hammer2 - Work on concurrent bulkfree stability
[dragonfly.git] / sys / netinet / tcp_syncache.c
blob02efe92e940aa61a4ab9ff1cefbd34a9d76a47b3
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
57 * permission.
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h> /* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
95 #include <net/if.h>
96 #include <net/route.h>
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define IPSEC
134 #endif /*FAST_IPSEC*/
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138 &tcp_syncookies, 0,
139 "Use TCP SYN cookies if the syncache overflows");
141 static void syncache_drop(struct syncache *, struct syncache_head *);
142 static void syncache_free(struct syncache *);
143 static void syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int syncache_respond(struct syncache *, struct mbuf *);
146 static struct socket *syncache_socket(struct syncache *, struct socket *,
147 struct mbuf *);
148 static void syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 struct tcphdr *, struct socket *);
154 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155 * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
156 * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
157 * the user has given up attempting to connect by then.
159 #define SYNCACHE_MAXREXMTS 4
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE 512
163 #define TCP_SYNCACHE_BUCKETLIMIT 30
165 struct netmsg_sc_timer {
166 struct netmsg_base base;
167 struct msgrec *nm_mrec; /* back pointer to containing msgrec */
170 struct msgrec {
171 struct netmsg_sc_timer msg;
172 lwkt_port_t port; /* constant after init */
173 int slot; /* constant after init */
176 static void syncache_timer_handler(netmsg_t);
178 struct tcp_syncache {
179 u_int hashsize;
180 u_int hashmask;
181 u_int bucket_limit;
182 u_int cache_limit;
183 u_int rexmt_limit;
184 u_int hash_secret;
186 static struct tcp_syncache tcp_syncache;
188 TAILQ_HEAD(syncache_list, syncache);
190 struct tcp_syncache_percpu {
191 struct syncache_head *hashbase;
192 u_int cache_count;
193 struct syncache_list timerq[SYNCACHE_MAXREXMTS + 1];
194 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
195 struct msgrec mrec[SYNCACHE_MAXREXMTS + 1];
196 } __cachealign;
197 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
201 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
202 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
205 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
207 /* XXX JH */
208 #if 0
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
210 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
211 #endif
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
214 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
217 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 #define SYNCACHE_HASH(inc, mask) \
222 ((tcp_syncache.hash_secret ^ \
223 (inc)->inc_faddr.s_addr ^ \
224 ((inc)->inc_faddr.s_addr >> 16) ^ \
225 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 #define SYNCACHE_HASH6(inc, mask) \
228 ((tcp_syncache.hash_secret ^ \
229 (inc)->inc6_faddr.s6_addr32[0] ^ \
230 (inc)->inc6_faddr.s6_addr32[3] ^ \
231 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 #define ENDPTS_EQ(a, b) ( \
234 (a)->ie_fport == (b)->ie_fport && \
235 (a)->ie_lport == (b)->ie_lport && \
236 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
237 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242 static __inline int
243 syncache_rto(int slot)
245 if (tcp_low_rtobase)
246 return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
247 else
248 return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
251 static __inline void
252 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
253 struct syncache *sc, int slot)
255 int rto;
257 if (slot > 0) {
259 * Record the time that we spent in SYN|ACK
260 * retransmition.
262 * Needed by RFC3390 and RFC6298.
264 sc->sc_rxtused += syncache_rto(slot - 1);
266 sc->sc_rxtslot = slot;
268 rto = syncache_rto(slot);
269 sc->sc_rxttime = ticks + rto;
271 TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
272 if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
273 callout_reset(&syncache_percpu->tt_timerq[slot], rto,
274 syncache_timer, &syncache_percpu->mrec[slot]);
278 static void
279 syncache_free(struct syncache *sc)
281 struct rtentry *rt;
282 #ifdef INET6
283 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
284 #else
285 const boolean_t isipv6 = FALSE;
286 #endif
288 if (sc->sc_ipopts)
289 m_free(sc->sc_ipopts);
291 rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
292 if (rt != NULL) {
294 * If this is the only reference to a protocol-cloned
295 * route, remove it immediately.
297 if ((rt->rt_flags & (RTF_WASCLONED | RTF_LLINFO)) ==
298 RTF_WASCLONED && rt->rt_refcnt == 1) {
299 rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
300 rt_mask(rt), rt->rt_flags, NULL);
302 RTFREE(rt);
304 kfree(sc, M_SYNCACHE);
307 void
308 syncache_init(void)
310 int i, cpu;
312 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
313 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
314 tcp_syncache.cache_limit =
315 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
316 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
317 tcp_syncache.hash_secret = karc4random();
319 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
320 &tcp_syncache.hashsize);
321 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
322 &tcp_syncache.cache_limit);
323 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
324 &tcp_syncache.bucket_limit);
325 if (!powerof2(tcp_syncache.hashsize)) {
326 kprintf("WARNING: syncache hash size is not a power of 2.\n");
327 tcp_syncache.hashsize = 512; /* safe default */
329 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
331 for (cpu = 0; cpu < netisr_ncpus; cpu++) {
332 struct tcp_syncache_percpu *syncache_percpu;
334 syncache_percpu = &tcp_syncache_percpu[cpu];
335 /* Allocate the hash table. */
336 syncache_percpu->hashbase = kmalloc_cachealign(
337 tcp_syncache.hashsize * sizeof(struct syncache_head),
338 M_SYNCACHE, M_WAITOK);
340 /* Initialize the hash buckets. */
341 for (i = 0; i < tcp_syncache.hashsize; i++) {
342 struct syncache_head *bucket;
344 bucket = &syncache_percpu->hashbase[i];
345 TAILQ_INIT(&bucket->sch_bucket);
346 bucket->sch_length = 0;
349 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
350 /* Initialize the timer queues. */
351 TAILQ_INIT(&syncache_percpu->timerq[i]);
352 callout_init_mp(&syncache_percpu->tt_timerq[i]);
354 syncache_percpu->mrec[i].slot = i;
355 syncache_percpu->mrec[i].port = netisr_cpuport(cpu);
356 syncache_percpu->mrec[i].msg.nm_mrec =
357 &syncache_percpu->mrec[i];
358 netmsg_init(&syncache_percpu->mrec[i].msg.base,
359 NULL, &netisr_adone_rport,
360 MSGF_PRIORITY, syncache_timer_handler);
365 static void
366 syncache_insert(struct syncache *sc, struct syncache_head *sch)
368 struct tcp_syncache_percpu *syncache_percpu;
369 struct syncache *sc2;
370 int i;
372 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
375 * Make sure that we don't overflow the per-bucket
376 * limit or the total cache size limit.
378 if (sch->sch_length >= tcp_syncache.bucket_limit) {
380 * The bucket is full, toss the oldest element.
382 sc2 = TAILQ_FIRST(&sch->sch_bucket);
383 if (sc2->sc_tp != NULL)
384 sc2->sc_tp->ts_recent = ticks;
385 syncache_drop(sc2, sch);
386 tcpstat.tcps_sc_bucketoverflow++;
387 } else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
389 * The cache is full. Toss the oldest entry in the
390 * entire cache. This is the front entry in the
391 * first non-empty timer queue with the largest
392 * timeout value.
394 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
395 sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
396 while (sc2 && (sc2->sc_flags & SCF_MARKER))
397 sc2 = TAILQ_NEXT(sc2, sc_timerq);
398 if (sc2 != NULL)
399 break;
401 if (sc2->sc_tp != NULL)
402 sc2->sc_tp->ts_recent = ticks;
403 syncache_drop(sc2, NULL);
404 tcpstat.tcps_sc_cacheoverflow++;
407 /* Initialize the entry's timer. */
408 syncache_timeout(syncache_percpu, sc, 0);
410 /* Put it into the bucket. */
411 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
412 sch->sch_length++;
413 syncache_percpu->cache_count++;
414 tcpstat.tcps_sc_added++;
417 void
418 syncache_destroy(struct tcpcb *tp, struct tcpcb *tp_inh)
420 struct tcp_syncache_percpu *syncache_percpu;
421 struct syncache_head *bucket;
422 struct syncache *sc;
423 int i;
425 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
426 sc = NULL;
428 for (i = 0; i < tcp_syncache.hashsize; i++) {
429 bucket = &syncache_percpu->hashbase[i];
430 TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
431 if (sc->sc_tp == tp)
432 sc->sc_tp = tp_inh;
437 static void
438 syncache_drop(struct syncache *sc, struct syncache_head *sch)
440 struct tcp_syncache_percpu *syncache_percpu;
441 #ifdef INET6
442 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
443 #else
444 const boolean_t isipv6 = FALSE;
445 #endif
447 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
449 if (sch == NULL) {
450 if (isipv6) {
451 sch = &syncache_percpu->hashbase[
452 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
453 } else {
454 sch = &syncache_percpu->hashbase[
455 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
459 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
460 sch->sch_length--;
461 syncache_percpu->cache_count--;
464 * Cleanup
466 sc->sc_tp = NULL;
469 * Remove the entry from the syncache timer/timeout queue. Note
470 * that we do not try to stop any running timer since we do not know
471 * whether the timer's message is in-transit or not. Since timeouts
472 * are fairly long, taking an unneeded callout does not detrimentally
473 * effect performance.
475 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
477 syncache_free(sc);
481 * Place a timeout message on the TCP thread's message queue.
482 * This routine runs in soft interrupt context.
484 * An invariant is for this routine to be called, the callout must
485 * have been active. Note that the callout is not deactivated until
486 * after the message has been processed in syncache_timer_handler() below.
488 static void
489 syncache_timer(void *p)
491 struct netmsg_sc_timer *msg = p;
493 lwkt_sendmsg_oncpu(msg->nm_mrec->port, &msg->base.lmsg);
497 * Service a timer message queued by timer expiration.
498 * This routine runs in the TCP protocol thread.
500 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
501 * If we have retransmitted an entry the maximum number of times, expire it.
503 * When we finish processing timed-out entries, we restart the timer if there
504 * are any entries still on the queue and deactivate it otherwise. Only after
505 * a timer has been deactivated here can it be restarted by syncache_timeout().
507 static void
508 syncache_timer_handler(netmsg_t msg)
510 struct tcp_syncache_percpu *syncache_percpu;
511 struct syncache *sc;
512 struct syncache marker;
513 struct syncache_list *list;
514 struct inpcb *inp;
515 int slot;
517 slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
518 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
520 list = &syncache_percpu->timerq[slot];
523 * Use a marker to keep our place in the scan. syncache_drop()
524 * can block and cause any next pointer we cache to become stale.
526 marker.sc_flags = SCF_MARKER;
527 TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
529 while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
531 * Move the marker.
533 TAILQ_REMOVE(list, &marker, sc_timerq);
534 TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
536 if (sc->sc_flags & SCF_MARKER)
537 continue;
539 if (ticks < sc->sc_rxttime)
540 break; /* finished because timerq sorted by time */
541 if (sc->sc_tp == NULL) {
542 syncache_drop(sc, NULL);
543 tcpstat.tcps_sc_stale++;
544 continue;
546 inp = sc->sc_tp->t_inpcb;
547 if (slot == SYNCACHE_MAXREXMTS ||
548 slot >= tcp_syncache.rexmt_limit ||
549 inp == NULL ||
550 inp->inp_gencnt != sc->sc_inp_gencnt) {
551 syncache_drop(sc, NULL);
552 tcpstat.tcps_sc_stale++;
553 continue;
556 * syncache_respond() may call back into the syncache to
557 * to modify another entry, so do not obtain the next
558 * entry on the timer chain until it has completed.
560 syncache_respond(sc, NULL);
561 tcpstat.tcps_sc_retransmitted++;
562 TAILQ_REMOVE(list, sc, sc_timerq);
563 syncache_timeout(syncache_percpu, sc, slot + 1);
565 TAILQ_REMOVE(list, &marker, sc_timerq);
567 if (sc != NULL) {
568 callout_reset(&syncache_percpu->tt_timerq[slot],
569 sc->sc_rxttime - ticks, syncache_timer,
570 &syncache_percpu->mrec[slot]);
571 } else {
572 callout_deactivate(&syncache_percpu->tt_timerq[slot]);
574 lwkt_replymsg(&msg->base.lmsg, 0);
578 * Find an entry in the syncache.
580 struct syncache *
581 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
583 struct tcp_syncache_percpu *syncache_percpu;
584 struct syncache *sc;
585 struct syncache_head *sch;
587 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
588 #ifdef INET6
589 if (inc->inc_isipv6) {
590 sch = &syncache_percpu->hashbase[
591 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
592 *schp = sch;
593 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
594 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
595 return (sc);
596 } else
597 #endif
599 sch = &syncache_percpu->hashbase[
600 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
601 *schp = sch;
602 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
603 #ifdef INET6
604 if (sc->sc_inc.inc_isipv6)
605 continue;
606 #endif
607 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
608 return (sc);
611 return (NULL);
615 * This function is called when we get a RST for a
616 * non-existent connection, so that we can see if the
617 * connection is in the syn cache. If it is, zap it.
619 void
620 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
622 struct syncache *sc;
623 struct syncache_head *sch;
625 sc = syncache_lookup(inc, &sch);
626 if (sc == NULL) {
627 return;
630 * If the RST bit is set, check the sequence number to see
631 * if this is a valid reset segment.
632 * RFC 793 page 37:
633 * In all states except SYN-SENT, all reset (RST) segments
634 * are validated by checking their SEQ-fields. A reset is
635 * valid if its sequence number is in the window.
637 * The sequence number in the reset segment is normally an
638 * echo of our outgoing acknowlegement numbers, but some hosts
639 * send a reset with the sequence number at the rightmost edge
640 * of our receive window, and we have to handle this case.
642 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
643 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
644 syncache_drop(sc, sch);
645 tcpstat.tcps_sc_reset++;
649 void
650 syncache_badack(struct in_conninfo *inc)
652 struct syncache *sc;
653 struct syncache_head *sch;
655 sc = syncache_lookup(inc, &sch);
656 if (sc != NULL) {
657 syncache_drop(sc, sch);
658 tcpstat.tcps_sc_badack++;
662 void
663 syncache_unreach(struct in_conninfo *inc, const struct tcphdr *th)
665 struct syncache *sc;
666 struct syncache_head *sch;
668 /* we are called at splnet() here */
669 sc = syncache_lookup(inc, &sch);
670 if (sc == NULL)
671 return;
673 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
674 if (ntohl(th->th_seq) != sc->sc_iss)
675 return;
678 * If we've rertransmitted 3 times and this is our second error,
679 * we remove the entry. Otherwise, we allow it to continue on.
680 * This prevents us from incorrectly nuking an entry during a
681 * spurious network outage.
683 * See tcp_notify().
685 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
686 sc->sc_flags |= SCF_UNREACH;
687 return;
689 syncache_drop(sc, sch);
690 tcpstat.tcps_sc_unreach++;
694 * Build a new TCP socket structure from a syncache entry.
696 * This is called from the context of the SYN+ACK
698 static struct socket *
699 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
701 struct inpcb *inp = NULL, *linp;
702 struct socket *so;
703 struct tcpcb *tp, *ltp;
704 lwkt_port_t port;
705 #ifdef INET6
706 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
707 #else
708 const boolean_t isipv6 = FALSE;
709 #endif
710 struct sockaddr_in sin_faddr;
711 struct sockaddr_in6 sin6_faddr;
712 struct sockaddr *faddr;
714 KASSERT(m->m_flags & M_HASH, ("mbuf has no hash"));
716 if (isipv6) {
717 faddr = (struct sockaddr *)&sin6_faddr;
718 sin6_faddr.sin6_family = AF_INET6;
719 sin6_faddr.sin6_len = sizeof(sin6_faddr);
720 sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
721 sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
722 sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
723 } else {
724 faddr = (struct sockaddr *)&sin_faddr;
725 sin_faddr.sin_family = AF_INET;
726 sin_faddr.sin_len = sizeof(sin_faddr);
727 sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
728 sin_faddr.sin_port = sc->sc_inc.inc_fport;
729 bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
733 * Ok, create the full blown connection, and set things up
734 * as they would have been set up if we had created the
735 * connection when the SYN arrived. If we can't create
736 * the connection, abort it.
738 * Set the protocol processing port for the socket to the current
739 * port (that the connection came in on).
741 * NOTE:
742 * We don't keep a reference on the new socket, since its
743 * destruction will run in this thread (netisrN); there is no
744 * race here.
746 so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr,
747 FALSE /* don't ref */);
748 if (so == NULL) {
750 * Drop the connection; we will send a RST if the peer
751 * retransmits the ACK,
753 tcpstat.tcps_listendrop++;
754 goto abort;
758 * Insert new socket into hash list.
760 inp = so->so_pcb;
761 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
762 if (isipv6) {
763 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
764 } else {
765 KASSERT(INP_ISIPV4(inp), ("not inet pcb"));
766 inp->inp_laddr = sc->sc_inc.inc_laddr;
768 inp->inp_lport = sc->sc_inc.inc_lport;
770 linp = lso->so_pcb;
771 ltp = intotcpcb(linp);
773 tcp_pcbport_insert(ltp, inp);
775 #ifdef IPSEC
776 /* copy old policy into new socket's */
777 if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
778 kprintf("syncache_expand: could not copy policy\n");
779 #endif
780 if (isipv6) {
781 struct in6_addr laddr6;
783 * Inherit socket options from the listening socket.
784 * Note that in6p_inputopts are not (and should not be)
785 * copied, since it stores previously received options and is
786 * used to detect if each new option is different than the
787 * previous one and hence should be passed to a user.
788 * If we copied in6p_inputopts, a user would not be able to
789 * receive options just after calling the accept system call.
791 inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
792 if (linp->in6p_outputopts)
793 inp->in6p_outputopts =
794 ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
795 inp->in6p_route = sc->sc_route6;
796 sc->sc_route6.ro_rt = NULL;
798 laddr6 = inp->in6p_laddr;
799 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
800 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
801 if (in6_pcbconnect(inp, faddr, &thread0)) {
802 inp->in6p_laddr = laddr6;
803 goto abort;
805 port = tcp6_addrport();
806 } else {
807 struct in_addr laddr;
809 inp->inp_options = ip_srcroute(m);
810 if (inp->inp_options == NULL) {
811 inp->inp_options = sc->sc_ipopts;
812 sc->sc_ipopts = NULL;
814 inp->inp_route = sc->sc_route;
815 sc->sc_route.ro_rt = NULL;
817 laddr = inp->inp_laddr;
818 if (inp->inp_laddr.s_addr == INADDR_ANY)
819 inp->inp_laddr = sc->sc_inc.inc_laddr;
820 if (in_pcbconnect(inp, faddr, &thread0)) {
821 inp->inp_laddr = laddr;
822 goto abort;
825 inp->inp_flags |= INP_HASH;
826 inp->inp_hashval = m->m_pkthdr.hash;
827 port = netisr_hashport(inp->inp_hashval);
831 * The current port should be in the context of the SYN+ACK and
832 * so should match the tcp address port.
834 KASSERT(port == &curthread->td_msgport,
835 ("TCP PORT MISMATCH %p vs %p\n", port, &curthread->td_msgport));
837 tp = intotcpcb(inp);
838 TCP_STATE_CHANGE(tp, TCPS_SYN_RECEIVED);
839 tp->iss = sc->sc_iss;
840 tp->irs = sc->sc_irs;
841 tcp_rcvseqinit(tp);
842 tcp_sendseqinit(tp);
843 tp->snd_wnd = sc->sc_sndwnd;
844 tp->snd_wl1 = sc->sc_irs;
845 tp->rcv_up = sc->sc_irs + 1;
846 tp->rcv_wnd = sc->sc_wnd;
847 tp->rcv_adv += tp->rcv_wnd;
849 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
850 if (sc->sc_flags & SCF_NOOPT)
851 tp->t_flags |= TF_NOOPT;
852 if (sc->sc_flags & SCF_WINSCALE) {
853 tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
854 tp->snd_scale = sc->sc_requested_s_scale;
855 tp->request_r_scale = sc->sc_request_r_scale;
857 if (sc->sc_flags & SCF_TIMESTAMP) {
858 tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
859 tp->ts_recent = sc->sc_tsrecent;
860 tp->ts_recent_age = ticks;
862 if (sc->sc_flags & SCF_SACK_PERMITTED)
863 tp->t_flags |= TF_SACK_PERMITTED;
865 #ifdef TCP_SIGNATURE
866 if (sc->sc_flags & SCF_SIGNATURE)
867 tp->t_flags |= TF_SIGNATURE;
868 #endif /* TCP_SIGNATURE */
870 tp->t_rxtsyn = sc->sc_rxtused;
871 tcp_rmx_init(tp, sc->sc_peer_mss);
874 * Inherit some properties from the listen socket
876 tp->t_keepinit = ltp->t_keepinit;
877 tp->t_keepidle = ltp->t_keepidle;
878 tp->t_keepintvl = ltp->t_keepintvl;
879 tp->t_keepcnt = ltp->t_keepcnt;
880 tp->t_maxidle = ltp->t_maxidle;
882 tcp_create_timermsg(tp, port);
883 tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
885 tcpstat.tcps_accepts++;
886 return (so);
888 abort:
889 if (so != NULL)
890 soabort_direct(so);
891 return (NULL);
895 * This function gets called when we receive an ACK for a
896 * socket in the LISTEN state. We look up the connection
897 * in the syncache, and if its there, we pull it out of
898 * the cache and turn it into a full-blown connection in
899 * the SYN-RECEIVED state.
902 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
903 struct mbuf *m)
905 struct syncache *sc;
906 struct syncache_head *sch;
907 struct socket *so;
909 sc = syncache_lookup(inc, &sch);
910 if (sc == NULL) {
912 * There is no syncache entry, so see if this ACK is
913 * a returning syncookie. To do this, first:
914 * A. See if this socket has had a syncache entry dropped in
915 * the past. We don't want to accept a bogus syncookie
916 * if we've never received a SYN.
917 * B. check that the syncookie is valid. If it is, then
918 * cobble up a fake syncache entry, and return.
920 if (!tcp_syncookies)
921 return (0);
922 sc = syncookie_lookup(inc, th, *sop);
923 if (sc == NULL)
924 return (0);
925 sch = NULL;
926 tcpstat.tcps_sc_recvcookie++;
930 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
932 if (th->th_ack != sc->sc_iss + 1)
933 return (0);
935 so = syncache_socket(sc, *sop, m);
936 if (so == NULL) {
937 #if 0
938 resetandabort:
939 /* XXXjlemon check this - is this correct? */
940 tcp_respond(NULL, m, m, th,
941 th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
942 #endif
943 m_freem(m); /* XXX only needed for above */
944 tcpstat.tcps_sc_aborted++;
945 } else {
946 tcpstat.tcps_sc_completed++;
948 if (sch == NULL)
949 syncache_free(sc);
950 else
951 syncache_drop(sc, sch);
952 *sop = so;
953 return (1);
957 * Given a LISTEN socket and an inbound SYN request, add
958 * this to the syn cache, and send back a segment:
959 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
960 * to the source.
962 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
963 * Doing so would require that we hold onto the data and deliver it
964 * to the application. However, if we are the target of a SYN-flood
965 * DoS attack, an attacker could send data which would eventually
966 * consume all available buffer space if it were ACKed. By not ACKing
967 * the data, we avoid this DoS scenario.
970 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
971 struct socket *so, struct mbuf *m)
973 struct tcp_syncache_percpu *syncache_percpu;
974 struct tcpcb *tp;
975 struct syncache *sc = NULL;
976 struct syncache_head *sch;
977 struct mbuf *ipopts = NULL;
978 int win;
980 KASSERT(m->m_flags & M_HASH, ("mbuf has no hash"));
982 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
983 tp = sototcpcb(so);
986 * Remember the IP options, if any.
988 #ifdef INET6
989 if (!inc->inc_isipv6)
990 #endif
991 ipopts = ip_srcroute(m);
994 * See if we already have an entry for this connection.
995 * If we do, resend the SYN,ACK, and reset the retransmit timer.
997 * XXX
998 * The syncache should be re-initialized with the contents
999 * of the new SYN which may have different options.
1001 sc = syncache_lookup(inc, &sch);
1002 if (sc != NULL) {
1003 KASSERT(sc->sc_flags & SCF_HASH, ("syncache has no hash"));
1004 KASSERT(sc->sc_hashval == m->m_pkthdr.hash,
1005 ("syncache/mbuf hash mismatches"));
1007 tcpstat.tcps_sc_dupsyn++;
1008 if (ipopts) {
1010 * If we were remembering a previous source route,
1011 * forget it and use the new one we've been given.
1013 if (sc->sc_ipopts)
1014 m_free(sc->sc_ipopts);
1015 sc->sc_ipopts = ipopts;
1018 * Update timestamp if present.
1020 if (sc->sc_flags & SCF_TIMESTAMP)
1021 sc->sc_tsrecent = to->to_tsval;
1023 /* Just update the TOF_SACK_PERMITTED for now. */
1024 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1025 sc->sc_flags |= SCF_SACK_PERMITTED;
1026 else
1027 sc->sc_flags &= ~SCF_SACK_PERMITTED;
1029 /* Update initial send window */
1030 sc->sc_sndwnd = th->th_win;
1033 * PCB may have changed, pick up new values.
1035 sc->sc_tp = tp;
1036 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1037 if (syncache_respond(sc, m) == 0) {
1038 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1039 sc, sc_timerq);
1040 syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1041 tcpstat.tcps_sndacks++;
1042 tcpstat.tcps_sndtotal++;
1044 return (1);
1048 * Fill in the syncache values.
1050 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1051 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1052 sc->sc_ipopts = ipopts;
1053 sc->sc_inc.inc_fport = inc->inc_fport;
1054 sc->sc_inc.inc_lport = inc->inc_lport;
1055 sc->sc_tp = tp;
1056 #ifdef INET6
1057 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1058 if (inc->inc_isipv6) {
1059 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1060 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1061 sc->sc_route6.ro_rt = NULL;
1062 } else
1063 #endif
1065 sc->sc_inc.inc_faddr = inc->inc_faddr;
1066 sc->sc_inc.inc_laddr = inc->inc_laddr;
1067 sc->sc_route.ro_rt = NULL;
1069 sc->sc_irs = th->th_seq;
1070 sc->sc_flags = SCF_HASH;
1071 sc->sc_hashval = m->m_pkthdr.hash;
1072 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1073 if (tcp_syncookies)
1074 sc->sc_iss = syncookie_generate(sc);
1075 else
1076 sc->sc_iss = karc4random();
1078 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1079 win = ssb_space(&so->so_rcv);
1080 win = imax(win, 0);
1081 win = imin(win, TCP_MAXWIN);
1082 sc->sc_wnd = win;
1084 if (tcp_do_rfc1323) {
1086 * A timestamp received in a SYN makes
1087 * it ok to send timestamp requests and replies.
1089 if (to->to_flags & TOF_TS) {
1090 sc->sc_tsrecent = to->to_tsval;
1091 sc->sc_flags |= SCF_TIMESTAMP;
1093 if (to->to_flags & TOF_SCALE) {
1094 int wscale = TCP_MIN_WINSHIFT;
1096 /* Compute proper scaling value from buffer space */
1097 while (wscale < TCP_MAX_WINSHIFT &&
1098 (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1099 wscale++;
1101 sc->sc_request_r_scale = wscale;
1102 sc->sc_requested_s_scale = to->to_requested_s_scale;
1103 sc->sc_flags |= SCF_WINSCALE;
1106 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1107 sc->sc_flags |= SCF_SACK_PERMITTED;
1108 if (tp->t_flags & TF_NOOPT)
1109 sc->sc_flags = SCF_NOOPT;
1110 #ifdef TCP_SIGNATURE
1112 * If listening socket requested TCP digests, and received SYN
1113 * contains the option, flag this in the syncache so that
1114 * syncache_respond() will do the right thing with the SYN+ACK.
1115 * XXX Currently we always record the option by default and will
1116 * attempt to use it in syncache_respond().
1118 if (to->to_flags & TOF_SIGNATURE)
1119 sc->sc_flags = SCF_SIGNATURE;
1120 #endif /* TCP_SIGNATURE */
1121 sc->sc_sndwnd = th->th_win;
1123 if (syncache_respond(sc, m) == 0) {
1124 syncache_insert(sc, sch);
1125 tcpstat.tcps_sndacks++;
1126 tcpstat.tcps_sndtotal++;
1127 } else {
1128 syncache_free(sc);
1129 tcpstat.tcps_sc_dropped++;
1131 return (1);
1134 static int
1135 syncache_respond(struct syncache *sc, struct mbuf *m)
1137 u_int8_t *optp;
1138 int optlen, error;
1139 u_int16_t tlen, hlen, mssopt;
1140 struct ip *ip = NULL;
1141 struct rtentry *rt;
1142 struct tcphdr *th;
1143 struct ip6_hdr *ip6 = NULL;
1144 #ifdef INET6
1145 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1146 #else
1147 const boolean_t isipv6 = FALSE;
1148 #endif
1150 if (isipv6) {
1151 rt = tcp_rtlookup6(&sc->sc_inc);
1152 if (rt != NULL)
1153 mssopt = rt->rt_ifp->if_mtu -
1154 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1155 else
1156 mssopt = tcp_v6mssdflt;
1157 hlen = sizeof(struct ip6_hdr);
1158 } else {
1159 rt = tcp_rtlookup(&sc->sc_inc);
1160 if (rt != NULL)
1161 mssopt = rt->rt_ifp->if_mtu -
1162 (sizeof(struct ip) + sizeof(struct tcphdr));
1163 else
1164 mssopt = tcp_mssdflt;
1165 hlen = sizeof(struct ip);
1168 /* Compute the size of the TCP options. */
1169 if (sc->sc_flags & SCF_NOOPT) {
1170 optlen = 0;
1171 } else {
1172 optlen = TCPOLEN_MAXSEG +
1173 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1174 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1175 ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1176 TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1177 #ifdef TCP_SIGNATURE
1178 optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1179 (TCPOLEN_SIGNATURE + 2) : 0);
1180 #endif /* TCP_SIGNATURE */
1182 tlen = hlen + sizeof(struct tcphdr) + optlen;
1185 * XXX
1186 * assume that the entire packet will fit in a header mbuf
1188 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1191 * XXX shouldn't this reuse the mbuf if possible ?
1192 * Create the IP+TCP header from scratch.
1194 if (m)
1195 m_freem(m);
1197 m = m_gethdr(M_NOWAIT, MT_HEADER);
1198 if (m == NULL)
1199 return (ENOBUFS);
1200 m->m_data += max_linkhdr;
1201 m->m_len = tlen;
1202 m->m_pkthdr.len = tlen;
1203 m->m_pkthdr.rcvif = NULL;
1204 if (tcp_prio_synack)
1205 m->m_flags |= M_PRIO;
1207 if (isipv6) {
1208 ip6 = mtod(m, struct ip6_hdr *);
1209 ip6->ip6_vfc = IPV6_VERSION;
1210 ip6->ip6_nxt = IPPROTO_TCP;
1211 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1212 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1213 ip6->ip6_plen = htons(tlen - hlen);
1214 /* ip6_hlim is set after checksum */
1215 /* ip6_flow = ??? */
1217 th = (struct tcphdr *)(ip6 + 1);
1218 } else {
1219 ip = mtod(m, struct ip *);
1220 ip->ip_v = IPVERSION;
1221 ip->ip_hl = sizeof(struct ip) >> 2;
1222 ip->ip_len = tlen;
1223 ip->ip_id = 0;
1224 ip->ip_off = 0;
1225 ip->ip_sum = 0;
1226 ip->ip_p = IPPROTO_TCP;
1227 ip->ip_src = sc->sc_inc.inc_laddr;
1228 ip->ip_dst = sc->sc_inc.inc_faddr;
1229 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1230 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1233 * See if we should do MTU discovery. Route lookups are
1234 * expensive, so we will only unset the DF bit if:
1236 * 1) path_mtu_discovery is disabled
1237 * 2) the SCF_UNREACH flag has been set
1239 if (path_mtu_discovery
1240 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1241 ip->ip_off |= IP_DF;
1244 th = (struct tcphdr *)(ip + 1);
1246 th->th_sport = sc->sc_inc.inc_lport;
1247 th->th_dport = sc->sc_inc.inc_fport;
1249 th->th_seq = htonl(sc->sc_iss);
1250 th->th_ack = htonl(sc->sc_irs + 1);
1251 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1252 th->th_x2 = 0;
1253 th->th_flags = TH_SYN | TH_ACK;
1254 th->th_win = htons(sc->sc_wnd);
1255 th->th_urp = 0;
1257 /* Tack on the TCP options. */
1258 if (optlen == 0)
1259 goto no_options;
1260 optp = (u_int8_t *)(th + 1);
1261 *optp++ = TCPOPT_MAXSEG;
1262 *optp++ = TCPOLEN_MAXSEG;
1263 *optp++ = (mssopt >> 8) & 0xff;
1264 *optp++ = mssopt & 0xff;
1266 if (sc->sc_flags & SCF_WINSCALE) {
1267 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1268 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1269 sc->sc_request_r_scale);
1270 optp += 4;
1273 if (sc->sc_flags & SCF_TIMESTAMP) {
1274 u_int32_t *lp = (u_int32_t *)(optp);
1276 /* Form timestamp option as shown in appendix A of RFC 1323. */
1277 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1278 *lp++ = htonl(ticks);
1279 *lp = htonl(sc->sc_tsrecent);
1280 optp += TCPOLEN_TSTAMP_APPA;
1283 #ifdef TCP_SIGNATURE
1285 * Handle TCP-MD5 passive opener response.
1287 if (sc->sc_flags & SCF_SIGNATURE) {
1288 u_int8_t *bp = optp;
1289 int i;
1291 *bp++ = TCPOPT_SIGNATURE;
1292 *bp++ = TCPOLEN_SIGNATURE;
1293 for (i = 0; i < TCP_SIGLEN; i++)
1294 *bp++ = 0;
1295 tcpsignature_compute(m, 0, optlen,
1296 optp + 2, IPSEC_DIR_OUTBOUND);
1297 *bp++ = TCPOPT_NOP;
1298 *bp++ = TCPOPT_EOL;
1299 optp += TCPOLEN_SIGNATURE + 2;
1301 #endif /* TCP_SIGNATURE */
1303 if (sc->sc_flags & SCF_SACK_PERMITTED) {
1304 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1305 optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1308 no_options:
1309 if (isipv6) {
1310 struct route_in6 *ro6 = &sc->sc_route6;
1312 th->th_sum = 0;
1313 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1314 ip6->ip6_hlim = in6_selecthlim(NULL,
1315 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1316 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1317 sc->sc_tp->t_inpcb);
1318 } else {
1319 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1320 htons(tlen - hlen + IPPROTO_TCP));
1321 m->m_pkthdr.csum_flags = CSUM_TCP;
1322 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1323 m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1324 KASSERT(sc->sc_flags & SCF_HASH, ("syncache has no hash"));
1325 m_sethash(m, sc->sc_hashval);
1326 error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1327 IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1329 return (error);
1333 * cookie layers:
1335 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1336 * | peer iss |
1337 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1338 * | 0 |(A)| |
1339 * (A): peer mss index
1343 * The values below are chosen to minimize the size of the tcp_secret
1344 * table, as well as providing roughly a 16 second lifetime for the cookie.
1347 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1348 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1350 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1351 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1352 #define SYNCOOKIE_TIMEOUT \
1353 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1354 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1356 static struct {
1357 u_int32_t ts_secbits[4];
1358 u_int ts_expire;
1359 } tcp_secret[SYNCOOKIE_NSECRETS];
1361 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1363 static MD5_CTX syn_ctx;
1365 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1367 struct md5_add {
1368 u_int32_t laddr, faddr;
1369 u_int32_t secbits[4];
1370 u_int16_t lport, fport;
1373 #ifdef CTASSERT
1374 CTASSERT(sizeof(struct md5_add) == 28);
1375 #endif
1378 * Consider the problem of a recreated (and retransmitted) cookie. If the
1379 * original SYN was accepted, the connection is established. The second
1380 * SYN is inflight, and if it arrives with an ISN that falls within the
1381 * receive window, the connection is killed.
1383 * However, since cookies have other problems, this may not be worth
1384 * worrying about.
1387 static u_int32_t
1388 syncookie_generate(struct syncache *sc)
1390 u_int32_t md5_buffer[4];
1391 u_int32_t data;
1392 int idx, i;
1393 struct md5_add add;
1394 #ifdef INET6
1395 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1396 #else
1397 const boolean_t isipv6 = FALSE;
1398 #endif
1400 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1401 if (tcp_secret[idx].ts_expire < ticks) {
1402 for (i = 0; i < 4; i++)
1403 tcp_secret[idx].ts_secbits[i] = karc4random();
1404 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1406 for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1407 if (tcp_msstab[data] <= sc->sc_peer_mss)
1408 break;
1409 data = (data << SYNCOOKIE_WNDBITS) | idx;
1410 data ^= sc->sc_irs; /* peer's iss */
1411 MD5Init(&syn_ctx);
1412 if (isipv6) {
1413 MD5Add(sc->sc_inc.inc6_laddr);
1414 MD5Add(sc->sc_inc.inc6_faddr);
1415 add.laddr = 0;
1416 add.faddr = 0;
1417 } else {
1418 add.laddr = sc->sc_inc.inc_laddr.s_addr;
1419 add.faddr = sc->sc_inc.inc_faddr.s_addr;
1421 add.lport = sc->sc_inc.inc_lport;
1422 add.fport = sc->sc_inc.inc_fport;
1423 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1424 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1425 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1426 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1427 MD5Add(add);
1428 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1429 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1430 return (data);
1433 static struct syncache *
1434 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1436 u_int32_t md5_buffer[4];
1437 struct syncache *sc;
1438 u_int32_t data;
1439 int wnd, idx;
1440 struct md5_add add;
1442 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1443 idx = data & SYNCOOKIE_WNDMASK;
1444 if (tcp_secret[idx].ts_expire < ticks ||
1445 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1446 return (NULL);
1447 MD5Init(&syn_ctx);
1448 #ifdef INET6
1449 if (inc->inc_isipv6) {
1450 MD5Add(inc->inc6_laddr);
1451 MD5Add(inc->inc6_faddr);
1452 add.laddr = 0;
1453 add.faddr = 0;
1454 } else
1455 #endif
1457 add.laddr = inc->inc_laddr.s_addr;
1458 add.faddr = inc->inc_faddr.s_addr;
1460 add.lport = inc->inc_lport;
1461 add.fport = inc->inc_fport;
1462 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1463 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1464 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1465 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1466 MD5Add(add);
1467 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1468 data ^= md5_buffer[0];
1469 if (data & ~SYNCOOKIE_DATAMASK)
1470 return (NULL);
1471 data = data >> SYNCOOKIE_WNDBITS;
1474 * Fill in the syncache values.
1475 * XXX duplicate code from syncache_add
1477 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1478 sc->sc_ipopts = NULL;
1479 sc->sc_inc.inc_fport = inc->inc_fport;
1480 sc->sc_inc.inc_lport = inc->inc_lport;
1481 #ifdef INET6
1482 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1483 if (inc->inc_isipv6) {
1484 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1485 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1486 sc->sc_route6.ro_rt = NULL;
1487 } else
1488 #endif
1490 sc->sc_inc.inc_faddr = inc->inc_faddr;
1491 sc->sc_inc.inc_laddr = inc->inc_laddr;
1492 sc->sc_route.ro_rt = NULL;
1494 sc->sc_irs = th->th_seq - 1;
1495 sc->sc_iss = th->th_ack - 1;
1496 wnd = ssb_space(&so->so_rcv);
1497 wnd = imax(wnd, 0);
1498 wnd = imin(wnd, TCP_MAXWIN);
1499 sc->sc_wnd = wnd;
1500 sc->sc_flags = 0;
1501 sc->sc_rxtslot = 0;
1502 sc->sc_peer_mss = tcp_msstab[data];
1503 return (sc);