lock) == 0) {
417 hammer2_chain_unlock(chain);
418 break;
419 } else {
421 * This situation can easily occur on SMP due to
422 * the gap inbetween the 1->0 transition and the
423 * final unlock. We cannot safely block on the
424 * mutex because lockcnt might go above 1.
426 * XXX Sleep for one tick if it takes too long.
428 if (++iter > 1000) {
429 if (iter > 1000 + hz) {
430 kprintf("hammer2: h2race1 %p\n", chain);
431 iter = 1000;
433 tsleep(&iter, 0, "h2race1", 1);
435 cpu_pause();
438 hammer2_chain_drop(chain);
442 * Safe handling of the 1->0 transition on chain. Returns a chain for
443 * recursive drop or NULL, possibly returning the same chain if the atomic
444 * op fails.
446 * When two chains need to be recursively dropped we use the chain we
447 * would otherwise free to placehold the additional chain. It's a bit
448 * convoluted but we can't just recurse without potentially blowing out
449 * the kernel stack.
451 * The chain cannot be freed if it has any children.
452 * The chain cannot be freed if flagged MODIFIED unless we can dispose of that.
453 * The chain cannot be freed if flagged UPDATE unless we can dispose of that.
455 * The core spinlock is allowed nest child-to-parent (not parent-to-child).
457 static
458 hammer2_chain_t *
459 hammer2_chain_lastdrop(hammer2_chain_t *chain)
461 hammer2_pfs_t *pmp;
462 hammer2_dev_t *hmp;
463 hammer2_chain_t *parent;
464 hammer2_chain_t *rdrop;
465 hammer2_io_t *dio;
468 * On last drop if there is no parent and data_off is good (at
469 * least does not represent the volume root), the modified chain
470 * is probably going to be destroyed. We have to make sure that
471 * the data area is not registered for dedup.
473 if (chain->parent == NULL &&
474 (chain->flags & HAMMER2_CHAIN_MODIFIED) &&
475 (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
476 hmp = chain->hmp;
477 hammer2_io_dedup_delete(hmp, chain->bref.type,
478 chain->bref.data_off, chain->bytes);
482 * Critical field access.
484 hammer2_spin_ex(&chain->core.spin);
486 if ((parent = chain->parent) != NULL) {
488 * If the chain has a parent the UPDATE bit prevents scrapping
489 * as the chain is needed to properly flush the parent. Try
490 * to complete the 1->0 transition and return NULL. Retry
491 * (return chain) if we are unable to complete the 1->0
492 * transition, else return NULL (nothing more to do).
494 * If the chain has a parent the MODIFIED bit prevents
495 * scrapping.
497 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
499 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
500 HAMMER2_CHAIN_MODIFIED)) {
501 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
502 dio = hammer2_chain_drop_data(chain, 0);
503 hammer2_spin_unex(&chain->core.spin);
504 if (dio)
505 hammer2_io_bqrelse(&dio);
506 chain = NULL;
507 } else {
508 hammer2_spin_unex(&chain->core.spin);
510 return (chain);
512 /* spinlock still held */
513 } else {
515 * The chain has no parent and can be flagged for destruction.
516 * Since it has no parent, UPDATE can also be cleared.
518 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
519 if (chain->flags & HAMMER2_CHAIN_UPDATE)
520 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
523 * If the chain has children we must still flush the chain.
524 * Any dedup is already handled by the underlying DIO, so
525 * we do not have to specifically flush it here.
527 * In the case where it has children, the DESTROY flag test
528 * in the flush code will prevent unnecessary flushes of
529 * MODIFIED chains that are not flagged DEDUP so don't worry
530 * about that here.
532 if (chain->core.chain_count) {
534 * Put on flushq (should ensure refs > 1), retry
535 * the drop.
537 hammer2_spin_unex(&chain->core.spin);
538 hammer2_delayed_flush(chain);
539 return(chain); /* retry drop */
543 * Otherwise we can scrap the MODIFIED bit if it is set,
544 * and continue along the freeing path.
546 * Be sure to clean-out any dedup bits. Without a parent
547 * this chain will no longer be visible to the flush code.
548 * Easy check data_off to avoid the volume root.
550 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
551 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
552 atomic_add_long(&hammer2_count_modified_chains, -1);
553 if (chain->pmp)
554 hammer2_pfs_memory_wakeup(chain->pmp);
556 /* spinlock still held */
559 /* spinlock still held */
560 dio = NULL;
563 * If any children exist we must leave the chain intact with refs == 0.
564 * They exist because chains are retained below us which have refs or
565 * may require flushing. This case can occur when parent != NULL.
567 * Retry (return chain) if we fail to transition the refs to 0, else
568 * return NULL indication nothing more to do.
570 * Chains with children are NOT put on the LRU list.
572 if (chain->core.chain_count) {
573 if (parent)
574 hammer2_spin_ex(&parent->core.spin);
575 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
576 dio = hammer2_chain_drop_data(chain, 1);
577 hammer2_spin_unex(&chain->core.spin);
578 if (parent)
579 hammer2_spin_unex(&parent->core.spin);
580 chain = NULL;
581 if (dio)
582 hammer2_io_bqrelse(&dio);
583 } else {
584 hammer2_spin_unex(&chain->core.spin);
585 if (parent)
586 hammer2_spin_unex(&parent->core.spin);
588 return (chain);
590 /* spinlock still held */
591 /* no chains left under us */
594 * chain->core has no children left so no accessors can get to our
595 * chain from there. Now we have to lock the parent core to interlock
596 * remaining possible accessors that might bump chain's refs before
597 * we can safely drop chain's refs with intent to free the chain.
599 hmp = chain->hmp;
600 pmp = chain->pmp; /* can be NULL */
601 rdrop = NULL;
603 parent = chain->parent;
606 * WARNING! chain's spin lock is still held here, and other spinlocks
607 * will be acquired and released in the code below. We
608 * cannot be making fancy procedure calls!
612 * We can cache the chain if it is associated with a pmp
613 * and not flagged as being destroyed or requesting a full
614 * release. In this situation the chain is not removed
615 * from its parent, i.e. it can still be looked up.
617 * We intentionally do not cache DATA chains because these
618 * were likely used to load data into the logical buffer cache
619 * and will not be accessed again for some time.
621 if ((chain->flags &
622 (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
623 chain->pmp &&
624 chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
625 if (parent)
626 hammer2_spin_ex(&parent->core.spin);
627 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
629 * 1->0 transition failed, retry. Do not drop
630 * the chain's data yet!
632 if (parent)
633 hammer2_spin_unex(&parent->core.spin);
634 hammer2_spin_unex(&chain->core.spin);
636 return(chain);
640 * Success, be sure to clean out the chain's data
641 * before putting it on a queue that it might be
642 * reused from.
644 dio = hammer2_chain_drop_data(chain, 1);
646 KKASSERT((chain->flags & HAMMER2_CHAIN_ONLRU) == 0);
647 hammer2_spin_ex(&pmp->lru_spin);
648 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
649 TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
652 * If we are over the LRU limit we need to drop something.
654 if (pmp->lru_count > HAMMER2_LRU_LIMIT) {
655 rdrop = TAILQ_FIRST(&pmp->lru_list);
656 atomic_clear_int(&rdrop->flags, HAMMER2_CHAIN_ONLRU);
657 TAILQ_REMOVE(&pmp->lru_list, rdrop, lru_node);
658 atomic_add_int(&rdrop->refs, 1);
659 atomic_set_int(&rdrop->flags, HAMMER2_CHAIN_RELEASE);
660 } else {
661 atomic_add_int(&pmp->lru_count, 1);
663 hammer2_spin_unex(&pmp->lru_spin);
664 if (parent) {
665 hammer2_spin_unex(&parent->core.spin);
666 parent = NULL; /* safety */
668 hammer2_spin_unex(&chain->core.spin);
669 if (dio)
670 hammer2_io_bqrelse(&dio);
672 return rdrop;
673 /* NOT REACHED */
677 * Spinlock the parent and try to drop the last ref on chain.
678 * On success determine if we should dispose of the chain
679 * (remove the chain from its parent, etc).
681 * (normal core locks are top-down recursive but we define
682 * core spinlocks as bottom-up recursive, so this is safe).
684 if (parent) {
685 hammer2_spin_ex(&parent->core.spin);
686 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
687 #if 0
688 /* XXX remove, don't try to drop data on fail */
689 hammer2_spin_unex(&parent->core.spin);
690 dio = hammer2_chain_drop_data(chain, 0);
691 hammer2_spin_unex(&chain->core.spin);
692 if (dio)
693 hammer2_io_bqrelse(&dio);
694 #endif
696 * 1->0 transition failed, retry.
698 hammer2_spin_unex(&parent->core.spin);
699 hammer2_spin_unex(&chain->core.spin);
701 return(chain);
705 * 1->0 transition successful, remove chain from the
706 * parent.
708 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
709 RB_REMOVE(hammer2_chain_tree,
710 &parent->core.rbtree, chain);
711 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
712 --parent->core.chain_count;
713 chain->parent = NULL;
717 * If our chain was the last chain in the parent's core the
718 * core is now empty and its parent might have to be
719 * re-dropped if it has 0 refs.
721 if (parent->core.chain_count == 0) {
722 rdrop = parent;
723 atomic_add_int(&rdrop->refs, 1);
725 if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
726 rdrop = NULL;
729 hammer2_spin_unex(&parent->core.spin);
730 parent = NULL; /* safety */
731 /* FALL THROUGH */
735 * Successful 1->0 transition and the chain can be destroyed now.
737 * We still have the core spinlock, and core's chain_count is 0.
738 * Any parent spinlock is gone.
740 hammer2_spin_unex(&chain->core.spin);
741 KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
742 chain->core.chain_count == 0);
745 * All spin locks are gone, no pointers remain to the chain, finish
746 * freeing it.
748 KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
749 HAMMER2_CHAIN_MODIFIED)) == 0);
750 dio = hammer2_chain_drop_data(chain, 1);
751 if (dio)
752 hammer2_io_bqrelse(&dio);
755 * Once chain resources are gone we can use the now dead chain
756 * structure to placehold what might otherwise require a recursive
757 * drop, because we have potentially two things to drop and can only
758 * return one directly.
760 if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
761 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
762 chain->hmp = NULL;
763 kfree(chain, hmp->mchain);
767 * Possible chaining loop when parent re-drop needed.
769 return(rdrop);
773 * On either last lock release or last drop
775 static hammer2_io_t *
776 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
778 hammer2_io_t *dio;
780 if ((dio = chain->dio) != NULL) {
781 chain->dio = NULL;
782 chain->data = NULL;
783 } else {
784 switch(chain->bref.type) {
785 case HAMMER2_BREF_TYPE_VOLUME:
786 case HAMMER2_BREF_TYPE_FREEMAP:
787 if (lastdrop)
788 chain->data = NULL;
789 break;
790 default:
791 if (chain->data != NULL) {
792 hammer2_spin_unex(&chain->core.spin);
793 panic("chain data not null");
795 KKASSERT(chain->data == NULL);
796 break;
799 return dio;
803 * Lock a referenced chain element, acquiring its data with I/O if necessary,
804 * and specify how you would like the data to be resolved.
806 * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
808 * The lock is allowed to recurse, multiple locking ops will aggregate
809 * the requested resolve types. Once data is assigned it will not be
810 * removed until the last unlock.
812 * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
813 * (typically used to avoid device/logical buffer
814 * aliasing for data)
816 * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
817 * the INITIAL-create state (indirect blocks only).
819 * Do not resolve data elements for DATA chains.
820 * (typically used to avoid device/logical buffer
821 * aliasing for data)
823 * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
825 * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
826 * it will be locked exclusive.
828 * NOTE: Embedded elements (volume header, inodes) are always resolved
829 * regardless.
831 * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
832 * element will instantiate and zero its buffer, and flush it on
833 * release.
835 * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
836 * so as not to instantiate a device buffer, which could alias against
837 * a logical file buffer. However, if ALWAYS is specified the
838 * device buffer will be instantiated anyway.
840 * WARNING! This function blocks on I/O if data needs to be fetched. This
841 * blocking can run concurrent with other compatible lock holders
842 * who do not need data returning. The lock is not upgraded to
843 * exclusive during a data fetch, a separate bit is used to
844 * interlock I/O. However, an exclusive lock holder can still count
845 * on being interlocked against an I/O fetch managed by a shared
846 * lock holder.
848 void
849 hammer2_chain_lock(hammer2_chain_t *chain, int how)
852 * Ref and lock the element. Recursive locks are allowed.
854 KKASSERT(chain->refs > 0);
855 atomic_add_int(&chain->lockcnt, 1);
857 TIMER(20);
860 * Get the appropriate lock. If LOCKAGAIN is flagged with SHARED
861 * the caller expects a shared lock to already be present and we
862 * are giving it another ref. This case must importantly not block
863 * if there is a pending exclusive lock request.
865 if (how & HAMMER2_RESOLVE_SHARED) {
866 if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
867 hammer2_mtx_sh_again(&chain->lock);
868 } else {
869 hammer2_mtx_sh(&chain->lock);
871 } else {
872 hammer2_mtx_ex(&chain->lock);
874 ++curthread->td_tracker;
875 TIMER(21);
878 * If we already have a valid data pointer no further action is
879 * necessary.
881 if (chain->data)
882 return;
883 TIMER(22);
886 * Do we have to resolve the data? This is generally only
887 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
888 * Other BREF types expects the data to be there.
890 switch(how & HAMMER2_RESOLVE_MASK) {
891 case HAMMER2_RESOLVE_NEVER:
892 return;
893 case HAMMER2_RESOLVE_MAYBE:
894 if (chain->flags & HAMMER2_CHAIN_INITIAL)
895 return;
896 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
897 return;
898 #if 0
899 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
900 return;
901 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
902 return;
903 #endif
904 /* fall through */
905 case HAMMER2_RESOLVE_ALWAYS:
906 default:
907 break;
911 * Caller requires data
913 hammer2_chain_load_data(chain);
917 * Lock the chain, retain the hold, and drop the data persistence count.
918 * The data should remain valid because we never transitioned lockcnt
919 * through 0.
921 void
922 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
924 hammer2_chain_lock(chain, how);
925 atomic_add_int(&chain->lockcnt, -1);
928 #if 0
930 * Downgrade an exclusive chain lock to a shared chain lock.
932 * NOTE: There is no upgrade equivalent due to the ease of
933 * deadlocks in that direction.
935 void
936 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
938 hammer2_mtx_downgrade(&chain->lock);
940 #endif
942 #if 0
944 * Obtains a second shared lock on the chain, does not account the second
945 * shared lock as being owned by the current thread.
947 * Caller must already own a shared lock on this chain.
949 * The lock function is required to obtain the second shared lock without
950 * blocking on pending exclusive requests.
952 void
953 hammer2_chain_push_shared_lock(hammer2_chain_t *chain)
955 hammer2_mtx_sh_again(&chain->lock);
956 atomic_add_int(&chain->lockcnt, 1);
957 /* do not count in td_tracker for this thread */
961 * Accounts for a shared lock that was pushed to us as being owned by our
962 * thread.
964 void
965 hammer2_chain_pull_shared_lock(hammer2_chain_t *chain)
967 ++curthread->td_tracker;
969 #endif
972 * Issue I/O and install chain->data. Caller must hold a chain lock, lock
973 * may be of any type.
975 * Once chain->data is set it cannot be disposed of until all locks are
976 * released.
978 void
979 hammer2_chain_load_data(hammer2_chain_t *chain)
981 hammer2_blockref_t *bref;
982 hammer2_dev_t *hmp;
983 hammer2_io_t *dio;
984 char *bdata;
985 int error;
988 * Degenerate case, data already present, or chain is not expected
989 * to have any data.
991 if (chain->data)
992 return;
993 if ((chain->bref.data_off & HAMMER2_OFF_MASK_RADIX) == 0)
994 return;
995 TIMER(23);
997 hmp = chain->hmp;
998 KKASSERT(hmp != NULL);
1001 * Gain the IOINPROG bit, interlocked block.
1003 for (;;) {
1004 u_int oflags;
1005 u_int nflags;
1007 oflags = chain->flags;
1008 cpu_ccfence();
1009 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1010 nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1011 tsleep_interlock(&chain->flags, 0);
1012 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1013 tsleep(&chain->flags, PINTERLOCKED,
1014 "h2iocw", 0);
1016 /* retry */
1017 } else {
1018 nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1019 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1020 break;
1022 /* retry */
1025 TIMER(24);
1028 * We own CHAIN_IOINPROG
1030 * Degenerate case if we raced another load.
1032 if (chain->data)
1033 goto done;
1036 * We must resolve to a device buffer, either by issuing I/O or
1037 * by creating a zero-fill element. We do not mark the buffer
1038 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1039 * API must still be used to do that).
1041 * The device buffer is variable-sized in powers of 2 down
1042 * to HAMMER2_MIN_ALLOC (typically 1K). A 64K physical storage
1043 * chunk always contains buffers of the same size. (XXX)
1045 * The minimum physical IO size may be larger than the variable
1046 * block size.
1048 bref = &chain->bref;
1051 * The getblk() optimization can only be used on newly created
1052 * elements if the physical block size matches the request.
1054 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1055 error = hammer2_io_new(hmp, bref->type,
1056 bref->data_off, chain->bytes,
1057 &chain->dio);
1058 } else {
1059 error = hammer2_io_bread(hmp, bref->type,
1060 bref->data_off, chain->bytes,
1061 &chain->dio);
1062 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1064 TIMER(25);
1065 if (error) {
1066 chain->error = HAMMER2_ERROR_IO;
1067 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1068 (intmax_t)bref->data_off, error);
1069 hammer2_io_bqrelse(&chain->dio);
1070 goto done;
1072 chain->error = 0;
1075 * This isn't perfect and can be ignored on OSs which do not have
1076 * an indication as to whether a buffer is coming from cache or
1077 * if I/O was actually issued for the read. TESTEDGOOD will work
1078 * pretty well without the B_IOISSUED logic because chains are
1079 * cached.
1081 * If the underlying kernel buffer covers the entire chain we can
1082 * use the B_IOISSUED indication to determine if we have to re-run
1083 * the CRC on chain data for chains that managed to stay cached
1084 * across the kernel disposal of the original buffer.
1086 if ((dio = chain->dio) != NULL && dio->bp) {
1087 struct buf *bp = dio->bp;
1089 if (dio->psize == chain->bytes &&
1090 (bp->b_flags & B_IOISSUED)) {
1091 atomic_clear_int(&chain->flags,
1092 HAMMER2_CHAIN_TESTEDGOOD);
1093 bp->b_flags &= ~B_IOISSUED;
1098 * NOTE: A locked chain's data cannot be modified without first
1099 * calling hammer2_chain_modify().
1103 * Clear INITIAL. In this case we used io_new() and the buffer has
1104 * been zero'd and marked dirty.
1106 bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1108 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1109 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1110 chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1111 } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1113 * check data not currently synchronized due to
1114 * modification. XXX assumes data stays in the buffer
1115 * cache, which might not be true (need biodep on flush
1116 * to calculate crc? or simple crc?).
1118 } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1119 TIMER(26);
1120 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1121 chain->error = HAMMER2_ERROR_CHECK;
1122 } else {
1123 atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1126 TIMER(27);
1129 * Setup the data pointer, either pointing it to an embedded data
1130 * structure and copying the data from the buffer, or pointing it
1131 * into the buffer.
1133 * The buffer is not retained when copying to an embedded data
1134 * structure in order to avoid potential deadlocks or recursions
1135 * on the same physical buffer.
1137 * WARNING! Other threads can start using the data the instant we
1138 * set chain->data non-NULL.
1140 switch (bref->type) {
1141 case HAMMER2_BREF_TYPE_VOLUME:
1142 case HAMMER2_BREF_TYPE_FREEMAP:
1144 * Copy data from bp to embedded buffer
1146 panic("hammer2_chain_load_data: unresolved volume header");
1147 break;
1148 case HAMMER2_BREF_TYPE_DIRENT:
1149 KKASSERT(chain->bytes != 0);
1150 /* fall through */
1151 case HAMMER2_BREF_TYPE_INODE:
1152 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1153 case HAMMER2_BREF_TYPE_INDIRECT:
1154 case HAMMER2_BREF_TYPE_DATA:
1155 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1156 default:
1158 * Point data at the device buffer and leave dio intact.
1160 chain->data = (void *)bdata;
1161 break;
1165 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1167 done:
1168 for (;;) {
1169 u_int oflags;
1170 u_int nflags;
1172 oflags = chain->flags;
1173 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1174 HAMMER2_CHAIN_IOSIGNAL);
1175 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1176 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1177 if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1178 wakeup(&chain->flags);
1179 break;
1182 TIMER(28);
1186 * Unlock and deref a chain element.
1188 * Remember that the presence of children under chain prevent the chain's
1189 * destruction but do not add additional references, so the dio will still
1190 * be dropped.
1192 void
1193 hammer2_chain_unlock(hammer2_chain_t *chain)
1195 hammer2_io_t *dio;
1196 u_int lockcnt;
1197 int iter = 0;
1199 --curthread->td_tracker;
1202 * If multiple locks are present (or being attempted) on this
1203 * particular chain we can just unlock, drop refs, and return.
1205 * Otherwise fall-through on the 1->0 transition.
1207 for (;;) {
1208 lockcnt = chain->lockcnt;
1209 KKASSERT(lockcnt > 0);
1210 cpu_ccfence();
1211 if (lockcnt > 1) {
1212 if (atomic_cmpset_int(&chain->lockcnt,
1213 lockcnt, lockcnt - 1)) {
1214 hammer2_mtx_unlock(&chain->lock);
1215 return;
1217 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1218 /* while holding the mutex exclusively */
1219 if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1220 break;
1221 } else {
1223 * This situation can easily occur on SMP due to
1224 * the gap inbetween the 1->0 transition and the
1225 * final unlock. We cannot safely block on the
1226 * mutex because lockcnt might go above 1.
1228 * XXX Sleep for one tick if it takes too long.
1230 if (++iter > 1000) {
1231 if (iter > 1000 + hz) {
1232 kprintf("hammer2: h2race2 %p\n", chain);
1233 iter = 1000;
1235 tsleep(&iter, 0, "h2race2", 1);
1237 cpu_pause();
1239 /* retry */
1243 * Disassociate the data on the last unlock. Requires that we hold
1244 * the mutex exclusively.
1246 dio = hammer2_chain_drop_data(chain, 0);
1247 if (dio)
1248 hammer2_io_bqrelse(&dio);
1249 hammer2_mtx_unlock(&chain->lock);
1253 * Unlock and hold chain data intact
1255 void
1256 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1258 atomic_add_int(&chain->lockcnt, 1);
1259 hammer2_chain_unlock(chain);
1263 * Helper to obtain the blockref[] array base and count for a chain.
1265 * XXX Not widely used yet, various use cases need to be validated and
1266 * converted to use this function.
1268 static
1269 hammer2_blockref_t *
1270 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1272 hammer2_blockref_t *base;
1273 int count;
1275 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1276 base = NULL;
1278 switch(parent->bref.type) {
1279 case HAMMER2_BREF_TYPE_INODE:
1280 count = HAMMER2_SET_COUNT;
1281 break;
1282 case HAMMER2_BREF_TYPE_INDIRECT:
1283 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1284 count = parent->bytes / sizeof(hammer2_blockref_t);
1285 break;
1286 case HAMMER2_BREF_TYPE_VOLUME:
1287 count = HAMMER2_SET_COUNT;
1288 break;
1289 case HAMMER2_BREF_TYPE_FREEMAP:
1290 count = HAMMER2_SET_COUNT;
1291 break;
1292 default:
1293 panic("hammer2_chain_create_indirect: "
1294 "unrecognized blockref type: %d",
1295 parent->bref.type);
1296 count = 0;
1297 break;
1299 } else {
1300 switch(parent->bref.type) {
1301 case HAMMER2_BREF_TYPE_INODE:
1302 base = &parent->data->ipdata.u.blockset.blockref[0];
1303 count = HAMMER2_SET_COUNT;
1304 break;
1305 case HAMMER2_BREF_TYPE_INDIRECT:
1306 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1307 base = &parent->data->npdata[0];
1308 count = parent->bytes / sizeof(hammer2_blockref_t);
1309 break;
1310 case HAMMER2_BREF_TYPE_VOLUME:
1311 base = &parent->data->voldata.
1312 sroot_blockset.blockref[0];
1313 count = HAMMER2_SET_COUNT;
1314 break;
1315 case HAMMER2_BREF_TYPE_FREEMAP:
1316 base = &parent->data->blkset.blockref[0];
1317 count = HAMMER2_SET_COUNT;
1318 break;
1319 default:
1320 panic("hammer2_chain_create_indirect: "
1321 "unrecognized blockref type: %d",
1322 parent->bref.type);
1323 count = 0;
1324 break;
1327 *countp = count;
1329 return base;
1333 * This counts the number of live blockrefs in a block array and
1334 * also calculates the point at which all remaining blockrefs are empty.
1335 * This routine can only be called on a live chain.
1337 * NOTE: Flag is not set until after the count is complete, allowing
1338 * callers to test the flag without holding the spinlock.
1340 * NOTE: If base is NULL the related chain is still in the INITIAL
1341 * state and there are no blockrefs to count.
1343 * NOTE: live_count may already have some counts accumulated due to
1344 * creation and deletion and could even be initially negative.
1346 void
1347 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1348 hammer2_blockref_t *base, int count)
1350 hammer2_spin_ex(&chain->core.spin);
1351 if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1352 if (base) {
1353 while (--count >= 0) {
1354 if (base[count].type)
1355 break;
1357 chain->core.live_zero = count + 1;
1358 while (count >= 0) {
1359 if (base[count].type)
1360 atomic_add_int(&chain->core.live_count,
1362 --count;
1364 } else {
1365 chain->core.live_zero = 0;
1367 /* else do not modify live_count */
1368 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1370 hammer2_spin_unex(&chain->core.spin);
1374 * Resize the chain's physical storage allocation in-place. This function does
1375 * not usually adjust the data pointer and must be followed by (typically) a
1376 * hammer2_chain_modify() call to copy any old data over and adjust the
1377 * data pointer.
1379 * Chains can be resized smaller without reallocating the storage. Resizing
1380 * larger will reallocate the storage. Excess or prior storage is reclaimed
1381 * asynchronously at a later time.
1383 * An nradix value of 0 is special-cased to mean that the storage should
1384 * be disassociated, that is the chain is being resized to 0 bytes (not 1
1385 * byte).
1387 * Must be passed an exclusively locked parent and chain.
1389 * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1390 * to avoid instantiating a device buffer that conflicts with the vnode data
1391 * buffer. However, because H2 can compress or encrypt data, the chain may
1392 * have a dio assigned to it in those situations, and they do not conflict.
1394 * XXX return error if cannot resize.
1396 void
1397 hammer2_chain_resize(hammer2_chain_t *chain,
1398 hammer2_tid_t mtid, hammer2_off_t dedup_off,
1399 int nradix, int flags)
1401 hammer2_dev_t *hmp;
1402 size_t obytes;
1403 size_t nbytes;
1405 hmp = chain->hmp;
1408 * Only data and indirect blocks can be resized for now.
1409 * (The volu root, inodes, and freemap elements use a fixed size).
1411 KKASSERT(chain != &hmp->vchain);
1412 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1413 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1414 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1417 * Nothing to do if the element is already the proper size
1419 obytes = chain->bytes;
1420 nbytes = (nradix) ? (1U << nradix) : 0;
1421 if (obytes == nbytes)
1422 return;
1425 * Make sure the old data is instantiated so we can copy it. If this
1426 * is a data block, the device data may be superfluous since the data
1427 * might be in a logical block, but compressed or encrypted data is
1428 * another matter.
1430 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1432 hammer2_chain_modify(chain, mtid, dedup_off, 0);
1435 * Relocate the block, even if making it smaller (because different
1436 * block sizes may be in different regions).
1438 * NOTE: Operation does not copy the data and may only be used
1439 * to resize data blocks in-place, or directory entry blocks
1440 * which are about to be modified in some manner.
1442 hammer2_freemap_alloc(chain, nbytes);
1443 chain->bytes = nbytes;
1446 * We don't want the followup chain_modify() to try to copy data
1447 * from the old (wrong-sized) buffer. It won't know how much to
1448 * copy. This case should only occur during writes when the
1449 * originator already has the data to write in-hand.
1451 if (chain->dio) {
1452 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1453 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1454 hammer2_io_brelse(&chain->dio);
1455 chain->data = NULL;
1460 * Helper for chains already flagged as MODIFIED. A new allocation may
1461 * still be required if the existing one has already been used in a de-dup.
1463 static __inline
1465 modified_needs_new_allocation(hammer2_chain_t *chain)
1468 * We only live-dedup data, we do not live-dedup meta-data.
1470 if (chain->bref.type != HAMMER2_BREF_TYPE_DATA &&
1471 chain->bref.type != HAMMER2_BREF_TYPE_DIRENT) {
1472 return 0;
1476 * If chain has no data, then there is nothing to live-dedup.
1478 if (chain->bytes == 0)
1479 return 0;
1481 return 0;
1483 #if 0
1484 hammer2_io_t *dio;
1486 * If this flag is not set the current modification has not been
1487 * recorded for dedup so a new allocation is not needed. The
1488 * recording occurs when dirty file data is flushed from the frontend
1489 * to the backend.
1491 if (chain->flags & HAMMER2_CHAIN_DEDUP)
1492 return 1;
1495 * If the DEDUP flag is set we have one final line of defense to
1496 * allow re-use of a modified buffer, and that is if the DIO_INVALOK
1497 * flag is still set on the underlying DIO. This flag is only set
1498 * for hammer2_io_new() buffers which cover the whole buffer (64KB),
1499 * and is cleared when a dedup operation actually decides to use
1500 * the buffer.
1503 if ((dio = chain->dio) != NULL) {
1504 if (dio->refs & HAMMER2_DIO_INVALOK)
1505 return 0;
1506 } else {
1507 dio = hammer2_io_getquick(chain->hmp, chain->bref.data_off,
1508 chain->bytes);
1509 if (dio) {
1510 if (dio->refs & HAMMER2_DIO_INVALOK) {
1511 hammer2_io_putblk(&dio);
1512 return 0;
1514 hammer2_io_putblk(&dio);
1517 return 1;
1518 #endif
1522 * Set the chain modified so its data can be changed by the caller.
1524 * Sets bref.modify_tid to mtid only if mtid != 0. Note that bref.modify_tid
1525 * is a CLC (cluster level change) field and is not updated by parent
1526 * propagation during a flush.
1528 * If the caller passes a non-zero dedup_off we assign data_off to that
1529 * instead of allocating a ne block. Caller must not modify the data already
1530 * present at the target offset.
1532 void
1533 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1534 hammer2_off_t dedup_off, int flags)
1536 hammer2_blockref_t obref;
1537 hammer2_dev_t *hmp;
1538 hammer2_io_t *dio;
1539 int error;
1540 int wasinitial;
1541 int newmod;
1542 char *bdata;
1544 hmp = chain->hmp;
1545 obref = chain->bref;
1546 KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1549 * Data is not optional for freemap chains (we must always be sure
1550 * to copy the data on COW storage allocations).
1552 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1553 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1554 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1555 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1559 * Data must be resolved if already assigned, unless explicitly
1560 * flagged otherwise.
1562 if (chain->data == NULL && chain->bytes != 0 &&
1563 (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1564 (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1565 hammer2_chain_load_data(chain);
1569 * Set MODIFIED to indicate that the chain has been modified.
1570 * Set UPDATE to ensure that the blockref is updated in the parent.
1572 * If MODIFIED is already set determine if we can reuse the assigned
1573 * data block or if we need a new data block. The assigned data block
1574 * can be reused if HAMMER2_DIO_INVALOK is set on the dio.
1576 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) &&
1577 modified_needs_new_allocation(chain)) {
1578 newmod = 1;
1579 } else if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1581 * Must set modified bit.
1583 atomic_add_long(&hammer2_count_modified_chains, 1);
1584 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1585 hammer2_pfs_memory_inc(chain->pmp); /* can be NULL */
1588 * We may be able to avoid a copy-on-write if the chain's
1589 * check mode is set to NONE and the chain's current
1590 * modify_tid is beyond the last explicit snapshot tid.
1592 * This implements HAMMER2's overwrite-in-place feature.
1594 * NOTE! This data-block cannot be used as a de-duplication
1595 * source when the check mode is set to NONE.
1597 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1598 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1599 (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1600 HAMMER2_DEC_CHECK(chain->bref.methods) ==
1601 HAMMER2_CHECK_NONE &&
1602 chain->pmp &&
1603 chain->bref.modify_tid >
1604 chain->pmp->iroot->meta.pfs_lsnap_tid &&
1605 modified_needs_new_allocation(chain) == 0) {
1607 * Sector overwrite allowed.
1609 newmod = 0;
1610 } else {
1612 * Sector overwrite not allowed, must copy-on-write.
1614 newmod = 1;
1616 } else {
1618 * Already flagged modified, no new allocation is needed.
1620 newmod = 0;
1624 * Flag parent update required.
1626 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
1627 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1630 * The modification or re-modification requires an allocation and
1631 * possible COW.
1633 * If dedup_off is non-zero, caller already has a data offset
1634 * containing the caller's desired data. The dedup offset is
1635 * allowed to be in a partially free state and we must be sure
1636 * to reset it to a fully allocated state to force two bulkfree
1637 * passes to free it again. The chain will not be marked MODIFIED
1638 * in the dedup case, as the dedup data cannot be changed without
1639 * a new allocation.
1641 * NOTE: Only applicable when chain->bytes != 0.
1643 * XXX can a chain already be marked MODIFIED without a data
1644 * assignment? If not, assert here instead of testing the case.
1646 if (chain != &hmp->vchain && chain != &hmp->fchain &&
1647 chain->bytes) {
1648 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1649 newmod
1651 hammer2_io_dedup_delete(chain->hmp,
1652 chain->bref.type,
1653 chain->bref.data_off,
1654 chain->bytes);
1655 if (dedup_off) {
1656 chain->bref.data_off = dedup_off;
1657 chain->bytes = 1 << (dedup_off &
1658 HAMMER2_OFF_MASK_RADIX);
1659 atomic_clear_int(&chain->flags,
1660 HAMMER2_CHAIN_MODIFIED);
1661 atomic_add_long(&hammer2_count_modified_chains,
1662 -1);
1663 if (chain->pmp)
1664 hammer2_pfs_memory_wakeup(chain->pmp);
1665 hammer2_freemap_adjust(hmp, &chain->bref,
1666 HAMMER2_FREEMAP_DORECOVER);
1667 } else {
1668 hammer2_freemap_alloc(chain, chain->bytes);
1670 /* XXX failed allocation */
1675 * Update mirror_tid and modify_tid. modify_tid is only updated
1676 * if not passed as zero (during flushes, parent propagation passes
1677 * the value 0).
1679 * NOTE: chain->pmp could be the device spmp.
1681 chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1682 if (mtid)
1683 chain->bref.modify_tid = mtid;
1686 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1687 * requires updating as well as to tell the delete code that the
1688 * chain's blockref might not exactly match (in terms of physical size
1689 * or block offset) the one in the parent's blocktable. The base key
1690 * of course will still match.
1692 if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1693 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1696 * Short-cut data blocks which the caller does not need an actual
1697 * data reference to (aka OPTDATA), as long as the chain does not
1698 * already have a data pointer to the data. This generally means
1699 * that the modifications are being done via the logical buffer cache.
1700 * The INITIAL flag relates only to the device data buffer and thus
1701 * remains unchange in this situation.
1703 * This code also handles bytes == 0 (most dirents).
1705 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1706 (flags & HAMMER2_MODIFY_OPTDATA) &&
1707 chain->data == NULL) {
1708 KKASSERT(chain->dio == NULL);
1709 goto skip2;
1713 * Clearing the INITIAL flag (for indirect blocks) indicates that
1714 * we've processed the uninitialized storage allocation.
1716 * If this flag is already clear we are likely in a copy-on-write
1717 * situation but we have to be sure NOT to bzero the storage if
1718 * no data is present.
1720 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1721 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1722 wasinitial = 1;
1723 } else {
1724 wasinitial = 0;
1728 * Instantiate data buffer and possibly execute COW operation
1730 switch(chain->bref.type) {
1731 case HAMMER2_BREF_TYPE_VOLUME:
1732 case HAMMER2_BREF_TYPE_FREEMAP:
1734 * The data is embedded, no copy-on-write operation is
1735 * needed.
1737 KKASSERT(chain->dio == NULL);
1738 break;
1739 case HAMMER2_BREF_TYPE_DIRENT:
1741 * The data might be fully embedded.
1743 if (chain->bytes == 0) {
1744 KKASSERT(chain->dio == NULL);
1745 break;
1747 /* fall through */
1748 case HAMMER2_BREF_TYPE_INODE:
1749 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1750 case HAMMER2_BREF_TYPE_DATA:
1751 case HAMMER2_BREF_TYPE_INDIRECT:
1752 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1754 * Perform the copy-on-write operation
1756 * zero-fill or copy-on-write depending on whether
1757 * chain->data exists or not and set the dirty state for
1758 * the new buffer. hammer2_io_new() will handle the
1759 * zero-fill.
1761 * If a dedup_off was supplied this is an existing block
1762 * and no COW, copy, or further modification is required.
1764 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1766 if (wasinitial && dedup_off == 0) {
1767 error = hammer2_io_new(hmp, chain->bref.type,
1768 chain->bref.data_off,
1769 chain->bytes, &dio);
1770 } else {
1771 error = hammer2_io_bread(hmp, chain->bref.type,
1772 chain->bref.data_off,
1773 chain->bytes, &dio);
1775 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1778 * If an I/O error occurs make sure callers cannot accidently
1779 * modify the old buffer's contents and corrupt the filesystem.
1781 if (error) {
1782 kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1783 hmp);
1784 chain->error = HAMMER2_ERROR_IO;
1785 hammer2_io_brelse(&dio);
1786 hammer2_io_brelse(&chain->dio);
1787 chain->data = NULL;
1788 break;
1790 chain->error = 0;
1791 bdata = hammer2_io_data(dio, chain->bref.data_off);
1793 if (chain->data) {
1795 * COW (unless a dedup).
1797 KKASSERT(chain->dio != NULL);
1798 if (chain->data != (void *)bdata && dedup_off == 0) {
1799 bcopy(chain->data, bdata, chain->bytes);
1801 } else if (wasinitial == 0) {
1803 * We have a problem. We were asked to COW but
1804 * we don't have any data to COW with!
1806 panic("hammer2_chain_modify: having a COW %p\n",
1807 chain);
1811 * Retire the old buffer, replace with the new. Dirty or
1812 * redirty the new buffer.
1814 * WARNING! The system buffer cache may have already flushed
1815 * the buffer, so we must be sure to [re]dirty it
1816 * for further modification.
1818 * If dedup_off was supplied, the caller is not
1819 * expected to make any further modification to the
1820 * buffer.
1822 if (chain->dio)
1823 hammer2_io_bqrelse(&chain->dio);
1824 chain->data = (void *)bdata;
1825 chain->dio = dio;
1826 if (dedup_off == 0)
1827 hammer2_io_setdirty(dio);
1828 break;
1829 default:
1830 panic("hammer2_chain_modify: illegal non-embedded type %d",
1831 chain->bref.type);
1832 break;
1835 skip2:
1837 * setflush on parent indicating that the parent must recurse down
1838 * to us. Do not call on chain itself which might already have it
1839 * set.
1841 if (chain->parent)
1842 hammer2_chain_setflush(chain->parent);
1846 * Modify the chain associated with an inode.
1848 void
1849 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
1850 hammer2_tid_t mtid, int flags)
1852 hammer2_inode_modify(ip);
1853 hammer2_chain_modify(chain, mtid, 0, flags);
1857 * Volume header data locks
1859 void
1860 hammer2_voldata_lock(hammer2_dev_t *hmp)
1862 lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1865 void
1866 hammer2_voldata_unlock(hammer2_dev_t *hmp)
1868 lockmgr(&hmp->vollk, LK_RELEASE);
1871 void
1872 hammer2_voldata_modify(hammer2_dev_t *hmp)
1874 if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1875 atomic_add_long(&hammer2_count_modified_chains, 1);
1876 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1877 hammer2_pfs_memory_inc(hmp->vchain.pmp);
1882 * This function returns the chain at the nearest key within the specified
1883 * range. The returned chain will be referenced but not locked.
1885 * This function will recurse through chain->rbtree as necessary and will
1886 * return a *key_nextp suitable for iteration. *key_nextp is only set if
1887 * the iteration value is less than the current value of *key_nextp.
1889 * The caller should use (*key_nextp) to calculate the actual range of
1890 * the returned element, which will be (key_beg to *key_nextp - 1), because
1891 * there might be another element which is superior to the returned element
1892 * and overlaps it.
1894 * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1895 * chains continue to be returned. On EOF (*key_nextp) may overflow since
1896 * it will wind up being (key_end + 1).
1898 * WARNING! Must be called with child's spinlock held. Spinlock remains
1899 * held through the operation.
1901 struct hammer2_chain_find_info {
1902 hammer2_chain_t *best;
1903 hammer2_key_t key_beg;
1904 hammer2_key_t key_end;
1905 hammer2_key_t key_next;
1908 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1909 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1911 static
1912 hammer2_chain_t *
1913 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1914 hammer2_key_t key_beg, hammer2_key_t key_end)
1916 struct hammer2_chain_find_info info;
1918 info.best = NULL;
1919 info.key_beg = key_beg;
1920 info.key_end = key_end;
1921 info.key_next = *key_nextp;
1923 RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1924 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1925 &info);
1926 *key_nextp = info.key_next;
1927 #if 0
1928 kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1929 parent, key_beg, key_end, *key_nextp);
1930 #endif
1932 return (info.best);
1935 static
1937 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1939 struct hammer2_chain_find_info *info = data;
1940 hammer2_key_t child_beg;
1941 hammer2_key_t child_end;
1943 child_beg = child->bref.key;
1944 child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1946 if (child_end < info->key_beg)
1947 return(-1);
1948 if (child_beg > info->key_end)
1949 return(1);
1950 return(0);
1953 static
1955 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1957 struct hammer2_chain_find_info *info = data;
1958 hammer2_chain_t *best;
1959 hammer2_key_t child_end;
1962 * WARNING! Layerq is scanned forwards, exact matches should keep
1963 * the existing info->best.
1965 if ((best = info->best) == NULL) {
1967 * No previous best. Assign best
1969 info->best = child;
1970 } else if (best->bref.key <= info->key_beg &&
1971 child->bref.key <= info->key_beg) {
1973 * Illegal overlap.
1975 KKASSERT(0);
1976 /*info->best = child;*/
1977 } else if (child->bref.key < best->bref.key) {
1979 * Child has a nearer key and best is not flush with key_beg.
1980 * Set best to child. Truncate key_next to the old best key.
1982 info->best = child;
1983 if (info->key_next > best->bref.key || info->key_next == 0)
1984 info->key_next = best->bref.key;
1985 } else if (child->bref.key == best->bref.key) {
1987 * If our current best is flush with the child then this
1988 * is an illegal overlap.
1990 * key_next will automatically be limited to the smaller of
1991 * the two end-points.
1993 KKASSERT(0);
1994 info->best = child;
1995 } else {
1997 * Keep the current best but truncate key_next to the child's
1998 * base.
2000 * key_next will also automatically be limited to the smaller
2001 * of the two end-points (probably not necessary for this case
2002 * but we do it anyway).
2004 if (info->key_next > child->bref.key || info->key_next == 0)
2005 info->key_next = child->bref.key;
2009 * Always truncate key_next based on child's end-of-range.
2011 child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2012 if (child_end && (info->key_next > child_end || info->key_next == 0))
2013 info->key_next = child_end;
2015 return(0);
2019 * Retrieve the specified chain from a media blockref, creating the
2020 * in-memory chain structure which reflects it.
2022 * To handle insertion races pass the INSERT_RACE flag along with the
2023 * generation number of the core. NULL will be returned if the generation
2024 * number changes before we have a chance to insert the chain. Insert
2025 * races can occur because the parent might be held shared.
2027 * Caller must hold the parent locked shared or exclusive since we may
2028 * need the parent's bref array to find our block.
2030 * WARNING! chain->pmp is always set to NULL for any chain representing
2031 * part of the super-root topology.
2033 hammer2_chain_t *
2034 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2035 hammer2_blockref_t *bref)
2037 hammer2_dev_t *hmp = parent->hmp;
2038 hammer2_chain_t *chain;
2039 int error;
2042 * Allocate a chain structure representing the existing media
2043 * entry. Resulting chain has one ref and is not locked.
2045 if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2046 chain = hammer2_chain_alloc(hmp, NULL, bref);
2047 else
2048 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2049 /* ref'd chain returned */
2052 * Flag that the chain is in the parent's blockmap so delete/flush
2053 * knows what to do with it.
2055 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2058 * Link the chain into its parent. A spinlock is required to safely
2059 * access the RBTREE, and it is possible to collide with another
2060 * hammer2_chain_get() operation because the caller might only hold
2061 * a shared lock on the parent.
2063 * NOTE: Get races can occur quite often when we distribute
2064 * asynchronous read-aheads across multiple threads.
2066 KKASSERT(parent->refs > 0);
2067 error = hammer2_chain_insert(parent, chain,
2068 HAMMER2_CHAIN_INSERT_SPIN |
2069 HAMMER2_CHAIN_INSERT_RACE,
2070 generation);
2071 if (error) {
2072 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2073 /*kprintf("chain %p get race\n", chain);*/
2074 hammer2_chain_drop(chain);
2075 chain = NULL;
2076 } else {
2077 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2081 * Return our new chain referenced but not locked, or NULL if
2082 * a race occurred.
2084 return (chain);
2088 * Lookup initialization/completion API
2090 hammer2_chain_t *
2091 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2093 hammer2_chain_ref(parent);
2094 if (flags & HAMMER2_LOOKUP_SHARED) {
2095 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2096 HAMMER2_RESOLVE_SHARED);
2097 } else {
2098 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2100 return (parent);
2103 void
2104 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2106 if (parent) {
2107 hammer2_chain_unlock(parent);
2108 hammer2_chain_drop(parent);
2112 hammer2_chain_t *
2113 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
2115 hammer2_chain_t *oparent;
2116 hammer2_chain_t *nparent;
2119 * Be careful of order, oparent must be unlocked before nparent
2120 * is locked below to avoid a deadlock.
2122 oparent = *parentp;
2123 hammer2_spin_ex(&oparent->core.spin);
2124 nparent = oparent->parent;
2125 if (nparent == NULL) {
2126 hammer2_spin_unex(&oparent->core.spin);
2127 panic("hammer2_chain_getparent: no parent");
2129 hammer2_chain_ref(nparent);
2130 hammer2_spin_unex(&oparent->core.spin);
2131 if (oparent) {
2132 hammer2_chain_unlock(oparent);
2133 hammer2_chain_drop(oparent);
2134 oparent = NULL;
2137 hammer2_chain_lock(nparent, how);
2138 *parentp = nparent;
2140 return (nparent);
2144 * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2145 * (*parentp) typically points to an inode but can also point to a related
2146 * indirect block and this function will recurse upwards and find the inode
2147 * again.
2149 * (*parentp) must be exclusively locked and referenced and can be an inode
2150 * or an existing indirect block within the inode.
2152 * On return (*parentp) will be modified to point at the deepest parent chain
2153 * element encountered during the search, as a helper for an insertion or
2154 * deletion. The new (*parentp) will be locked and referenced and the old
2155 * will be unlocked and dereferenced (no change if they are both the same).
2157 * The matching chain will be returned exclusively locked. If NOLOCK is
2158 * requested the chain will be returned only referenced. Note that the
2159 * parent chain must always be locked shared or exclusive, matching the
2160 * HAMMER2_LOOKUP_SHARED flag. We can conceivably lock it SHARED temporarily
2161 * when NOLOCK is specified but that complicates matters if *parentp must
2162 * inherit the chain.
2164 * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
2165 * data pointer or can otherwise be in flux.
2167 * NULL is returned if no match was found, but (*parentp) will still
2168 * potentially be adjusted.
2170 * If a fatal error occurs (typically an I/O error), a dummy chain is
2171 * returned with chain->error and error-identifying information set. This
2172 * chain will assert if you try to do anything fancy with it.
2174 * XXX Depending on where the error occurs we should allow continued iteration.
2176 * On return (*key_nextp) will point to an iterative value for key_beg.
2177 * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2179 * This function will also recurse up the chain if the key is not within the
2180 * current parent's range. (*parentp) can never be set to NULL. An iteration
2181 * can simply allow (*parentp) to float inside the loop.
2183 * NOTE! chain->data is not always resolved. By default it will not be
2184 * resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF. Use
2185 * HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2186 * BREF_TYPE_DATA as the device buffer can alias the logical file
2187 * buffer).
2190 hammer2_chain_t *
2191 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2192 hammer2_key_t key_beg, hammer2_key_t key_end,
2193 int *cache_indexp, int flags)
2195 hammer2_dev_t *hmp;
2196 hammer2_chain_t *parent;
2197 hammer2_chain_t *chain;
2198 hammer2_blockref_t *base;
2199 hammer2_blockref_t *bref;
2200 hammer2_blockref_t bcopy;
2201 hammer2_key_t scan_beg;
2202 hammer2_key_t scan_end;
2203 int count = 0;
2204 int how_always = HAMMER2_RESOLVE_ALWAYS;
2205 int how_maybe = HAMMER2_RESOLVE_MAYBE;
2206 int how;
2207 int generation;
2208 int maxloops = 300000;
2210 TIMER(8);
2212 if (flags & HAMMER2_LOOKUP_ALWAYS) {
2213 how_maybe = how_always;
2214 how = HAMMER2_RESOLVE_ALWAYS;
2215 } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2216 how = HAMMER2_RESOLVE_NEVER;
2217 } else {
2218 how = HAMMER2_RESOLVE_MAYBE;
2220 if (flags & HAMMER2_LOOKUP_SHARED) {
2221 how_maybe |= HAMMER2_RESOLVE_SHARED;
2222 how_always |= HAMMER2_RESOLVE_SHARED;
2223 how |= HAMMER2_RESOLVE_SHARED;
2227 * Recurse (*parentp) upward if necessary until the parent completely
2228 * encloses the key range or we hit the inode.
2230 * Handle races against the flusher deleting indirect nodes on its
2231 * way back up by continuing to recurse upward past the deletion.
2233 parent = *parentp;
2234 hmp = parent->hmp;
2236 while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2237 parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2238 scan_beg = parent->bref.key;
2239 scan_end = scan_beg +
2240 ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2241 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT ||
2242 (parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2243 if (key_beg >= scan_beg && key_end <= scan_end)
2244 break;
2246 parent = hammer2_chain_getparent(parentp, how_maybe);
2248 again:
2250 TIMER(9);
2251 if (--maxloops == 0)
2252 panic("hammer2_chain_lookup: maxloops");
2254 * Locate the blockref array. Currently we do a fully associative
2255 * search through the array.
2257 switch(parent->bref.type) {
2258 case HAMMER2_BREF_TYPE_INODE:
2260 * Special shortcut for embedded data returns the inode
2261 * itself. Callers must detect this condition and access
2262 * the embedded data (the strategy code does this for us).
2264 * This is only applicable to regular files and softlinks.
2266 * We need a second lock on parent. Since we already have
2267 * a lock we must pass LOCKAGAIN to prevent unexpected
2268 * blocking (we don't want to block on a second shared
2269 * ref if an exclusive lock is pending)
2271 if (parent->data->ipdata.meta.op_flags &
2272 HAMMER2_OPFLAG_DIRECTDATA) {
2273 if (flags & HAMMER2_LOOKUP_NODIRECT) {
2274 chain = NULL;
2275 *key_nextp = key_end + 1;
2276 goto done;
2278 hammer2_chain_ref(parent);
2279 if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
2280 hammer2_chain_lock(parent,
2281 how_always |
2282 HAMMER2_RESOLVE_LOCKAGAIN);
2283 *key_nextp = key_end + 1;
2284 return (parent);
2286 base = &parent->data->ipdata.u.blockset.blockref[0];
2287 count = HAMMER2_SET_COUNT;
2288 break;
2289 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2290 case HAMMER2_BREF_TYPE_INDIRECT:
2292 * Handle MATCHIND on the parent
2294 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2295 scan_beg = parent->bref.key;
2296 scan_end = scan_beg +
2297 ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2298 if (key_beg == scan_beg && key_end == scan_end) {
2299 chain = parent;
2300 hammer2_chain_ref(chain);
2301 hammer2_chain_lock(chain, how_maybe);
2302 *key_nextp = scan_end + 1;
2303 goto done;
2308 * Optimize indirect blocks in the INITIAL state to avoid
2309 * I/O.
2311 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2312 base = NULL;
2313 } else {
2314 if (parent->data == NULL) {
2315 kprintf("parent->data is NULL %p\n", parent);
2316 while (1)
2317 tsleep(parent, 0, "xxx", 0);
2319 base = &parent->data->npdata[0];
2321 count = parent->bytes / sizeof(hammer2_blockref_t);
2322 break;
2323 case HAMMER2_BREF_TYPE_VOLUME:
2324 base = &parent->data->voldata.sroot_blockset.blockref[0];
2325 count = HAMMER2_SET_COUNT;
2326 break;
2327 case HAMMER2_BREF_TYPE_FREEMAP:
2328 base = &parent->data->blkset.blockref[0];
2329 count = HAMMER2_SET_COUNT;
2330 break;
2331 default:
2332 kprintf("hammer2_chain_lookup: unrecognized "
2333 "blockref(B) type: %d",
2334 parent->bref.type);
2335 while (1)
2336 tsleep(&base, 0, "dead", 0);
2337 panic("hammer2_chain_lookup: unrecognized "
2338 "blockref(B) type: %d",
2339 parent->bref.type);
2340 base = NULL; /* safety */
2341 count = 0; /* safety */
2343 TIMER(10);
2346 * Merged scan to find next candidate.
2348 * hammer2_base_*() functions require the parent->core.live_* fields
2349 * to be synchronized.
2351 * We need to hold the spinlock to access the block array and RB tree
2352 * and to interlock chain creation.
2354 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2355 hammer2_chain_countbrefs(parent, base, count);
2357 TIMER(11);
2360 * Combined search
2362 hammer2_spin_ex(&parent->core.spin);
2363 chain = hammer2_combined_find(parent, base, count,
2364 cache_indexp, key_nextp,
2365 key_beg, key_end,
2366 &bref);
2367 generation = parent->core.generation;
2369 TIMER(12);
2372 * Exhausted parent chain, iterate.
2374 if (bref == NULL) {
2375 TIMER(13);
2376 hammer2_spin_unex(&parent->core.spin);
2377 if (key_beg == key_end) /* short cut single-key case */
2378 return (NULL);
2381 * Stop if we reached the end of the iteration.
2383 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2384 parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2385 return (NULL);
2389 * Calculate next key, stop if we reached the end of the
2390 * iteration, otherwise go up one level and loop.
2392 key_beg = parent->bref.key +
2393 ((hammer2_key_t)1 << parent->bref.keybits);
2394 if (key_beg == 0 || key_beg > key_end)
2395 return (NULL);
2396 parent = hammer2_chain_getparent(parentp, how_maybe);
2397 goto again;
2401 * Selected from blockref or in-memory chain.
2403 if (chain == NULL) {
2404 TIMER(14);
2405 bcopy = *bref;
2406 hammer2_spin_unex(&parent->core.spin);
2407 chain = hammer2_chain_get(parent, generation,
2408 &bcopy);
2409 if (chain == NULL) {
2411 kprintf("retry lookup parent %p keys %016jx:%016jx\n",
2412 parent, key_beg, key_end);
2414 goto again;
2416 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2417 hammer2_chain_drop(chain);
2418 goto again;
2420 } else {
2421 TIMER(15);
2422 hammer2_chain_ref(chain);
2423 hammer2_spin_unex(&parent->core.spin);
2426 TIMER(16);
2428 * chain is referenced but not locked. We must lock the chain
2429 * to obtain definitive state.
2431 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2432 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2433 hammer2_chain_lock(chain, how_maybe);
2434 } else {
2435 hammer2_chain_lock(chain, how);
2437 KKASSERT(chain->parent == parent);
2438 TIMER(17);
2441 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2443 * NOTE: Chain's key range is not relevant as there might be
2444 * one-offs within the range that are not deleted.
2446 * NOTE: Lookups can race delete-duplicate because
2447 * delete-duplicate does not lock the parent's core
2448 * (they just use the spinlock on the core).
2450 if (chain->flags & HAMMER2_CHAIN_DELETED) {
2451 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2452 chain->bref.data_off, chain->bref.type,
2453 chain->bref.key);
2454 hammer2_chain_unlock(chain);
2455 hammer2_chain_drop(chain);
2456 key_beg = *key_nextp;
2457 if (key_beg == 0 || key_beg > key_end)
2458 return(NULL);
2459 goto again;
2461 TIMER(18);
2464 * If the chain element is an indirect block it becomes the new
2465 * parent and we loop on it. We must maintain our top-down locks
2466 * to prevent the flusher from interfering (i.e. doing a
2467 * delete-duplicate and leaving us recursing down a deleted chain).
2469 * The parent always has to be locked with at least RESOLVE_MAYBE
2470 * so we can access its data. It might need a fixup if the caller
2471 * passed incompatible flags. Be careful not to cause a deadlock
2472 * as a data-load requires an exclusive lock.
2474 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2475 * range is within the requested key range we return the indirect
2476 * block and do NOT loop. This is usually only used to acquire
2477 * freemap nodes.
2479 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2480 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2481 hammer2_chain_unlock(parent);
2482 hammer2_chain_drop(parent);
2483 *parentp = parent = chain;
2484 goto again;
2486 TIMER(19);
2487 done:
2489 * All done, return the chain.
2491 * If the caller does not want a locked chain, replace the lock with
2492 * a ref. Perhaps this can eventually be optimized to not obtain the
2493 * lock in the first place for situations where the data does not
2494 * need to be resolved.
2496 if (chain) {
2497 if (flags & HAMMER2_LOOKUP_NOLOCK)
2498 hammer2_chain_unlock(chain);
2500 TIMER(20);
2502 return (chain);
2506 * After having issued a lookup we can iterate all matching keys.
2508 * If chain is non-NULL we continue the iteration from just after it's index.
2510 * If chain is NULL we assume the parent was exhausted and continue the
2511 * iteration at the next parent.
2513 * If a fatal error occurs (typically an I/O error), a dummy chain is
2514 * returned with chain->error and error-identifying information set. This
2515 * chain will assert if you try to do anything fancy with it.
2517 * XXX Depending on where the error occurs we should allow continued iteration.
2519 * parent must be locked on entry and remains locked throughout. chain's
2520 * lock status must match flags. Chain is always at least referenced.
2522 * WARNING! The MATCHIND flag does not apply to this function.
2524 hammer2_chain_t *
2525 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2526 hammer2_key_t *key_nextp,
2527 hammer2_key_t key_beg, hammer2_key_t key_end,
2528 int *cache_indexp, int flags)
2530 hammer2_chain_t *parent;
2531 int how_maybe;
2534 * Calculate locking flags for upward recursion.
2536 how_maybe = HAMMER2_RESOLVE_MAYBE;
2537 if (flags & HAMMER2_LOOKUP_SHARED)
2538 how_maybe |= HAMMER2_RESOLVE_SHARED;
2540 parent = *parentp;
2543 * Calculate the next index and recalculate the parent if necessary.
2545 if (chain) {
2546 key_beg = chain->bref.key +
2547 ((hammer2_key_t)1 << chain->bref.keybits);
2548 if ((flags & (HAMMER2_LOOKUP_NOLOCK |
2549 HAMMER2_LOOKUP_NOUNLOCK)) == 0) {
2550 hammer2_chain_unlock(chain);
2552 hammer2_chain_drop(chain);
2555 * chain invalid past this point, but we can still do a
2556 * pointer comparison w/parent.
2558 * Any scan where the lookup returned degenerate data embedded
2559 * in the inode has an invalid index and must terminate.
2561 if (chain == parent)
2562 return(NULL);
2563 if (key_beg == 0 || key_beg > key_end)
2564 return(NULL);
2565 chain = NULL;
2566 } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2567 parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2569 * We reached the end of the iteration.
2571 return (NULL);
2572 } else {
2574 * Continue iteration with next parent unless the current
2575 * parent covers the range.
2577 * (This also handles the case of a deleted, empty indirect
2578 * node).
2580 key_beg = parent->bref.key +
2581 ((hammer2_key_t)1 << parent->bref.keybits);
2582 if (key_beg == 0 || key_beg > key_end)
2583 return (NULL);
2584 parent = hammer2_chain_getparent(parentp, how_maybe);
2588 * And execute
2590 return (hammer2_chain_lookup(parentp, key_nextp,
2591 key_beg, key_end,
2592 cache_indexp, flags));
2596 * The raw scan function is similar to lookup/next but does not seek to a key.
2597 * Blockrefs are iterated via first_bref = (parent, NULL) and
2598 * next_chain = (parent, bref).
2600 * The passed-in parent must be locked and its data resolved. The function
2601 * nominally returns a locked and referenced *chainp != NULL for chains
2602 * the caller might need to recurse on (and will dipose of any *chainp passed
2603 * in). The caller must check the chain->bref.type either way.
2605 * *chainp is not set for leaf elements.
2607 * This function takes a pointer to a stack-based bref structure whos
2608 * contents is updated for each iteration. The same pointer is returned,
2609 * or NULL when the iteration is complete. *firstp must be set to 1 for
2610 * the first ieration. This function will set it to 0.
2612 hammer2_blockref_t *
2613 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
2614 hammer2_blockref_t *bref, int *firstp,
2615 int *cache_indexp, int flags)
2617 hammer2_dev_t *hmp;
2618 hammer2_blockref_t *base;
2619 hammer2_blockref_t *bref_ptr;
2620 hammer2_key_t key;
2621 hammer2_key_t next_key;
2622 hammer2_chain_t *chain = NULL;
2623 int count = 0;
2624 int how_always = HAMMER2_RESOLVE_ALWAYS;
2625 int how_maybe = HAMMER2_RESOLVE_MAYBE;
2626 int how;
2627 int generation;
2628 int maxloops = 300000;
2630 hmp = parent->hmp;
2633 * Scan flags borrowed from lookup.
2635 if (flags & HAMMER2_LOOKUP_ALWAYS) {
2636 how_maybe = how_always;
2637 how = HAMMER2_RESOLVE_ALWAYS;
2638 } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2639 how = HAMMER2_RESOLVE_NEVER;
2640 } else {
2641 how = HAMMER2_RESOLVE_MAYBE;
2643 if (flags & HAMMER2_LOOKUP_SHARED) {
2644 how_maybe |= HAMMER2_RESOLVE_SHARED;
2645 how_always |= HAMMER2_RESOLVE_SHARED;
2646 how |= HAMMER2_RESOLVE_SHARED;
2650 * Calculate key to locate first/next element, unlocking the previous
2651 * element as we go. Be careful, the key calculation can overflow.
2653 * (also reset bref to NULL)
2655 if (*firstp) {
2656 key = 0;
2657 *firstp = 0;
2658 } else {
2659 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
2660 if ((chain = *chainp) != NULL) {
2661 *chainp = NULL;
2662 hammer2_chain_unlock(chain);
2663 hammer2_chain_drop(chain);
2664 chain = NULL;
2666 if (key == 0) {
2667 bref = NULL;
2668 goto done;
2672 again:
2673 KKASSERT(parent->error == 0); /* XXX case not handled yet */
2674 if (--maxloops == 0)
2675 panic("hammer2_chain_scan: maxloops");
2677 * Locate the blockref array. Currently we do a fully associative
2678 * search through the array.
2680 switch(parent->bref.type) {
2681 case HAMMER2_BREF_TYPE_INODE:
2683 * An inode with embedded data has no sub-chains.
2685 * WARNING! Bulk scan code may pass a static chain marked
2686 * as BREF_TYPE_INODE with a copy of the volume
2687 * root blockset to snapshot the volume.
2689 if (parent->data->ipdata.meta.op_flags &
2690 HAMMER2_OPFLAG_DIRECTDATA) {
2691 bref = NULL;
2692 goto done;
2694 base = &parent->data->ipdata.u.blockset.blockref[0];
2695 count = HAMMER2_SET_COUNT;
2696 break;
2697 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2698 case HAMMER2_BREF_TYPE_INDIRECT:
2700 * Optimize indirect blocks in the INITIAL state to avoid
2701 * I/O.
2703 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2704 base = NULL;
2705 } else {
2706 if (parent->data == NULL)
2707 panic("parent->data is NULL");
2708 base = &parent->data->npdata[0];
2710 count = parent->bytes / sizeof(hammer2_blockref_t);
2711 break;
2712 case HAMMER2_BREF_TYPE_VOLUME:
2713 base = &parent->data->voldata.sroot_blockset.blockref[0];
2714 count = HAMMER2_SET_COUNT;
2715 break;
2716 case HAMMER2_BREF_TYPE_FREEMAP:
2717 base = &parent->data->blkset.blockref[0];
2718 count = HAMMER2_SET_COUNT;
2719 break;
2720 default:
2721 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2722 parent->bref.type);
2723 base = NULL; /* safety */
2724 count = 0; /* safety */
2728 * Merged scan to find next candidate.
2730 * hammer2_base_*() functions require the parent->core.live_* fields
2731 * to be synchronized.
2733 * We need to hold the spinlock to access the block array and RB tree
2734 * and to interlock chain creation.
2736 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2737 hammer2_chain_countbrefs(parent, base, count);
2739 next_key = 0;
2740 bref_ptr = NULL;
2741 hammer2_spin_ex(&parent->core.spin);
2742 chain = hammer2_combined_find(parent, base, count,
2743 cache_indexp, &next_key,
2744 key, HAMMER2_KEY_MAX,
2745 &bref_ptr);
2746 generation = parent->core.generation;
2749 * Exhausted parent chain, we're done.
2751 if (bref_ptr == NULL) {
2752 hammer2_spin_unex(&parent->core.spin);
2753 KKASSERT(chain == NULL);
2754 bref = NULL;
2755 goto done;
2759 * Copy into the supplied stack-based blockref.
2761 *bref = *bref_ptr;
2764 * Selected from blockref or in-memory chain.
2766 if (chain == NULL) {
2767 switch(bref->type) {
2768 case HAMMER2_BREF_TYPE_INODE:
2769 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2770 case HAMMER2_BREF_TYPE_INDIRECT:
2771 case HAMMER2_BREF_TYPE_VOLUME:
2772 case HAMMER2_BREF_TYPE_FREEMAP:
2774 * Recursion, always get the chain
2776 hammer2_spin_unex(&parent->core.spin);
2777 chain = hammer2_chain_get(parent, generation, bref);
2778 if (chain == NULL) {
2779 kprintf("retry scan parent %p keys %016jx\n",
2780 parent, key);
2781 goto again;
2783 if (bcmp(bref, bref_ptr, sizeof(*bref))) {
2784 hammer2_chain_drop(chain);
2785 chain = NULL;
2786 goto again;
2788 break;
2789 default:
2791 * No recursion, do not waste time instantiating
2792 * a chain, just iterate using the bref.
2794 hammer2_spin_unex(&parent->core.spin);
2795 break;
2797 } else {
2799 * Recursion or not we need the chain in order to supply
2800 * the bref.
2802 hammer2_chain_ref(chain);
2803 hammer2_spin_unex(&parent->core.spin);
2807 * chain is referenced but not locked. We must lock the chain
2808 * to obtain definitive state.
2810 if (chain)
2811 hammer2_chain_lock(chain, how);
2814 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2816 * NOTE: chain's key range is not relevant as there might be
2817 * one-offs within the range that are not deleted.
2819 * NOTE: XXX this could create problems with scans used in
2820 * situations other than mount-time recovery.
2822 * NOTE: Lookups can race delete-duplicate because
2823 * delete-duplicate does not lock the parent's core
2824 * (they just use the spinlock on the core).
2826 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
2827 hammer2_chain_unlock(chain);
2828 hammer2_chain_drop(chain);
2829 chain = NULL;
2831 key = next_key;
2832 if (key == 0) {
2833 bref = NULL;
2834 goto done;
2836 goto again;
2839 done:
2841 * All done, return the bref or NULL, supply chain if necessary.
2843 if (chain)
2844 *chainp = chain;
2845 return (bref);
2849 * Create and return a new hammer2 system memory structure of the specified
2850 * key, type and size and insert it under (*parentp). This is a full
2851 * insertion, based on the supplied key/keybits, and may involve creating
2852 * indirect blocks and moving other chains around via delete/duplicate.
2854 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2855 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2856 * FULL. This typically means that the caller is creating the chain after
2857 * doing a hammer2_chain_lookup().
2859 * (*parentp) must be exclusive locked and may be replaced on return
2860 * depending on how much work the function had to do.
2862 * (*parentp) must not be errored or this function will assert.
2864 * (*chainp) usually starts out NULL and returns the newly created chain,
2865 * but if the caller desires the caller may allocate a disconnected chain
2866 * and pass it in instead.
2868 * This function should NOT be used to insert INDIRECT blocks. It is
2869 * typically used to create/insert inodes and data blocks.
2871 * Caller must pass-in an exclusively locked parent the new chain is to
2872 * be inserted under, and optionally pass-in a disconnected, exclusively
2873 * locked chain to insert (else we create a new chain). The function will
2874 * adjust (*parentp) as necessary, create or connect the chain, and
2875 * return an exclusively locked chain in *chainp.
2877 * When creating a PFSROOT inode under the super-root, pmp is typically NULL
2878 * and will be reassigned.
2881 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
2882 hammer2_pfs_t *pmp, int methods,
2883 hammer2_key_t key, int keybits, int type, size_t bytes,
2884 hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
2886 hammer2_dev_t *hmp;
2887 hammer2_chain_t *chain;
2888 hammer2_chain_t *parent;
2889 hammer2_blockref_t *base;
2890 hammer2_blockref_t dummy;
2891 int allocated = 0;
2892 int error = 0;
2893 int count;
2894 int maxloops = 300000;
2897 * Topology may be crossing a PFS boundary.
2899 parent = *parentp;
2900 KKASSERT(hammer2_mtx_owned(&parent->lock));
2901 KKASSERT(parent->error == 0);
2902 hmp = parent->hmp;
2903 chain = *chainp;
2905 if (chain == NULL) {
2907 * First allocate media space and construct the dummy bref,
2908 * then allocate the in-memory chain structure. Set the
2909 * INITIAL flag for fresh chains which do not have embedded
2910 * data.
2912 * XXX for now set the check mode of the child based on
2913 * the parent or, if the parent is an inode, the
2914 * specification in the inode.
2916 bzero(&dummy, sizeof(dummy));
2917 dummy.type = type;
2918 dummy.key = key;
2919 dummy.keybits = keybits;
2920 dummy.data_off = hammer2_getradix(bytes);
2923 * Inherit methods from parent by default. Primarily used
2924 * for BREF_TYPE_DATA. Non-data types *must* be set to
2925 * a non-NONE check algorithm.
2927 if (methods == -1)
2928 dummy.methods = parent->bref.methods;
2929 else
2930 dummy.methods = (uint8_t)methods;
2932 if (type != HAMMER2_BREF_TYPE_DATA &&
2933 HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
2934 dummy.methods |=
2935 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
2938 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
2941 * Lock the chain manually, chain_lock will load the chain
2942 * which we do NOT want to do. (note: chain->refs is set
2943 * to 1 by chain_alloc() for us, but lockcnt is not).
2945 chain->lockcnt = 1;
2946 hammer2_mtx_ex(&chain->lock);
2947 allocated = 1;
2948 ++curthread->td_tracker;
2951 * Set INITIAL to optimize I/O. The flag will generally be
2952 * processed when we call hammer2_chain_modify().
2954 * Recalculate bytes to reflect the actual media block
2955 * allocation. Handle special case radix 0 == 0 bytes.
2957 bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2958 if (bytes)
2959 bytes = (hammer2_off_t)1 << bytes;
2960 chain->bytes = bytes;
2962 switch(type) {
2963 case HAMMER2_BREF_TYPE_VOLUME:
2964 case HAMMER2_BREF_TYPE_FREEMAP:
2965 panic("hammer2_chain_create: called with volume type");
2966 break;
2967 case HAMMER2_BREF_TYPE_INDIRECT:
2968 panic("hammer2_chain_create: cannot be used to"
2969 "create indirect block");
2970 break;
2971 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2972 panic("hammer2_chain_create: cannot be used to"
2973 "create freemap root or node");
2974 break;
2975 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2976 KKASSERT(bytes == sizeof(chain->data->bmdata));
2977 /* fall through */
2978 case HAMMER2_BREF_TYPE_DIRENT:
2979 case HAMMER2_BREF_TYPE_INODE:
2980 case HAMMER2_BREF_TYPE_DATA:
2981 default:
2983 * leave chain->data NULL, set INITIAL
2985 KKASSERT(chain->data == NULL);
2986 atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2987 break;
2989 } else {
2991 * We are reattaching a previously deleted chain, possibly
2992 * under a new parent and possibly with a new key/keybits.
2993 * The chain does not have to be in a modified state. The
2994 * UPDATE flag will be set later on in this routine.
2996 * Do NOT mess with the current state of the INITIAL flag.
2998 chain->bref.key = key;
2999 chain->bref.keybits = keybits;
3000 if (chain->flags & HAMMER2_CHAIN_DELETED)
3001 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3002 KKASSERT(chain->parent == NULL);
3004 if (flags & HAMMER2_INSERT_PFSROOT)
3005 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3006 else
3007 chain->bref.flags &= ~HAMMER2_BREF_FLAG_PFSROOT;
3010 * Calculate how many entries we have in the blockref array and
3011 * determine if an indirect block is required.
3013 again:
3014 if (--maxloops == 0)
3015 panic("hammer2_chain_create: maxloops");
3017 switch(parent->bref.type) {
3018 case HAMMER2_BREF_TYPE_INODE:
3019 if ((parent->data->ipdata.meta.op_flags &
3020 HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3021 kprintf("hammer2: parent set for direct-data! "
3022 "pkey=%016jx ckey=%016jx\n",
3023 parent->bref.key,
3024 chain->bref.key);
3026 KKASSERT((parent->data->ipdata.meta.op_flags &
3027 HAMMER2_OPFLAG_DIRECTDATA) == 0);
3028 KKASSERT(parent->data != NULL);
3029 base = &parent->data->ipdata.u.blockset.blockref[0];
3030 count = HAMMER2_SET_COUNT;
3031 break;
3032 case HAMMER2_BREF_TYPE_INDIRECT:
3033 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3034 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3035 base = NULL;
3036 else
3037 base = &parent->data->npdata[0];
3038 count = parent->bytes / sizeof(hammer2_blockref_t);
3039 break;
3040 case HAMMER2_BREF_TYPE_VOLUME:
3041 KKASSERT(parent->data != NULL);
3042 base = &parent->data->voldata.sroot_blockset.blockref[0];
3043 count = HAMMER2_SET_COUNT;
3044 break;
3045 case HAMMER2_BREF_TYPE_FREEMAP:
3046 KKASSERT(parent->data != NULL);
3047 base = &parent->data->blkset.blockref[0];
3048 count = HAMMER2_SET_COUNT;
3049 break;
3050 default:
3051 panic("hammer2_chain_create: unrecognized blockref type: %d",
3052 parent->bref.type);
3053 base = NULL;
3054 count = 0;
3055 break;
3059 * Make sure we've counted the brefs
3061 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3062 hammer2_chain_countbrefs(parent, base, count);
3064 KASSERT(parent->core.live_count >= 0 &&
3065 parent->core.live_count <= count,
3066 ("bad live_count %d/%d (%02x, %d)",
3067 parent->core.live_count, count,
3068 parent->bref.type, parent->bytes));
3071 * If no free blockref could be found we must create an indirect
3072 * block and move a number of blockrefs into it. With the parent
3073 * locked we can safely lock each child in order to delete+duplicate
3074 * it without causing a deadlock.
3076 * This may return the new indirect block or the old parent depending
3077 * on where the key falls. NULL is returned on error.
3079 if (parent->core.live_count == count) {
3080 hammer2_chain_t *nparent;
3082 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3083 mtid, type, &error);
3084 if (nparent == NULL) {
3085 if (allocated)
3086 hammer2_chain_drop(chain);
3087 chain = NULL;
3088 goto done;
3090 if (parent != nparent) {
3091 hammer2_chain_unlock(parent);
3092 hammer2_chain_drop(parent);
3093 parent = *parentp = nparent;
3095 goto again;
3098 if (chain->flags & HAMMER2_CHAIN_DELETED)
3099 kprintf("Inserting deleted chain @%016jx\n",
3100 chain->bref.key);
3103 * Link the chain into its parent.
3105 if (chain->parent != NULL)
3106 panic("hammer2: hammer2_chain_create: chain already connected");
3107 KKASSERT(chain->parent == NULL);
3108 hammer2_chain_insert(parent, chain,
3109 HAMMER2_CHAIN_INSERT_SPIN |
3110 HAMMER2_CHAIN_INSERT_LIVE,
3113 if (allocated) {
3115 * Mark the newly created chain modified. This will cause
3116 * UPDATE to be set and process the INITIAL flag.
3118 * Device buffers are not instantiated for DATA elements
3119 * as these are handled by logical buffers.
3121 * Indirect and freemap node indirect blocks are handled
3122 * by hammer2_chain_create_indirect() and not by this
3123 * function.
3125 * Data for all other bref types is expected to be
3126 * instantiated (INODE, LEAF).
3128 switch(chain->bref.type) {
3129 case HAMMER2_BREF_TYPE_DATA:
3130 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3131 case HAMMER2_BREF_TYPE_DIRENT:
3132 case HAMMER2_BREF_TYPE_INODE:
3133 hammer2_chain_modify(chain, mtid, dedup_off,
3134 HAMMER2_MODIFY_OPTDATA);
3135 break;
3136 default:
3138 * Remaining types are not supported by this function.
3139 * In particular, INDIRECT and LEAF_NODE types are
3140 * handled by create_indirect().
3142 panic("hammer2_chain_create: bad type: %d",
3143 chain->bref.type);
3144 /* NOT REACHED */
3145 break;
3147 } else {
3149 * When reconnecting a chain we must set UPDATE and
3150 * setflush so the flush recognizes that it must update
3151 * the bref in the parent.
3153 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3154 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3158 * We must setflush(parent) to ensure that it recurses through to
3159 * chain. setflush(chain) might not work because ONFLUSH is possibly
3160 * already set in the chain (so it won't recurse up to set it in the
3161 * parent).
3163 hammer2_chain_setflush(parent);
3165 done:
3166 *chainp = chain;
3168 return (error);
3172 * Move the chain from its old parent to a new parent. The chain must have
3173 * already been deleted or already disconnected (or never associated) with
3174 * a parent. The chain is reassociated with the new parent and the deleted
3175 * flag will be cleared (no longer deleted). The chain's modification state
3176 * is not altered.
3178 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3179 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3180 * FULL. This typically means that the caller is creating the chain after
3181 * doing a hammer2_chain_lookup().
3183 * A non-NULL bref is typically passed when key and keybits must be overridden.
3184 * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
3185 * from a passed-in bref and uses the old chain's bref for everything else.
3187 * Neither (parent) or (chain) can be errored.
3189 * If (parent) is non-NULL then the chain is inserted under the parent.
3191 * If (parent) is NULL then the newly duplicated chain is not inserted
3192 * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3193 * passing into hammer2_chain_create() after this function returns).
3195 * WARNING! This function calls create which means it can insert indirect
3196 * blocks. This can cause other unrelated chains in the parent to
3197 * be moved to a newly inserted indirect block in addition to the
3198 * specific chain.
3200 void
3201 hammer2_chain_rename(hammer2_blockref_t *bref,
3202 hammer2_chain_t **parentp, hammer2_chain_t *chain,
3203 hammer2_tid_t mtid, int flags)
3205 hammer2_dev_t *hmp;
3206 hammer2_chain_t *parent;
3207 size_t bytes;
3210 * WARNING! We should never resolve DATA to device buffers
3211 * (XXX allow it if the caller did?), and since
3212 * we currently do not have the logical buffer cache
3213 * buffer in-hand to fix its cached physical offset
3214 * we also force the modify code to not COW it. XXX
3216 hmp = chain->hmp;
3217 KKASSERT(chain->parent == NULL);
3218 KKASSERT(chain->error == 0);
3221 * Now create a duplicate of the chain structure, associating
3222 * it with the same core, making it the same size, pointing it
3223 * to the same bref (the same media block).
3225 * NOTE: Handle special radix == 0 case (means 0 bytes).
3227 if (bref == NULL)
3228 bref = &chain->bref;
3229 bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3230 if (bytes)
3231 bytes = (hammer2_off_t)1 << bytes;
3234 * If parent is not NULL the duplicated chain will be entered under
3235 * the parent and the UPDATE bit set to tell flush to update
3236 * the blockref.
3238 * We must setflush(parent) to ensure that it recurses through to
3239 * chain. setflush(chain) might not work because ONFLUSH is possibly
3240 * already set in the chain (so it won't recurse up to set it in the
3241 * parent).
3243 * Having both chains locked is extremely important for atomicy.
3245 if (parentp && (parent = *parentp) != NULL) {
3246 KKASSERT(hammer2_mtx_owned(&parent->lock));
3247 KKASSERT(parent->refs > 0);
3248 KKASSERT(parent->error == 0);
3250 hammer2_chain_create(parentp, &chain,
3251 chain->pmp, HAMMER2_METH_DEFAULT,
3252 bref->key, bref->keybits, bref->type,
3253 chain->bytes, mtid, 0, flags);
3254 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3255 hammer2_chain_setflush(*parentp);
3260 * Helper function for deleting chains.
3262 * The chain is removed from the live view (the RBTREE) as well as the parent's
3263 * blockmap. Both chain and its parent must be locked.
3265 * parent may not be errored. chain can be errored.
3267 static void
3268 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3269 hammer2_tid_t mtid, int flags)
3271 hammer2_dev_t *hmp;
3273 KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3274 HAMMER2_CHAIN_FICTITIOUS)) == 0);
3275 KKASSERT(chain->parent == parent);
3276 hmp = chain->hmp;
3278 if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3280 * Chain is blockmapped, so there must be a parent.
3281 * Atomically remove the chain from the parent and remove
3282 * the blockmap entry. The parent must be set modified
3283 * to remove the blockmap entry.
3285 hammer2_blockref_t *base;
3286 int count;
3288 KKASSERT(parent != NULL);
3289 KKASSERT(parent->error == 0);
3290 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3291 hammer2_chain_modify(parent, mtid, 0, HAMMER2_MODIFY_OPTDATA);
3294 * Calculate blockmap pointer
3296 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3297 hammer2_spin_ex(&parent->core.spin);
3299 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3300 atomic_add_int(&parent->core.live_count, -1);
3301 ++parent->core.generation;
3302 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3303 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3304 --parent->core.chain_count;
3305 chain->parent = NULL;
3307 switch(parent->bref.type) {
3308 case HAMMER2_BREF_TYPE_INODE:
3310 * Access the inode's block array. However, there
3311 * is no block array if the inode is flagged
3312 * DIRECTDATA.
3314 if (parent->data &&
3315 (parent->data->ipdata.meta.op_flags &
3316 HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3317 base =
3318 &parent->data->ipdata.u.blockset.blockref[0];
3319 } else {
3320 base = NULL;
3322 count = HAMMER2_SET_COUNT;
3323 break;
3324 case HAMMER2_BREF_TYPE_INDIRECT:
3325 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3326 if (parent->data)
3327 base = &parent->data->npdata[0];
3328 else
3329 base = NULL;
3330 count = parent->bytes / sizeof(hammer2_blockref_t);
3331 break;
3332 case HAMMER2_BREF_TYPE_VOLUME:
3333 base = &parent->data->voldata.
3334 sroot_blockset.blockref[0];
3335 count = HAMMER2_SET_COUNT;
3336 break;
3337 case HAMMER2_BREF_TYPE_FREEMAP:
3338 base = &parent->data->blkset.blockref[0];
3339 count = HAMMER2_SET_COUNT;
3340 break;
3341 default:
3342 base = NULL;
3343 count = 0;
3344 panic("hammer2_flush_pass2: "
3345 "unrecognized blockref type: %d",
3346 parent->bref.type);
3350 * delete blockmapped chain from its parent.
3352 * The parent is not affected by any statistics in chain
3353 * which are pending synchronization. That is, there is
3354 * nothing to undo in the parent since they have not yet
3355 * been incorporated into the parent.
3357 * The parent is affected by statistics stored in inodes.
3358 * Those have already been synchronized, so they must be
3359 * undone. XXX split update possible w/delete in middle?
3361 if (base) {
3362 int cache_index = -1;
3363 hammer2_base_delete(parent, base, count,
3364 &cache_index, chain);
3366 hammer2_spin_unex(&parent->core.spin);
3367 } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3369 * Chain is not blockmapped but a parent is present.
3370 * Atomically remove the chain from the parent. There is
3371 * no blockmap entry to remove.
3373 * Because chain was associated with a parent but not
3374 * synchronized, the chain's *_count_up fields contain
3375 * inode adjustment statistics which must be undone.
3377 hammer2_spin_ex(&parent->core.spin);
3378 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3379 atomic_add_int(&parent->core.live_count, -1);
3380 ++parent->core.generation;
3381 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3382 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3383 --parent->core.chain_count;
3384 chain->parent = NULL;
3385 hammer2_spin_unex(&parent->core.spin);
3386 } else {
3388 * Chain is not blockmapped and has no parent. This
3389 * is a degenerate case.
3391 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3396 * Create an indirect block that covers one or more of the elements in the
3397 * current parent. Either returns the existing parent with no locking or
3398 * ref changes or returns the new indirect block locked and referenced
3399 * and leaving the original parent lock/ref intact as well.
3401 * If an error occurs, NULL is returned and *errorp is set to the error.
3403 * The returned chain depends on where the specified key falls.
3405 * The key/keybits for the indirect mode only needs to follow three rules:
3407 * (1) That all elements underneath it fit within its key space and
3409 * (2) That all elements outside it are outside its key space.
3411 * (3) When creating the new indirect block any elements in the current
3412 * parent that fit within the new indirect block's keyspace must be
3413 * moved into the new indirect block.
3415 * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3416 * keyspace the the current parent, but lookup/iteration rules will
3417 * ensure (and must ensure) that rule (2) for all parents leading up
3418 * to the nearest inode or the root volume header is adhered to. This
3419 * is accomplished by always recursing through matching keyspaces in
3420 * the hammer2_chain_lookup() and hammer2_chain_next() API.
3422 * The current implementation calculates the current worst-case keyspace by
3423 * iterating the current parent and then divides it into two halves, choosing
3424 * whichever half has the most elements (not necessarily the half containing
3425 * the requested key).
3427 * We can also opt to use the half with the least number of elements. This
3428 * causes lower-numbered keys (aka logical file offsets) to recurse through
3429 * fewer indirect blocks and higher-numbered keys to recurse through more.
3430 * This also has the risk of not moving enough elements to the new indirect
3431 * block and being forced to create several indirect blocks before the element
3432 * can be inserted.
3434 * Must be called with an exclusively locked parent.
3436 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3437 hammer2_key_t *keyp, int keybits,
3438 hammer2_blockref_t *base, int count);
3439 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3440 hammer2_key_t *keyp, int keybits,
3441 hammer2_blockref_t *base, int count,
3442 int ncount);
3443 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3444 hammer2_key_t *keyp, int keybits,
3445 hammer2_blockref_t *base, int count,
3446 int ncount);
3447 static
3448 hammer2_chain_t *
3449 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3450 hammer2_key_t create_key, int create_bits,
3451 hammer2_tid_t mtid, int for_type, int *errorp)
3453 hammer2_dev_t *hmp;
3454 hammer2_blockref_t *base;
3455 hammer2_blockref_t *bref;
3456 hammer2_blockref_t bcopy;
3457 hammer2_chain_t *chain;
3458 hammer2_chain_t *ichain;
3459 hammer2_chain_t dummy;
3460 hammer2_key_t key = create_key;
3461 hammer2_key_t key_beg;
3462 hammer2_key_t key_end;
3463 hammer2_key_t key_next;
3464 int keybits = create_bits;
3465 int count;
3466 int ncount;
3467 int nbytes;
3468 int cache_index;
3469 int loops;
3470 int reason;
3471 int generation;
3472 int maxloops = 300000;
3475 * Calculate the base blockref pointer or NULL if the chain
3476 * is known to be empty. We need to calculate the array count
3477 * for RB lookups either way.
3479 hmp = parent->hmp;
3480 *errorp = 0;
3481 KKASSERT(hammer2_mtx_owned(&parent->lock));
3483 /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3484 base = hammer2_chain_base_and_count(parent, &count);
3487 * dummy used in later chain allocation (no longer used for lookups).
3489 bzero(&dummy, sizeof(dummy));
3492 * How big should our new indirect block be? It has to be at least
3493 * as large as its parent for splits to work properly.
3495 * The freemap uses a specific indirect block size. The number of
3496 * levels are built dynamically and ultimately depend on the size
3497 * volume. Because freemap blocks are taken from the reserved areas
3498 * of the volume our goal is efficiency (fewer levels) and not so
3499 * much to save disk space.
3501 * The first indirect block level for a directory usually uses
3502 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries). Due to
3503 * the hash mechanism, this typically gives us a nominal
3504 * 32 * 4 entries with one level of indirection.
3506 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
3507 * indirect blocks. The initial 4 entries in the inode gives us
3508 * 256KB. Up to 4 indirect blocks gives us 32MB. Three levels
3509 * of indirection gives us 137GB, and so forth. H2 can support
3510 * huge file sizes but they are not typical, so we try to stick
3511 * with compactness and do not use a larger indirect block size.
3513 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
3514 * due to the way indirect blocks are created this usually winds
3515 * up being extremely inefficient for small files. Even though
3516 * 16KB requires more levels of indirection for very large files,
3517 * the 16KB records can be ganged together into 64KB DIOs.
3519 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3520 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3521 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
3522 } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
3523 if (parent->data->ipdata.meta.type ==
3524 HAMMER2_OBJTYPE_DIRECTORY)
3525 nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
3526 else
3527 nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
3529 } else {
3530 nbytes = HAMMER2_IND_BYTES_NOM;
3532 if (nbytes < count * sizeof(hammer2_blockref_t)) {
3533 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
3534 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
3535 nbytes = count * sizeof(hammer2_blockref_t);
3537 ncount = nbytes / sizeof(hammer2_blockref_t);
3540 * When creating an indirect block for a freemap node or leaf
3541 * the key/keybits must be fitted to static radix levels because
3542 * particular radix levels use particular reserved blocks in the
3543 * related zone.
3545 * This routine calculates the key/radix of the indirect block
3546 * we need to create, and whether it is on the high-side or the
3547 * low-side.
3549 switch(for_type) {
3550 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3551 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3552 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3553 base, count);
3554 break;
3555 case HAMMER2_BREF_TYPE_DATA:
3556 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
3557 base, count, ncount);
3558 break;
3559 case HAMMER2_BREF_TYPE_DIRENT:
3560 case HAMMER2_BREF_TYPE_INODE:
3561 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
3562 base, count, ncount);
3563 break;
3564 default:
3565 panic("illegal indirect block for bref type %d", for_type);
3566 break;
3570 * Normalize the key for the radix being represented, keeping the
3571 * high bits and throwing away the low bits.
3573 key &= ~(((hammer2_key_t)1 << keybits) - 1);
3576 * Ok, create our new indirect block
3578 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3579 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3580 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3581 } else {
3582 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3584 dummy.bref.key = key;
3585 dummy.bref.keybits = keybits;
3586 dummy.bref.data_off = hammer2_getradix(nbytes);
3587 dummy.bref.methods =
3588 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
3589 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
3591 ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
3592 atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3593 hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3594 /* ichain has one ref at this point */
3597 * We have to mark it modified to allocate its block, but use
3598 * OPTDATA to allow it to remain in the INITIAL state. Otherwise
3599 * it won't be acted upon by the flush code.
3601 hammer2_chain_modify(ichain, mtid, 0, HAMMER2_MODIFY_OPTDATA);
3604 * Iterate the original parent and move the matching brefs into
3605 * the new indirect block.
3607 * XXX handle flushes.
3609 key_beg = 0;
3610 key_end = HAMMER2_KEY_MAX;
3611 key_next = 0; /* avoid gcc warnings */
3612 cache_index = 0;
3613 hammer2_spin_ex(&parent->core.spin);
3614 loops = 0;
3615 reason = 0;
3617 for (;;) {
3619 * Parent may have been modified, relocating its block array.
3620 * Reload the base pointer.
3622 base = hammer2_chain_base_and_count(parent, &count);
3624 if (++loops > 100000) {
3625 hammer2_spin_unex(&parent->core.spin);
3626 panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
3627 reason, parent, base, count, key_next);
3631 * NOTE: spinlock stays intact, returned chain (if not NULL)
3632 * is not referenced or locked which means that we
3633 * cannot safely check its flagged / deletion status
3634 * until we lock it.
3636 chain = hammer2_combined_find(parent, base, count,
3637 &cache_index, &key_next,
3638 key_beg, key_end,
3639 &bref);
3640 generation = parent->core.generation;
3641 if (bref == NULL)
3642 break;
3643 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3646 * Skip keys that are not within the key/radix of the new
3647 * indirect block. They stay in the parent.
3649 if ((~(((hammer2_key_t)1 << keybits) - 1) &
3650 (key ^ bref->key)) != 0) {
3651 goto next_key_spinlocked;
3655 * Load the new indirect block by acquiring the related
3656 * chains (potentially from media as it might not be
3657 * in-memory). Then move it to the new parent (ichain).
3659 * chain is referenced but not locked. We must lock the
3660 * chain to obtain definitive state.
3662 if (chain) {
3664 * Use chain already present in the RBTREE
3666 hammer2_chain_ref(chain);
3667 hammer2_spin_unex(&parent->core.spin);
3668 hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3669 } else {
3671 * Get chain for blockref element. _get returns NULL
3672 * on insertion race.
3674 bcopy = *bref;
3675 hammer2_spin_unex(&parent->core.spin);
3676 chain = hammer2_chain_get(parent, generation, &bcopy);
3677 if (chain == NULL) {
3678 reason = 1;
3679 hammer2_spin_ex(&parent->core.spin);
3680 continue;
3682 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
3683 kprintf("REASON 2\n");
3684 reason = 2;
3685 hammer2_chain_drop(chain);
3686 hammer2_spin_ex(&parent->core.spin);
3687 continue;
3689 hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3693 * This is always live so if the chain has been deleted
3694 * we raced someone and we have to retry.
3696 * NOTE: Lookups can race delete-duplicate because
3697 * delete-duplicate does not lock the parent's core
3698 * (they just use the spinlock on the core).
3700 * (note reversed logic for this one)
3702 if (chain->flags & HAMMER2_CHAIN_DELETED) {
3703 hammer2_chain_unlock(chain);
3704 hammer2_chain_drop(chain);
3705 goto next_key;
3709 * Shift the chain to the indirect block.
3711 * WARNING! No reason for us to load chain data, pass NOSTATS
3712 * to prevent delete/insert from trying to access
3713 * inode stats (and thus asserting if there is no
3714 * chain->data loaded).
3716 * WARNING! The (parent, chain) deletion may modify the parent
3717 * and invalidate the base pointer.
3719 hammer2_chain_delete(parent, chain, mtid, 0);
3720 hammer2_chain_rename(NULL, &ichain, chain, mtid, 0);
3721 hammer2_chain_unlock(chain);
3722 hammer2_chain_drop(chain);
3723 KKASSERT(parent->refs > 0);
3724 chain = NULL;
3725 base = NULL; /* safety */
3726 next_key:
3727 hammer2_spin_ex(&parent->core.spin);
3728 next_key_spinlocked:
3729 if (--maxloops == 0)
3730 panic("hammer2_chain_create_indirect: maxloops");
3731 reason = 4;
3732 if (key_next == 0 || key_next > key_end)
3733 break;
3734 key_beg = key_next;
3735 /* loop */
3737 hammer2_spin_unex(&parent->core.spin);
3740 * Insert the new indirect block into the parent now that we've
3741 * cleared out some entries in the parent. We calculated a good
3742 * insertion index in the loop above (ichain->index).
3744 * We don't have to set UPDATE here because we mark ichain
3745 * modified down below (so the normal modified -> flush -> set-moved
3746 * sequence applies).
3748 * The insertion shouldn't race as this is a completely new block
3749 * and the parent is locked.
3751 base = NULL; /* safety, parent modify may change address */
3752 KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3753 hammer2_chain_insert(parent, ichain,
3754 HAMMER2_CHAIN_INSERT_SPIN |
3755 HAMMER2_CHAIN_INSERT_LIVE,
3759 * Make sure flushes propogate after our manual insertion.
3761 hammer2_chain_setflush(ichain);
3762 hammer2_chain_setflush(parent);
3765 * Figure out what to return.
3767 if (~(((hammer2_key_t)1 << keybits) - 1) &
3768 (create_key ^ key)) {
3770 * Key being created is outside the key range,
3771 * return the original parent.
3773 hammer2_chain_unlock(ichain);
3774 hammer2_chain_drop(ichain);
3775 } else {
3777 * Otherwise its in the range, return the new parent.
3778 * (leave both the new and old parent locked).
3780 parent = ichain;
3783 return(parent);
3787 * Freemap indirect blocks
3789 * Calculate the keybits and highside/lowside of the freemap node the
3790 * caller is creating.
3792 * This routine will specify the next higher-level freemap key/radix
3793 * representing the lowest-ordered set. By doing so, eventually all
3794 * low-ordered sets will be moved one level down.
3796 * We have to be careful here because the freemap reserves a limited
3797 * number of blocks for a limited number of levels. So we can't just
3798 * push indiscriminately.
3801 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3802 int keybits, hammer2_blockref_t *base, int count)
3804 hammer2_chain_t *chain;
3805 hammer2_blockref_t *bref;
3806 hammer2_key_t key;
3807 hammer2_key_t key_beg;
3808 hammer2_key_t key_end;
3809 hammer2_key_t key_next;
3810 int cache_index;
3811 int locount;
3812 int hicount;
3813 int maxloops = 300000;
3815 key = *keyp;
3816 locount = 0;
3817 hicount = 0;
3818 keybits = 64;
3821 * Calculate the range of keys in the array being careful to skip
3822 * slots which are overridden with a deletion.
3824 key_beg = 0;
3825 key_end = HAMMER2_KEY_MAX;
3826 cache_index = 0;
3827 hammer2_spin_ex(&parent->core.spin);
3829 for (;;) {
3830 if (--maxloops == 0) {
3831 panic("indkey_freemap shit %p %p:%d\n",
3832 parent, base, count);
3834 chain = hammer2_combined_find(parent, base, count,
3835 &cache_index, &key_next,
3836 key_beg, key_end,
3837 &bref);
3840 * Exhausted search
3842 if (bref == NULL)
3843 break;
3846 * Skip deleted chains.
3848 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3849 if (key_next == 0 || key_next > key_end)
3850 break;
3851 key_beg = key_next;
3852 continue;
3856 * Use the full live (not deleted) element for the scan
3857 * iteration. HAMMER2 does not allow partial replacements.
3859 * XXX should be built into hammer2_combined_find().
3861 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3863 if (keybits > bref->keybits) {
3864 key = bref->key;
3865 keybits = bref->keybits;
3866 } else if (keybits == bref->keybits && bref->key < key) {
3867 key = bref->key;
3869 if (key_next == 0)
3870 break;
3871 key_beg = key_next;
3873 hammer2_spin_unex(&parent->core.spin);
3876 * Return the keybits for a higher-level FREEMAP_NODE covering
3877 * this node.
3879 switch(keybits) {
3880 case HAMMER2_FREEMAP_LEVEL0_RADIX:
3881 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3882 break;
3883 case HAMMER2_FREEMAP_LEVEL1_RADIX:
3884 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3885 break;
3886 case HAMMER2_FREEMAP_LEVEL2_RADIX:
3887 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3888 break;
3889 case HAMMER2_FREEMAP_LEVEL3_RADIX:
3890 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3891 break;
3892 case HAMMER2_FREEMAP_LEVEL4_RADIX:
3893 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
3894 break;
3895 case HAMMER2_FREEMAP_LEVEL5_RADIX:
3896 panic("hammer2_chain_indkey_freemap: level too high");
3897 break;
3898 default:
3899 panic("hammer2_chain_indkey_freemap: bad radix");
3900 break;
3902 *keyp = key;
3904 return (keybits);
3908 * File indirect blocks
3910 * Calculate the key/keybits for the indirect block to create by scanning
3911 * existing keys. The key being created is also passed in *keyp and can be
3912 * inside or outside the indirect block. Regardless, the indirect block
3913 * must hold at least two keys in order to guarantee sufficient space.
3915 * We use a modified version of the freemap's fixed radix tree, but taylored
3916 * for file data. Basically we configure an indirect block encompassing the
3917 * smallest key.
3919 static int
3920 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
3921 int keybits, hammer2_blockref_t *base, int count,
3922 int ncount)
3924 hammer2_chain_t *chain;
3925 hammer2_blockref_t *bref;
3926 hammer2_key_t key;
3927 hammer2_key_t key_beg;
3928 hammer2_key_t key_end;
3929 hammer2_key_t key_next;
3930 int nradix;
3931 int cache_index;
3932 int locount;
3933 int hicount;
3934 int maxloops = 300000;
3936 key = *keyp;
3937 locount = 0;
3938 hicount = 0;
3939 keybits = 64;
3942 * Calculate the range of keys in the array being careful to skip
3943 * slots which are overridden with a deletion.
3945 * Locate the smallest key.
3947 key_beg = 0;
3948 key_end = HAMMER2_KEY_MAX;
3949 cache_index = 0;
3950 hammer2_spin_ex(&parent->core.spin);
3952 for (;;) {
3953 if (--maxloops == 0) {
3954 panic("indkey_freemap shit %p %p:%d\n",
3955 parent, base, count);
3957 chain = hammer2_combined_find(parent, base, count,
3958 &cache_index, &key_next,
3959 key_beg, key_end,
3960 &bref);
3963 * Exhausted search
3965 if (bref == NULL)
3966 break;
3969 * Skip deleted chains.
3971 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3972 if (key_next == 0 || key_next > key_end)
3973 break;
3974 key_beg = key_next;
3975 continue;
3979 * Use the full live (not deleted) element for the scan
3980 * iteration. HAMMER2 does not allow partial replacements.
3982 * XXX should be built into hammer2_combined_find().
3984 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3986 if (keybits > bref->keybits) {
3987 key = bref->key;
3988 keybits = bref->keybits;
3989 } else if (keybits == bref->keybits && bref->key < key) {
3990 key = bref->key;
3992 if (key_next == 0)
3993 break;
3994 key_beg = key_next;
3996 hammer2_spin_unex(&parent->core.spin);
3999 * Calculate the static keybits for a higher-level indirect block
4000 * that contains the key.
4002 *keyp = key;
4004 switch(ncount) {
4005 case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4006 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4007 break;
4008 case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4009 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4010 break;
4011 case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4012 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4013 break;
4014 default:
4015 panic("bad ncount %d\n", ncount);
4016 nradix = 0;
4017 break;
4021 * The largest radix that can be returned for an indirect block is
4022 * 63 bits. (The largest practical indirect block radix is actually
4023 * 62 bits because the top-level inode or volume root contains four
4024 * entries, but allow 63 to be returned).
4026 if (nradix >= 64)
4027 nradix = 63;
4029 return keybits + nradix;
4032 #if 1
4035 * Directory indirect blocks.
4037 * Covers both the inode index (directory of inodes), and directory contents
4038 * (filenames hardlinked to inodes).
4040 * Because directory keys are hashed we generally try to cut the space in
4041 * half. We accomodate the inode index (which tends to have linearly
4042 * increasing inode numbers) by ensuring that the keyspace is at least large
4043 * enough to fill up the indirect block being created.
4045 static int
4046 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4047 int keybits, hammer2_blockref_t *base, int count,
4048 int ncount)
4050 hammer2_blockref_t *bref;
4051 hammer2_chain_t *chain;
4052 hammer2_key_t key_beg;
4053 hammer2_key_t key_end;
4054 hammer2_key_t key_next;
4055 hammer2_key_t key;
4056 int nkeybits;
4057 int locount;
4058 int hicount;
4059 int cache_index;
4060 int maxloops = 300000;
4063 * Shortcut if the parent is the inode. In this situation the
4064 * parent has 4+1 directory entries and we are creating an indirect
4065 * block capable of holding many more.
4067 if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4068 return 63;
4071 key = *keyp;
4072 locount = 0;
4073 hicount = 0;
4076 * Calculate the range of keys in the array being careful to skip
4077 * slots which are overridden with a deletion.
4079 key_beg = 0;
4080 key_end = HAMMER2_KEY_MAX;
4081 cache_index = 0;
4082 hammer2_spin_ex(&parent->core.spin);
4084 for (;;) {
4085 if (--maxloops == 0) {
4086 panic("indkey_freemap shit %p %p:%d\n",
4087 parent, base, count);
4089 chain = hammer2_combined_find(parent, base, count,
4090 &cache_index, &key_next,
4091 key_beg, key_end,
4092 &bref);
4095 * Exhausted search
4097 if (bref == NULL)
4098 break;
4101 * Deleted object
4103 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4104 if (key_next == 0 || key_next > key_end)
4105 break;
4106 key_beg = key_next;
4107 continue;
4111 * Use the full live (not deleted) element for the scan
4112 * iteration. HAMMER2 does not allow partial replacements.
4114 * XXX should be built into hammer2_combined_find().
4116 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4119 * Expand our calculated key range (key, keybits) to fit
4120 * the scanned key. nkeybits represents the full range
4121 * that we will later cut in half (two halves @ nkeybits - 1).
4123 nkeybits = keybits;
4124 if (nkeybits < bref->keybits) {
4125 if (bref->keybits > 64) {
4126 kprintf("bad bref chain %p bref %p\n",
4127 chain, bref);
4128 Debugger("fubar");
4130 nkeybits = bref->keybits;
4132 while (nkeybits < 64 &&
4133 (~(((hammer2_key_t)1 << nkeybits) - 1) &
4134 (key ^ bref->key)) != 0) {
4135 ++nkeybits;
4139 * If the new key range is larger we have to determine
4140 * which side of the new key range the existing keys fall
4141 * under by checking the high bit, then collapsing the
4142 * locount into the hicount or vise-versa.
4144 if (keybits != nkeybits) {
4145 if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4146 hicount += locount;
4147 locount = 0;
4148 } else {
4149 locount += hicount;
4150 hicount = 0;
4152 keybits = nkeybits;
4156 * The newly scanned key will be in the lower half or the
4157 * upper half of the (new) key range.
4159 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4160 ++hicount;
4161 else
4162 ++locount;
4164 if (key_next == 0)
4165 break;
4166 key_beg = key_next;
4168 hammer2_spin_unex(&parent->core.spin);
4169 bref = NULL; /* now invalid (safety) */
4172 * Adjust keybits to represent half of the full range calculated
4173 * above (radix 63 max) for our new indirect block.
4175 --keybits;
4178 * Expand keybits to hold at least ncount elements. ncount will be
4179 * a power of 2. This is to try to completely fill leaf nodes (at
4180 * least for keys which are not hashes).
4182 * We aren't counting 'in' or 'out', we are counting 'high side'
4183 * and 'low side' based on the bit at (1LL << keybits). We want
4184 * everything to be inside in these cases so shift it all to
4185 * the low or high side depending on the new high bit.
4187 while (((hammer2_key_t)1 << keybits) < ncount) {
4188 ++keybits;
4189 if (key & ((hammer2_key_t)1 << keybits)) {
4190 hicount += locount;
4191 locount = 0;
4192 } else {
4193 locount += hicount;
4194 hicount = 0;
4198 if (hicount > locount)
4199 key |= (hammer2_key_t)1 << keybits;
4200 else
4201 key &= ~(hammer2_key_t)1 << keybits;
4203 *keyp = key;
4205 return (keybits);
4208 #else
4211 * Directory indirect blocks.
4213 * Covers both the inode index (directory of inodes), and directory contents
4214 * (filenames hardlinked to inodes).
4216 * Because directory keys are hashed we generally try to cut the space in
4217 * half. We accomodate the inode index (which tends to have linearly
4218 * increasing inode numbers) by ensuring that the keyspace is at least large
4219 * enough to fill up the indirect block being created.
4221 static int
4222 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4223 int keybits, hammer2_blockref_t *base, int count,
4224 int ncount)
4226 hammer2_blockref_t *bref;
4227 hammer2_chain_t *chain;
4228 hammer2_key_t key_beg;
4229 hammer2_key_t key_end;
4230 hammer2_key_t key_next;
4231 hammer2_key_t key;
4232 int nkeybits;
4233 int locount;
4234 int hicount;
4235 int cache_index;
4236 int maxloops = 300000;
4239 * Shortcut if the parent is the inode. In this situation the
4240 * parent has 4+1 directory entries and we are creating an indirect
4241 * block capable of holding many more.
4243 if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4244 return 63;
4247 key = *keyp;
4248 locount = 0;
4249 hicount = 0;
4252 * Calculate the range of keys in the array being careful to skip
4253 * slots which are overridden with a deletion.
4255 key_beg = 0;
4256 key_end = HAMMER2_KEY_MAX;
4257 cache_index = 0;
4258 hammer2_spin_ex(&parent->core.spin);
4260 for (;;) {
4261 if (--maxloops == 0) {
4262 panic("indkey_freemap shit %p %p:%d\n",
4263 parent, base, count);
4265 chain = hammer2_combined_find(parent, base, count,
4266 &cache_index, &key_next,
4267 key_beg, key_end,
4268 &bref);
4271 * Exhausted search
4273 if (bref == NULL)
4274 break;
4277 * Deleted object
4279 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4280 if (key_next == 0 || key_next > key_end)
4281 break;
4282 key_beg = key_next;
4283 continue;
4287 * Use the full live (not deleted) element for the scan
4288 * iteration. HAMMER2 does not allow partial replacements.
4290 * XXX should be built into hammer2_combined_find().
4292 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4295 * Expand our calculated key range (key, keybits) to fit
4296 * the scanned key. nkeybits represents the full range
4297 * that we will later cut in half (two halves @ nkeybits - 1).
4299 nkeybits = keybits;
4300 if (nkeybits < bref->keybits) {
4301 if (bref->keybits > 64) {
4302 kprintf("bad bref chain %p bref %p\n",
4303 chain, bref);
4304 Debugger("fubar");
4306 nkeybits = bref->keybits;
4308 while (nkeybits < 64 &&
4309 (~(((hammer2_key_t)1 << nkeybits) - 1) &
4310 (key ^ bref->key)) != 0) {
4311 ++nkeybits;
4315 * If the new key range is larger we have to determine
4316 * which side of the new key range the existing keys fall
4317 * under by checking the high bit, then collapsing the
4318 * locount into the hicount or vise-versa.
4320 if (keybits != nkeybits) {
4321 if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4322 hicount += locount;
4323 locount = 0;
4324 } else {
4325 locount += hicount;
4326 hicount = 0;
4328 keybits = nkeybits;
4332 * The newly scanned key will be in the lower half or the
4333 * upper half of the (new) key range.
4335 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4336 ++hicount;
4337 else
4338 ++locount;
4340 if (key_next == 0)
4341 break;
4342 key_beg = key_next;
4344 hammer2_spin_unex(&parent->core.spin);
4345 bref = NULL; /* now invalid (safety) */
4348 * Adjust keybits to represent half of the full range calculated
4349 * above (radix 63 max) for our new indirect block.
4351 --keybits;
4354 * Expand keybits to hold at least ncount elements. ncount will be
4355 * a power of 2. This is to try to completely fill leaf nodes (at
4356 * least for keys which are not hashes).
4358 * We aren't counting 'in' or 'out', we are counting 'high side'
4359 * and 'low side' based on the bit at (1LL << keybits). We want
4360 * everything to be inside in these cases so shift it all to
4361 * the low or high side depending on the new high bit.
4363 while (((hammer2_key_t)1 << keybits) < ncount) {
4364 ++keybits;
4365 if (key & ((hammer2_key_t)1 << keybits)) {
4366 hicount += locount;
4367 locount = 0;
4368 } else {
4369 locount += hicount;
4370 hicount = 0;
4374 if (hicount > locount)
4375 key |= (hammer2_key_t)1 << keybits;
4376 else
4377 key &= ~(hammer2_key_t)1 << keybits;
4379 *keyp = key;
4381 return (keybits);
4384 #endif
4387 * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
4388 * it exists.
4390 * Both parent and chain must be locked exclusively.
4392 * This function will modify the parent if the blockref requires removal
4393 * from the parent's block table.
4395 * This function is NOT recursive. Any entity already pushed into the
4396 * chain (such as an inode) may still need visibility into its contents,
4397 * as well as the ability to read and modify the contents. For example,
4398 * for an unlinked file which is still open.
4400 * Also note that the flusher is responsible for cleaning up empty
4401 * indirect blocks.
4403 void
4404 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
4405 hammer2_tid_t mtid, int flags)
4407 KKASSERT(hammer2_mtx_owned(&chain->lock));
4410 * Nothing to do if already marked.
4412 * We need the spinlock on the core whos RBTREE contains chain
4413 * to protect against races.
4415 if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
4416 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
4417 chain->parent == parent);
4418 _hammer2_chain_delete_helper(parent, chain, mtid, flags);
4422 * Permanent deletions mark the chain as destroyed.
4424 if (flags & HAMMER2_DELETE_PERMANENT) {
4425 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
4426 } else {
4427 /* XXX might not be needed */
4428 hammer2_chain_setflush(chain);
4433 * Returns the index of the nearest element in the blockref array >= elm.
4434 * Returns (count) if no element could be found.
4436 * Sets *key_nextp to the next key for loop purposes but does not modify
4437 * it if the next key would be higher than the current value of *key_nextp.
4438 * Note that *key_nexp can overflow to 0, which should be tested by the
4439 * caller.
4441 * (*cache_indexp) is a heuristic and can be any value without effecting
4442 * the result.
4444 * WARNING! Must be called with parent's spinlock held. Spinlock remains
4445 * held through the operation.
4447 static int
4448 hammer2_base_find(hammer2_chain_t *parent,
4449 hammer2_blockref_t *base, int count,
4450 int *cache_indexp, hammer2_key_t *key_nextp,
4451 hammer2_key_t key_beg, hammer2_key_t key_end)
4453 hammer2_blockref_t *scan;
4454 hammer2_key_t scan_end;
4455 int i;
4456 int limit;
4459 * Require the live chain's already have their core's counted
4460 * so we can optimize operations.
4462 KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
4465 * Degenerate case
4467 if (count == 0 || base == NULL)
4468 return(count);
4471 * Sequential optimization using *cache_indexp. This is the most
4472 * likely scenario.
4474 * We can avoid trailing empty entries on live chains, otherwise
4475 * we might have to check the whole block array.
4477 i = *cache_indexp;
4478 cpu_ccfence();
4479 limit = parent->core.live_zero;
4480 if (i >= limit)
4481 i = limit - 1;
4482 if (i < 0)
4483 i = 0;
4484 KKASSERT(i < count);
4487 * Search backwards
4489 scan = &base[i];
4490 while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
4491 --scan;
4492 --i;
4494 *cache_indexp = i;
4497 * Search forwards, stop when we find a scan element which
4498 * encloses the key or until we know that there are no further
4499 * elements.
4501 while (i < count) {
4502 if (scan->type != 0) {
4503 scan_end = scan->key +
4504 ((hammer2_key_t)1 << scan->keybits) - 1;
4505 if (scan->key > key_beg || scan_end >= key_beg)
4506 break;
4508 if (i >= limit)
4509 return (count);
4510 ++scan;
4511 ++i;
4513 if (i != count) {
4514 *cache_indexp = i;
4515 if (i >= limit) {
4516 i = count;
4517 } else {
4518 scan_end = scan->key +
4519 ((hammer2_key_t)1 << scan->keybits);
4520 if (scan_end && (*key_nextp > scan_end ||
4521 *key_nextp == 0)) {
4522 *key_nextp = scan_end;
4526 return (i);
4530 * Do a combined search and return the next match either from the blockref
4531 * array or from the in-memory chain. Sets *bresp to the returned bref in
4532 * both cases, or sets it to NULL if the search exhausted. Only returns
4533 * a non-NULL chain if the search matched from the in-memory chain.
4535 * When no in-memory chain has been found and a non-NULL bref is returned
4536 * in *bresp.
4539 * The returned chain is not locked or referenced. Use the returned bref
4540 * to determine if the search exhausted or not. Iterate if the base find
4541 * is chosen but matches a deleted chain.
4543 * WARNING! Must be called with parent's spinlock held. Spinlock remains
4544 * held through the operation.
4546 static hammer2_chain_t *
4547 hammer2_combined_find(hammer2_chain_t *parent,
4548 hammer2_blockref_t *base, int count,
4549 int *cache_indexp, hammer2_key_t *key_nextp,
4550 hammer2_key_t key_beg, hammer2_key_t key_end,
4551 hammer2_blockref_t **bresp)
4553 hammer2_blockref_t *bref;
4554 hammer2_chain_t *chain;
4555 int i;
4558 * Lookup in block array and in rbtree.
4560 *key_nextp = key_end + 1;
4561 i = hammer2_base_find(parent, base, count, cache_indexp,
4562 key_nextp, key_beg, key_end);
4563 chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
4566 * Neither matched
4568 if (i == count && chain == NULL) {
4569 *bresp = NULL;
4570 return(NULL);
4574 * Only chain matched.
4576 if (i == count) {
4577 bref = &chain->bref;
4578 goto found;
4582 * Only blockref matched.
4584 if (chain == NULL) {
4585 bref = &base[i];
4586 goto found;
4590 * Both in-memory and blockref matched, select the nearer element.
4592 * If both are flush with the left-hand side or both are the
4593 * same distance away, select the chain. In this situation the
4594 * chain must have been loaded from the matching blockmap.
4596 if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
4597 chain->bref.key == base[i].key) {
4598 KKASSERT(chain->bref.key == base[i].key);
4599 bref = &chain->bref;
4600 goto found;
4604 * Select the nearer key
4606 if (chain->bref.key < base[i].key) {
4607 bref = &chain->bref;
4608 } else {
4609 bref = &base[i];
4610 chain = NULL;
4614 * If the bref is out of bounds we've exhausted our search.
4616 found:
4617 if (bref->key > key_end) {
4618 *bresp = NULL;
4619 chain = NULL;
4620 } else {
4621 *bresp = bref;
4623 return(chain);
4627 * Locate the specified block array element and delete it. The element
4628 * must exist.
4630 * The spin lock on the related chain must be held.
4632 * NOTE: live_count was adjusted when the chain was deleted, so it does not
4633 * need to be adjusted when we commit the media change.
4635 void
4636 hammer2_base_delete(hammer2_chain_t *parent,
4637 hammer2_blockref_t *base, int count,
4638 int *cache_indexp, hammer2_chain_t *chain)
4640 hammer2_blockref_t *elm = &chain->bref;
4641 hammer2_blockref_t *scan;
4642 hammer2_key_t key_next;
4643 int i;
4646 * Delete element. Expect the element to exist.
4648 * XXX see caller, flush code not yet sophisticated enough to prevent
4649 * re-flushed in some cases.
4651 key_next = 0; /* max range */
4652 i = hammer2_base_find(parent, base, count, cache_indexp,
4653 &key_next, elm->key, elm->key);
4654 scan = &base[i];
4655 if (i == count || scan->type == 0 ||
4656 scan->key != elm->key ||
4657 ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
4658 scan->keybits != elm->keybits)) {
4659 hammer2_spin_unex(&parent->core.spin);
4660 panic("delete base %p element not found at %d/%d elm %p\n",
4661 base, i, count, elm);
4662 return;
4666 * Update stats and zero the entry.
4668 * NOTE: Handle radix == 0 (0 bytes) case.
4670 if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
4671 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
4672 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
4674 switch(scan->type) {
4675 case HAMMER2_BREF_TYPE_INODE:
4676 parent->bref.embed.stats.inode_count -= 1;
4677 /* fall through */
4678 case HAMMER2_BREF_TYPE_DATA:
4679 case HAMMER2_BREF_TYPE_INDIRECT:
4680 parent->bref.embed.stats.data_count -=
4681 scan->embed.stats.data_count;
4682 parent->bref.embed.stats.inode_count -=
4683 scan->embed.stats.inode_count;
4684 break;
4685 default:
4686 break;
4689 bzero(scan, sizeof(*scan));
4692 * We can only optimize parent->core.live_zero for live chains.
4694 if (parent->core.live_zero == i + 1) {
4695 while (--i >= 0 && base[i].type == 0)
4697 parent->core.live_zero = i + 1;
4701 * Clear appropriate blockmap flags in chain.
4703 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
4704 HAMMER2_CHAIN_BMAPUPD);
4708 * Insert the specified element. The block array must not already have the
4709 * element and must have space available for the insertion.
4711 * The spin lock on the related chain must be held.
4713 * NOTE: live_count was adjusted when the chain was deleted, so it does not
4714 * need to be adjusted when we commit the media change.
4716 void
4717 hammer2_base_insert(hammer2_chain_t *parent,
4718 hammer2_blockref_t *base, int count,
4719 int *cache_indexp, hammer2_chain_t *chain)
4721 hammer2_blockref_t *elm = &chain->bref;
4722 hammer2_key_t key_next;
4723 hammer2_key_t xkey;
4724 int i;
4725 int j;
4726 int k;
4727 int l;
4728 int u = 1;
4731 * Insert new element. Expect the element to not already exist
4732 * unless we are replacing it.
4734 * XXX see caller, flush code not yet sophisticated enough to prevent
4735 * re-flushed in some cases.
4737 key_next = 0; /* max range */
4738 i = hammer2_base_find(parent, base, count, cache_indexp,
4739 &key_next, elm->key, elm->key);
4742 * Shortcut fill optimization, typical ordered insertion(s) may not
4743 * require a search.
4745 KKASSERT(i >= 0 && i <= count);
4748 * Set appropriate blockmap flags in chain.
4750 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
4753 * Update stats and zero the entry
4755 if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
4756 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
4757 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
4759 switch(elm->type) {
4760 case HAMMER2_BREF_TYPE_INODE:
4761 parent->bref.embed.stats.inode_count += 1;
4762 /* fall through */
4763 case HAMMER2_BREF_TYPE_DATA:
4764 case HAMMER2_BREF_TYPE_INDIRECT:
4765 parent->bref.embed.stats.data_count +=
4766 elm->embed.stats.data_count;
4767 parent->bref.embed.stats.inode_count +=
4768 elm->embed.stats.inode_count;
4769 break;
4770 default:
4771 break;
4776 * We can only optimize parent->core.live_zero for live chains.
4778 if (i == count && parent->core.live_zero < count) {
4779 i = parent->core.live_zero++;
4780 base[i] = *elm;
4781 return;
4784 xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
4785 if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
4786 hammer2_spin_unex(&parent->core.spin);
4787 panic("insert base %p overlapping elements at %d elm %p\n",
4788 base, i, elm);
4792 * Try to find an empty slot before or after.
4794 j = i;
4795 k = i;
4796 while (j > 0 || k < count) {
4797 --j;
4798 if (j >= 0 && base[j].type == 0) {
4799 if (j == i - 1) {
4800 base[j] = *elm;
4801 } else {
4802 bcopy(&base[j+1], &base[j],
4803 (i - j - 1) * sizeof(*base));
4804 base[i - 1] = *elm;
4806 goto validate;
4808 ++k;
4809 if (k < count && base[k].type == 0) {
4810 bcopy(&base[i], &base[i+1],
4811 (k - i) * sizeof(hammer2_blockref_t));
4812 base[i] = *elm;
4815 * We can only update parent->core.live_zero for live
4816 * chains.
4818 if (parent->core.live_zero <= k)
4819 parent->core.live_zero = k + 1;
4820 u = 2;
4821 goto validate;
4824 panic("hammer2_base_insert: no room!");
4827 * Debugging
4829 validate:
4830 key_next = 0;
4831 for (l = 0; l < count; ++l) {
4832 if (base[l].type) {
4833 key_next = base[l].key +
4834 ((hammer2_key_t)1 << base[l].keybits) - 1;
4835 break;
4838 while (++l < count) {
4839 if (base[l].type) {
4840 if (base[l].key <= key_next)
4841 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
4842 key_next = base[l].key +
4843 ((hammer2_key_t)1 << base[l].keybits) - 1;
4850 #if 0
4853 * Sort the blockref array for the chain. Used by the flush code to
4854 * sort the blockref[] array.
4856 * The chain must be exclusively locked AND spin-locked.
4858 typedef hammer2_blockref_t *hammer2_blockref_p;
4860 static
4862 hammer2_base_sort_callback(const void *v1, const void *v2)
4864 hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
4865 hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
4868 * Make sure empty elements are placed at the end of the array
4870 if (bref1->type == 0) {
4871 if (bref2->type == 0)
4872 return(0);
4873 return(1);
4874 } else if (bref2->type == 0) {
4875 return(-1);
4879 * Sort by key
4881 if (bref1->key < bref2->key)
4882 return(-1);
4883 if (bref1->key > bref2->key)
4884 return(1);
4885 return(0);
4888 void
4889 hammer2_base_sort(hammer2_chain_t *chain)
4891 hammer2_blockref_t *base;
4892 int count;
4894 switch(chain->bref.type) {
4895 case HAMMER2_BREF_TYPE_INODE:
4897 * Special shortcut for embedded data returns the inode
4898 * itself. Callers must detect this condition and access
4899 * the embedded data (the strategy code does this for us).
4901 * This is only applicable to regular files and softlinks.
4903 if (chain->data->ipdata.meta.op_flags &
4904 HAMMER2_OPFLAG_DIRECTDATA) {
4905 return;
4907 base = &chain->data->ipdata.u.blockset.blockref[0];
4908 count = HAMMER2_SET_COUNT;
4909 break;
4910 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4911 case HAMMER2_BREF_TYPE_INDIRECT:
4913 * Optimize indirect blocks in the INITIAL state to avoid
4914 * I/O.
4916 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4917 base = &chain->data->npdata[0];
4918 count = chain->bytes / sizeof(hammer2_blockref_t);
4919 break;
4920 case HAMMER2_BREF_TYPE_VOLUME:
4921 base = &chain->data->voldata.sroot_blockset.blockref[0];
4922 count = HAMMER2_SET_COUNT;
4923 break;
4924 case HAMMER2_BREF_TYPE_FREEMAP:
4925 base = &chain->data->blkset.blockref[0];
4926 count = HAMMER2_SET_COUNT;
4927 break;
4928 default:
4929 kprintf("hammer2_chain_lookup: unrecognized "
4930 "blockref(A) type: %d",
4931 chain->bref.type);
4932 while (1)
4933 tsleep(&base, 0, "dead", 0);
4934 panic("hammer2_chain_lookup: unrecognized "
4935 "blockref(A) type: %d",
4936 chain->bref.type);
4937 base = NULL; /* safety */
4938 count = 0; /* safety */
4940 kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
4943 #endif
4946 * Chain memory management
4948 void
4949 hammer2_chain_wait(hammer2_chain_t *chain)
4951 tsleep(chain, 0, "chnflw", 1);
4954 const hammer2_media_data_t *
4955 hammer2_chain_rdata(hammer2_chain_t *chain)
4957 KKASSERT(chain->data != NULL);
4958 return (chain->data);
4961 hammer2_media_data_t *
4962 hammer2_chain_wdata(hammer2_chain_t *chain)
4964 KKASSERT(chain->data != NULL);
4965 return (chain->data);
4969 * Set the check data for a chain. This can be a heavy-weight operation
4970 * and typically only runs on-flush. For file data check data is calculated
4971 * when the logical buffers are flushed.
4973 void
4974 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
4976 chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
4978 switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
4979 case HAMMER2_CHECK_NONE:
4980 break;
4981 case HAMMER2_CHECK_DISABLED:
4982 break;
4983 case HAMMER2_CHECK_ISCSI32:
4984 chain->bref.check.iscsi32.value =
4985 hammer2_icrc32(bdata, chain->bytes);
4986 break;
4987 case HAMMER2_CHECK_XXHASH64:
4988 chain->bref.check.xxhash64.value =
4989 XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
4990 break;
4991 case HAMMER2_CHECK_SHA192:
4993 SHA256_CTX hash_ctx;
4994 union {
4995 uint8_t digest[SHA256_DIGEST_LENGTH];
4996 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
4997 } u;
4999 SHA256_Init(&hash_ctx);
5000 SHA256_Update(&hash_ctx, bdata, chain->bytes);
5001 SHA256_Final(u.digest, &hash_ctx);
5002 u.digest64[2] ^= u.digest64[3];
5003 bcopy(u.digest,
5004 chain->bref.check.sha192.data,
5005 sizeof(chain->bref.check.sha192.data));
5007 break;
5008 case HAMMER2_CHECK_FREEMAP:
5009 chain->bref.check.freemap.icrc32 =
5010 hammer2_icrc32(bdata, chain->bytes);
5011 break;
5012 default:
5013 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5014 chain->bref.methods);
5015 break;
5020 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5022 uint32_t check32;
5023 uint64_t check64;
5024 int r;
5026 if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5027 return 1;
5029 switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5030 case HAMMER2_CHECK_NONE:
5031 r = 1;
5032 break;
5033 case HAMMER2_CHECK_DISABLED:
5034 r = 1;
5035 break;
5036 case HAMMER2_CHECK_ISCSI32:
5037 check32 = hammer2_icrc32(bdata, chain->bytes);
5038 r = (chain->bref.check.iscsi32.value == check32);
5039 if (r == 0) {
5040 kprintf("chain %016jx.%02x meth=%02x CHECK FAIL "
5041 "(flags=%08x, bref/data %08x/%08x)\n",
5042 chain->bref.data_off,
5043 chain->bref.type,
5044 chain->bref.methods,
5045 chain->flags,
5046 chain->bref.check.iscsi32.value,
5047 check32);
5049 hammer2_check_icrc32 += chain->bytes;
5050 break;
5051 case HAMMER2_CHECK_XXHASH64:
5052 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5053 r = (chain->bref.check.xxhash64.value == check64);
5054 if (r == 0) {
5055 kprintf("chain %016jx.%02x key=%016jx "
5056 "meth=%02x CHECK FAIL "
5057 "(flags=%08x, bref/data %016jx/%016jx)\n",
5058 chain->bref.data_off,
5059 chain->bref.type,
5060 chain->bref.key,
5061 chain->bref.methods,
5062 chain->flags,
5063 chain->bref.check.xxhash64.value,
5064 check64);
5066 hammer2_check_xxhash64 += chain->bytes;
5067 break;
5068 case HAMMER2_CHECK_SHA192:
5070 SHA256_CTX hash_ctx;
5071 union {
5072 uint8_t digest[SHA256_DIGEST_LENGTH];
5073 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5074 } u;
5076 SHA256_Init(&hash_ctx);
5077 SHA256_Update(&hash_ctx, bdata, chain->bytes);
5078 SHA256_Final(u.digest, &hash_ctx);
5079 u.digest64[2] ^= u.digest64[3];
5080 if (bcmp(u.digest,
5081 chain->bref.check.sha192.data,
5082 sizeof(chain->bref.check.sha192.data)) == 0) {
5083 r = 1;
5084 } else {
5085 r = 0;
5086 kprintf("chain %016jx.%02x meth=%02x "
5087 "CHECK FAIL\n",
5088 chain->bref.data_off,
5089 chain->bref.type,
5090 chain->bref.methods);
5093 break;
5094 case HAMMER2_CHECK_FREEMAP:
5095 r = (chain->bref.check.freemap.icrc32 ==
5096 hammer2_icrc32(bdata, chain->bytes));
5097 if (r == 0) {
5098 kprintf("chain %016jx.%02x meth=%02x "
5099 "CHECK FAIL\n",
5100 chain->bref.data_off,
5101 chain->bref.type,
5102 chain->bref.methods);
5103 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5104 chain->bref.check.freemap.icrc32,
5105 hammer2_icrc32(bdata, chain->bytes),
5106 chain->bytes);
5107 if (chain->dio)
5108 kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
5109 chain->dio, chain->dio->bp->b_loffset,
5110 chain->dio->bp->b_bufsize, bdata,
5111 chain->dio->bp->b_data);
5114 break;
5115 default:
5116 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5117 chain->bref.methods);
5118 r = 1;
5119 break;
5121 return r;
5125 * Acquire the chain and parent representing the specified inode for the
5126 * device at the specified cluster index.
5128 * The flags passed in are LOOKUP flags, not RESOLVE flags.
5130 * If we are unable to locate the hardlink, INVAL is returned and *chainp
5131 * will be NULL. *parentp may still be set error or not, or NULL if the
5132 * parent itself could not be resolved.
5134 * Caller must pass-in a valid or NULL *parentp or *chainp. The passed-in
5135 * *parentp and *chainp will be unlocked if not NULL.
5138 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5139 int clindex, int flags,
5140 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5142 hammer2_chain_t *parent;
5143 hammer2_chain_t *rchain;
5144 hammer2_key_t key_dummy;
5145 int cache_index = -1;
5146 int resolve_flags;
5148 resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5149 HAMMER2_RESOLVE_SHARED : 0;
5152 * Caller expects us to replace these.
5154 if (*chainp) {
5155 hammer2_chain_unlock(*chainp);
5156 hammer2_chain_drop(*chainp);
5157 *chainp = NULL;
5159 if (*parentp) {
5160 hammer2_chain_unlock(*parentp);
5161 hammer2_chain_drop(*parentp);
5162 *parentp = NULL;
5166 * Inodes hang off of the iroot (bit 63 is clear, differentiating
5167 * inodes from root directory entries in the key lookup).
5169 parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
5170 rchain = NULL;
5171 if (parent) {
5172 rchain = hammer2_chain_lookup(&parent, &key_dummy,
5173 inum, inum,
5174 &cache_index, flags);
5176 *parentp = parent;
5177 *chainp = rchain;
5179 return (rchain ? 0 : EINVAL);
5183 * Used by the bulkscan code to snapshot the synchronized storage for
5184 * a volume, allowing it to be scanned concurrently against normal
5185 * operation.
5187 hammer2_chain_t *
5188 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
5190 hammer2_chain_t *copy;
5192 copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
5193 copy->data = kmalloc(sizeof(copy->data->voldata),
5194 hmp->mchain,
5195 M_WAITOK | M_ZERO);
5196 hammer2_voldata_lock(hmp);
5197 copy->data->voldata = hmp->volsync;
5198 hammer2_voldata_unlock(hmp);
5200 return copy;
5203 void
5204 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
5206 KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
5207 KKASSERT(copy->data);
5208 kfree(copy->data, copy->hmp->mchain);
5209 copy->data = NULL;
5210 atomic_add_long(&hammer2_chain_allocs, -1);
5211 hammer2_chain_drop(copy);
5215 * Create a snapshot of the specified (chain) with the specified label.
5216 * The originating hammer2_inode must be exclusively locked for
5217 * safety. The device's bulklk should be held by the caller. The caller
5218 * is responsible for synchronizing the filesystem to storage before
5219 * taking the snapshot.
5222 hammer2_chain_snapshot(hammer2_chain_t *chain, hammer2_ioc_pfs_t *pmp,
5223 hammer2_tid_t mtid)
5225 hammer2_dev_t *hmp;
5226 const hammer2_inode_data_t *ripdata;
5227 hammer2_inode_data_t *wipdata;
5228 hammer2_chain_t *nchain;
5229 hammer2_inode_t *nip;
5230 size_t name_len;
5231 hammer2_key_t lhc;
5232 struct vattr vat;
5233 #if 0
5234 uuid_t opfs_clid;
5235 #endif
5236 int error;
5238 kprintf("snapshot %s\n", pmp->name);
5240 name_len = strlen(pmp->name);
5241 lhc = hammer2_dirhash(pmp->name, name_len);
5244 * Get the clid
5246 ripdata = &chain->data->ipdata;
5247 #if 0
5248 opfs_clid = ripdata->meta.pfs_clid;
5249 #endif
5250 hmp = chain->hmp;
5253 * Create the snapshot directory under the super-root
5255 * Set PFS type, generate a unique filesystem id, and generate
5256 * a cluster id. Use the same clid when snapshotting a PFS root,
5257 * which theoretically allows the snapshot to be used as part of
5258 * the same cluster (perhaps as a cache).
5260 * Copy the (flushed) blockref array. Theoretically we could use
5261 * chain_duplicate() but it becomes difficult to disentangle
5262 * the shared core so for now just brute-force it.
5264 VATTR_NULL(&vat);
5265 vat.va_type = VDIR;
5266 vat.va_mode = 0755;
5267 hammer2_chain_unlock(chain);
5268 nip = hammer2_inode_create(hmp->spmp->iroot, hmp->spmp->iroot,
5269 &vat, proc0.p_ucred,
5270 pmp->name, name_len, 0,
5271 1, 0, 0,
5272 HAMMER2_INSERT_PFSROOT, &error);
5273 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
5275 if (nip) {
5276 hammer2_inode_modify(nip);
5277 nchain = hammer2_inode_chain(nip, 0, HAMMER2_RESOLVE_ALWAYS);
5278 hammer2_chain_modify(nchain, mtid, 0, 0);
5279 wipdata = &nchain->data->ipdata;
5281 nip->meta.pfs_type = HAMMER2_PFSTYPE_MASTER;
5282 nip->meta.pfs_subtype = HAMMER2_PFSSUBTYPE_SNAPSHOT;
5283 nip->meta.op_flags |= HAMMER2_OPFLAG_PFSROOT;
5284 kern_uuidgen(&nip->meta.pfs_fsid, 1);
5287 * Give the snapshot its own private cluster id. As a
5288 * snapshot no further synchronization with the original
5289 * cluster will be done.
5291 #if 0
5292 if (chain->flags & HAMMER2_CHAIN_PFSBOUNDARY)
5293 nip->meta.pfs_clid = opfs_clid;
5294 else
5295 kern_uuidgen(&nip->meta.pfs_clid, 1);
5296 #endif
5297 kern_uuidgen(&nip->meta.pfs_clid, 1);
5298 nchain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
5300 /* XXX hack blockset copy */
5301 /* XXX doesn't work with real cluster */
5302 wipdata->meta = nip->meta;
5303 wipdata->u.blockset = ripdata->u.blockset;
5305 hammer2_flush(nchain, 1);
5306 KKASSERT(wipdata == &nchain->data->ipdata);
5307 hammer2_pfsalloc(nchain, wipdata, nchain->bref.modify_tid, 0);
5309 hammer2_chain_unlock(nchain);
5310 hammer2_chain_drop(nchain);
5311 hammer2_inode_chain_sync(nip);
5312 hammer2_inode_unlock(nip);
5313 hammer2_inode_run_sideq(hmp->spmp);
5315 return (error);
5319 * Returns non-zero if the chain (INODE or DIRENT) matches the
5320 * filename.
5323 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
5324 size_t name_len)
5326 const hammer2_inode_data_t *ripdata;
5327 const hammer2_dirent_head_t *den;
5329 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5330 ripdata = &chain->data->ipdata;
5331 if (ripdata->meta.name_len == name_len &&
5332 bcmp(ripdata->filename, name, name_len) == 0) {
5333 return 1;
5336 if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
5337 chain->bref.embed.dirent.namlen == name_len) {
5338 den = &chain->bref.embed.dirent;
5339 if (name_len > sizeof(chain->bref.check.buf) &&
5340 bcmp(chain->data->buf, name, name_len) == 0) {
5341 return 1;
5343 if (name_len <= sizeof(chain->bref.check.buf) &&
5344 bcmp(chain->bref.check.buf, name, name_len) == 0) {
5345 return 1;
5348 return 0;