2 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
6 * This code is derived from software contributed to Berkeley by
7 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgment:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors, as well as Christoph
21 * Herrmann and Thomas-Henning von Kamptz.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40 * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
42 * $DragonFly: src/sbin/growfs/growfs.c,v 1.6 2007/05/20 23:21:36 dillon Exp $
45 /* ********************************************************** INCLUDES ***** */
46 #include <sys/param.h>
47 #include <sys/diskslice.h>
48 #include <sys/ioctl.h>
59 #include <vfs/ufs/dinode.h>
60 #include <vfs/ufs/fs.h>
64 /* *************************************************** GLOBALS & TYPES ***** */
66 int _dbg_lvl_
= (DL_INFO
); /* DL_TRC */
73 #define sblock fsun1.fs /* the new superblock */
74 #define osblock fsun2.fs /* the old superblock */
80 #define acg cgun1.cg /* a cylinder cgroup (new) */
81 #define aocg cgun2.cg /* an old cylinder group */
83 static char ablk
[MAXBSIZE
]; /* a block */
84 static char i1blk
[MAXBSIZE
]; /* some indirect blocks */
85 static char i2blk
[MAXBSIZE
];
86 static char i3blk
[MAXBSIZE
];
88 /* where to write back updated blocks */
89 static daddr_t in_src
, i1_src
, i2_src
, i3_src
;
91 /* what object contains the reference */
99 static struct csum
*fscs
; /* cylinder summary */
101 static struct ufs1_dinode zino
[MAXBSIZE
/sizeof(struct ufs1_dinode
)]; /* some inodes */
104 * An array of elements of type struct gfs_bpp describes all blocks to
105 * be relocated in order to free the space needed for the cylinder group
106 * summary for all cylinder groups located in the first cylinder group.
109 daddr_t old
; /* old block number */
110 daddr_t
new; /* new block number */
111 #define GFS_FL_FIRST 1
112 #define GFS_FL_LAST 2
113 unsigned int flags
; /* special handling required */
114 int found
; /* how many references were updated */
117 /* ******************************************************** PROTOTYPES ***** */
118 static void growfs(int, int, unsigned int);
119 static void rdfs(daddr_t
, size_t, void *, int);
120 static void wtfs(daddr_t
, size_t, void *, int, unsigned int);
121 static daddr_t
alloc(void);
122 static int charsperline(void);
123 static void usage(void);
124 static int isblock(struct fs
*, unsigned char *, int);
125 static void clrblock(struct fs
*, unsigned char *, int);
126 static void setblock(struct fs
*, unsigned char *, int);
127 static void initcg(int, time_t, int, unsigned int);
128 static void updjcg(int, time_t, int, int, unsigned int);
129 static void updcsloc(time_t, int, int, unsigned int);
130 static struct ufs1_dinode
*ginode(ino_t
, int, int);
131 static void frag_adjust(daddr_t
, int);
132 static void cond_bl_upd(ufs_daddr_t
*, struct gfs_bpp
*,
133 enum pointer_source
, int, unsigned int);
134 static void updclst(int);
135 static void updrefs(int, ino_t
, struct gfs_bpp
*, int, int, unsigned int);
137 /* ************************************************************ growfs ***** */
139 * Here we actually start growing the filesystem. We basically read the
140 * cylinder summary from the first cylinder group as we want to update
141 * this on the fly during our various operations. First we handle the
142 * changes in the former last cylinder group. Afterwards we create all new
143 * cylinder groups. Now we handle the cylinder group containing the
144 * cylinder summary which might result in a relocation of the whole
145 * structure. In the end we write back the updated cylinder summary, the
146 * new superblock, and slightly patched versions of the super block
150 growfs(int fsi
, int fso
, unsigned int Nflag
)
159 static int randinit
=0;
167 #else /* not FSIRAND */
175 * Get the cylinder summary into the memory.
177 fscs
= (struct csum
*)calloc((size_t)1, (size_t)sblock
.fs_cssize
);
179 errx(1, "calloc failed");
181 for (i
= 0; i
< osblock
.fs_cssize
; i
+= osblock
.fs_bsize
) {
182 rdfs(fsbtodb(&osblock
, osblock
.fs_csaddr
+
183 numfrags(&osblock
, i
)), (size_t)MIN(osblock
.fs_cssize
- i
,
184 osblock
.fs_bsize
), (void *)(((char *)fscs
)+i
), fsi
);
189 struct csum
*dbg_csp
;
194 for(dbg_csc
=0; dbg_csc
<osblock
.fs_ncg
; dbg_csc
++) {
195 snprintf(dbg_line
, sizeof(dbg_line
),
196 "%d. old csum in old location", dbg_csc
);
197 DBG_DUMP_CSUM(&osblock
,
202 #endif /* FS_DEBUG */
203 DBG_PRINT0("fscs read\n");
206 * Do all needed changes in the former last cylinder group.
208 updjcg(osblock
.fs_ncg
-1, utime
, fsi
, fso
, Nflag
);
211 * Dump out summary information about file system.
213 printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
214 sblock
.fs_size
* NSPF(&sblock
), sblock
.fs_ncyl
,
215 "cylinders", sblock
.fs_ntrak
, sblock
.fs_nsect
);
216 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
217 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
218 (float)sblock
.fs_size
* sblock
.fs_fsize
* B2MBFACTOR
,
219 sblock
.fs_ncg
, sblock
.fs_cpg
,
220 (float)sblock
.fs_fpg
* sblock
.fs_fsize
* B2MBFACTOR
,
225 * Now build the cylinders group blocks and
226 * then print out indices of cylinder groups.
228 printf("super-block backups (for fsck -b #) at:\n");
230 width
= charsperline();
233 * Iterate for only the new cylinder groups.
235 for (cylno
= osblock
.fs_ncg
; cylno
< sblock
.fs_ncg
; cylno
++) {
236 initcg(cylno
, utime
, fso
, Nflag
);
237 j
= sprintf(tmpbuf
, " %d%s",
238 (int)fsbtodb(&sblock
, cgsblock(&sblock
, cylno
)),
239 cylno
< (sblock
.fs_ncg
-1) ? "," : "" );
240 if (i
+ j
>= width
) {
245 printf("%s", tmpbuf
);
251 * Do all needed changes in the first cylinder group.
252 * allocate blocks in new location
254 updcsloc(utime
, fsi
, fso
, Nflag
);
257 * Now write the cylinder summary back to disk.
259 for (i
= 0; i
< sblock
.fs_cssize
; i
+= sblock
.fs_bsize
) {
260 wtfs(fsbtodb(&sblock
, sblock
.fs_csaddr
+ numfrags(&sblock
, i
)),
261 (size_t)MIN(sblock
.fs_cssize
- i
, sblock
.fs_bsize
),
262 (void *)(((char *)fscs
) + i
), fso
, Nflag
);
264 DBG_PRINT0("fscs written\n");
268 struct csum
*dbg_csp
;
273 for(dbg_csc
=0; dbg_csc
<sblock
.fs_ncg
; dbg_csc
++) {
274 snprintf(dbg_line
, sizeof(dbg_line
),
275 "%d. new csum in new location", dbg_csc
);
276 DBG_DUMP_CSUM(&sblock
,
281 #endif /* FS_DEBUG */
284 * Now write the new superblock back to disk.
286 sblock
.fs_time
= utime
;
287 wtfs((daddr_t
)(SBOFF
/ DEV_BSIZE
), (size_t)SBSIZE
, (void *)&sblock
,
289 DBG_PRINT0("sblock written\n");
291 "new initial sblock");
294 * Clean up the dynamic fields in our superblock copies.
299 sblock
.fs_cgrotor
= 0;
301 memset((void *)&sblock
.fs_fsmnt
, 0, sizeof(sblock
.fs_fsmnt
));
302 sblock
.fs_flags
&= FS_DOSOFTDEP
;
306 * The following fields are currently distributed from the superblock
314 * fs_flags regarding SOFTPDATES
316 * We probably should rather change the summary for the cylinder group
317 * statistics here to the value of what would be in there, if the file
318 * system were created initially with the new size. Therefor we still
319 * need to find an easy way of calculating that.
320 * Possibly we can try to read the first superblock copy and apply the
321 * "diffed" stats between the old and new superblock by still copying
322 * certain parameters onto that.
326 * Write out the duplicate super blocks.
328 for (cylno
= 0; cylno
< sblock
.fs_ncg
; cylno
++) {
329 wtfs(fsbtodb(&sblock
, cgsblock(&sblock
, cylno
)),
330 (size_t)SBSIZE
, (void *)&sblock
, fso
, Nflag
);
332 DBG_PRINT0("sblock copies written\n");
334 "new other sblocks");
340 /* ************************************************************ initcg ***** */
342 * This creates a new cylinder group structure, for more details please see
343 * the source of newfs(8), as this function is taken over almost unchanged.
344 * As this is never called for the first cylinder group, the special
345 * provisions for that case are removed here.
348 initcg(int cylno
, time_t utime
, int fso
, unsigned int Nflag
)
351 daddr_t cbase
, d
, dlower
, dupper
, dmax
, blkno
;
361 * Determine block bounds for cylinder group.
363 cbase
= cgbase(&sblock
, cylno
);
364 dmax
= cbase
+ sblock
.fs_fpg
;
365 if (dmax
> sblock
.fs_size
) {
366 dmax
= sblock
.fs_size
;
368 dlower
= cgsblock(&sblock
, cylno
) - cbase
;
369 dupper
= cgdmin(&sblock
, cylno
) - cbase
;
370 if (cylno
== 0) { /* XXX fscs may be relocated */
371 dupper
+= howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
374 memset(&acg
, 0, (size_t)sblock
.fs_cgsize
);
376 acg
.cg_magic
= CG_MAGIC
;
378 if (cylno
== sblock
.fs_ncg
- 1) {
379 acg
.cg_ncyl
= sblock
.fs_ncyl
% sblock
.fs_cpg
;
381 acg
.cg_ncyl
= sblock
.fs_cpg
;
383 acg
.cg_niblk
= sblock
.fs_ipg
;
384 acg
.cg_ndblk
= dmax
- cbase
;
385 if (sblock
.fs_contigsumsize
> 0) {
386 acg
.cg_nclusterblks
= acg
.cg_ndblk
/ sblock
.fs_frag
;
388 acg
.cg_btotoff
= &acg
.cg_space
[0] - (u_char
*)(&acg
.cg_firstfield
);
389 acg
.cg_boff
= acg
.cg_btotoff
+ sblock
.fs_cpg
* sizeof(int32_t);
390 acg
.cg_iusedoff
= acg
.cg_boff
+
391 sblock
.fs_cpg
* sblock
.fs_nrpos
* sizeof(u_int16_t
);
392 acg
.cg_freeoff
= acg
.cg_iusedoff
+ howmany(sblock
.fs_ipg
, NBBY
);
393 if (sblock
.fs_contigsumsize
<= 0) {
394 acg
.cg_nextfreeoff
= acg
.cg_freeoff
+
395 howmany(sblock
.fs_cpg
* sblock
.fs_spc
/ NSPF(&sblock
), NBBY
);
397 acg
.cg_clustersumoff
= acg
.cg_freeoff
+ howmany
398 (sblock
.fs_cpg
* sblock
.fs_spc
/ NSPF(&sblock
), NBBY
) -
400 acg
.cg_clustersumoff
=
401 roundup(acg
.cg_clustersumoff
, sizeof(u_int32_t
));
402 acg
.cg_clusteroff
= acg
.cg_clustersumoff
+
403 (sblock
.fs_contigsumsize
+ 1) * sizeof(u_int32_t
);
404 acg
.cg_nextfreeoff
= acg
.cg_clusteroff
+ howmany
405 (sblock
.fs_cpg
* sblock
.fs_spc
/ NSPB(&sblock
), NBBY
);
407 if (acg
.cg_nextfreeoff
-(int)(&acg
.cg_firstfield
) > sblock
.fs_cgsize
) {
409 * XXX This should never happen as we would have had that panic
410 * already on filesystem creation
412 errx(37, "panic: cylinder group too big");
414 acg
.cg_cs
.cs_nifree
+= sblock
.fs_ipg
;
416 for (i
= 0; (size_t)i
< ROOTINO
; i
++) {
417 setbit(cg_inosused(&acg
), i
);
418 acg
.cg_cs
.cs_nifree
--;
420 for (i
= 0; i
< sblock
.fs_ipg
/ INOPF(&sblock
); i
+= sblock
.fs_frag
) {
422 for (j
= 0; j
< sblock
.fs_bsize
/ sizeof(struct ufs1_dinode
); j
++) {
423 zino
[j
].di_gen
= random();
426 wtfs(fsbtodb(&sblock
, cgimin(&sblock
, cylno
) + i
),
427 (size_t)sblock
.fs_bsize
, (void *)zino
, fso
, Nflag
);
429 for (d
= 0; d
< dlower
; d
+= sblock
.fs_frag
) {
430 blkno
= d
/ sblock
.fs_frag
;
431 setblock(&sblock
, cg_blksfree(&acg
), blkno
);
432 if (sblock
.fs_contigsumsize
> 0) {
433 setbit(cg_clustersfree(&acg
), blkno
);
435 acg
.cg_cs
.cs_nbfree
++;
436 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]++;
437 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
438 [cbtorpos(&sblock
, d
)]++;
440 sblock
.fs_dsize
+= dlower
;
441 sblock
.fs_dsize
+= acg
.cg_ndblk
- dupper
;
442 if ((i
= dupper
% sblock
.fs_frag
)) {
443 acg
.cg_frsum
[sblock
.fs_frag
- i
]++;
444 for (d
= dupper
+ sblock
.fs_frag
- i
; dupper
< d
; dupper
++) {
445 setbit(cg_blksfree(&acg
), dupper
);
446 acg
.cg_cs
.cs_nffree
++;
449 for (d
= dupper
; d
+ sblock
.fs_frag
<= dmax
- cbase
; ) {
450 blkno
= d
/ sblock
.fs_frag
;
451 setblock(&sblock
, cg_blksfree(&acg
), blkno
);
452 if (sblock
.fs_contigsumsize
> 0) {
453 setbit(cg_clustersfree(&acg
), blkno
);
455 acg
.cg_cs
.cs_nbfree
++;
456 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]++;
457 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
458 [cbtorpos(&sblock
, d
)]++;
461 if (d
< dmax
- cbase
) {
462 acg
.cg_frsum
[dmax
- cbase
- d
]++;
463 for (; d
< dmax
- cbase
; d
++) {
464 setbit(cg_blksfree(&acg
), d
);
465 acg
.cg_cs
.cs_nffree
++;
468 if (sblock
.fs_contigsumsize
> 0) {
469 int32_t *sump
= cg_clustersum(&acg
);
470 u_char
*mapp
= cg_clustersfree(&acg
);
475 for (i
= 0; i
< acg
.cg_nclusterblks
; i
++) {
476 if ((map
& bit
) != 0) {
478 } else if (run
!= 0) {
479 if (run
> sblock
.fs_contigsumsize
) {
480 run
= sblock
.fs_contigsumsize
;
485 if ((i
& (NBBY
- 1)) != (NBBY
- 1)) {
493 if (run
> sblock
.fs_contigsumsize
) {
494 run
= sblock
.fs_contigsumsize
;
499 sblock
.fs_cstotal
.cs_ndir
+= acg
.cg_cs
.cs_ndir
;
500 sblock
.fs_cstotal
.cs_nffree
+= acg
.cg_cs
.cs_nffree
;
501 sblock
.fs_cstotal
.cs_nbfree
+= acg
.cg_cs
.cs_nbfree
;
502 sblock
.fs_cstotal
.cs_nifree
+= acg
.cg_cs
.cs_nifree
;
504 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, cylno
)),
505 (size_t)sblock
.fs_bsize
, (void *)&acg
, fso
, Nflag
);
514 /* ******************************************************* frag_adjust ***** */
516 * Here we add or subtract (sign +1/-1) the available fragments in a given
517 * block to or from the fragment statistics. By subtracting before and adding
518 * after an operation on the free frag map we can easy update the fragment
519 * statistic, which seems to be otherwise an rather complex operation.
522 frag_adjust(daddr_t frag
, int sign
)
524 DBG_FUNC("frag_adjust")
532 * Here frag only needs to point to any fragment in the block we want
535 for(f
=rounddown(frag
, sblock
.fs_frag
);
536 f
<roundup(frag
+1, sblock
.fs_frag
);
539 * Count contiguos free fragments.
541 if(isset(cg_blksfree(&acg
), f
)) {
544 if(fragsize
&& fragsize
<sblock
.fs_frag
) {
546 * We found something in between.
548 acg
.cg_frsum
[fragsize
]+=sign
;
549 DBG_PRINT2("frag_adjust [%d]+=%d\n",
556 if(fragsize
&& fragsize
<sblock
.fs_frag
) {
558 * We found something.
560 acg
.cg_frsum
[fragsize
]+=sign
;
561 DBG_PRINT2("frag_adjust [%d]+=%d\n",
565 DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
573 /* ******************************************************* cond_bl_upd ***** */
575 * Here we conditionally update a pointer to a fragment. We check for all
576 * relocated blocks if any of it's fragments is referenced by the current
577 * field, and update the pointer to the respective fragment in our new
578 * block. If we find a reference we write back the block immediately,
579 * as there is no easy way for our general block reading engine to figure
580 * out if a write back operation is needed.
583 cond_bl_upd(ufs_daddr_t
*block
, struct gfs_bpp
*field
,
584 enum pointer_source source
, int fso
, unsigned int Nflag
)
586 DBG_FUNC("cond_bl_upd")
594 while(f
->old
) { /* for all old blocks */
595 if(*block
/sblock
.fs_frag
== f
->old
) {
597 * The fragment is part of the block, so update.
599 *block
=(f
->new*sblock
.fs_frag
+(*block
%sblock
.fs_frag
));
601 DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
604 *block
%sblock
.fs_frag
);
606 /* Write the block back to disk immediately */
612 case GFS_PS_IND_BLK_LVL1
:
616 case GFS_PS_IND_BLK_LVL2
:
620 case GFS_PS_IND_BLK_LVL3
:
630 * XXX If src is not of type inode we have to
631 * implement copy on write here in case
632 * of active snapshots.
634 wtfs(dst
, (size_t)sblock
.fs_bsize
, (void *)src
,
639 * The same block can't be found again in this loop.
650 /* ************************************************************ updjcg ***** */
652 * Here we do all needed work for the former last cylinder group. It has to be
653 * changed in any case, even if the filesystem ended exactly on the end of
654 * this group, as there is some slightly inconsistent handling of the number
655 * of cylinders in the cylinder group. We start again by reading the cylinder
656 * group from disk. If the last block was not fully available, we first handle
657 * the missing fragments, then we handle all new full blocks in that file
658 * system and finally we handle the new last fragmented block in the file
659 * system. We again have to handle the fragment statistics rotational layout
660 * tables and cluster summary during all those operations.
663 updjcg(int cylno
, time_t utime
, int fsi
, int fso
, unsigned int Nflag
)
666 daddr_t cbase
, dmax
, dupper
;
674 * Read the former last (joining) cylinder group from disk, and make
677 rdfs(fsbtodb(&osblock
, cgtod(&osblock
, cylno
)),
678 (size_t)osblock
.fs_cgsize
, (void *)&aocg
, fsi
);
679 DBG_PRINT0("jcg read\n");
684 memcpy((void *)&cgun1
, (void *)&cgun2
, sizeof(cgun2
));
687 * If the cylinder group had already it's new final size almost
688 * nothing is to be done ... except:
689 * For some reason the value of cg_ncyl in the last cylinder group has
690 * to be zero instead of fs_cpg. As this is now no longer the last
691 * cylinder group we have to change that value now to fs_cpg.
694 if(cgbase(&osblock
, cylno
+1) == osblock
.fs_size
) {
695 acg
.cg_ncyl
=sblock
.fs_cpg
;
697 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, cylno
)),
698 (size_t)sblock
.fs_cgsize
, (void *)&acg
, fso
, Nflag
);
699 DBG_PRINT0("jcg written\n");
709 * Set up some variables needed later.
711 cbase
= cgbase(&sblock
, cylno
);
712 dmax
= cbase
+ sblock
.fs_fpg
;
713 if (dmax
> sblock
.fs_size
)
714 dmax
= sblock
.fs_size
;
715 dupper
= cgdmin(&sblock
, cylno
) - cbase
;
716 if (cylno
== 0) { /* XXX fscs may be relocated */
717 dupper
+= howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
721 * Set pointer to the cylinder summary for our cylinder group.
726 * Touch the cylinder group, update all fields in the cylinder group as
727 * needed, update the free space in the superblock.
730 if (cylno
== sblock
.fs_ncg
- 1) {
732 * This is still the last cylinder group.
734 acg
.cg_ncyl
= sblock
.fs_ncyl
% sblock
.fs_cpg
;
736 acg
.cg_ncyl
= sblock
.fs_cpg
;
738 DBG_PRINT4("jcg dbg: %d %u %d %u\n",
743 acg
.cg_ndblk
= dmax
- cbase
;
744 sblock
.fs_dsize
+= acg
.cg_ndblk
-aocg
.cg_ndblk
;
745 if (sblock
.fs_contigsumsize
> 0) {
746 acg
.cg_nclusterblks
= acg
.cg_ndblk
/ sblock
.fs_frag
;
750 * Now we have to update the free fragment bitmap for our new free
751 * space. There again we have to handle the fragmentation and also
752 * the rotational layout tables and the cluster summary. This is
753 * also done per fragment for the first new block if the old file
754 * system end was not on a block boundary, per fragment for the new
755 * last block if the new file system end is not on a block boundary,
756 * and per block for all space in between.
758 * Handle the first new block here if it was partially available
761 if(osblock
.fs_size
% sblock
.fs_frag
) {
762 if(roundup(osblock
.fs_size
, sblock
.fs_frag
)<=sblock
.fs_size
) {
764 * The new space is enough to fill at least this
768 for(i
=roundup(osblock
.fs_size
-cbase
, sblock
.fs_frag
)-1;
769 i
>=osblock
.fs_size
-cbase
;
771 setbit(cg_blksfree(&acg
), i
);
772 acg
.cg_cs
.cs_nffree
++;
777 * Check if the fragment just created could join an
778 * already existing fragment at the former end of the
781 if(isblock(&sblock
, cg_blksfree(&acg
),
782 ((osblock
.fs_size
- cgbase(&sblock
, cylno
))/
785 * The block is now completely available
787 DBG_PRINT0("block was\n");
788 acg
.cg_frsum
[osblock
.fs_size
%sblock
.fs_frag
]--;
789 acg
.cg_cs
.cs_nbfree
++;
790 acg
.cg_cs
.cs_nffree
-=sblock
.fs_frag
;
791 k
=rounddown(osblock
.fs_size
-cbase
,
793 cg_blktot(&acg
)[cbtocylno(&sblock
, k
)]++;
794 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, k
))
795 [cbtorpos(&sblock
, k
)]++;
796 updclst((osblock
.fs_size
-cbase
)/sblock
.fs_frag
);
799 * Lets rejoin a possible partially growed
803 while(isset(cg_blksfree(&acg
), i
) &&
804 (i
>=rounddown(osblock
.fs_size
-cbase
,
816 * We only grow by some fragments within this last
819 for(i
=sblock
.fs_size
-cbase
-1;
820 i
>=osblock
.fs_size
-cbase
;
822 setbit(cg_blksfree(&acg
), i
);
823 acg
.cg_cs
.cs_nffree
++;
827 * Lets rejoin a possible partially growed fragment.
830 while(isset(cg_blksfree(&acg
), i
) &&
831 (i
>=rounddown(osblock
.fs_size
-cbase
,
844 * Handle all new complete blocks here.
846 for(i
=roundup(osblock
.fs_size
-cbase
, sblock
.fs_frag
);
847 i
+sblock
.fs_frag
<=dmax
-cbase
; /* XXX <= or only < ? */
849 j
= i
/ sblock
.fs_frag
;
850 setblock(&sblock
, cg_blksfree(&acg
), j
);
852 acg
.cg_cs
.cs_nbfree
++;
853 cg_blktot(&acg
)[cbtocylno(&sblock
, i
)]++;
854 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, i
))
855 [cbtorpos(&sblock
, i
)]++;
859 * Handle the last new block if there are stll some new fragments left.
860 * Here we don't have to bother about the cluster summary or the even
861 * the rotational layout table.
863 if (i
< (dmax
- cbase
)) {
864 acg
.cg_frsum
[dmax
- cbase
- i
]++;
865 for (; i
< dmax
- cbase
; i
++) {
866 setbit(cg_blksfree(&acg
), i
);
867 acg
.cg_cs
.cs_nffree
++;
871 sblock
.fs_cstotal
.cs_nffree
+=
872 (acg
.cg_cs
.cs_nffree
- aocg
.cg_cs
.cs_nffree
);
873 sblock
.fs_cstotal
.cs_nbfree
+=
874 (acg
.cg_cs
.cs_nbfree
- aocg
.cg_cs
.cs_nbfree
);
876 * The following statistics are not changed here:
877 * sblock.fs_cstotal.cs_ndir
878 * sblock.fs_cstotal.cs_nifree
879 * As the statistics for this cylinder group are ready, copy it to
880 * the summary information array.
885 * Write the updated "joining" cylinder group back to disk.
887 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, cylno
)), (size_t)sblock
.fs_cgsize
,
888 (void *)&acg
, fso
, Nflag
);
889 DBG_PRINT0("jcg written\n");
898 /* ********************************************************** updcsloc ***** */
900 * Here we update the location of the cylinder summary. We have two possible
901 * ways of growing the cylinder summary.
902 * (1) We can try to grow the summary in the current location, and relocate
903 * possibly used blocks within the current cylinder group.
904 * (2) Alternatively we can relocate the whole cylinder summary to the first
905 * new completely empty cylinder group. Once the cylinder summary is no
906 * longer in the beginning of the first cylinder group you should never
907 * use a version of fsck which is not aware of the possibility to have
908 * this structure in a non standard place.
909 * Option (1) is considered to be less intrusive to the structure of the file-
910 * system. So we try to stick to that whenever possible. If there is not enough
911 * space in the cylinder group containing the cylinder summary we have to use
912 * method (2). In case of active snapshots in the filesystem we probably can
913 * completely avoid implementing copy on write if we stick to method (2) only.
916 updcsloc(time_t utime
, int fsi
, int fso
, unsigned int Nflag
)
922 daddr_t cbase
, dupper
, odupper
, d
, f
, g
;
932 if(howmany(sblock
.fs_cssize
, sblock
.fs_fsize
) ==
933 howmany(osblock
.fs_cssize
, osblock
.fs_fsize
)) {
935 * No new fragment needed.
940 ocscg
=dtog(&osblock
, osblock
.fs_csaddr
);
942 blocks
= 1+howmany(sblock
.fs_cssize
, sblock
.fs_bsize
)-
943 howmany(osblock
.fs_cssize
, osblock
.fs_bsize
);
946 * Read original cylinder group from disk, and make a copy.
947 * XXX If Nflag is set in some very rare cases we now miss
948 * some changes done in updjcg by reading the unmodified
951 rdfs(fsbtodb(&osblock
, cgtod(&osblock
, ocscg
)),
952 (size_t)osblock
.fs_cgsize
, (void *)&aocg
, fsi
);
953 DBG_PRINT0("oscg read\n");
958 memcpy((void *)&cgun1
, (void *)&cgun2
, sizeof(cgun2
));
961 * Touch the cylinder group, set up local variables needed later
962 * and update the superblock.
967 * XXX In the case of having active snapshots we may need much more
968 * blocks for the copy on write. We need each block twice, and
969 * also up to 8*3 blocks for indirect blocks for all possible
972 if(/*((int)sblock.fs_time&0x3)>0||*/ cs
->cs_nbfree
< blocks
) {
974 * There is not enough space in the old cylinder group to
975 * relocate all blocks as needed, so we relocate the whole
976 * cylinder group summary to a new group. We try to use the
977 * first complete new cylinder group just created. Within the
978 * cylinder group we allign the area immediately after the
979 * cylinder group information location in order to be as
980 * close as possible to the original implementation of ffs.
982 * First we have to make sure we'll find enough space in the
983 * new cylinder group. If not, then we currently give up.
984 * We start with freeing everything which was used by the
985 * fragments of the old cylinder summary in the current group.
986 * Now we write back the group meta data, read in the needed
987 * meta data from the new cylinder group, and start allocating
988 * within that group. Here we can assume, the group to be
989 * completely empty. Which makes the handling of fragments and
990 * clusters a lot easier.
993 if(sblock
.fs_ncg
-osblock
.fs_ncg
< 2) {
994 errx(2, "panic: not enough space");
998 * Point "d" to the first fragment not used by the cylinder
1001 d
=osblock
.fs_csaddr
+(osblock
.fs_cssize
/osblock
.fs_fsize
);
1004 * Set up last cluster size ("lcs") already here. Calculate
1005 * the size for the trailing cluster just behind where "d"
1008 if(sblock
.fs_contigsumsize
> 0) {
1009 for(block
=howmany(d
%sblock
.fs_fpg
, sblock
.fs_frag
),
1010 lcs
=0; lcs
<sblock
.fs_contigsumsize
;
1012 if(isclr(cg_clustersfree(&acg
), block
)){
1019 * Point "d" to the last frag used by the cylinder summary.
1023 DBG_PRINT1("d=%d\n",
1025 if((d
+1)%sblock
.fs_frag
) {
1027 * The end of the cylinder summary is not a complete
1031 frag_adjust(d
%sblock
.fs_fpg
, -1);
1032 for(; (d
+1)%sblock
.fs_frag
; d
--) {
1033 DBG_PRINT1("d=%d\n",
1035 setbit(cg_blksfree(&acg
), d
%sblock
.fs_fpg
);
1036 acg
.cg_cs
.cs_nffree
++;
1037 sblock
.fs_cstotal
.cs_nffree
++;
1040 * Point "d" to the last fragment of the last
1041 * (incomplete) block of the clinder summary.
1044 frag_adjust(d
%sblock
.fs_fpg
, 1);
1046 if(isblock(&sblock
, cg_blksfree(&acg
),
1047 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
)) {
1048 DBG_PRINT1("d=%d\n",
1050 acg
.cg_cs
.cs_nffree
-=sblock
.fs_frag
;
1051 acg
.cg_cs
.cs_nbfree
++;
1052 sblock
.fs_cstotal
.cs_nffree
-=sblock
.fs_frag
;
1053 sblock
.fs_cstotal
.cs_nbfree
++;
1054 cg_blktot(&acg
)[cbtocylno(&sblock
,
1055 d
%sblock
.fs_fpg
)]++;
1056 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1057 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1058 d
%sblock
.fs_fpg
)]++;
1059 if(sblock
.fs_contigsumsize
> 0) {
1060 setbit(cg_clustersfree(&acg
),
1061 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1062 if(lcs
< sblock
.fs_contigsumsize
) {
1068 cg_clustersum(&acg
)[lcs
]++;
1073 * Point "d" to the first fragment of the block before
1074 * the last incomplete block.
1079 DBG_PRINT1("d=%d\n",
1081 for(d
=rounddown(d
, sblock
.fs_frag
); d
>= osblock
.fs_csaddr
;
1082 d
-=sblock
.fs_frag
) {
1084 DBG_PRINT1("d=%d\n",
1086 setblock(&sblock
, cg_blksfree(&acg
),
1087 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1088 acg
.cg_cs
.cs_nbfree
++;
1089 sblock
.fs_cstotal
.cs_nbfree
++;
1090 cg_blktot(&acg
)[cbtocylno(&sblock
, d
%sblock
.fs_fpg
)]++;
1091 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1092 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1093 d
%sblock
.fs_fpg
)]++;
1094 if(sblock
.fs_contigsumsize
> 0) {
1095 setbit(cg_clustersfree(&acg
),
1096 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1098 * The last cluster size is already set up.
1100 if(lcs
< sblock
.fs_contigsumsize
) {
1102 cg_clustersum(&acg
)[lcs
]--;
1105 cg_clustersum(&acg
)[lcs
]++;
1112 * Now write the former cylinder group containing the cylinder
1113 * summary back to disk.
1115 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, ocscg
)),
1116 (size_t)sblock
.fs_cgsize
, (void *)&acg
, fso
, Nflag
);
1117 DBG_PRINT0("oscg written\n");
1118 DBG_DUMP_CG(&sblock
,
1123 * Find the beginning of the new cylinder group containing the
1126 sblock
.fs_csaddr
=cgdmin(&sblock
, osblock
.fs_ncg
);
1127 ncscg
=dtog(&sblock
, sblock
.fs_csaddr
);
1132 * If Nflag is specified, we would now read random data instead
1133 * of an empty cg structure from disk. So we can't simulate that
1137 DBG_PRINT0("nscg update skipped\n");
1143 * Read the future cylinder group containing the cylinder
1144 * summary from disk, and make a copy.
1146 rdfs(fsbtodb(&sblock
, cgtod(&sblock
, ncscg
)),
1147 (size_t)sblock
.fs_cgsize
, (void *)&aocg
, fsi
);
1148 DBG_PRINT0("nscg read\n");
1149 DBG_DUMP_CG(&sblock
,
1153 memcpy((void *)&cgun1
, (void *)&cgun2
, sizeof(cgun2
));
1156 * Allocate all complete blocks used by the new cylinder
1159 for(d
=sblock
.fs_csaddr
; d
+sblock
.fs_frag
<=
1160 sblock
.fs_csaddr
+(sblock
.fs_cssize
/sblock
.fs_fsize
);
1161 d
+=sblock
.fs_frag
) {
1162 clrblock(&sblock
, cg_blksfree(&acg
),
1163 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1164 acg
.cg_cs
.cs_nbfree
--;
1165 sblock
.fs_cstotal
.cs_nbfree
--;
1166 cg_blktot(&acg
)[cbtocylno(&sblock
, d
%sblock
.fs_fpg
)]--;
1167 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1168 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1169 d
%sblock
.fs_fpg
)]--;
1170 if(sblock
.fs_contigsumsize
> 0) {
1171 clrbit(cg_clustersfree(&acg
),
1172 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1177 * Allocate all fragments used by the cylinder summary in the
1180 if(d
<sblock
.fs_csaddr
+(sblock
.fs_cssize
/sblock
.fs_fsize
)) {
1181 for(; d
-sblock
.fs_csaddr
<
1182 sblock
.fs_cssize
/sblock
.fs_fsize
;
1184 clrbit(cg_blksfree(&acg
), d
%sblock
.fs_fpg
);
1185 acg
.cg_cs
.cs_nffree
--;
1186 sblock
.fs_cstotal
.cs_nffree
--;
1188 acg
.cg_cs
.cs_nbfree
--;
1189 acg
.cg_cs
.cs_nffree
+=sblock
.fs_frag
;
1190 sblock
.fs_cstotal
.cs_nbfree
--;
1191 sblock
.fs_cstotal
.cs_nffree
+=sblock
.fs_frag
;
1192 cg_blktot(&acg
)[cbtocylno(&sblock
, d
%sblock
.fs_fpg
)]--;
1193 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1194 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1195 d
%sblock
.fs_fpg
)]--;
1196 if(sblock
.fs_contigsumsize
> 0) {
1197 clrbit(cg_clustersfree(&acg
),
1198 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1201 frag_adjust(d
%sblock
.fs_fpg
, +1);
1204 * XXX Handle the cluster statistics here in the case this
1205 * cylinder group is now almost full, and the remaining
1206 * space is less then the maximum cluster size. This is
1207 * probably not needed, as you would hardly find a file
1208 * system which has only MAXCSBUFS+FS_MAXCONTIG of free
1209 * space right behind the cylinder group information in
1210 * any new cylinder group.
1214 * Update our statistics in the cylinder summary.
1219 * Write the new cylinder group containing the cylinder summary
1222 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, ncscg
)),
1223 (size_t)sblock
.fs_cgsize
, (void *)&acg
, fso
, Nflag
);
1224 DBG_PRINT0("nscg written\n");
1225 DBG_DUMP_CG(&sblock
,
1233 * We have got enough of space in the current cylinder group, so we
1234 * can relocate just a few blocks, and let the summary information
1235 * grow in place where it is right now.
1239 cbase
= cgbase(&osblock
, ocscg
); /* old and new are equal */
1240 dupper
= sblock
.fs_csaddr
- cbase
+
1241 howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
1242 odupper
= osblock
.fs_csaddr
- cbase
+
1243 howmany(osblock
.fs_cssize
, osblock
.fs_fsize
);
1245 sblock
.fs_dsize
-= dupper
-odupper
;
1248 * Allocate the space for the array of blocks to be relocated.
1250 bp
=(struct gfs_bpp
*)malloc(((dupper
-odupper
)/sblock
.fs_frag
+2)*
1251 sizeof(struct gfs_bpp
));
1253 errx(1, "malloc failed");
1255 memset((char *)bp
, 0, ((dupper
-odupper
)/sblock
.fs_frag
+2)*
1256 sizeof(struct gfs_bpp
));
1259 * Lock all new frags needed for the cylinder group summary. This is
1260 * done per fragment in the first and last block of the new required
1261 * area, and per block for all other blocks.
1263 * Handle the first new block here (but only if some fragments where
1264 * already used for the cylinder summary).
1267 frag_adjust(odupper
, -1);
1268 for(d
=odupper
; ((d
<dupper
)&&(d
%sblock
.fs_frag
)); d
++) {
1269 DBG_PRINT1("scg first frag check loop d=%d\n",
1271 if(isclr(cg_blksfree(&acg
), d
)) {
1273 bp
[ind
].old
=d
/sblock
.fs_frag
;
1274 bp
[ind
].flags
|=GFS_FL_FIRST
;
1275 if(roundup(d
, sblock
.fs_frag
) >= dupper
) {
1276 bp
[ind
].flags
|=GFS_FL_LAST
;
1281 clrbit(cg_blksfree(&acg
), d
);
1282 acg
.cg_cs
.cs_nffree
--;
1283 sblock
.fs_cstotal
.cs_nffree
--;
1286 * No cluster handling is needed here, as there was at least
1287 * one fragment in use by the cylinder summary in the old
1289 * No block-free counter handling here as this block was not
1293 frag_adjust(odupper
, 1);
1296 * Handle all needed complete blocks here.
1298 for(; d
+sblock
.fs_frag
<=dupper
; d
+=sblock
.fs_frag
) {
1299 DBG_PRINT1("scg block check loop d=%d\n",
1301 if(!isblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
)) {
1302 for(f
=d
; f
<d
+sblock
.fs_frag
; f
++) {
1303 if(isset(cg_blksfree(&aocg
), f
)) {
1304 acg
.cg_cs
.cs_nffree
--;
1305 sblock
.fs_cstotal
.cs_nffree
--;
1308 clrblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
);
1309 bp
[ind
].old
=d
/sblock
.fs_frag
;
1312 clrblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
);
1313 acg
.cg_cs
.cs_nbfree
--;
1314 sblock
.fs_cstotal
.cs_nbfree
--;
1315 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]--;
1316 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
1317 [cbtorpos(&sblock
, d
)]--;
1318 if(sblock
.fs_contigsumsize
> 0) {
1319 clrbit(cg_clustersfree(&acg
), d
/sblock
.fs_frag
);
1320 for(lcs
=0, l
=(d
/sblock
.fs_frag
)+1;
1321 lcs
<sblock
.fs_contigsumsize
;
1323 if(isclr(cg_clustersfree(&acg
),l
)){
1327 if(lcs
< sblock
.fs_contigsumsize
) {
1328 cg_clustersum(&acg
)[lcs
+1]--;
1330 cg_clustersum(&acg
)[lcs
]++;
1336 * No fragment counter handling is needed here, as this finally
1337 * doesn't change after the relocation.
1342 * Handle all fragments needed in the last new affected block.
1345 frag_adjust(dupper
-1, -1);
1347 if(isblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
)) {
1348 acg
.cg_cs
.cs_nbfree
--;
1349 sblock
.fs_cstotal
.cs_nbfree
--;
1350 acg
.cg_cs
.cs_nffree
+=sblock
.fs_frag
;
1351 sblock
.fs_cstotal
.cs_nffree
+=sblock
.fs_frag
;
1352 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]--;
1353 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
1354 [cbtorpos(&sblock
, d
)]--;
1355 if(sblock
.fs_contigsumsize
> 0) {
1356 clrbit(cg_clustersfree(&acg
), d
/sblock
.fs_frag
);
1357 for(lcs
=0, l
=(d
/sblock
.fs_frag
)+1;
1358 lcs
<sblock
.fs_contigsumsize
;
1360 if(isclr(cg_clustersfree(&acg
),l
)){
1364 if(lcs
< sblock
.fs_contigsumsize
) {
1365 cg_clustersum(&acg
)[lcs
+1]--;
1367 cg_clustersum(&acg
)[lcs
]++;
1373 for(; d
<dupper
; d
++) {
1374 DBG_PRINT1("scg second frag check loop d=%d\n",
1376 if(isclr(cg_blksfree(&acg
), d
)) {
1377 bp
[ind
].old
=d
/sblock
.fs_frag
;
1378 bp
[ind
].flags
|=GFS_FL_LAST
;
1380 clrbit(cg_blksfree(&acg
), d
);
1381 acg
.cg_cs
.cs_nffree
--;
1382 sblock
.fs_cstotal
.cs_nffree
--;
1385 if(bp
[ind
].flags
& GFS_FL_LAST
) { /* we have to advance here */
1388 frag_adjust(dupper
-1, 1);
1392 * If we found a block to relocate just do so.
1395 for(i
=0; i
<ind
; i
++) {
1396 if(!bp
[i
].old
) { /* no more blocks listed */
1398 * XXX A relative blocknumber should not be
1399 * zero, which is not explicitly
1400 * guaranteed by our code.
1405 * Allocate a complete block in the same (current)
1408 bp
[i
].new=alloc()/sblock
.fs_frag
;
1411 * There is no frag_adjust() needed for the new block
1412 * as it will have no fragments yet :-).
1414 for(f
=bp
[i
].old
*sblock
.fs_frag
,
1415 g
=bp
[i
].new*sblock
.fs_frag
;
1416 f
<(bp
[i
].old
+1)*sblock
.fs_frag
;
1418 if(isset(cg_blksfree(&aocg
), f
)) {
1419 setbit(cg_blksfree(&acg
), g
);
1420 acg
.cg_cs
.cs_nffree
++;
1421 sblock
.fs_cstotal
.cs_nffree
++;
1426 * Special handling is required if this was the first
1427 * block. We have to consider the fragments which were
1428 * used by the cylinder summary in the original block
1429 * which re to be free in the copy of our block. We
1430 * have to be careful if this first block happens to
1431 * be also the last block to be relocated.
1433 if(bp
[i
].flags
& GFS_FL_FIRST
) {
1434 for(f
=bp
[i
].old
*sblock
.fs_frag
,
1435 g
=bp
[i
].new*sblock
.fs_frag
;
1438 setbit(cg_blksfree(&acg
), g
);
1439 acg
.cg_cs
.cs_nffree
++;
1440 sblock
.fs_cstotal
.cs_nffree
++;
1442 if(!(bp
[i
].flags
& GFS_FL_LAST
)) {
1443 frag_adjust(bp
[i
].new*sblock
.fs_frag
,1);
1449 * Special handling is required if this is the last
1450 * block to be relocated.
1452 if(bp
[i
].flags
& GFS_FL_LAST
) {
1453 frag_adjust(bp
[i
].new*sblock
.fs_frag
, 1);
1454 frag_adjust(bp
[i
].old
*sblock
.fs_frag
, -1);
1456 f
<roundup(dupper
, sblock
.fs_frag
);
1458 if(isclr(cg_blksfree(&acg
), f
)) {
1459 setbit(cg_blksfree(&acg
), f
);
1460 acg
.cg_cs
.cs_nffree
++;
1461 sblock
.fs_cstotal
.cs_nffree
++;
1464 frag_adjust(bp
[i
].old
*sblock
.fs_frag
, 1);
1468 * !!! Attach the cylindergroup offset here.
1470 bp
[i
].old
+=cbase
/sblock
.fs_frag
;
1471 bp
[i
].new+=cbase
/sblock
.fs_frag
;
1474 * Copy the content of the block.
1477 * XXX Here we will have to implement a copy on write
1478 * in the case we have any active snapshots.
1480 rdfs(fsbtodb(&sblock
, bp
[i
].old
*sblock
.fs_frag
),
1481 (size_t)sblock
.fs_bsize
, (void *)&ablk
, fsi
);
1482 wtfs(fsbtodb(&sblock
, bp
[i
].new*sblock
.fs_frag
),
1483 (size_t)sblock
.fs_bsize
, (void *)&ablk
, fso
, Nflag
);
1484 DBG_DUMP_HEX(&sblock
,
1485 "copied full block",
1486 (unsigned char *)&ablk
);
1488 DBG_PRINT2("scg (%d->%d) block relocated\n",
1494 * Now we have to update all references to any fragment which
1495 * belongs to any block relocated. We iterate now over all
1496 * cylinder groups, within those over all non zero length
1499 for(cylno
=0; cylno
<osblock
.fs_ncg
; cylno
++) {
1500 DBG_PRINT1("scg doing cg (%d)\n",
1502 for(inc
=osblock
.fs_ipg
-1 ; inc
>=0 ; inc
--) {
1503 updrefs(cylno
, (ino_t
)inc
, bp
, fsi
, fso
, Nflag
);
1508 * All inodes are checked, now make sure the number of
1509 * references found make sense.
1511 for(i
=0; i
<ind
; i
++) {
1512 if(!bp
[i
].found
|| (bp
[i
].found
>sblock
.fs_frag
)) {
1513 warnx("error: %d refs found for block %d.",
1514 bp
[i
].found
, bp
[i
].old
);
1520 * The following statistics are not changed here:
1521 * sblock.fs_cstotal.cs_ndir
1522 * sblock.fs_cstotal.cs_nifree
1523 * The following statistics were already updated on the fly:
1524 * sblock.fs_cstotal.cs_nffree
1525 * sblock.fs_cstotal.cs_nbfree
1526 * As the statistics for this cylinder group are ready, copy it to
1527 * the summary information array.
1533 * Write summary cylinder group back to disk.
1535 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, ocscg
)), (size_t)sblock
.fs_cgsize
,
1536 (void *)&acg
, fso
, Nflag
);
1537 DBG_PRINT0("scg written\n");
1538 DBG_DUMP_CG(&sblock
,
1546 /* ************************************************************** rdfs ***** */
1548 * Here we read some block(s) from disk.
1551 rdfs(daddr_t bno
, size_t size
, void *bf
, int fsi
)
1558 if (lseek(fsi
, (off_t
)bno
* DEV_BSIZE
, 0) < 0) {
1559 err(33, "rdfs: seek error: %ld", (long)bno
);
1561 n
= read(fsi
, bf
, size
);
1562 if (n
!= (ssize_t
)size
) {
1563 err(34, "rdfs: read error: %ld", (long)bno
);
1570 /* ************************************************************** wtfs ***** */
1572 * Here we write some block(s) to disk.
1575 wtfs(daddr_t bno
, size_t size
, void *bf
, int fso
, unsigned int Nflag
)
1586 if (lseek(fso
, (off_t
)bno
* DEV_BSIZE
, SEEK_SET
) < 0) {
1587 err(35, "wtfs: seek error: %ld", (long)bno
);
1589 n
= write(fso
, bf
, size
);
1590 if (n
!= (ssize_t
)size
) {
1591 err(36, "wtfs: write error: %ld", (long)bno
);
1598 /* ************************************************************* alloc ***** */
1600 * Here we allocate a free block in the current cylinder group. It is assumed,
1601 * that acg contains the current cylinder group. As we may take a block from
1602 * somewhere in the filesystem we have to handle cluster summary here.
1612 int dlower
, dupper
, dmax
;
1616 if (acg
.cg_magic
!= CG_MAGIC
) {
1617 warnx("acg: bad magic number");
1621 if (acg
.cg_cs
.cs_nbfree
== 0) {
1622 warnx("error: cylinder group ran out of space");
1627 * We start seeking for free blocks only from the space available after
1628 * the end of the new grown cylinder summary. Otherwise we allocate a
1629 * block here which we have to relocate a couple of seconds later again
1630 * again, and we are not prepared to to this anyway.
1633 dlower
=cgsblock(&sblock
, acg
.cg_cgx
)-cgbase(&sblock
, acg
.cg_cgx
);
1634 dupper
=cgdmin(&sblock
, acg
.cg_cgx
)-cgbase(&sblock
, acg
.cg_cgx
);
1635 dmax
=cgbase(&sblock
, acg
.cg_cgx
)+sblock
.fs_fpg
;
1636 if (dmax
> sblock
.fs_size
) {
1637 dmax
= sblock
.fs_size
;
1639 dmax
-=cgbase(&sblock
, acg
.cg_cgx
); /* retransform into cg */
1640 csmin
=sblock
.fs_csaddr
-cgbase(&sblock
, acg
.cg_cgx
);
1641 csmax
=csmin
+howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
1642 DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1646 DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1650 for(d
=0; (d
<dlower
&& blkno
==-1); d
+=sblock
.fs_frag
) {
1651 if(d
>=csmin
&& d
<=csmax
) {
1654 if(isblock(&sblock
, cg_blksfree(&acg
), fragstoblks(&sblock
,
1656 blkno
= fragstoblks(&sblock
, d
);/* Yeah found a block */
1660 for(d
=dupper
; (d
<dmax
&& blkno
==-1); d
+=sblock
.fs_frag
) {
1661 if(d
>=csmin
&& d
<=csmax
) {
1664 if(isblock(&sblock
, cg_blksfree(&acg
), fragstoblks(&sblock
,
1666 blkno
= fragstoblks(&sblock
, d
);/* Yeah found a block */
1671 warnx("internal error: couldn't find promised block in cg");
1677 * This is needed if the block was found already in the first loop.
1679 d
=blkstofrags(&sblock
, blkno
);
1681 clrblock(&sblock
, cg_blksfree(&acg
), blkno
);
1682 if (sblock
.fs_contigsumsize
> 0) {
1684 * Handle the cluster allocation bitmap.
1686 clrbit(cg_clustersfree(&acg
), blkno
);
1688 * We possibly have split a cluster here, so we have to do
1689 * recalculate the sizes of the remaining cluster halves now,
1690 * and use them for updating the cluster summary information.
1692 * Lets start with the blocks before our allocated block ...
1694 for(lcs1
=0, l
=blkno
-1; lcs1
<sblock
.fs_contigsumsize
;
1696 if(isclr(cg_clustersfree(&acg
),l
)){
1701 * ... and continue with the blocks right after our allocated
1704 for(lcs2
=0, l
=blkno
+1; lcs2
<sblock
.fs_contigsumsize
;
1706 if(isclr(cg_clustersfree(&acg
),l
)){
1712 * Now update all counters.
1714 cg_clustersum(&acg
)[MIN(lcs1
+lcs2
+1,sblock
.fs_contigsumsize
)]--;
1716 cg_clustersum(&acg
)[lcs1
]++;
1719 cg_clustersum(&acg
)[lcs2
]++;
1723 * Update all statistics based on blocks.
1725 acg
.cg_cs
.cs_nbfree
--;
1726 sblock
.fs_cstotal
.cs_nbfree
--;
1727 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]--;
1728 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))[cbtorpos(&sblock
, d
)]--;
1734 /* *********************************************************** isblock ***** */
1736 * Here we check if all frags of a block are free. For more details again
1737 * please see the source of newfs(8), as this function is taken over almost
1741 isblock(struct fs
*fs
, unsigned char *cp
, int h
)
1748 switch (fs
->fs_frag
) {
1751 return (cp
[h
] == 0xff);
1753 mask
= 0x0f << ((h
& 0x1) << 2);
1755 return ((cp
[h
>> 1] & mask
) == mask
);
1757 mask
= 0x03 << ((h
& 0x3) << 1);
1759 return ((cp
[h
>> 2] & mask
) == mask
);
1761 mask
= 0x01 << (h
& 0x7);
1763 return ((cp
[h
>> 3] & mask
) == mask
);
1765 fprintf(stderr
, "isblock bad fs_frag %d\n", fs
->fs_frag
);
1771 /* ********************************************************** clrblock ***** */
1773 * Here we allocate a complete block in the block map. For more details again
1774 * please see the source of newfs(8), as this function is taken over almost
1778 clrblock(struct fs
*fs
, unsigned char *cp
, int h
)
1780 DBG_FUNC("clrblock")
1784 switch ((fs
)->fs_frag
) {
1789 cp
[h
>> 1] &= ~(0x0f << ((h
& 0x1) << 2));
1792 cp
[h
>> 2] &= ~(0x03 << ((h
& 0x3) << 1));
1795 cp
[h
>> 3] &= ~(0x01 << (h
& 0x7));
1798 warnx("clrblock bad fs_frag %d", fs
->fs_frag
);
1806 /* ********************************************************** setblock ***** */
1808 * Here we free a complete block in the free block map. For more details again
1809 * please see the source of newfs(8), as this function is taken over almost
1813 setblock(struct fs
*fs
, unsigned char *cp
, int h
)
1815 DBG_FUNC("setblock")
1819 switch (fs
->fs_frag
) {
1824 cp
[h
>> 1] |= (0x0f << ((h
& 0x1) << 2));
1827 cp
[h
>> 2] |= (0x03 << ((h
& 0x3) << 1));
1830 cp
[h
>> 3] |= (0x01 << (h
& 0x7));
1833 warnx("setblock bad fs_frag %d", fs
->fs_frag
);
1841 /* ************************************************************ ginode ***** */
1843 * This function provides access to an individual inode. We find out in which
1844 * block the requested inode is located, read it from disk if needed, and
1845 * return the pointer into that block. We maintain a cache of one block to
1846 * not read the same block again and again if we iterate linearly over all
1849 static struct ufs1_dinode
*
1850 ginode(ino_t inumber
, int fsi
, int cg
)
1854 static ino_t startinum
=0; /* first inode in cached block */
1855 struct ufs1_dinode
*pi
;
1859 pi
=(struct ufs1_dinode
*)(void *)ablk
;
1860 inumber
+=(cg
* sblock
.fs_ipg
);
1861 if (startinum
== 0 || inumber
< startinum
||
1862 inumber
>= startinum
+ INOPB(&sblock
)) {
1864 * The block needed is not cached, so we have to read it from
1867 iblk
= ino_to_fsba(&sblock
, inumber
);
1868 in_src
=fsbtodb(&sblock
, iblk
);
1869 rdfs(in_src
, (size_t)sblock
.fs_bsize
, (void *)&ablk
, fsi
);
1870 startinum
= (inumber
/ INOPB(&sblock
)) * INOPB(&sblock
);
1874 return (&(pi
[inumber
% INOPB(&sblock
)]));
1877 /* ****************************************************** charsperline ***** */
1879 * Figure out how many lines our current terminal has. For more details again
1880 * please see the source of newfs(8), as this function is taken over almost
1886 DBG_FUNC("charsperline")
1894 if (ioctl(0, TIOCGWINSZ
, &ws
) != -1) {
1895 columns
= ws
.ws_col
;
1897 if (columns
== 0 && (cp
= getenv("COLUMNS"))) {
1901 columns
= 80; /* last resort */
1908 /* ************************************************************** main ***** */
1910 * growfs(8) is a utility which allows to increase the size of an existing
1911 * ufs filesystem. Currently this can only be done on unmounted file system.
1912 * It recognizes some command line options to specify the new desired size,
1913 * and it does some basic checkings. The old file system size is determined
1914 * and after some more checks like we can really access the new last block
1915 * on the disk etc. we calculate the new parameters for the superblock. After
1916 * having done this we just call growfs() which will do the work. Before
1917 * we finish the only thing left is to update the disklabel.
1918 * We still have to provide support for snapshots. Therefore we first have to
1919 * understand what data structures are always replicated in the snapshot on
1920 * creation, for all other blocks we touch during our procedure, we have to
1921 * keep the old blocks unchanged somewhere available for the snapshots. If we
1922 * are lucky, then we only have to handle our blocks to be relocated in that
1924 * Also we have to consider in what order we actually update the critical
1925 * data structures of the filesystem to make sure, that in case of a disaster
1926 * fsck(8) is still able to restore any lost data.
1927 * The foreseen last step then will be to provide for growing even mounted
1928 * file systems. There we have to extend the mount() system call to provide
1929 * userland access to the file system locking facility.
1932 main(int argc
, char **argv
)
1935 struct partinfo pinfo
;
1936 char *device
, *special
, *cp
;
1938 unsigned int size
=0;
1940 unsigned int Nflag
=0;
1947 #endif /* FSMAXSNAP */
1951 while((ch
=getopt(argc
, argv
, "Ns:vy")) != -1) {
1957 size
=(size_t)atol(optarg
);
1962 case 'v': /* for compatibility to newfs */
1982 * Now try to guess the (raw)device name.
1984 if (0 == strrchr(device
, '/')) {
1986 * No path prefix was given, so try in that order:
1992 * FreeBSD now doesn't distinguish between raw and block
1993 * devices any longer, but it should still work this way.
1995 len
=strlen(device
)+strlen(_PATH_DEV
)+2+strlen("vinum/");
1996 special
=(char *)malloc(len
);
1997 if(special
== NULL
) {
1998 errx(1, "malloc failed");
2000 snprintf(special
, len
, "%sr%s", _PATH_DEV
, device
);
2001 if (stat(special
, &st
) == -1) {
2002 snprintf(special
, len
, "%s%s", _PATH_DEV
, device
);
2003 if (stat(special
, &st
) == -1) {
2004 snprintf(special
, len
, "%svinum/r%s",
2006 if (stat(special
, &st
) == -1) {
2007 /* For now this is the 'last resort' */
2008 snprintf(special
, len
, "%svinum/%s",
2017 * Try to access our devices for writing ...
2022 fso
= open(device
, O_WRONLY
);
2024 err(1, "%s", device
);
2031 fsi
= open(device
, O_RDONLY
);
2033 err(1, "%s", device
);
2037 * Try to read a label and gess the slice if not specified. This
2038 * code should guess the right thing and avaid to bother the user
2039 * user with the task of specifying the option -v on vinum volumes.
2041 cp
=device
+strlen(device
)-1;
2043 if (ioctl(fsi
, DIOCGPART
, &pinfo
) < 0) {
2044 if (fstat(fsi
, &st
) < 0)
2045 err(1, "unable to figure out the partition size");
2046 pinfo
.media_blocks
= st
.st_size
/ DEV_BSIZE
;
2047 pinfo
.media_blksize
= DEV_BSIZE
;
2051 * Check if that partition looks suited for growing a file system.
2053 if (pinfo
.media_blocks
< 1) {
2054 errx(1, "partition is unavailable");
2058 * Read the current superblock, and take a backup.
2060 rdfs((daddr_t
)(SBOFF
/DEV_BSIZE
), (size_t)SBSIZE
, (void *)&(osblock
),
2062 if (osblock
.fs_magic
!= FS_MAGIC
) {
2063 errx(1, "superblock not recognized");
2065 memcpy((void *)&fsun1
, (void *)&fsun2
, sizeof(fsun2
));
2067 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2068 DBG_DUMP_FS(&sblock
,
2072 * Determine size to grow to. Default to the full size specified in
2075 sblock
.fs_size
= dbtofsb(&osblock
, pinfo
.media_blocks
);
2077 if (size
> pinfo
.media_blocks
){
2078 errx(1, "There is not enough space (%ju < %d)",
2079 (intmax_t)pinfo
.media_blocks
, size
);
2081 sblock
.fs_size
= dbtofsb(&osblock
, size
);
2085 * Are we really growing ?
2087 if(osblock
.fs_size
>= sblock
.fs_size
) {
2088 errx(1, "we are not growing (%d->%d)", osblock
.fs_size
,
2095 * Check if we find an active snapshot.
2097 if(ExpertFlag
== 0) {
2098 for(j
=0; j
<FSMAXSNAP
; j
++) {
2099 if(sblock
.fs_snapinum
[j
]) {
2100 errx(1, "active snapshot found in filesystem\n"
2101 " please remove all snapshots before "
2104 if(!sblock
.fs_snapinum
[j
]) { /* list is dense */
2111 if (ExpertFlag
== 0 && Nflag
== 0) {
2112 printf("We strongly recommend you to make a backup "
2113 "before growing the Filesystem\n\n"
2114 " Did you backup your data (Yes/No) ? ");
2115 fgets(reply
, (int)sizeof(reply
), stdin
);
2116 if (strcmp(reply
, "Yes\n")){
2117 printf("\n Nothing done \n");
2122 printf("new filesystemsize is: %d frags\n", sblock
.fs_size
);
2125 * Try to access our new last block in the filesystem. Even if we
2126 * later on realize we have to abort our operation, on that block
2127 * there should be no data, so we can't destroy something yet.
2129 wtfs((daddr_t
)pinfo
.media_blocks
-1, (size_t)DEV_BSIZE
, (void *)&sblock
, fso
,
2133 * Now calculate new superblock values and check for reasonable
2134 * bound for new file system size:
2135 * fs_size: is derived from label or user input
2136 * fs_dsize: should get updated in the routines creating or
2137 * updating the cylinder groups on the fly
2138 * fs_cstotal: should get updated in the routines creating or
2139 * updating the cylinder groups
2143 * Update the number of cylinders in the filesystem.
2145 sblock
.fs_ncyl
= sblock
.fs_size
* NSPF(&sblock
) / sblock
.fs_spc
;
2146 if (sblock
.fs_size
* NSPF(&sblock
) > sblock
.fs_ncyl
* sblock
.fs_spc
) {
2151 * Update the number of cylinder groups in the filesystem.
2153 sblock
.fs_ncg
= sblock
.fs_ncyl
/ sblock
.fs_cpg
;
2154 if (sblock
.fs_ncyl
% sblock
.fs_cpg
) {
2158 if ((sblock
.fs_size
- (sblock
.fs_ncg
-1) * sblock
.fs_fpg
) <
2159 sblock
.fs_fpg
&& cgdmin(&sblock
, (sblock
.fs_ncg
-1))-
2160 cgbase(&sblock
, (sblock
.fs_ncg
-1)) > (sblock
.fs_size
-
2161 (sblock
.fs_ncg
-1) * sblock
.fs_fpg
)) {
2163 * The space in the new last cylinder group is too small,
2167 #if 1 /* this is a bit more safe */
2168 sblock
.fs_ncyl
= sblock
.fs_ncg
* sblock
.fs_cpg
;
2170 sblock
.fs_ncyl
-= sblock
.fs_ncyl
% sblock
.fs_cpg
;
2172 sblock
.fs_ncyl
-= sblock
.fs_ncyl
% sblock
.fs_cpg
;
2173 printf( "Warning: %d sector(s) cannot be allocated.\n",
2174 (sblock
.fs_size
-(sblock
.fs_ncg
)*sblock
.fs_fpg
) *
2176 sblock
.fs_size
= sblock
.fs_ncyl
* sblock
.fs_spc
/ NSPF(&sblock
);
2180 * Update the space for the cylinder group summary information in the
2181 * respective cylinder group data area.
2184 fragroundup(&sblock
, sblock
.fs_ncg
* sizeof(struct csum
));
2186 if(osblock
.fs_size
>= sblock
.fs_size
) {
2187 errx(1, "not enough new space");
2190 DBG_PRINT0("sblock calculated\n");
2193 * Ok, everything prepared, so now let's do the tricks.
2195 growfs(fsi
, fso
, Nflag
);
2198 if(fso
>-1) close(fso
);
2206 /* ************************************************************* usage ***** */
2208 * Dump a line of usage.
2217 fprintf(stderr
, "usage: growfs [-Ny] [-s size] special\n");
2223 /* *********************************************************** updclst ***** */
2225 * This updates most paramters and the bitmap related to cluster. We have to
2226 * assume, that sblock, osblock, acg are set up.
2236 if(sblock
.fs_contigsumsize
< 1) { /* no clustering */
2240 * update cluster allocation map
2242 setbit(cg_clustersfree(&acg
), block
);
2245 * update cluster summary table
2249 * calculate size for the trailing cluster
2251 for(block
--; lcs
<sblock
.fs_contigsumsize
; block
--, lcs
++ ) {
2252 if(isclr(cg_clustersfree(&acg
), block
)){
2257 if(lcs
< sblock
.fs_contigsumsize
) {
2259 cg_clustersum(&acg
)[lcs
]--;
2262 cg_clustersum(&acg
)[lcs
]++;
2269 /* *********************************************************** updrefs ***** */
2271 * This updates all references to relocated blocks for the given inode. The
2272 * inode is given as number within the cylinder group, and the number of the
2276 updrefs(int cg
, ino_t in
, struct gfs_bpp
*bp
, int fsi
, int fso
, unsigned int
2280 unsigned int ictr
, ind2ctr
, ind3ctr
;
2281 ufs_daddr_t
*iptr
, *ind2ptr
, *ind3ptr
;
2282 struct ufs1_dinode
*ino
;
2283 int remaining_blocks
;
2288 * XXX We should skip unused inodes even from beeing read from disk
2289 * here by using the bitmap.
2291 ino
=ginode(in
, fsi
, cg
);
2292 if(!((ino
->di_mode
& IFMT
)==IFDIR
|| (ino
->di_mode
& IFMT
)==IFREG
||
2293 (ino
->di_mode
& IFMT
)==IFLNK
)) {
2295 return; /* only check DIR, FILE, LINK */
2297 if(((ino
->di_mode
& IFMT
)==IFLNK
) && (ino
->di_size
<MAXSYMLINKLEN
)) {
2299 return; /* skip short symlinks */
2303 return; /* skip empty file */
2305 if(!ino
->di_blocks
) {
2307 return; /* skip empty swiss cheesy file or old fastlink */
2309 DBG_PRINT2("scg checking inode (%d in %d)\n",
2314 * Start checking all direct blocks.
2316 remaining_blocks
=howmany(ino
->di_size
, sblock
.fs_bsize
);
2317 for(ictr
=0; ictr
< MIN(NDADDR
, (unsigned int)remaining_blocks
);
2319 iptr
=&(ino
->di_db
[ictr
]);
2321 cond_bl_upd(iptr
, bp
, GFS_PS_INODE
, fso
, Nflag
);
2324 DBG_PRINT0("~~scg direct blocks checked\n");
2326 remaining_blocks
-=NDADDR
;
2327 if(remaining_blocks
<0) {
2333 * Start checking first indirect block
2335 cond_bl_upd(&(ino
->di_ib
[0]), bp
, GFS_PS_INODE
, fso
, Nflag
);
2336 i1_src
=fsbtodb(&sblock
, ino
->di_ib
[0]);
2337 rdfs(i1_src
, (size_t)sblock
.fs_bsize
, (void *)&i1blk
, fsi
);
2338 for(ictr
=0; ictr
< MIN(howmany(sblock
.fs_bsize
,
2339 sizeof(ufs_daddr_t
)), (unsigned int)remaining_blocks
);
2341 iptr
=&((ufs_daddr_t
*)(void *)&i1blk
)[ictr
];
2343 cond_bl_upd(iptr
, bp
, GFS_PS_IND_BLK_LVL1
,
2348 DBG_PRINT0("scg indirect_1 blocks checked\n");
2350 remaining_blocks
-= howmany(sblock
.fs_bsize
, sizeof(ufs_daddr_t
));
2351 if(remaining_blocks
<0) {
2357 * Start checking second indirect block
2359 cond_bl_upd(&(ino
->di_ib
[1]), bp
, GFS_PS_INODE
, fso
, Nflag
);
2360 i2_src
=fsbtodb(&sblock
, ino
->di_ib
[1]);
2361 rdfs(i2_src
, (size_t)sblock
.fs_bsize
, (void *)&i2blk
, fsi
);
2362 for(ind2ctr
=0; ind2ctr
< howmany(sblock
.fs_bsize
,
2363 sizeof(ufs_daddr_t
)); ind2ctr
++) {
2364 ind2ptr
=&((ufs_daddr_t
*)(void *)&i2blk
)[ind2ctr
];
2368 cond_bl_upd(ind2ptr
, bp
, GFS_PS_IND_BLK_LVL2
, fso
,
2370 i1_src
=fsbtodb(&sblock
, *ind2ptr
);
2371 rdfs(i1_src
, (size_t)sblock
.fs_bsize
, (void *)&i1blk
,
2373 for(ictr
=0; ictr
<MIN(howmany((unsigned int)
2374 sblock
.fs_bsize
, sizeof(ufs_daddr_t
)),
2375 (unsigned int)remaining_blocks
); ictr
++) {
2376 iptr
=&((ufs_daddr_t
*)(void *)&i1blk
)[ictr
];
2378 cond_bl_upd(iptr
, bp
,
2379 GFS_PS_IND_BLK_LVL1
, fso
, Nflag
);
2384 DBG_PRINT0("scg indirect_2 blocks checked\n");
2386 #define SQUARE(a) ((a)*(a))
2387 remaining_blocks
-=SQUARE(howmany(sblock
.fs_bsize
, sizeof(ufs_daddr_t
)));
2389 if(remaining_blocks
<0) {
2396 * Start checking third indirect block
2398 cond_bl_upd(&(ino
->di_ib
[2]), bp
, GFS_PS_INODE
, fso
, Nflag
);
2399 i3_src
=fsbtodb(&sblock
, ino
->di_ib
[2]);
2400 rdfs(i3_src
, (size_t)sblock
.fs_bsize
, (void *)&i3blk
, fsi
);
2401 for(ind3ctr
=0; ind3ctr
< howmany(sblock
.fs_bsize
,
2402 sizeof(ufs_daddr_t
)); ind3ctr
++) {
2403 ind3ptr
=&((ufs_daddr_t
*)(void *)&i3blk
)[ind3ctr
];
2407 cond_bl_upd(ind3ptr
, bp
, GFS_PS_IND_BLK_LVL3
, fso
,
2409 i2_src
=fsbtodb(&sblock
, *ind3ptr
);
2410 rdfs(i2_src
, (size_t)sblock
.fs_bsize
, (void *)&i2blk
,
2412 for(ind2ctr
=0; ind2ctr
< howmany(sblock
.fs_bsize
,
2413 sizeof(ufs_daddr_t
)); ind2ctr
++) {
2414 ind2ptr
=&((ufs_daddr_t
*)(void *)&i2blk
)
2419 cond_bl_upd(ind2ptr
, bp
, GFS_PS_IND_BLK_LVL2
,
2421 i1_src
=fsbtodb(&sblock
, *ind2ptr
);
2422 rdfs(i1_src
, (size_t)sblock
.fs_bsize
,
2423 (void *)&i1blk
, fsi
);
2424 for(ictr
=0; ictr
< MIN(howmany(sblock
.fs_bsize
,
2425 sizeof(ufs_daddr_t
)),
2426 (unsigned int)remaining_blocks
); ictr
++) {
2427 iptr
=&((ufs_daddr_t
*)(void *)&i1blk
)
2430 cond_bl_upd(iptr
, bp
,
2431 GFS_PS_IND_BLK_LVL1
, fso
,
2439 DBG_PRINT0("scg indirect_3 blocks checked\n");