2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
42 #include <sys/param.h>
43 #include <sys/systm.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
54 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
65 #include <machine/limits.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
78 #include <sys/thread2.h>
83 #define SYNCER_MAXDELAY 32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS
);
85 time_t syncdelay
= 30; /* max time to delay syncing data */
86 SYSCTL_PROC(_kern
, OID_AUTO
, syncdelay
, CTLTYPE_INT
| CTLFLAG_RW
, 0, 0,
87 sysctl_kern_syncdelay
, "I", "VFS data synchronization delay");
88 time_t filedelay
= 30; /* time to delay syncing files */
89 SYSCTL_INT(_kern
, OID_AUTO
, filedelay
, CTLFLAG_RW
,
90 &filedelay
, 0, "File synchronization delay");
91 time_t dirdelay
= 29; /* time to delay syncing directories */
92 SYSCTL_INT(_kern
, OID_AUTO
, dirdelay
, CTLFLAG_RW
,
93 &dirdelay
, 0, "Directory synchronization delay");
94 time_t metadelay
= 28; /* time to delay syncing metadata */
95 SYSCTL_INT(_kern
, OID_AUTO
, metadelay
, CTLFLAG_RW
,
96 &metadelay
, 0, "VFS metadata synchronization delay");
97 time_t retrydelay
= 1; /* retry delay after failure */
98 SYSCTL_INT(_kern
, OID_AUTO
, retrydelay
, CTLFLAG_RW
,
99 &retrydelay
, 0, "VFS retry synchronization delay");
100 static int rushjob
; /* number of slots to run ASAP */
101 static int stat_rush_requests
; /* number of times I/O speeded up */
102 SYSCTL_INT(_debug
, OID_AUTO
, rush_requests
, CTLFLAG_RW
,
103 &stat_rush_requests
, 0, "");
105 LIST_HEAD(synclist
, vnode
);
107 #define SC_FLAG_EXIT (0x1) /* request syncer exit */
108 #define SC_FLAG_DONE (0x2) /* syncer confirm exit */
112 struct lwkt_token sc_token
;
113 struct thread
*sc_thread
;
115 struct synclist
*syncer_workitem_pending
;
124 static void syncer_thread(void *);
127 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS
)
132 error
= sysctl_handle_int(oidp
, &v
, 0, req
);
133 if (error
|| !req
->newptr
)
137 if (v
> SYNCER_MAXDELAY
)
145 * The workitem queue.
147 * It is useful to delay writes of file data and filesystem metadata
148 * for tens of seconds so that quickly created and deleted files need
149 * not waste disk bandwidth being created and removed. To realize this,
150 * we append vnodes to a "workitem" queue. When running with a soft
151 * updates implementation, most pending metadata dependencies should
152 * not wait for more than a few seconds. Thus, mounted on block devices
153 * are delayed only about a half the time that file data is delayed.
154 * Similarly, directory updates are more critical, so are only delayed
155 * about a third the time that file data is delayed. Thus, there are
156 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
157 * one each second (driven off the filesystem syncer process). The
158 * syncer_delayno variable indicates the next queue that is to be processed.
159 * Items that need to be processed soon are placed in this queue:
161 * syncer_workitem_pending[syncer_delayno]
163 * A delay of fifteen seconds is done by placing the request fifteen
164 * entries later in the queue:
166 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
171 * Return the number of vnodes on the syncer's timed list. This will
172 * include the syncer vnode (mp->mnt_syncer) so if used, a minimum
173 * value of 1 will be returned.
176 vn_syncer_count(struct mount
*mp
)
178 struct syncer_ctx
*ctx
;
180 ctx
= mp
->mnt_syncer_ctx
;
182 return (ctx
->syncer_count
);
187 * Add an item to the syncer work queue.
189 * WARNING: Cannot get vp->v_token here if not already held, we must
190 * depend on the syncer_token (which might already be held by
191 * the caller) to protect v_synclist and VONWORKLST.
196 vn_syncer_add(struct vnode
*vp
, int delay
)
198 struct syncer_ctx
*ctx
;
201 ctx
= vp
->v_mount
->mnt_syncer_ctx
;
202 lwkt_gettoken(&ctx
->sc_token
);
204 if (vp
->v_flag
& VONWORKLST
) {
205 LIST_REMOVE(vp
, v_synclist
);
209 slot
= -delay
& ctx
->syncer_mask
;
211 if (delay
> SYNCER_MAXDELAY
- 2)
212 delay
= SYNCER_MAXDELAY
- 2;
213 slot
= (ctx
->syncer_delayno
+ delay
) & ctx
->syncer_mask
;
216 LIST_INSERT_HEAD(&ctx
->syncer_workitem_pending
[slot
], vp
, v_synclist
);
217 vsetflags(vp
, VONWORKLST
);
220 lwkt_reltoken(&ctx
->sc_token
);
224 * Removes the vnode from the syncer list. Since we might block while
225 * acquiring the syncer_token we have to [re]check conditions to determine
226 * that it is ok to remove the vnode.
228 * Force removal if force != 0. This can only occur during a forced unmount.
230 * vp->v_token held on call
233 vn_syncer_remove(struct vnode
*vp
, int force
)
235 struct syncer_ctx
*ctx
;
237 ctx
= vp
->v_mount
->mnt_syncer_ctx
;
238 lwkt_gettoken(&ctx
->sc_token
);
240 if ((vp
->v_flag
& (VISDIRTY
| VONWORKLST
| VOBJDIRTY
)) == VONWORKLST
&&
241 RB_EMPTY(&vp
->v_rbdirty_tree
)) {
242 vclrflags(vp
, VONWORKLST
);
243 LIST_REMOVE(vp
, v_synclist
);
245 } else if (force
&& (vp
->v_flag
& VONWORKLST
)) {
246 vclrflags(vp
, VONWORKLST
);
247 LIST_REMOVE(vp
, v_synclist
);
251 lwkt_reltoken(&ctx
->sc_token
);
255 * vnode must be locked
258 vclrisdirty(struct vnode
*vp
)
260 vclrflags(vp
, VISDIRTY
);
261 if (vp
->v_flag
& VONWORKLST
)
262 vn_syncer_remove(vp
, 0);
266 vclrobjdirty(struct vnode
*vp
)
268 vclrflags(vp
, VOBJDIRTY
);
269 if (vp
->v_flag
& VONWORKLST
)
270 vn_syncer_remove(vp
, 0);
274 * vnode must be stable
277 vsetisdirty(struct vnode
*vp
)
279 struct syncer_ctx
*ctx
;
281 if ((vp
->v_flag
& VISDIRTY
) == 0) {
282 ctx
= vp
->v_mount
->mnt_syncer_ctx
;
283 vsetflags(vp
, VISDIRTY
);
284 lwkt_gettoken(&ctx
->sc_token
);
285 if ((vp
->v_flag
& VONWORKLST
) == 0)
286 vn_syncer_add(vp
, syncdelay
);
287 lwkt_reltoken(&ctx
->sc_token
);
292 vsetobjdirty(struct vnode
*vp
)
294 struct syncer_ctx
*ctx
;
296 if ((vp
->v_flag
& VOBJDIRTY
) == 0) {
297 ctx
= vp
->v_mount
->mnt_syncer_ctx
;
298 vsetflags(vp
, VOBJDIRTY
);
299 lwkt_gettoken(&ctx
->sc_token
);
300 if ((vp
->v_flag
& VONWORKLST
) == 0)
301 vn_syncer_add(vp
, syncdelay
);
302 lwkt_reltoken(&ctx
->sc_token
);
307 * Create per-filesystem syncer process
310 vn_syncer_thr_create(struct mount
*mp
)
312 struct syncer_ctx
*ctx
;
313 static int syncalloc
= 0;
315 ctx
= kmalloc(sizeof(struct syncer_ctx
), M_TEMP
, M_WAITOK
| M_ZERO
);
318 ctx
->syncer_workitem_pending
= hashinit(SYNCER_MAXDELAY
, M_DEVBUF
,
320 ctx
->syncer_delayno
= 0;
321 lwkt_token_init(&ctx
->sc_token
, "syncer");
322 mp
->mnt_syncer_ctx
= ctx
;
323 kthread_create(syncer_thread
, ctx
, &ctx
->sc_thread
,
324 "syncer%d", ++syncalloc
& 0x7FFFFFFF);
328 * Stop per-filesystem syncer process
331 vn_syncer_thr_stop(struct mount
*mp
)
333 struct syncer_ctx
*ctx
;
335 ctx
= mp
->mnt_syncer_ctx
;
339 lwkt_gettoken(&ctx
->sc_token
);
341 /* Signal the syncer process to exit */
342 ctx
->sc_flags
|= SC_FLAG_EXIT
;
345 /* Wait till syncer process exits */
346 while ((ctx
->sc_flags
& SC_FLAG_DONE
) == 0)
347 tsleep(&ctx
->sc_flags
, 0, "syncexit", hz
);
349 mp
->mnt_syncer_ctx
= NULL
;
350 lwkt_reltoken(&ctx
->sc_token
);
352 hashdestroy(ctx
->syncer_workitem_pending
, M_DEVBUF
, ctx
->syncer_mask
);
356 struct thread
*updatethread
;
359 * System filesystem synchronizer daemon.
362 syncer_thread(void *_ctx
)
364 struct syncer_ctx
*ctx
= _ctx
;
365 struct synclist
*slp
;
370 int vnodes_synced
= 0;
375 kproc_suspend_loop();
377 starttime
= time_uptime
;
378 lwkt_gettoken(&ctx
->sc_token
);
381 * Push files whose dirty time has expired. Be careful
382 * of interrupt race on slp queue.
384 * Note that vsyncscan() and vn_syncer_one() can pull items
385 * off the same list, so we shift vp's position in the
388 slp
= &ctx
->syncer_workitem_pending
[ctx
->syncer_delayno
];
390 while ((vp
= LIST_FIRST(slp
)) != NULL
) {
391 vn_syncer_add(vp
, retrydelay
);
392 if (ctx
->syncer_forced
) {
393 if (vget(vp
, LK_EXCLUSIVE
) == 0) {
394 VOP_FSYNC(vp
, MNT_NOWAIT
, 0);
399 if (vget(vp
, LK_EXCLUSIVE
| LK_NOWAIT
) == 0) {
400 VOP_FSYNC(vp
, MNT_LAZY
, 0);
408 * Increment the slot upon completion.
410 ctx
->syncer_delayno
= (ctx
->syncer_delayno
+ 1) &
413 sc_flags
= ctx
->sc_flags
;
415 /* Exit on unmount */
416 if (sc_flags
& SC_FLAG_EXIT
)
419 lwkt_reltoken(&ctx
->sc_token
);
422 * Do sync processing for each mount.
425 bio_ops_sync(ctx
->sc_mp
);
428 * The variable rushjob allows the kernel to speed up the
429 * processing of the filesystem syncer process. A rushjob
430 * value of N tells the filesystem syncer to process the next
431 * N seconds worth of work on its queue ASAP. Currently rushjob
432 * is used by the soft update code to speed up the filesystem
433 * syncer process when the incore state is getting so far
434 * ahead of the disk that the kernel memory pool is being
435 * threatened with exhaustion.
437 delta
= rushjob
- ctx
->syncer_rushjob
;
438 if ((u_int
)delta
> syncdelay
/ 2) {
439 ctx
->syncer_rushjob
= rushjob
- syncdelay
/ 2;
440 tsleep(&dummy
, 0, "rush", 1);
444 ++ctx
->syncer_rushjob
;
445 tsleep(&dummy
, 0, "rush", 1);
450 * If it has taken us less than a second to process the
451 * current work, then wait. Otherwise start right over
452 * again. We can still lose time if any single round
453 * takes more than two seconds, but it does not really
454 * matter as we are just trying to generally pace the
455 * filesystem activity.
457 if (time_uptime
== starttime
)
458 tsleep(ctx
, 0, "syncer", hz
);
462 * Unmount/exit path for per-filesystem syncers; sc_token held
464 ctx
->sc_flags
|= SC_FLAG_DONE
;
465 sc_flagsp
= &ctx
->sc_flags
;
466 lwkt_reltoken(&ctx
->sc_token
);
473 * This allows a filesystem to pro-actively request that a dirty
474 * vnode be fsync()d. This routine does not guarantee that one
475 * will actually be fsynced.
478 vn_syncer_one(struct mount
*mp
)
480 struct syncer_ctx
*ctx
;
481 struct synclist
*slp
;
486 ctx
= mp
->mnt_syncer_ctx
;
487 i
= ctx
->syncer_delayno
& ctx
->syncer_mask
;
490 if (lwkt_trytoken(&ctx
->sc_token
) == 0)
494 * Look ahead on our syncer time array.
497 slp
= &ctx
->syncer_workitem_pending
[i
];
498 vp
= LIST_FIRST(slp
);
499 if (vp
&& vp
->v_type
== VNON
)
500 vp
= LIST_NEXT(vp
, v_synclist
);
503 i
= (i
+ 1) & ctx
->syncer_mask
;
504 /* i will be wrong if we stop here but vp is NULL so ok */
508 * Process one vnode, skip the syncer vnode but also stop
509 * if the syncer vnode is the only thing on this list.
512 vn_syncer_add(vp
, retrydelay
);
513 if (vget(vp
, LK_EXCLUSIVE
| LK_NOWAIT
) == 0) {
514 VOP_FSYNC(vp
, MNT_LAZY
, 0);
518 lwkt_reltoken(&ctx
->sc_token
);
522 * Request that the syncer daemon for a specific mount speed up its work.
523 * If mp is NULL the caller generally wants to speed up all syncers.
526 speedup_syncer(struct mount
*mp
)
529 * Don't bother protecting the test. unsleep_and_wakeup_thread()
530 * will only do something real if the thread is in the right state.
532 atomic_add_int(&rushjob
, 1);
533 ++stat_rush_requests
;
535 wakeup(mp
->mnt_syncer_ctx
);
539 * Routine to create and manage a filesystem syncer vnode.
541 static int sync_close(struct vop_close_args
*);
542 static int sync_fsync(struct vop_fsync_args
*);
543 static int sync_inactive(struct vop_inactive_args
*);
544 static int sync_reclaim (struct vop_reclaim_args
*);
545 static int sync_print(struct vop_print_args
*);
547 static struct vop_ops sync_vnode_vops
= {
548 .vop_default
= vop_eopnotsupp
,
549 .vop_close
= sync_close
,
550 .vop_fsync
= sync_fsync
,
551 .vop_inactive
= sync_inactive
,
552 .vop_reclaim
= sync_reclaim
,
553 .vop_print
= sync_print
,
556 static struct vop_ops
*sync_vnode_vops_p
= &sync_vnode_vops
;
558 VNODEOP_SET(sync_vnode_vops
);
561 * Create a new filesystem syncer vnode for the specified mount point.
562 * This vnode is placed on the worklist and is responsible for sync'ing
565 * NOTE: read-only mounts are also placed on the worklist. The filesystem
566 * sync code is also responsible for cleaning up vnodes.
569 vfs_allocate_syncvnode(struct mount
*mp
)
572 static long start
, incr
, next
;
575 /* Allocate a new vnode */
576 error
= getspecialvnode(VT_VFS
, mp
, &sync_vnode_vops_p
, &vp
, 0, 0);
578 mp
->mnt_syncer
= NULL
;
583 * Place the vnode onto the syncer worklist. We attempt to
584 * scatter them about on the list so that they will go off
585 * at evenly distributed times even if all the filesystems
586 * are mounted at once.
589 if (next
== 0 || next
> SYNCER_MAXDELAY
) {
593 start
= SYNCER_MAXDELAY
/ 2;
594 incr
= SYNCER_MAXDELAY
;
600 * Only put the syncer vnode onto the syncer list if we have a
601 * syncer thread. Some VFS's (aka NULLFS) don't need a syncer
604 if (mp
->mnt_syncer_ctx
)
605 vn_syncer_add(vp
, syncdelay
> 0 ? next
% syncdelay
: 0);
608 * The mnt_syncer field inherits the vnode reference, which is
609 * held until later decomissioning.
617 sync_close(struct vop_close_args
*ap
)
623 * Do a lazy sync of the filesystem.
625 * sync_fsync { struct vnode *a_vp, int a_waitfor }
628 sync_fsync(struct vop_fsync_args
*ap
)
630 struct vnode
*syncvp
= ap
->a_vp
;
631 struct mount
*mp
= syncvp
->v_mount
;
635 * We only need to do something if this is a lazy evaluation.
637 if ((ap
->a_waitfor
& MNT_LAZY
) == 0)
641 * Move ourselves to the back of the sync list.
643 vn_syncer_add(syncvp
, syncdelay
);
646 * Walk the list of vnodes pushing all that are dirty and
647 * not already on the sync list, and freeing vnodes which have
648 * no refs and whos VM objects are empty. vfs_msync() handles
649 * the VM issues and must be called whether the mount is readonly
652 if (vfs_busy(mp
, LK_NOWAIT
) != 0)
654 if (mp
->mnt_flag
& MNT_RDONLY
) {
655 vfs_msync(mp
, MNT_NOWAIT
);
657 asyncflag
= mp
->mnt_flag
& MNT_ASYNC
;
658 mp
->mnt_flag
&= ~MNT_ASYNC
; /* ZZZ hack */
659 vfs_msync(mp
, MNT_NOWAIT
);
660 VFS_SYNC(mp
, MNT_NOWAIT
| MNT_LAZY
);
662 mp
->mnt_flag
|= MNT_ASYNC
;
669 * The syncer vnode is no longer referenced.
671 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
674 sync_inactive(struct vop_inactive_args
*ap
)
676 vgone_vxlocked(ap
->a_vp
);
681 * The syncer vnode is no longer needed and is being decommissioned.
682 * This can only occur when the last reference has been released on
683 * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
685 * Modifications to the worklist must be protected with a critical
688 * sync_reclaim { struct vnode *a_vp }
691 sync_reclaim(struct vop_reclaim_args
*ap
)
693 struct vnode
*vp
= ap
->a_vp
;
694 struct syncer_ctx
*ctx
;
696 ctx
= vp
->v_mount
->mnt_syncer_ctx
;
698 lwkt_gettoken(&ctx
->sc_token
);
699 KKASSERT(vp
->v_mount
->mnt_syncer
!= vp
);
700 if (vp
->v_flag
& VONWORKLST
) {
701 LIST_REMOVE(vp
, v_synclist
);
702 vclrflags(vp
, VONWORKLST
);
705 lwkt_reltoken(&ctx
->sc_token
);
707 KKASSERT((vp
->v_flag
& VONWORKLST
) == 0);
714 * This is very similar to vmntvnodescan() but it only scans the
715 * vnodes on the syncer list. VFS's which support faster VFS_SYNC
716 * operations use the VISDIRTY flag on the vnode to ensure that vnodes
717 * with dirty inodes are added to the syncer in addition to vnodes
718 * with dirty buffers, and can use this function instead of nmntvnodescan().
720 * This scan does not issue VOP_FSYNC()s. The supplied callback is intended
721 * to synchronize the file in the manner intended by the VFS using it.
723 * This is important when a system has millions of vnodes.
729 int (*slowfunc
)(struct mount
*mp
, struct vnode
*vp
, void *data
),
732 struct syncer_ctx
*ctx
;
733 struct synclist
*slp
;
739 if (vmsc_flags
& VMSC_NOWAIT
)
745 * Syncer list context. This API requires a dedicated syncer thread.
748 KKASSERT(mp
->mnt_kern_flag
& MNTK_THR_SYNC
);
749 ctx
= mp
->mnt_syncer_ctx
;
750 lwkt_gettoken(&ctx
->sc_token
);
753 * Setup for loop. Allow races against the syncer thread but
754 * require that the syncer thread no be lazy if we were told
757 i
= ctx
->syncer_delayno
& ctx
->syncer_mask
;
758 if ((vmsc_flags
& VMSC_NOWAIT
) == 0)
759 ++ctx
->syncer_forced
;
760 for (count
= 0; count
<= ctx
->syncer_mask
; ++count
) {
761 slp
= &ctx
->syncer_workitem_pending
[i
];
763 while ((vp
= LIST_FIRST(slp
)) != NULL
) {
764 KKASSERT(vp
->v_mount
== mp
);
765 if (vmsc_flags
& VMSC_GETVP
) {
766 if (vget(vp
, LK_EXCLUSIVE
| lkflags
) == 0) {
767 slowfunc(mp
, vp
, data
);
770 } else if (vmsc_flags
& VMSC_GETVX
) {
772 slowfunc(mp
, vp
, data
);
776 slowfunc(mp
, vp
, data
);
781 * vp could be invalid. However, if vp is still at
782 * the head of the list it is clearly valid and we
783 * can safely move it.
785 if (LIST_FIRST(slp
) == vp
)
786 vn_syncer_add(vp
, -(i
+ syncdelay
));
788 i
= (i
+ 1) & ctx
->syncer_mask
;
791 if ((vmsc_flags
& VMSC_NOWAIT
) == 0)
792 --ctx
->syncer_forced
;
793 lwkt_reltoken(&ctx
->sc_token
);
798 * Print out a syncer vnode.
800 * sync_print { struct vnode *a_vp }
803 sync_print(struct vop_print_args
*ap
)
805 struct vnode
*vp
= ap
->a_vp
;
807 kprintf("syncer vnode");
808 lockmgr_printinfo(&vp
->v_lock
);