kernel: Remove some references to i386.
[dragonfly.git] / sys / vm / vm_page.c
blobc1f3634bd10ec15a328f699f57dfe36fc62c15e6
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
9 * This code is derived from software contributed to The DragonFly Project
10 * by Matthew Dillon <dillon@backplane.com>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
67 * Resident memory management module. The module manipulates 'VM pages'.
68 * A VM page is the core building block for memory management.
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
104 * SET - Minimum required set associative size, must be a power of 2. We
105 * want this to match or exceed the set-associativeness of the cpu.
107 * GRP - A larger set that allows bleed-over into the domains of other
108 * nearby cpus. Also must be a power of 2. Used by the page zeroing
109 * code to smooth things out a bit.
111 #define PQ_SET_ASSOC 16
112 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
114 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
124 * Array of tailq lists
126 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
128 static volatile int vm_pages_waiting;
129 static struct alist vm_contig_alist;
130 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
131 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
133 static u_long vm_dma_reserved = 0;
134 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
135 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
136 "Memory reserved for DMA");
137 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
138 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
140 static int vm_contig_verbose = 0;
141 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
143 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
144 vm_pindex_t, pindex);
146 static void
147 vm_page_queue_init(void)
149 int i;
151 for (i = 0; i < PQ_L2_SIZE; i++)
152 vm_page_queues[PQ_FREE+i].cnt_offset =
153 offsetof(struct vmstats, v_free_count);
154 for (i = 0; i < PQ_L2_SIZE; i++)
155 vm_page_queues[PQ_CACHE+i].cnt_offset =
156 offsetof(struct vmstats, v_cache_count);
157 for (i = 0; i < PQ_L2_SIZE; i++)
158 vm_page_queues[PQ_INACTIVE+i].cnt_offset =
159 offsetof(struct vmstats, v_inactive_count);
160 for (i = 0; i < PQ_L2_SIZE; i++)
161 vm_page_queues[PQ_ACTIVE+i].cnt_offset =
162 offsetof(struct vmstats, v_active_count);
163 for (i = 0; i < PQ_L2_SIZE; i++)
164 vm_page_queues[PQ_HOLD+i].cnt_offset =
165 offsetof(struct vmstats, v_active_count);
166 /* PQ_NONE has no queue */
168 for (i = 0; i < PQ_COUNT; i++) {
169 TAILQ_INIT(&vm_page_queues[i].pl);
170 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
175 * note: place in initialized data section? Is this necessary?
177 vm_pindex_t first_page = 0;
178 vm_pindex_t vm_page_array_size = 0;
179 vm_page_t vm_page_array = NULL;
180 vm_paddr_t vm_low_phys_reserved;
183 * (low level boot)
185 * Sets the page size, perhaps based upon the memory size.
186 * Must be called before any use of page-size dependent functions.
188 void
189 vm_set_page_size(void)
191 if (vmstats.v_page_size == 0)
192 vmstats.v_page_size = PAGE_SIZE;
193 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
194 panic("vm_set_page_size: page size not a power of two");
198 * (low level boot)
200 * Add a new page to the freelist for use by the system. New pages
201 * are added to both the head and tail of the associated free page
202 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
203 * requests pull 'recent' adds (higher physical addresses) first.
205 * Beware that the page zeroing daemon will also be running soon after
206 * boot, moving pages from the head to the tail of the PQ_FREE queues.
208 * Must be called in a critical section.
210 static void
211 vm_add_new_page(vm_paddr_t pa)
213 struct vpgqueues *vpq;
214 vm_page_t m;
216 m = PHYS_TO_VM_PAGE(pa);
217 m->phys_addr = pa;
218 m->flags = 0;
219 m->pat_mode = PAT_WRITE_BACK;
220 m->pc = (pa >> PAGE_SHIFT);
223 * Twist for cpu localization in addition to page coloring, so
224 * different cpus selecting by m->queue get different page colors.
226 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
227 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
228 m->pc &= PQ_L2_MASK;
231 * Reserve a certain number of contiguous low memory pages for
232 * contigmalloc() to use.
234 if (pa < vm_low_phys_reserved) {
235 atomic_add_long(&vmstats.v_page_count, 1);
236 atomic_add_long(&vmstats.v_dma_pages, 1);
237 m->queue = PQ_NONE;
238 m->wire_count = 1;
239 atomic_add_long(&vmstats.v_wire_count, 1);
240 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
241 return;
245 * General page
247 m->queue = m->pc + PQ_FREE;
248 KKASSERT(m->dirty == 0);
250 atomic_add_long(&vmstats.v_page_count, 1);
251 atomic_add_long(&vmstats.v_free_count, 1);
252 vpq = &vm_page_queues[m->queue];
253 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
254 ++vpq->lcnt;
258 * (low level boot)
260 * Initializes the resident memory module.
262 * Preallocates memory for critical VM structures and arrays prior to
263 * kernel_map becoming available.
265 * Memory is allocated from (virtual2_start, virtual2_end) if available,
266 * otherwise memory is allocated from (virtual_start, virtual_end).
268 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
269 * large enough to hold vm_page_array & other structures for machines with
270 * large amounts of ram, so we want to use virtual2* when available.
272 void
273 vm_page_startup(void)
275 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
276 vm_offset_t mapped;
277 vm_pindex_t npages;
278 vm_paddr_t page_range;
279 vm_paddr_t new_end;
280 int i;
281 vm_paddr_t pa;
282 vm_paddr_t last_pa;
283 vm_paddr_t end;
284 vm_paddr_t biggestone, biggestsize;
285 vm_paddr_t total;
286 vm_page_t m;
288 total = 0;
289 biggestsize = 0;
290 biggestone = 0;
291 vaddr = round_page(vaddr);
294 * Make sure ranges are page-aligned.
296 for (i = 0; phys_avail[i].phys_end; ++i) {
297 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
298 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
299 if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
300 phys_avail[i].phys_end = phys_avail[i].phys_beg;
304 * Locate largest block
306 for (i = 0; phys_avail[i].phys_end; ++i) {
307 vm_paddr_t size = phys_avail[i].phys_end -
308 phys_avail[i].phys_beg;
310 if (size > biggestsize) {
311 biggestone = i;
312 biggestsize = size;
314 total += size;
316 --i; /* adjust to last entry for use down below */
318 end = phys_avail[biggestone].phys_end;
319 end = trunc_page(end);
322 * Initialize the queue headers for the free queue, the active queue
323 * and the inactive queue.
325 vm_page_queue_init();
327 #if !defined(_KERNEL_VIRTUAL)
329 * VKERNELs don't support minidumps and as such don't need
330 * vm_page_dump
332 * Allocate a bitmap to indicate that a random physical page
333 * needs to be included in a minidump.
335 * The amd64 port needs this to indicate which direct map pages
336 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
338 * However, x86 still needs this workspace internally within the
339 * minidump code. In theory, they are not needed on x86, but are
340 * included should the sf_buf code decide to use them.
342 page_range = phys_avail[i].phys_end / PAGE_SIZE;
343 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
344 end -= vm_page_dump_size;
345 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
346 VM_PROT_READ | VM_PROT_WRITE);
347 bzero((void *)vm_page_dump, vm_page_dump_size);
348 #endif
350 * Compute the number of pages of memory that will be available for
351 * use (taking into account the overhead of a page structure per
352 * page).
354 first_page = phys_avail[0].phys_beg / PAGE_SIZE;
355 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
356 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
358 #ifndef _KERNEL_VIRTUAL
360 * (only applies to real kernels)
362 * Reserve a large amount of low memory for potential 32-bit DMA
363 * space allocations. Once device initialization is complete we
364 * release most of it, but keep (vm_dma_reserved) memory reserved
365 * for later use. Typically for X / graphics. Through trial and
366 * error we find that GPUs usually requires ~60-100MB or so.
368 * By default, 128M is left in reserve on machines with 2G+ of ram.
370 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
371 if (vm_low_phys_reserved > total / 4)
372 vm_low_phys_reserved = total / 4;
373 if (vm_dma_reserved == 0) {
374 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
375 if (vm_dma_reserved > total / 16)
376 vm_dma_reserved = total / 16;
378 #endif
379 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
380 ALIST_RECORDS_65536);
383 * Initialize the mem entry structures now, and put them in the free
384 * queue.
386 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
387 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
388 vm_page_array = (vm_page_t)mapped;
390 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
392 * since pmap_map on amd64 returns stuff out of a direct-map region,
393 * we have to manually add these pages to the minidump tracking so
394 * that they can be dumped, including the vm_page_array.
396 for (pa = new_end;
397 pa < phys_avail[biggestone].phys_end;
398 pa += PAGE_SIZE) {
399 dump_add_page(pa);
401 #endif
404 * Clear all of the page structures, run basic initialization so
405 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
406 * map.
408 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
409 vm_page_array_size = page_range;
411 m = &vm_page_array[0];
412 pa = ptoa(first_page);
413 for (i = 0; i < page_range; ++i) {
414 spin_init(&m->spin, "vm_page");
415 m->phys_addr = pa;
416 pa += PAGE_SIZE;
417 ++m;
421 * Construct the free queue(s) in ascending order (by physical
422 * address) so that the first 16MB of physical memory is allocated
423 * last rather than first. On large-memory machines, this avoids
424 * the exhaustion of low physical memory before isa_dma_init has run.
426 vmstats.v_page_count = 0;
427 vmstats.v_free_count = 0;
428 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
429 pa = phys_avail[i].phys_beg;
430 if (i == biggestone)
431 last_pa = new_end;
432 else
433 last_pa = phys_avail[i].phys_end;
434 while (pa < last_pa && npages-- > 0) {
435 vm_add_new_page(pa);
436 pa += PAGE_SIZE;
439 if (virtual2_start)
440 virtual2_start = vaddr;
441 else
442 virtual_start = vaddr;
443 mycpu->gd_vmstats = vmstats;
447 * Reorganize VM pages based on numa data. May be called as many times as
448 * necessary. Will reorganize the vm_page_t page color and related queue(s)
449 * to allow vm_page_alloc() to choose pages based on socket affinity.
451 * NOTE: This function is only called while we are still in UP mode, so
452 * we only need a critical section to protect the queues (which
453 * saves a lot of time, there are likely a ton of pages).
455 void
456 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
458 vm_paddr_t scan_beg;
459 vm_paddr_t scan_end;
460 vm_paddr_t ran_end;
461 struct vpgqueues *vpq;
462 vm_page_t m;
463 vm_page_t mend;
464 int i;
465 int socket_mod;
466 int socket_value;
469 * Check if no physical information, or there was only one socket
470 * (so don't waste time doing nothing!).
472 if (cpu_topology_phys_ids <= 1 ||
473 cpu_topology_core_ids == 0) {
474 return;
478 * Setup for our iteration. Note that ACPI may iterate CPU
479 * sockets starting at 0 or 1 or some other number. The
480 * cpu_topology code mod's it against the socket count.
482 ran_end = ran_beg + bytes;
483 physid %= cpu_topology_phys_ids;
485 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
486 socket_value = physid * socket_mod;
487 mend = &vm_page_array[vm_page_array_size];
489 crit_enter();
492 * Adjust vm_page->pc and requeue all affected pages. The
493 * allocator will then be able to localize memory allocations
494 * to some degree.
496 for (i = 0; phys_avail[i].phys_end; ++i) {
497 scan_beg = phys_avail[i].phys_beg;
498 scan_end = phys_avail[i].phys_end;
499 if (scan_end <= ran_beg)
500 continue;
501 if (scan_beg >= ran_end)
502 continue;
503 if (scan_beg < ran_beg)
504 scan_beg = ran_beg;
505 if (scan_end > ran_end)
506 scan_end = ran_end;
507 if (atop(scan_end) > first_page + vm_page_array_size)
508 scan_end = ptoa(first_page + vm_page_array_size);
510 m = PHYS_TO_VM_PAGE(scan_beg);
511 while (scan_beg < scan_end) {
512 KKASSERT(m < mend);
513 if (m->queue != PQ_NONE) {
514 vpq = &vm_page_queues[m->queue];
515 TAILQ_REMOVE(&vpq->pl, m, pageq);
516 --vpq->lcnt;
517 /* queue doesn't change, no need to adj cnt */
518 m->queue -= m->pc;
519 m->pc %= socket_mod;
520 m->pc += socket_value;
521 m->pc &= PQ_L2_MASK;
522 m->queue += m->pc;
523 vpq = &vm_page_queues[m->queue];
524 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
525 ++vpq->lcnt;
526 /* queue doesn't change, no need to adj cnt */
527 } else {
528 m->pc %= socket_mod;
529 m->pc += socket_value;
530 m->pc &= PQ_L2_MASK;
532 scan_beg += PAGE_SIZE;
533 ++m;
536 crit_exit();
540 * We tended to reserve a ton of memory for contigmalloc(). Now that most
541 * drivers have initialized we want to return most the remaining free
542 * reserve back to the VM page queues so they can be used for normal
543 * allocations.
545 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
547 static void
548 vm_page_startup_finish(void *dummy __unused)
550 alist_blk_t blk;
551 alist_blk_t rblk;
552 alist_blk_t count;
553 alist_blk_t xcount;
554 alist_blk_t bfree;
555 vm_page_t m;
557 spin_lock(&vm_contig_spin);
558 for (;;) {
559 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
560 if (bfree <= vm_dma_reserved / PAGE_SIZE)
561 break;
562 if (count == 0)
563 break;
566 * Figure out how much of the initial reserve we have to
567 * free in order to reach our target.
569 bfree -= vm_dma_reserved / PAGE_SIZE;
570 if (count > bfree) {
571 blk += count - bfree;
572 count = bfree;
576 * Calculate the nearest power of 2 <= count.
578 for (xcount = 1; xcount <= count; xcount <<= 1)
580 xcount >>= 1;
581 blk += count - xcount;
582 count = xcount;
585 * Allocate the pages from the alist, then free them to
586 * the normal VM page queues.
588 * Pages allocated from the alist are wired. We have to
589 * busy, unwire, and free them. We must also adjust
590 * vm_low_phys_reserved before freeing any pages to prevent
591 * confusion.
593 rblk = alist_alloc(&vm_contig_alist, blk, count);
594 if (rblk != blk) {
595 kprintf("vm_page_startup_finish: Unable to return "
596 "dma space @0x%08x/%d -> 0x%08x\n",
597 blk, count, rblk);
598 break;
600 atomic_add_long(&vmstats.v_dma_pages, -(long)count);
601 spin_unlock(&vm_contig_spin);
603 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
604 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
605 while (count) {
606 vm_page_busy_wait(m, FALSE, "cpgfr");
607 vm_page_unwire(m, 0);
608 vm_page_free(m);
609 --count;
610 ++m;
612 spin_lock(&vm_contig_spin);
614 spin_unlock(&vm_contig_spin);
617 * Print out how much DMA space drivers have already allocated and
618 * how much is left over.
620 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
621 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
622 (PAGE_SIZE / 1024),
623 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
625 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
626 vm_page_startup_finish, NULL);
630 * Scan comparison function for Red-Black tree scans. An inclusive
631 * (start,end) is expected. Other fields are not used.
634 rb_vm_page_scancmp(struct vm_page *p, void *data)
636 struct rb_vm_page_scan_info *info = data;
638 if (p->pindex < info->start_pindex)
639 return(-1);
640 if (p->pindex > info->end_pindex)
641 return(1);
642 return(0);
646 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
648 if (p1->pindex < p2->pindex)
649 return(-1);
650 if (p1->pindex > p2->pindex)
651 return(1);
652 return(0);
655 void
656 vm_page_init(vm_page_t m)
658 /* do nothing for now. Called from pmap_page_init() */
662 * Each page queue has its own spin lock, which is fairly optimal for
663 * allocating and freeing pages at least.
665 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
666 * queue spinlock via this function. Also note that m->queue cannot change
667 * unless both the page and queue are locked.
669 static __inline
670 void
671 _vm_page_queue_spin_lock(vm_page_t m)
673 u_short queue;
675 queue = m->queue;
676 if (queue != PQ_NONE) {
677 spin_lock(&vm_page_queues[queue].spin);
678 KKASSERT(queue == m->queue);
682 static __inline
683 void
684 _vm_page_queue_spin_unlock(vm_page_t m)
686 u_short queue;
688 queue = m->queue;
689 cpu_ccfence();
690 if (queue != PQ_NONE)
691 spin_unlock(&vm_page_queues[queue].spin);
694 static __inline
695 void
696 _vm_page_queues_spin_lock(u_short queue)
698 cpu_ccfence();
699 if (queue != PQ_NONE)
700 spin_lock(&vm_page_queues[queue].spin);
704 static __inline
705 void
706 _vm_page_queues_spin_unlock(u_short queue)
708 cpu_ccfence();
709 if (queue != PQ_NONE)
710 spin_unlock(&vm_page_queues[queue].spin);
713 void
714 vm_page_queue_spin_lock(vm_page_t m)
716 _vm_page_queue_spin_lock(m);
719 void
720 vm_page_queues_spin_lock(u_short queue)
722 _vm_page_queues_spin_lock(queue);
725 void
726 vm_page_queue_spin_unlock(vm_page_t m)
728 _vm_page_queue_spin_unlock(m);
731 void
732 vm_page_queues_spin_unlock(u_short queue)
734 _vm_page_queues_spin_unlock(queue);
738 * This locks the specified vm_page and its queue in the proper order
739 * (page first, then queue). The queue may change so the caller must
740 * recheck on return.
742 static __inline
743 void
744 _vm_page_and_queue_spin_lock(vm_page_t m)
746 vm_page_spin_lock(m);
747 _vm_page_queue_spin_lock(m);
750 static __inline
751 void
752 _vm_page_and_queue_spin_unlock(vm_page_t m)
754 _vm_page_queues_spin_unlock(m->queue);
755 vm_page_spin_unlock(m);
758 void
759 vm_page_and_queue_spin_unlock(vm_page_t m)
761 _vm_page_and_queue_spin_unlock(m);
764 void
765 vm_page_and_queue_spin_lock(vm_page_t m)
767 _vm_page_and_queue_spin_lock(m);
771 * Helper function removes vm_page from its current queue.
772 * Returns the base queue the page used to be on.
774 * The vm_page and the queue must be spinlocked.
775 * This function will unlock the queue but leave the page spinlocked.
777 static __inline u_short
778 _vm_page_rem_queue_spinlocked(vm_page_t m)
780 struct vpgqueues *pq;
781 u_short queue;
782 u_short oqueue;
783 long *cnt;
785 queue = m->queue;
786 if (queue != PQ_NONE) {
787 pq = &vm_page_queues[queue];
788 TAILQ_REMOVE(&pq->pl, m, pageq);
791 * Adjust our pcpu stats. In order for the nominal low-memory
792 * algorithms to work properly we don't let any pcpu stat get
793 * too negative before we force it to be rolled-up into the
794 * global stats. Otherwise our pageout and vm_wait tests
795 * will fail badly.
797 * The idea here is to reduce unnecessary SMP cache
798 * mastership changes in the global vmstats, which can be
799 * particularly bad in multi-socket systems.
801 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
802 atomic_add_long(cnt, -1);
803 if (*cnt < -VMMETER_SLOP_COUNT) {
804 u_long copy = atomic_swap_long(cnt, 0);
805 cnt = (long *)((char *)&vmstats + pq->cnt_offset);
806 atomic_add_long(cnt, copy);
807 cnt = (long *)((char *)&mycpu->gd_vmstats +
808 pq->cnt_offset);
809 atomic_add_long(cnt, copy);
811 pq->lcnt--;
812 m->queue = PQ_NONE;
813 oqueue = queue;
814 queue -= m->pc;
815 vm_page_queues_spin_unlock(oqueue); /* intended */
817 return queue;
821 * Helper function places the vm_page on the specified queue. Generally
822 * speaking only PQ_FREE pages are placed at the head, to allow them to
823 * be allocated sooner rather than later on the assumption that they
824 * are cache-hot.
826 * The vm_page must be spinlocked.
827 * This function will return with both the page and the queue locked.
829 static __inline void
830 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
832 struct vpgqueues *pq;
833 u_long *cnt;
835 KKASSERT(m->queue == PQ_NONE);
837 if (queue != PQ_NONE) {
838 vm_page_queues_spin_lock(queue);
839 pq = &vm_page_queues[queue];
840 ++pq->lcnt;
843 * Adjust our pcpu stats. If a system entity really needs
844 * to incorporate the count it will call vmstats_rollup()
845 * to roll it all up into the global vmstats strufture.
847 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
848 atomic_add_long(cnt, 1);
851 * PQ_FREE is always handled LIFO style to try to provide
852 * cache-hot pages to programs.
854 m->queue = queue;
855 if (queue - m->pc == PQ_FREE) {
856 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
857 } else if (athead) {
858 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
859 } else {
860 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
862 /* leave the queue spinlocked */
867 * Wait until page is no longer BUSY. If also_m_busy is TRUE we wait
868 * until the page is no longer BUSY or SBUSY (busy_count field is 0).
870 * Returns TRUE if it had to sleep, FALSE if we did not. Only one sleep
871 * call will be made before returning.
873 * This function does NOT busy the page and on return the page is not
874 * guaranteed to be available.
876 void
877 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
879 u_int32_t busy_count;
881 for (;;) {
882 busy_count = m->busy_count;
883 cpu_ccfence();
885 if ((busy_count & PBUSY_LOCKED) == 0 &&
886 (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
887 break;
889 tsleep_interlock(m, 0);
890 if (atomic_cmpset_int(&m->busy_count, busy_count,
891 busy_count | PBUSY_WANTED)) {
892 atomic_set_int(&m->flags, PG_REFERENCED);
893 tsleep(m, PINTERLOCKED, msg, 0);
894 break;
900 * This calculates and returns a page color given an optional VM object and
901 * either a pindex or an iterator. We attempt to return a cpu-localized
902 * pg_color that is still roughly 16-way set-associative. The CPU topology
903 * is used if it was probed.
905 * The caller may use the returned value to index into e.g. PQ_FREE when
906 * allocating a page in order to nominally obtain pages that are hopefully
907 * already localized to the requesting cpu. This function is not able to
908 * provide any sort of guarantee of this, but does its best to improve
909 * hardware cache management performance.
911 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
913 u_short
914 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
916 u_short pg_color;
917 int phys_id;
918 int core_id;
919 int object_pg_color;
921 phys_id = get_cpu_phys_id(cpuid);
922 core_id = get_cpu_core_id(cpuid);
923 object_pg_color = object ? object->pg_color : 0;
925 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
926 int grpsize;
929 * Break us down by socket and cpu
931 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
932 pg_color += core_id * PQ_L2_SIZE /
933 (cpu_topology_core_ids * cpu_topology_phys_ids);
936 * Calculate remaining component for object/queue color
938 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
939 cpu_topology_phys_ids);
940 if (grpsize >= 8) {
941 pg_color += (pindex + object_pg_color) % grpsize;
942 } else {
943 if (grpsize <= 2) {
944 grpsize = 8;
945 } else {
946 /* 3->9, 4->8, 5->10, 6->12, 7->14 */
947 grpsize += grpsize;
948 if (grpsize < 8)
949 grpsize += grpsize;
951 pg_color += (pindex + object_pg_color) % grpsize;
953 } else {
955 * Unknown topology, distribute things evenly.
957 pg_color = cpuid * PQ_L2_SIZE / ncpus;
958 pg_color += pindex + object_pg_color;
960 return (pg_color & PQ_L2_MASK);
964 * Wait until BUSY can be set, then set it. If also_m_busy is TRUE we
965 * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
967 void
968 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
969 int also_m_busy, const char *msg
970 VM_PAGE_DEBUG_ARGS)
972 u_int32_t busy_count;
974 for (;;) {
975 busy_count = m->busy_count;
976 cpu_ccfence();
977 if (busy_count & PBUSY_LOCKED) {
978 tsleep_interlock(m, 0);
979 if (atomic_cmpset_int(&m->busy_count, busy_count,
980 busy_count | PBUSY_WANTED)) {
981 atomic_set_int(&m->flags, PG_REFERENCED);
982 tsleep(m, PINTERLOCKED, msg, 0);
984 } else if (also_m_busy && busy_count) {
985 tsleep_interlock(m, 0);
986 if (atomic_cmpset_int(&m->busy_count, busy_count,
987 busy_count | PBUSY_WANTED)) {
988 atomic_set_int(&m->flags, PG_REFERENCED);
989 tsleep(m, PINTERLOCKED, msg, 0);
991 } else {
992 if (atomic_cmpset_int(&m->busy_count, busy_count,
993 busy_count | PBUSY_LOCKED)) {
994 #ifdef VM_PAGE_DEBUG
995 m->busy_func = func;
996 m->busy_line = lineno;
997 #endif
998 break;
1005 * Attempt to set BUSY. If also_m_busy is TRUE we only succeed if
1006 * m->busy_count is also 0.
1008 * Returns non-zero on failure.
1011 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1012 VM_PAGE_DEBUG_ARGS)
1014 u_int32_t busy_count;
1016 for (;;) {
1017 busy_count = m->busy_count;
1018 cpu_ccfence();
1019 if (busy_count & PBUSY_LOCKED)
1020 return TRUE;
1021 if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1022 return TRUE;
1023 if (atomic_cmpset_int(&m->busy_count, busy_count,
1024 busy_count | PBUSY_LOCKED)) {
1025 #ifdef VM_PAGE_DEBUG
1026 m->busy_func = func;
1027 m->busy_line = lineno;
1028 #endif
1029 return FALSE;
1035 * Clear the BUSY flag and return non-zero to indicate to the caller
1036 * that a wakeup() should be performed.
1038 * The vm_page must be spinlocked and will remain spinlocked on return.
1039 * The related queue must NOT be spinlocked (which could deadlock us).
1041 * (inline version)
1043 static __inline
1045 _vm_page_wakeup(vm_page_t m)
1047 u_int32_t busy_count;
1049 for (;;) {
1050 busy_count = m->busy_count;
1051 cpu_ccfence();
1052 if (atomic_cmpset_int(&m->busy_count, busy_count,
1053 busy_count &
1054 ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1055 break;
1058 return((int)(busy_count & PBUSY_WANTED));
1062 * Clear the BUSY flag and wakeup anyone waiting for the page. This
1063 * is typically the last call you make on a page before moving onto
1064 * other things.
1066 void
1067 vm_page_wakeup(vm_page_t m)
1069 KASSERT(m->busy_count & PBUSY_LOCKED,
1070 ("vm_page_wakeup: page not busy!!!"));
1071 vm_page_spin_lock(m);
1072 if (_vm_page_wakeup(m)) {
1073 vm_page_spin_unlock(m);
1074 wakeup(m);
1075 } else {
1076 vm_page_spin_unlock(m);
1081 * Holding a page keeps it from being reused. Other parts of the system
1082 * can still disassociate the page from its current object and free it, or
1083 * perform read or write I/O on it and/or otherwise manipulate the page,
1084 * but if the page is held the VM system will leave the page and its data
1085 * intact and not reuse the page for other purposes until the last hold
1086 * reference is released. (see vm_page_wire() if you want to prevent the
1087 * page from being disassociated from its object too).
1089 * The caller must still validate the contents of the page and, if necessary,
1090 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1091 * before manipulating the page.
1093 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1095 void
1096 vm_page_hold(vm_page_t m)
1098 vm_page_spin_lock(m);
1099 atomic_add_int(&m->hold_count, 1);
1100 if (m->queue - m->pc == PQ_FREE) {
1101 _vm_page_queue_spin_lock(m);
1102 _vm_page_rem_queue_spinlocked(m);
1103 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1104 _vm_page_queue_spin_unlock(m);
1106 vm_page_spin_unlock(m);
1110 * The opposite of vm_page_hold(). If the page is on the HOLD queue
1111 * it was freed while held and must be moved back to the FREE queue.
1113 void
1114 vm_page_unhold(vm_page_t m)
1116 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1117 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1118 m, m->hold_count, m->queue - m->pc));
1119 vm_page_spin_lock(m);
1120 atomic_add_int(&m->hold_count, -1);
1121 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1122 _vm_page_queue_spin_lock(m);
1123 _vm_page_rem_queue_spinlocked(m);
1124 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1125 _vm_page_queue_spin_unlock(m);
1127 vm_page_spin_unlock(m);
1131 * vm_page_getfake:
1133 * Create a fictitious page with the specified physical address and
1134 * memory attribute. The memory attribute is the only the machine-
1135 * dependent aspect of a fictitious page that must be initialized.
1138 void
1139 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1142 if ((m->flags & PG_FICTITIOUS) != 0) {
1144 * The page's memattr might have changed since the
1145 * previous initialization. Update the pmap to the
1146 * new memattr.
1148 goto memattr;
1150 m->phys_addr = paddr;
1151 m->queue = PQ_NONE;
1152 /* Fictitious pages don't use "segind". */
1153 /* Fictitious pages don't use "order" or "pool". */
1154 m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1155 m->busy_count = PBUSY_LOCKED;
1156 m->wire_count = 1;
1157 spin_init(&m->spin, "fake_page");
1158 pmap_page_init(m);
1159 memattr:
1160 pmap_page_set_memattr(m, memattr);
1164 * Inserts the given vm_page into the object and object list.
1166 * The pagetables are not updated but will presumably fault the page
1167 * in if necessary, or if a kernel page the caller will at some point
1168 * enter the page into the kernel's pmap. We are not allowed to block
1169 * here so we *can't* do this anyway.
1171 * This routine may not block.
1172 * This routine must be called with the vm_object held.
1173 * This routine must be called with a critical section held.
1175 * This routine returns TRUE if the page was inserted into the object
1176 * successfully, and FALSE if the page already exists in the object.
1179 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1181 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1182 if (m->object != NULL)
1183 panic("vm_page_insert: already inserted");
1185 atomic_add_int(&object->generation, 1);
1188 * Record the object/offset pair in this page and add the
1189 * pv_list_count of the page to the object.
1191 * The vm_page spin lock is required for interactions with the pmap.
1193 vm_page_spin_lock(m);
1194 m->object = object;
1195 m->pindex = pindex;
1196 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1197 m->object = NULL;
1198 m->pindex = 0;
1199 vm_page_spin_unlock(m);
1200 return FALSE;
1202 ++object->resident_page_count;
1203 ++mycpu->gd_vmtotal.t_rm;
1204 vm_page_spin_unlock(m);
1207 * Since we are inserting a new and possibly dirty page,
1208 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1210 if ((m->valid & m->dirty) ||
1211 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1212 vm_object_set_writeable_dirty(object);
1215 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1217 swap_pager_page_inserted(m);
1218 return TRUE;
1222 * Removes the given vm_page_t from the (object,index) table
1224 * The underlying pmap entry (if any) is NOT removed here.
1225 * This routine may not block.
1227 * The page must be BUSY and will remain BUSY on return.
1228 * No other requirements.
1230 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1231 * it busy.
1233 void
1234 vm_page_remove(vm_page_t m)
1236 vm_object_t object;
1238 if (m->object == NULL) {
1239 return;
1242 if ((m->busy_count & PBUSY_LOCKED) == 0)
1243 panic("vm_page_remove: page not busy");
1245 object = m->object;
1247 vm_object_hold(object);
1250 * Remove the page from the object and update the object.
1252 * The vm_page spin lock is required for interactions with the pmap.
1254 vm_page_spin_lock(m);
1255 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1256 --object->resident_page_count;
1257 --mycpu->gd_vmtotal.t_rm;
1258 m->object = NULL;
1259 atomic_add_int(&object->generation, 1);
1260 vm_page_spin_unlock(m);
1262 vm_object_drop(object);
1266 * Locate and return the page at (object, pindex), or NULL if the
1267 * page could not be found.
1269 * The caller must hold the vm_object token.
1271 vm_page_t
1272 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1274 vm_page_t m;
1277 * Search the hash table for this object/offset pair
1279 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1280 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1281 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1282 return(m);
1285 vm_page_t
1286 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1287 vm_pindex_t pindex,
1288 int also_m_busy, const char *msg
1289 VM_PAGE_DEBUG_ARGS)
1291 u_int32_t busy_count;
1292 vm_page_t m;
1294 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1295 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1296 while (m) {
1297 KKASSERT(m->object == object && m->pindex == pindex);
1298 busy_count = m->busy_count;
1299 cpu_ccfence();
1300 if (busy_count & PBUSY_LOCKED) {
1301 tsleep_interlock(m, 0);
1302 if (atomic_cmpset_int(&m->busy_count, busy_count,
1303 busy_count | PBUSY_WANTED)) {
1304 atomic_set_int(&m->flags, PG_REFERENCED);
1305 tsleep(m, PINTERLOCKED, msg, 0);
1306 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1307 pindex);
1309 } else if (also_m_busy && busy_count) {
1310 tsleep_interlock(m, 0);
1311 if (atomic_cmpset_int(&m->busy_count, busy_count,
1312 busy_count | PBUSY_WANTED)) {
1313 atomic_set_int(&m->flags, PG_REFERENCED);
1314 tsleep(m, PINTERLOCKED, msg, 0);
1315 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1316 pindex);
1318 } else if (atomic_cmpset_int(&m->busy_count, busy_count,
1319 busy_count | PBUSY_LOCKED)) {
1320 #ifdef VM_PAGE_DEBUG
1321 m->busy_func = func;
1322 m->busy_line = lineno;
1323 #endif
1324 break;
1327 return m;
1331 * Attempt to lookup and busy a page.
1333 * Returns NULL if the page could not be found
1335 * Returns a vm_page and error == TRUE if the page exists but could not
1336 * be busied.
1338 * Returns a vm_page and error == FALSE on success.
1340 vm_page_t
1341 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1342 vm_pindex_t pindex,
1343 int also_m_busy, int *errorp
1344 VM_PAGE_DEBUG_ARGS)
1346 u_int32_t busy_count;
1347 vm_page_t m;
1349 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1350 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1351 *errorp = FALSE;
1352 while (m) {
1353 KKASSERT(m->object == object && m->pindex == pindex);
1354 busy_count = m->busy_count;
1355 cpu_ccfence();
1356 if (busy_count & PBUSY_LOCKED) {
1357 *errorp = TRUE;
1358 break;
1360 if (also_m_busy && busy_count) {
1361 *errorp = TRUE;
1362 break;
1364 if (atomic_cmpset_int(&m->busy_count, busy_count,
1365 busy_count | PBUSY_LOCKED)) {
1366 #ifdef VM_PAGE_DEBUG
1367 m->busy_func = func;
1368 m->busy_line = lineno;
1369 #endif
1370 break;
1373 return m;
1377 * Returns a page that is only soft-busied for use by the caller in
1378 * a read-only fashion. Returns NULL if the page could not be found,
1379 * the soft busy could not be obtained, or the page data is invalid.
1381 vm_page_t
1382 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1383 int pgoff, int pgbytes)
1385 vm_page_t m;
1387 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1388 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1389 if (m) {
1390 if ((m->valid != VM_PAGE_BITS_ALL &&
1391 !vm_page_is_valid(m, pgoff, pgbytes)) ||
1392 (m->flags & PG_FICTITIOUS)) {
1393 m = NULL;
1394 } else if (vm_page_sbusy_try(m)) {
1395 m = NULL;
1396 } else if ((m->valid != VM_PAGE_BITS_ALL &&
1397 !vm_page_is_valid(m, pgoff, pgbytes)) ||
1398 (m->flags & PG_FICTITIOUS)) {
1399 vm_page_sbusy_drop(m);
1400 m = NULL;
1403 return m;
1407 * Caller must hold the related vm_object
1409 vm_page_t
1410 vm_page_next(vm_page_t m)
1412 vm_page_t next;
1414 next = vm_page_rb_tree_RB_NEXT(m);
1415 if (next && next->pindex != m->pindex + 1)
1416 next = NULL;
1417 return (next);
1421 * vm_page_rename()
1423 * Move the given vm_page from its current object to the specified
1424 * target object/offset. The page must be busy and will remain so
1425 * on return.
1427 * new_object must be held.
1428 * This routine might block. XXX ?
1430 * NOTE: Swap associated with the page must be invalidated by the move. We
1431 * have to do this for several reasons: (1) we aren't freeing the
1432 * page, (2) we are dirtying the page, (3) the VM system is probably
1433 * moving the page from object A to B, and will then later move
1434 * the backing store from A to B and we can't have a conflict.
1436 * NOTE: We *always* dirty the page. It is necessary both for the
1437 * fact that we moved it, and because we may be invalidating
1438 * swap. If the page is on the cache, we have to deactivate it
1439 * or vm_page_dirty() will panic. Dirty pages are not allowed
1440 * on the cache.
1442 void
1443 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1445 KKASSERT(m->busy_count & PBUSY_LOCKED);
1446 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1447 if (m->object) {
1448 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1449 vm_page_remove(m);
1451 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1452 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1453 new_object, new_pindex);
1455 if (m->queue - m->pc == PQ_CACHE)
1456 vm_page_deactivate(m);
1457 vm_page_dirty(m);
1461 * vm_page_unqueue() without any wakeup. This routine is used when a page
1462 * is to remain BUSYied by the caller.
1464 * This routine may not block.
1466 void
1467 vm_page_unqueue_nowakeup(vm_page_t m)
1469 vm_page_and_queue_spin_lock(m);
1470 (void)_vm_page_rem_queue_spinlocked(m);
1471 vm_page_spin_unlock(m);
1475 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1476 * if necessary.
1478 * This routine may not block.
1480 void
1481 vm_page_unqueue(vm_page_t m)
1483 u_short queue;
1485 vm_page_and_queue_spin_lock(m);
1486 queue = _vm_page_rem_queue_spinlocked(m);
1487 if (queue == PQ_FREE || queue == PQ_CACHE) {
1488 vm_page_spin_unlock(m);
1489 pagedaemon_wakeup();
1490 } else {
1491 vm_page_spin_unlock(m);
1496 * vm_page_list_find()
1498 * Find a page on the specified queue with color optimization.
1500 * The page coloring optimization attempts to locate a page that does
1501 * not overload other nearby pages in the object in the cpu's L1 or L2
1502 * caches. We need this optimization because cpu caches tend to be
1503 * physical caches, while object spaces tend to be virtual.
1505 * The page coloring optimization also, very importantly, tries to localize
1506 * memory to cpus and physical sockets.
1508 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1509 * and the algorithm is adjusted to localize allocations on a per-core basis.
1510 * This is done by 'twisting' the colors.
1512 * The page is returned spinlocked and removed from its queue (it will
1513 * be on PQ_NONE), or NULL. The page is not BUSY'd. The caller
1514 * is responsible for dealing with the busy-page case (usually by
1515 * deactivating the page and looping).
1517 * NOTE: This routine is carefully inlined. A non-inlined version
1518 * is available for outside callers but the only critical path is
1519 * from within this source file.
1521 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1522 * represent stable storage, allowing us to order our locks vm_page
1523 * first, then queue.
1525 static __inline
1526 vm_page_t
1527 _vm_page_list_find(int basequeue, int index)
1529 vm_page_t m;
1531 for (;;) {
1532 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1533 if (m == NULL) {
1534 m = _vm_page_list_find2(basequeue, index);
1535 return(m);
1537 vm_page_and_queue_spin_lock(m);
1538 if (m->queue == basequeue + index) {
1539 _vm_page_rem_queue_spinlocked(m);
1540 /* vm_page_t spin held, no queue spin */
1541 break;
1543 vm_page_and_queue_spin_unlock(m);
1545 return(m);
1549 * If we could not find the page in the desired queue try to find it in
1550 * a nearby queue.
1552 static vm_page_t
1553 _vm_page_list_find2(int basequeue, int index)
1555 struct vpgqueues *pq;
1556 vm_page_t m = NULL;
1557 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1558 int pqi;
1559 int i;
1561 index &= PQ_L2_MASK;
1562 pq = &vm_page_queues[basequeue];
1565 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1566 * else fails (PQ_L2_MASK which is 255).
1568 do {
1569 pqmask = (pqmask << 1) | 1;
1570 for (i = 0; i <= pqmask; ++i) {
1571 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1572 m = TAILQ_FIRST(&pq[pqi].pl);
1573 if (m) {
1574 _vm_page_and_queue_spin_lock(m);
1575 if (m->queue == basequeue + pqi) {
1576 _vm_page_rem_queue_spinlocked(m);
1577 return(m);
1579 _vm_page_and_queue_spin_unlock(m);
1580 --i;
1581 continue;
1584 } while (pqmask != PQ_L2_MASK);
1586 return(m);
1590 * Returns a vm_page candidate for allocation. The page is not busied so
1591 * it can move around. The caller must busy the page (and typically
1592 * deactivate it if it cannot be busied!)
1594 * Returns a spinlocked vm_page that has been removed from its queue.
1596 vm_page_t
1597 vm_page_list_find(int basequeue, int index)
1599 return(_vm_page_list_find(basequeue, index));
1603 * Find a page on the cache queue with color optimization, remove it
1604 * from the queue, and busy it. The returned page will not be spinlocked.
1606 * A candidate failure will be deactivated. Candidates can fail due to
1607 * being busied by someone else, in which case they will be deactivated.
1609 * This routine may not block.
1612 static vm_page_t
1613 vm_page_select_cache(u_short pg_color)
1615 vm_page_t m;
1617 for (;;) {
1618 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1619 if (m == NULL)
1620 break;
1622 * (m) has been removed from its queue and spinlocked
1624 if (vm_page_busy_try(m, TRUE)) {
1625 _vm_page_deactivate_locked(m, 0);
1626 vm_page_spin_unlock(m);
1627 } else {
1629 * We successfully busied the page
1631 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1632 m->hold_count == 0 &&
1633 m->wire_count == 0 &&
1634 (m->dirty & m->valid) == 0) {
1635 vm_page_spin_unlock(m);
1636 pagedaemon_wakeup();
1637 return(m);
1641 * The page cannot be recycled, deactivate it.
1643 _vm_page_deactivate_locked(m, 0);
1644 if (_vm_page_wakeup(m)) {
1645 vm_page_spin_unlock(m);
1646 wakeup(m);
1647 } else {
1648 vm_page_spin_unlock(m);
1652 return (m);
1656 * Find a free page. We attempt to inline the nominal case and fall back
1657 * to _vm_page_select_free() otherwise. A busied page is removed from
1658 * the queue and returned.
1660 * This routine may not block.
1662 static __inline vm_page_t
1663 vm_page_select_free(u_short pg_color)
1665 vm_page_t m;
1667 for (;;) {
1668 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1669 if (m == NULL)
1670 break;
1671 if (vm_page_busy_try(m, TRUE)) {
1673 * Various mechanisms such as a pmap_collect can
1674 * result in a busy page on the free queue. We
1675 * have to move the page out of the way so we can
1676 * retry the allocation. If the other thread is not
1677 * allocating the page then m->valid will remain 0 and
1678 * the pageout daemon will free the page later on.
1680 * Since we could not busy the page, however, we
1681 * cannot make assumptions as to whether the page
1682 * will be allocated by the other thread or not,
1683 * so all we can do is deactivate it to move it out
1684 * of the way. In particular, if the other thread
1685 * wires the page it may wind up on the inactive
1686 * queue and the pageout daemon will have to deal
1687 * with that case too.
1689 _vm_page_deactivate_locked(m, 0);
1690 vm_page_spin_unlock(m);
1691 } else {
1693 * Theoretically if we are able to busy the page
1694 * atomic with the queue removal (using the vm_page
1695 * lock) nobody else should be able to mess with the
1696 * page before us.
1698 KKASSERT((m->flags & (PG_UNMANAGED |
1699 PG_NEED_COMMIT)) == 0);
1700 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1701 "pg %p q=%d flags=%08x hold=%d wire=%d",
1702 m, m->queue, m->flags, m->hold_count, m->wire_count));
1703 KKASSERT(m->wire_count == 0);
1704 vm_page_spin_unlock(m);
1705 pagedaemon_wakeup();
1707 /* return busied and removed page */
1708 return(m);
1711 return(m);
1715 * vm_page_alloc()
1717 * Allocate and return a memory cell associated with this VM object/offset
1718 * pair. If object is NULL an unassociated page will be allocated.
1720 * The returned page will be busied and removed from its queues. This
1721 * routine can block and may return NULL if a race occurs and the page
1722 * is found to already exist at the specified (object, pindex).
1724 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1725 * VM_ALLOC_QUICK like normal but cannot use cache
1726 * VM_ALLOC_SYSTEM greater free drain
1727 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1728 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1729 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1730 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1731 * (see vm_page_grab())
1732 * VM_ALLOC_USE_GD ok to use per-gd cache
1734 * VM_ALLOC_CPU(n) allocate using specified cpu localization
1736 * The object must be held if not NULL
1737 * This routine may not block
1739 * Additional special handling is required when called from an interrupt
1740 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1741 * in this case.
1743 vm_page_t
1744 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1746 globaldata_t gd;
1747 vm_object_t obj;
1748 vm_page_t m;
1749 u_short pg_color;
1750 int cpuid_local;
1752 #if 0
1754 * Special per-cpu free VM page cache. The pages are pre-busied
1755 * and pre-zerod for us.
1757 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1758 crit_enter_gd(gd);
1759 if (gd->gd_vmpg_count) {
1760 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1761 crit_exit_gd(gd);
1762 goto done;
1764 crit_exit_gd(gd);
1766 #endif
1767 m = NULL;
1770 * CPU LOCALIZATION
1772 * CPU localization algorithm. Break the page queues up by physical
1773 * id and core id (note that two cpu threads will have the same core
1774 * id, and core_id != gd_cpuid).
1776 * This is nowhere near perfect, for example the last pindex in a
1777 * subgroup will overflow into the next cpu or package. But this
1778 * should get us good page reuse locality in heavy mixed loads.
1780 * (may be executed before the APs are started, so other GDs might
1781 * not exist!)
1783 if (page_req & VM_ALLOC_CPU_SPEC)
1784 cpuid_local = VM_ALLOC_GETCPU(page_req);
1785 else
1786 cpuid_local = mycpu->gd_cpuid;
1788 pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1790 KKASSERT(page_req &
1791 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1792 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1795 * Certain system threads (pageout daemon, buf_daemon's) are
1796 * allowed to eat deeper into the free page list.
1798 if (curthread->td_flags & TDF_SYSTHREAD)
1799 page_req |= VM_ALLOC_SYSTEM;
1802 * Impose various limitations. Note that the v_free_reserved test
1803 * must match the opposite of vm_page_count_target() to avoid
1804 * livelocks, be careful.
1806 loop:
1807 gd = mycpu;
1808 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1809 ((page_req & VM_ALLOC_INTERRUPT) &&
1810 gd->gd_vmstats.v_free_count > 0) ||
1811 ((page_req & VM_ALLOC_SYSTEM) &&
1812 gd->gd_vmstats.v_cache_count == 0 &&
1813 gd->gd_vmstats.v_free_count >
1814 gd->gd_vmstats.v_interrupt_free_min)
1817 * The free queue has sufficient free pages to take one out.
1819 m = vm_page_select_free(pg_color);
1820 } else if (page_req & VM_ALLOC_NORMAL) {
1822 * Allocatable from the cache (non-interrupt only). On
1823 * success, we must free the page and try again, thus
1824 * ensuring that vmstats.v_*_free_min counters are replenished.
1826 #ifdef INVARIANTS
1827 if (curthread->td_preempted) {
1828 kprintf("vm_page_alloc(): warning, attempt to allocate"
1829 " cache page from preempting interrupt\n");
1830 m = NULL;
1831 } else {
1832 m = vm_page_select_cache(pg_color);
1834 #else
1835 m = vm_page_select_cache(pg_color);
1836 #endif
1838 * On success move the page into the free queue and loop.
1840 * Only do this if we can safely acquire the vm_object lock,
1841 * because this is effectively a random page and the caller
1842 * might be holding the lock shared, we don't want to
1843 * deadlock.
1845 if (m != NULL) {
1846 KASSERT(m->dirty == 0,
1847 ("Found dirty cache page %p", m));
1848 if ((obj = m->object) != NULL) {
1849 if (vm_object_hold_try(obj)) {
1850 vm_page_protect(m, VM_PROT_NONE);
1851 vm_page_free(m);
1852 /* m->object NULL here */
1853 vm_object_drop(obj);
1854 } else {
1855 vm_page_deactivate(m);
1856 vm_page_wakeup(m);
1858 } else {
1859 vm_page_protect(m, VM_PROT_NONE);
1860 vm_page_free(m);
1862 goto loop;
1866 * On failure return NULL
1868 atomic_add_int(&vm_pageout_deficit, 1);
1869 pagedaemon_wakeup();
1870 return (NULL);
1871 } else {
1873 * No pages available, wakeup the pageout daemon and give up.
1875 atomic_add_int(&vm_pageout_deficit, 1);
1876 pagedaemon_wakeup();
1877 return (NULL);
1881 * v_free_count can race so loop if we don't find the expected
1882 * page.
1884 if (m == NULL) {
1885 vmstats_rollup();
1886 goto loop;
1890 * Good page found. The page has already been busied for us and
1891 * removed from its queues.
1893 KASSERT(m->dirty == 0,
1894 ("vm_page_alloc: free/cache page %p was dirty", m));
1895 KKASSERT(m->queue == PQ_NONE);
1897 #if 0
1898 done:
1899 #endif
1901 * Initialize the structure, inheriting some flags but clearing
1902 * all the rest. The page has already been busied for us.
1904 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1906 KKASSERT(m->wire_count == 0);
1907 KKASSERT((m->busy_count & PBUSY_MASK) == 0);
1908 m->act_count = 0;
1909 m->valid = 0;
1912 * Caller must be holding the object lock (asserted by
1913 * vm_page_insert()).
1915 * NOTE: Inserting a page here does not insert it into any pmaps
1916 * (which could cause us to block allocating memory).
1918 * NOTE: If no object an unassociated page is allocated, m->pindex
1919 * can be used by the caller for any purpose.
1921 if (object) {
1922 if (vm_page_insert(m, object, pindex) == FALSE) {
1923 vm_page_free(m);
1924 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1925 panic("PAGE RACE %p[%ld]/%p",
1926 object, (long)pindex, m);
1927 m = NULL;
1929 } else {
1930 m->pindex = pindex;
1934 * Don't wakeup too often - wakeup the pageout daemon when
1935 * we would be nearly out of memory.
1937 pagedaemon_wakeup();
1940 * A BUSY page is returned.
1942 return (m);
1946 * Returns number of pages available in our DMA memory reserve
1947 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1949 vm_size_t
1950 vm_contig_avail_pages(void)
1952 alist_blk_t blk;
1953 alist_blk_t count;
1954 alist_blk_t bfree;
1955 spin_lock(&vm_contig_spin);
1956 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1957 spin_unlock(&vm_contig_spin);
1959 return bfree;
1963 * Attempt to allocate contiguous physical memory with the specified
1964 * requirements.
1966 vm_page_t
1967 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1968 unsigned long alignment, unsigned long boundary,
1969 unsigned long size, vm_memattr_t memattr)
1971 alist_blk_t blk;
1972 vm_page_t m;
1973 vm_pindex_t i;
1974 #if 0
1975 static vm_pindex_t contig_rover;
1976 #endif
1978 alignment >>= PAGE_SHIFT;
1979 if (alignment == 0)
1980 alignment = 1;
1981 boundary >>= PAGE_SHIFT;
1982 if (boundary == 0)
1983 boundary = 1;
1984 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1986 #if 0
1988 * Disabled temporarily until we find a solution for DRM (a flag
1989 * to always use the free space reserve, for performance).
1991 if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
1992 boundary <= PAGE_SIZE && size == 1 &&
1993 memattr == VM_MEMATTR_DEFAULT) {
1995 * Any page will work, use vm_page_alloc()
1996 * (e.g. when used from kmem_alloc_attr())
1998 m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
1999 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2000 VM_ALLOC_INTERRUPT);
2001 m->valid = VM_PAGE_BITS_ALL;
2002 vm_page_wire(m);
2003 vm_page_wakeup(m);
2004 } else
2005 #endif
2008 * Use the low-memory dma reserve
2010 spin_lock(&vm_contig_spin);
2011 blk = alist_alloc(&vm_contig_alist, 0, size);
2012 if (blk == ALIST_BLOCK_NONE) {
2013 spin_unlock(&vm_contig_spin);
2014 if (bootverbose) {
2015 kprintf("vm_page_alloc_contig: %ldk nospace\n",
2016 (size << PAGE_SHIFT) / 1024);
2017 print_backtrace(5);
2019 return(NULL);
2021 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2022 alist_free(&vm_contig_alist, blk, size);
2023 spin_unlock(&vm_contig_spin);
2024 if (bootverbose) {
2025 kprintf("vm_page_alloc_contig: %ldk high "
2026 "%016jx failed\n",
2027 (size << PAGE_SHIFT) / 1024,
2028 (intmax_t)high);
2030 return(NULL);
2032 spin_unlock(&vm_contig_spin);
2033 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2035 if (vm_contig_verbose) {
2036 kprintf("vm_page_alloc_contig: %016jx/%ldk "
2037 "(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2038 (intmax_t)m->phys_addr,
2039 (size << PAGE_SHIFT) / 1024,
2040 low, high, alignment, boundary, size, memattr);
2042 if (memattr != VM_MEMATTR_DEFAULT) {
2043 for (i = 0;i < size; i++)
2044 pmap_page_set_memattr(&m[i], memattr);
2046 return m;
2050 * Free contiguously allocated pages. The pages will be wired but not busy.
2051 * When freeing to the alist we leave them wired and not busy.
2053 void
2054 vm_page_free_contig(vm_page_t m, unsigned long size)
2056 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2057 vm_pindex_t start = pa >> PAGE_SHIFT;
2058 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2060 if (vm_contig_verbose) {
2061 kprintf("vm_page_free_contig: %016jx/%ldk\n",
2062 (intmax_t)pa, size / 1024);
2064 if (pa < vm_low_phys_reserved) {
2065 KKASSERT(pa + size <= vm_low_phys_reserved);
2066 spin_lock(&vm_contig_spin);
2067 alist_free(&vm_contig_alist, start, pages);
2068 spin_unlock(&vm_contig_spin);
2069 } else {
2070 while (pages) {
2071 vm_page_busy_wait(m, FALSE, "cpgfr");
2072 vm_page_unwire(m, 0);
2073 vm_page_free(m);
2074 --pages;
2075 ++m;
2083 * Wait for sufficient free memory for nominal heavy memory use kernel
2084 * operations.
2086 * WARNING! Be sure never to call this in any vm_pageout code path, which
2087 * will trivially deadlock the system.
2089 void
2090 vm_wait_nominal(void)
2092 while (vm_page_count_min(0))
2093 vm_wait(0);
2097 * Test if vm_wait_nominal() would block.
2100 vm_test_nominal(void)
2102 if (vm_page_count_min(0))
2103 return(1);
2104 return(0);
2108 * Block until free pages are available for allocation, called in various
2109 * places before memory allocations.
2111 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2112 * more generous then that.
2114 void
2115 vm_wait(int timo)
2118 * never wait forever
2120 if (timo == 0)
2121 timo = hz;
2122 lwkt_gettoken(&vm_token);
2124 if (curthread == pagethread ||
2125 curthread == emergpager) {
2127 * The pageout daemon itself needs pages, this is bad.
2129 if (vm_page_count_min(0)) {
2130 vm_pageout_pages_needed = 1;
2131 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2133 } else {
2135 * Wakeup the pageout daemon if necessary and wait.
2137 * Do not wait indefinitely for the target to be reached,
2138 * as load might prevent it from being reached any time soon.
2139 * But wait a little to try to slow down page allocations
2140 * and to give more important threads (the pagedaemon)
2141 * allocation priority.
2143 if (vm_page_count_target()) {
2144 if (vm_pages_needed == 0) {
2145 vm_pages_needed = 1;
2146 wakeup(&vm_pages_needed);
2148 ++vm_pages_waiting; /* SMP race ok */
2149 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2152 lwkt_reltoken(&vm_token);
2156 * Block until free pages are available for allocation
2158 * Called only from vm_fault so that processes page faulting can be
2159 * easily tracked.
2161 void
2162 vm_wait_pfault(void)
2165 * Wakeup the pageout daemon if necessary and wait.
2167 * Do not wait indefinitely for the target to be reached,
2168 * as load might prevent it from being reached any time soon.
2169 * But wait a little to try to slow down page allocations
2170 * and to give more important threads (the pagedaemon)
2171 * allocation priority.
2173 if (vm_page_count_min(0)) {
2174 lwkt_gettoken(&vm_token);
2175 while (vm_page_count_severe()) {
2176 if (vm_page_count_target()) {
2177 thread_t td;
2179 if (vm_pages_needed == 0) {
2180 vm_pages_needed = 1;
2181 wakeup(&vm_pages_needed);
2183 ++vm_pages_waiting; /* SMP race ok */
2184 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2187 * Do not stay stuck in the loop if the system is trying
2188 * to kill the process.
2190 td = curthread;
2191 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2192 break;
2195 lwkt_reltoken(&vm_token);
2200 * Put the specified page on the active list (if appropriate). Ensure
2201 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2203 * The caller should be holding the page busied ? XXX
2204 * This routine may not block.
2206 void
2207 vm_page_activate(vm_page_t m)
2209 u_short oqueue;
2211 vm_page_spin_lock(m);
2212 if (m->queue - m->pc != PQ_ACTIVE) {
2213 _vm_page_queue_spin_lock(m);
2214 oqueue = _vm_page_rem_queue_spinlocked(m);
2215 /* page is left spinlocked, queue is unlocked */
2217 if (oqueue == PQ_CACHE)
2218 mycpu->gd_cnt.v_reactivated++;
2219 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2220 if (m->act_count < ACT_INIT)
2221 m->act_count = ACT_INIT;
2222 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2224 _vm_page_and_queue_spin_unlock(m);
2225 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2226 pagedaemon_wakeup();
2227 } else {
2228 if (m->act_count < ACT_INIT)
2229 m->act_count = ACT_INIT;
2230 vm_page_spin_unlock(m);
2235 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2236 * routine is called when a page has been added to the cache or free
2237 * queues.
2239 * This routine may not block.
2241 static __inline void
2242 vm_page_free_wakeup(void)
2244 globaldata_t gd = mycpu;
2247 * If the pageout daemon itself needs pages, then tell it that
2248 * there are some free.
2250 if (vm_pageout_pages_needed &&
2251 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2252 gd->gd_vmstats.v_pageout_free_min
2254 vm_pageout_pages_needed = 0;
2255 wakeup(&vm_pageout_pages_needed);
2259 * Wakeup processes that are waiting on memory.
2261 * Generally speaking we want to wakeup stuck processes as soon as
2262 * possible. !vm_page_count_min(0) is the absolute minimum point
2263 * where we can do this. Wait a bit longer to reduce degenerate
2264 * re-blocking (vm_page_free_hysteresis). The target check is just
2265 * to make sure the min-check w/hysteresis does not exceed the
2266 * normal target.
2268 if (vm_pages_waiting) {
2269 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2270 !vm_page_count_target()) {
2271 vm_pages_waiting = 0;
2272 wakeup(&vmstats.v_free_count);
2273 ++mycpu->gd_cnt.v_ppwakeups;
2275 #if 0
2276 if (!vm_page_count_target()) {
2278 * Plenty of pages are free, wakeup everyone.
2280 vm_pages_waiting = 0;
2281 wakeup(&vmstats.v_free_count);
2282 ++mycpu->gd_cnt.v_ppwakeups;
2283 } else if (!vm_page_count_min(0)) {
2285 * Some pages are free, wakeup someone.
2287 int wcount = vm_pages_waiting;
2288 if (wcount > 0)
2289 --wcount;
2290 vm_pages_waiting = wcount;
2291 wakeup_one(&vmstats.v_free_count);
2292 ++mycpu->gd_cnt.v_ppwakeups;
2294 #endif
2299 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2300 * it from its VM object.
2302 * The vm_page must be BUSY on entry. BUSY will be released on
2303 * return (the page will have been freed).
2305 void
2306 vm_page_free_toq(vm_page_t m)
2308 mycpu->gd_cnt.v_tfree++;
2309 KKASSERT((m->flags & PG_MAPPED) == 0);
2310 KKASSERT(m->busy_count & PBUSY_LOCKED);
2312 if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2313 kprintf("vm_page_free: pindex(%lu), busy %08x, "
2314 "hold(%d)\n",
2315 (u_long)m->pindex, m->busy_count, m->hold_count);
2316 if ((m->queue - m->pc) == PQ_FREE)
2317 panic("vm_page_free: freeing free page");
2318 else
2319 panic("vm_page_free: freeing busy page");
2323 * Remove from object, spinlock the page and its queues and
2324 * remove from any queue. No queue spinlock will be held
2325 * after this section (because the page was removed from any
2326 * queue).
2328 vm_page_remove(m);
2329 vm_page_and_queue_spin_lock(m);
2330 _vm_page_rem_queue_spinlocked(m);
2333 * No further management of fictitious pages occurs beyond object
2334 * and queue removal.
2336 if ((m->flags & PG_FICTITIOUS) != 0) {
2337 vm_page_spin_unlock(m);
2338 vm_page_wakeup(m);
2339 return;
2342 m->valid = 0;
2343 vm_page_undirty(m);
2345 if (m->wire_count != 0) {
2346 if (m->wire_count > 1) {
2347 panic(
2348 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2349 m->wire_count, (long)m->pindex);
2351 panic("vm_page_free: freeing wired page");
2355 * Clear the UNMANAGED flag when freeing an unmanaged page.
2356 * Clear the NEED_COMMIT flag
2358 if (m->flags & PG_UNMANAGED)
2359 vm_page_flag_clear(m, PG_UNMANAGED);
2360 if (m->flags & PG_NEED_COMMIT)
2361 vm_page_flag_clear(m, PG_NEED_COMMIT);
2363 if (m->hold_count != 0) {
2364 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2365 } else {
2366 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2370 * This sequence allows us to clear BUSY while still holding
2371 * its spin lock, which reduces contention vs allocators. We
2372 * must not leave the queue locked or _vm_page_wakeup() may
2373 * deadlock.
2375 _vm_page_queue_spin_unlock(m);
2376 if (_vm_page_wakeup(m)) {
2377 vm_page_spin_unlock(m);
2378 wakeup(m);
2379 } else {
2380 vm_page_spin_unlock(m);
2382 vm_page_free_wakeup();
2386 * vm_page_unmanage()
2388 * Prevent PV management from being done on the page. The page is
2389 * removed from the paging queues as if it were wired, and as a
2390 * consequence of no longer being managed the pageout daemon will not
2391 * touch it (since there is no way to locate the pte mappings for the
2392 * page). madvise() calls that mess with the pmap will also no longer
2393 * operate on the page.
2395 * Beyond that the page is still reasonably 'normal'. Freeing the page
2396 * will clear the flag.
2398 * This routine is used by OBJT_PHYS objects - objects using unswappable
2399 * physical memory as backing store rather then swap-backed memory and
2400 * will eventually be extended to support 4MB unmanaged physical
2401 * mappings.
2403 * Caller must be holding the page busy.
2405 void
2406 vm_page_unmanage(vm_page_t m)
2408 KKASSERT(m->busy_count & PBUSY_LOCKED);
2409 if ((m->flags & PG_UNMANAGED) == 0) {
2410 if (m->wire_count == 0)
2411 vm_page_unqueue(m);
2413 vm_page_flag_set(m, PG_UNMANAGED);
2417 * Mark this page as wired down by yet another map, removing it from
2418 * paging queues as necessary.
2420 * Caller must be holding the page busy.
2422 void
2423 vm_page_wire(vm_page_t m)
2426 * Only bump the wire statistics if the page is not already wired,
2427 * and only unqueue the page if it is on some queue (if it is unmanaged
2428 * it is already off the queues). Don't do anything with fictitious
2429 * pages because they are always wired.
2431 KKASSERT(m->busy_count & PBUSY_LOCKED);
2432 if ((m->flags & PG_FICTITIOUS) == 0) {
2433 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2434 if ((m->flags & PG_UNMANAGED) == 0)
2435 vm_page_unqueue(m);
2436 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2438 KASSERT(m->wire_count != 0,
2439 ("vm_page_wire: wire_count overflow m=%p", m));
2444 * Release one wiring of this page, potentially enabling it to be paged again.
2446 * Many pages placed on the inactive queue should actually go
2447 * into the cache, but it is difficult to figure out which. What
2448 * we do instead, if the inactive target is well met, is to put
2449 * clean pages at the head of the inactive queue instead of the tail.
2450 * This will cause them to be moved to the cache more quickly and
2451 * if not actively re-referenced, freed more quickly. If we just
2452 * stick these pages at the end of the inactive queue, heavy filesystem
2453 * meta-data accesses can cause an unnecessary paging load on memory bound
2454 * processes. This optimization causes one-time-use metadata to be
2455 * reused more quickly.
2457 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2458 * the inactive queue. This helps the pageout daemon determine memory
2459 * pressure and act on out-of-memory situations more quickly.
2461 * BUT, if we are in a low-memory situation we have no choice but to
2462 * put clean pages on the cache queue.
2464 * A number of routines use vm_page_unwire() to guarantee that the page
2465 * will go into either the inactive or active queues, and will NEVER
2466 * be placed in the cache - for example, just after dirtying a page.
2467 * dirty pages in the cache are not allowed.
2469 * This routine may not block.
2471 void
2472 vm_page_unwire(vm_page_t m, int activate)
2474 KKASSERT(m->busy_count & PBUSY_LOCKED);
2475 if (m->flags & PG_FICTITIOUS) {
2476 /* do nothing */
2477 } else if (m->wire_count <= 0) {
2478 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2479 } else {
2480 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2481 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2482 if (m->flags & PG_UNMANAGED) {
2484 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2485 vm_page_spin_lock(m);
2486 _vm_page_add_queue_spinlocked(m,
2487 PQ_ACTIVE + m->pc, 0);
2488 _vm_page_and_queue_spin_unlock(m);
2489 } else {
2490 vm_page_spin_lock(m);
2491 vm_page_flag_clear(m, PG_WINATCFLS);
2492 _vm_page_add_queue_spinlocked(m,
2493 PQ_INACTIVE + m->pc, 0);
2494 ++vm_swapcache_inactive_heuristic;
2495 _vm_page_and_queue_spin_unlock(m);
2502 * Move the specified page to the inactive queue. If the page has
2503 * any associated swap, the swap is deallocated.
2505 * Normally athead is 0 resulting in LRU operation. athead is set
2506 * to 1 if we want this page to be 'as if it were placed in the cache',
2507 * except without unmapping it from the process address space.
2509 * vm_page's spinlock must be held on entry and will remain held on return.
2510 * This routine may not block.
2512 static void
2513 _vm_page_deactivate_locked(vm_page_t m, int athead)
2515 u_short oqueue;
2518 * Ignore if already inactive.
2520 if (m->queue - m->pc == PQ_INACTIVE)
2521 return;
2522 _vm_page_queue_spin_lock(m);
2523 oqueue = _vm_page_rem_queue_spinlocked(m);
2525 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2526 if (oqueue == PQ_CACHE)
2527 mycpu->gd_cnt.v_reactivated++;
2528 vm_page_flag_clear(m, PG_WINATCFLS);
2529 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2530 if (athead == 0)
2531 ++vm_swapcache_inactive_heuristic;
2533 /* NOTE: PQ_NONE if condition not taken */
2534 _vm_page_queue_spin_unlock(m);
2535 /* leaves vm_page spinlocked */
2539 * Attempt to deactivate a page.
2541 * No requirements.
2543 void
2544 vm_page_deactivate(vm_page_t m)
2546 vm_page_spin_lock(m);
2547 _vm_page_deactivate_locked(m, 0);
2548 vm_page_spin_unlock(m);
2551 void
2552 vm_page_deactivate_locked(vm_page_t m)
2554 _vm_page_deactivate_locked(m, 0);
2558 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2560 * This function returns non-zero if it successfully moved the page to
2561 * PQ_CACHE.
2563 * This function unconditionally unbusies the page on return.
2566 vm_page_try_to_cache(vm_page_t m)
2568 vm_page_spin_lock(m);
2569 if (m->dirty || m->hold_count || m->wire_count ||
2570 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2571 if (_vm_page_wakeup(m)) {
2572 vm_page_spin_unlock(m);
2573 wakeup(m);
2574 } else {
2575 vm_page_spin_unlock(m);
2577 return(0);
2579 vm_page_spin_unlock(m);
2582 * Page busied by us and no longer spinlocked. Dirty pages cannot
2583 * be moved to the cache.
2585 vm_page_test_dirty(m);
2586 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2587 vm_page_wakeup(m);
2588 return(0);
2590 vm_page_cache(m);
2591 return(1);
2595 * Attempt to free the page. If we cannot free it, we do nothing.
2596 * 1 is returned on success, 0 on failure.
2598 * No requirements.
2601 vm_page_try_to_free(vm_page_t m)
2603 vm_page_spin_lock(m);
2604 if (vm_page_busy_try(m, TRUE)) {
2605 vm_page_spin_unlock(m);
2606 return(0);
2610 * The page can be in any state, including already being on the free
2611 * queue. Check to see if it really can be freed.
2613 if (m->dirty || /* can't free if it is dirty */
2614 m->hold_count || /* or held (XXX may be wrong) */
2615 m->wire_count || /* or wired */
2616 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2617 PG_NEED_COMMIT)) || /* or needs a commit */
2618 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2619 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2620 if (_vm_page_wakeup(m)) {
2621 vm_page_spin_unlock(m);
2622 wakeup(m);
2623 } else {
2624 vm_page_spin_unlock(m);
2626 return(0);
2628 vm_page_spin_unlock(m);
2631 * We can probably free the page.
2633 * Page busied by us and no longer spinlocked. Dirty pages will
2634 * not be freed by this function. We have to re-test the
2635 * dirty bit after cleaning out the pmaps.
2637 vm_page_test_dirty(m);
2638 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2639 vm_page_wakeup(m);
2640 return(0);
2642 vm_page_protect(m, VM_PROT_NONE);
2643 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2644 vm_page_wakeup(m);
2645 return(0);
2647 vm_page_free(m);
2648 return(1);
2652 * vm_page_cache
2654 * Put the specified page onto the page cache queue (if appropriate).
2656 * The page must be busy, and this routine will release the busy and
2657 * possibly even free the page.
2659 void
2660 vm_page_cache(vm_page_t m)
2663 * Not suitable for the cache
2665 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2666 (m->busy_count & PBUSY_MASK) ||
2667 m->wire_count || m->hold_count) {
2668 vm_page_wakeup(m);
2669 return;
2673 * Already in the cache (and thus not mapped)
2675 if ((m->queue - m->pc) == PQ_CACHE) {
2676 KKASSERT((m->flags & PG_MAPPED) == 0);
2677 vm_page_wakeup(m);
2678 return;
2682 * Caller is required to test m->dirty, but note that the act of
2683 * removing the page from its maps can cause it to become dirty
2684 * on an SMP system due to another cpu running in usermode.
2686 if (m->dirty) {
2687 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2688 (long)m->pindex);
2692 * Remove all pmaps and indicate that the page is not
2693 * writeable or mapped. Our vm_page_protect() call may
2694 * have blocked (especially w/ VM_PROT_NONE), so recheck
2695 * everything.
2697 vm_page_protect(m, VM_PROT_NONE);
2698 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2699 (m->busy_count & PBUSY_MASK) ||
2700 m->wire_count || m->hold_count) {
2701 vm_page_wakeup(m);
2702 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2703 vm_page_deactivate(m);
2704 vm_page_wakeup(m);
2705 } else {
2706 _vm_page_and_queue_spin_lock(m);
2707 _vm_page_rem_queue_spinlocked(m);
2708 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2709 _vm_page_queue_spin_unlock(m);
2710 if (_vm_page_wakeup(m)) {
2711 vm_page_spin_unlock(m);
2712 wakeup(m);
2713 } else {
2714 vm_page_spin_unlock(m);
2716 vm_page_free_wakeup();
2721 * vm_page_dontneed()
2723 * Cache, deactivate, or do nothing as appropriate. This routine
2724 * is typically used by madvise() MADV_DONTNEED.
2726 * Generally speaking we want to move the page into the cache so
2727 * it gets reused quickly. However, this can result in a silly syndrome
2728 * due to the page recycling too quickly. Small objects will not be
2729 * fully cached. On the otherhand, if we move the page to the inactive
2730 * queue we wind up with a problem whereby very large objects
2731 * unnecessarily blow away our inactive and cache queues.
2733 * The solution is to move the pages based on a fixed weighting. We
2734 * either leave them alone, deactivate them, or move them to the cache,
2735 * where moving them to the cache has the highest weighting.
2736 * By forcing some pages into other queues we eventually force the
2737 * system to balance the queues, potentially recovering other unrelated
2738 * space from active. The idea is to not force this to happen too
2739 * often.
2741 * The page must be busied.
2743 void
2744 vm_page_dontneed(vm_page_t m)
2746 static int dnweight;
2747 int dnw;
2748 int head;
2750 dnw = ++dnweight;
2753 * occassionally leave the page alone
2755 if ((dnw & 0x01F0) == 0 ||
2756 m->queue - m->pc == PQ_INACTIVE ||
2757 m->queue - m->pc == PQ_CACHE
2759 if (m->act_count >= ACT_INIT)
2760 --m->act_count;
2761 return;
2765 * If vm_page_dontneed() is inactivating a page, it must clear
2766 * the referenced flag; otherwise the pagedaemon will see references
2767 * on the page in the inactive queue and reactivate it. Until the
2768 * page can move to the cache queue, madvise's job is not done.
2770 vm_page_flag_clear(m, PG_REFERENCED);
2771 pmap_clear_reference(m);
2773 if (m->dirty == 0)
2774 vm_page_test_dirty(m);
2776 if (m->dirty || (dnw & 0x0070) == 0) {
2778 * Deactivate the page 3 times out of 32.
2780 head = 0;
2781 } else {
2783 * Cache the page 28 times out of every 32. Note that
2784 * the page is deactivated instead of cached, but placed
2785 * at the head of the queue instead of the tail.
2787 head = 1;
2789 vm_page_spin_lock(m);
2790 _vm_page_deactivate_locked(m, head);
2791 vm_page_spin_unlock(m);
2795 * These routines manipulate the 'soft busy' count for a page. A soft busy
2796 * is almost like a hard BUSY except that it allows certain compatible
2797 * operations to occur on the page while it is busy. For example, a page
2798 * undergoing a write can still be mapped read-only.
2800 * We also use soft-busy to quickly pmap_enter shared read-only pages
2801 * without having to hold the page locked.
2803 * The soft-busy count can be > 1 in situations where multiple threads
2804 * are pmap_enter()ing the same page simultaneously, or when two buffer
2805 * cache buffers overlap the same page.
2807 * The caller must hold the page BUSY when making these two calls.
2809 void
2810 vm_page_io_start(vm_page_t m)
2812 uint32_t ocount;
2814 ocount = atomic_fetchadd_int(&m->busy_count, 1);
2815 KKASSERT(ocount & PBUSY_LOCKED);
2818 void
2819 vm_page_io_finish(vm_page_t m)
2821 uint32_t ocount;
2823 ocount = atomic_fetchadd_int(&m->busy_count, -1);
2824 KKASSERT(ocount & PBUSY_MASK);
2825 #if 0
2826 if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
2827 wakeup(m);
2828 #endif
2832 * Attempt to soft-busy a page. The page must not be PBUSY_LOCKED.
2834 * Returns 0 on success, non-zero on failure.
2837 vm_page_sbusy_try(vm_page_t m)
2839 uint32_t ocount;
2841 if (m->busy_count & PBUSY_LOCKED)
2842 return 1;
2843 ocount = atomic_fetchadd_int(&m->busy_count, 1);
2844 if (ocount & PBUSY_LOCKED) {
2845 vm_page_sbusy_drop(m);
2846 return 1;
2848 return 0;
2852 * Indicate that a clean VM page requires a filesystem commit and cannot
2853 * be reused. Used by tmpfs.
2855 void
2856 vm_page_need_commit(vm_page_t m)
2858 vm_page_flag_set(m, PG_NEED_COMMIT);
2859 vm_object_set_writeable_dirty(m->object);
2862 void
2863 vm_page_clear_commit(vm_page_t m)
2865 vm_page_flag_clear(m, PG_NEED_COMMIT);
2869 * Grab a page, blocking if it is busy and allocating a page if necessary.
2870 * A busy page is returned or NULL. The page may or may not be valid and
2871 * might not be on a queue (the caller is responsible for the disposition of
2872 * the page).
2874 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2875 * page will be zero'd and marked valid.
2877 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2878 * valid even if it already exists.
2880 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2881 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2882 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2884 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2885 * always returned if we had blocked.
2887 * This routine may not be called from an interrupt.
2889 * No other requirements.
2891 vm_page_t
2892 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2894 vm_page_t m;
2895 int error;
2896 int shared = 1;
2898 KKASSERT(allocflags &
2899 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2900 vm_object_hold_shared(object);
2901 for (;;) {
2902 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2903 if (error) {
2904 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2905 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2906 m = NULL;
2907 break;
2909 /* retry */
2910 } else if (m == NULL) {
2911 if (shared) {
2912 vm_object_upgrade(object);
2913 shared = 0;
2915 if (allocflags & VM_ALLOC_RETRY)
2916 allocflags |= VM_ALLOC_NULL_OK;
2917 m = vm_page_alloc(object, pindex,
2918 allocflags & ~VM_ALLOC_RETRY);
2919 if (m)
2920 break;
2921 vm_wait(0);
2922 if ((allocflags & VM_ALLOC_RETRY) == 0)
2923 goto failed;
2924 } else {
2925 /* m found */
2926 break;
2931 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2933 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2934 * valid even if already valid.
2936 * NOTE! We have removed all of the PG_ZERO optimizations and also
2937 * removed the idle zeroing code. These optimizations actually
2938 * slow things down on modern cpus because the zerod area is
2939 * likely uncached, placing a memory-access burden on the
2940 * accesors taking the fault.
2942 * By always zeroing the page in-line with the fault, no
2943 * dynamic ram reads are needed and the caches are hot, ready
2944 * for userland to access the memory.
2946 if (m->valid == 0) {
2947 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2948 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2949 m->valid = VM_PAGE_BITS_ALL;
2951 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2952 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2953 m->valid = VM_PAGE_BITS_ALL;
2955 failed:
2956 vm_object_drop(object);
2957 return(m);
2961 * Mapping function for valid bits or for dirty bits in
2962 * a page. May not block.
2964 * Inputs are required to range within a page.
2966 * No requirements.
2967 * Non blocking.
2970 vm_page_bits(int base, int size)
2972 int first_bit;
2973 int last_bit;
2975 KASSERT(
2976 base + size <= PAGE_SIZE,
2977 ("vm_page_bits: illegal base/size %d/%d", base, size)
2980 if (size == 0) /* handle degenerate case */
2981 return(0);
2983 first_bit = base >> DEV_BSHIFT;
2984 last_bit = (base + size - 1) >> DEV_BSHIFT;
2986 return ((2 << last_bit) - (1 << first_bit));
2990 * Sets portions of a page valid and clean. The arguments are expected
2991 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2992 * of any partial chunks touched by the range. The invalid portion of
2993 * such chunks will be zero'd.
2995 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2996 * align base to DEV_BSIZE so as not to mark clean a partially
2997 * truncated device block. Otherwise the dirty page status might be
2998 * lost.
3000 * This routine may not block.
3002 * (base + size) must be less then or equal to PAGE_SIZE.
3004 static void
3005 _vm_page_zero_valid(vm_page_t m, int base, int size)
3007 int frag;
3008 int endoff;
3010 if (size == 0) /* handle degenerate case */
3011 return;
3014 * If the base is not DEV_BSIZE aligned and the valid
3015 * bit is clear, we have to zero out a portion of the
3016 * first block.
3019 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3020 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3022 pmap_zero_page_area(
3023 VM_PAGE_TO_PHYS(m),
3024 frag,
3025 base - frag
3030 * If the ending offset is not DEV_BSIZE aligned and the
3031 * valid bit is clear, we have to zero out a portion of
3032 * the last block.
3035 endoff = base + size;
3037 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3038 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3040 pmap_zero_page_area(
3041 VM_PAGE_TO_PHYS(m),
3042 endoff,
3043 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3049 * Set valid, clear dirty bits. If validating the entire
3050 * page we can safely clear the pmap modify bit. We also
3051 * use this opportunity to clear the PG_NOSYNC flag. If a process
3052 * takes a write fault on a MAP_NOSYNC memory area the flag will
3053 * be set again.
3055 * We set valid bits inclusive of any overlap, but we can only
3056 * clear dirty bits for DEV_BSIZE chunks that are fully within
3057 * the range.
3059 * Page must be busied?
3060 * No other requirements.
3062 void
3063 vm_page_set_valid(vm_page_t m, int base, int size)
3065 _vm_page_zero_valid(m, base, size);
3066 m->valid |= vm_page_bits(base, size);
3071 * Set valid bits and clear dirty bits.
3073 * Page must be busied by caller.
3075 * NOTE: This function does not clear the pmap modified bit.
3076 * Also note that e.g. NFS may use a byte-granular base
3077 * and size.
3079 * No other requirements.
3081 void
3082 vm_page_set_validclean(vm_page_t m, int base, int size)
3084 int pagebits;
3086 _vm_page_zero_valid(m, base, size);
3087 pagebits = vm_page_bits(base, size);
3088 m->valid |= pagebits;
3089 m->dirty &= ~pagebits;
3090 if (base == 0 && size == PAGE_SIZE) {
3091 /*pmap_clear_modify(m);*/
3092 vm_page_flag_clear(m, PG_NOSYNC);
3097 * Set valid & dirty. Used by buwrite()
3099 * Page must be busied by caller.
3101 void
3102 vm_page_set_validdirty(vm_page_t m, int base, int size)
3104 int pagebits;
3106 pagebits = vm_page_bits(base, size);
3107 m->valid |= pagebits;
3108 m->dirty |= pagebits;
3109 if (m->object)
3110 vm_object_set_writeable_dirty(m->object);
3114 * Clear dirty bits.
3116 * NOTE: This function does not clear the pmap modified bit.
3117 * Also note that e.g. NFS may use a byte-granular base
3118 * and size.
3120 * Page must be busied?
3121 * No other requirements.
3123 void
3124 vm_page_clear_dirty(vm_page_t m, int base, int size)
3126 m->dirty &= ~vm_page_bits(base, size);
3127 if (base == 0 && size == PAGE_SIZE) {
3128 /*pmap_clear_modify(m);*/
3129 vm_page_flag_clear(m, PG_NOSYNC);
3134 * Make the page all-dirty.
3136 * Also make sure the related object and vnode reflect the fact that the
3137 * object may now contain a dirty page.
3139 * Page must be busied?
3140 * No other requirements.
3142 void
3143 vm_page_dirty(vm_page_t m)
3145 #ifdef INVARIANTS
3146 int pqtype = m->queue - m->pc;
3147 #endif
3148 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3149 ("vm_page_dirty: page in free/cache queue!"));
3150 if (m->dirty != VM_PAGE_BITS_ALL) {
3151 m->dirty = VM_PAGE_BITS_ALL;
3152 if (m->object)
3153 vm_object_set_writeable_dirty(m->object);
3158 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3159 * valid and dirty bits for the effected areas are cleared.
3161 * Page must be busied?
3162 * Does not block.
3163 * No other requirements.
3165 void
3166 vm_page_set_invalid(vm_page_t m, int base, int size)
3168 int bits;
3170 bits = vm_page_bits(base, size);
3171 m->valid &= ~bits;
3172 m->dirty &= ~bits;
3173 atomic_add_int(&m->object->generation, 1);
3177 * The kernel assumes that the invalid portions of a page contain
3178 * garbage, but such pages can be mapped into memory by user code.
3179 * When this occurs, we must zero out the non-valid portions of the
3180 * page so user code sees what it expects.
3182 * Pages are most often semi-valid when the end of a file is mapped
3183 * into memory and the file's size is not page aligned.
3185 * Page must be busied?
3186 * No other requirements.
3188 void
3189 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3191 int b;
3192 int i;
3195 * Scan the valid bits looking for invalid sections that
3196 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3197 * valid bit may be set ) have already been zerod by
3198 * vm_page_set_validclean().
3200 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3201 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3202 (m->valid & (1 << i))
3204 if (i > b) {
3205 pmap_zero_page_area(
3206 VM_PAGE_TO_PHYS(m),
3207 b << DEV_BSHIFT,
3208 (i - b) << DEV_BSHIFT
3211 b = i + 1;
3216 * setvalid is TRUE when we can safely set the zero'd areas
3217 * as being valid. We can do this if there are no cache consistency
3218 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3220 if (setvalid)
3221 m->valid = VM_PAGE_BITS_ALL;
3225 * Is a (partial) page valid? Note that the case where size == 0
3226 * will return FALSE in the degenerate case where the page is entirely
3227 * invalid, and TRUE otherwise.
3229 * Does not block.
3230 * No other requirements.
3233 vm_page_is_valid(vm_page_t m, int base, int size)
3235 int bits = vm_page_bits(base, size);
3237 if (m->valid && ((m->valid & bits) == bits))
3238 return 1;
3239 else
3240 return 0;
3244 * update dirty bits from pmap/mmu. May not block.
3246 * Caller must hold the page busy
3248 void
3249 vm_page_test_dirty(vm_page_t m)
3251 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3252 vm_page_dirty(m);
3256 #include "opt_ddb.h"
3257 #ifdef DDB
3258 #include <ddb/ddb.h>
3260 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3262 db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3263 db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3264 db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3265 db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3266 db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3267 db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3268 db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3269 db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3270 db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3271 db_printf("vmstats.v_inactive_target: %ld\n",
3272 vmstats.v_inactive_target);
3275 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3277 int i;
3278 db_printf("PQ_FREE:");
3279 for (i = 0; i < PQ_L2_SIZE; i++) {
3280 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3282 db_printf("\n");
3284 db_printf("PQ_CACHE:");
3285 for(i = 0; i < PQ_L2_SIZE; i++) {
3286 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3288 db_printf("\n");
3290 db_printf("PQ_ACTIVE:");
3291 for(i = 0; i < PQ_L2_SIZE; i++) {
3292 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3294 db_printf("\n");
3296 db_printf("PQ_INACTIVE:");
3297 for(i = 0; i < PQ_L2_SIZE; i++) {
3298 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3300 db_printf("\n");
3302 #endif /* DDB */