kernel - Use GDF_VIRTUSER to help measure user% in the vkernel host
[dragonfly.git] / sys / vm / swap_pager.c
blobef0be6ca6bdf4f4d574597ea3cea1c73b01da255
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
127 #endif
129 #define SWM_FREE 0x02 /* free, period */
130 #define SWM_POP 0x04 /* pop out */
132 #define SWBIO_READ 0x01
133 #define SWBIO_WRITE 0x02
134 #define SWBIO_SYNC 0x04
135 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */
137 struct swfreeinfo {
138 vm_object_t object;
139 vm_pindex_t basei;
140 vm_pindex_t begi;
141 vm_pindex_t endi; /* inclusive */
144 struct swswapoffinfo {
145 vm_object_t object;
146 int devidx;
147 int shared;
151 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
152 * in the old system.
155 int swap_pager_full; /* swap space exhaustion (task killing) */
156 int swap_fail_ticks; /* when we became exhausted */
157 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
162 static int nsw_rcount; /* free read buffers */
163 static int nsw_wcount_sync; /* limit write buffers / synchronous */
164 static int nsw_wcount_async; /* limit write buffers / asynchronous */
165 static int nsw_wcount_async_max;/* assigned maximum */
166 static int nsw_cluster_max; /* maximum VOP I/O allowed */
168 struct blist *swapblist;
169 static int swap_async_max = 4; /* maximum in-progress async I/O's */
170 static int swap_burst_read = 0; /* allow burst reading */
171 static swblk_t swapiterator; /* linearize allocations */
172 int swap_user_async = 0; /* user swap pager operation can be async */
174 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176 /* from vm_swap.c */
177 extern struct vnode *swapdev_vp;
178 extern struct swdevt *swdevt;
179 extern int nswdev;
181 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
184 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
185 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
186 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
187 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
188 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190 #if SWBLK_BITS == 64
191 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
192 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
193 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
194 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
196 CTLFLAG_RD, &vm_swap_size, 0, "");
197 #else
198 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
199 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
200 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
201 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_size,
203 CTLFLAG_RD, &vm_swap_size, 0, "");
204 #endif
205 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
206 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
208 vm_zone_t swap_zone;
211 * Red-Black tree for swblock entries
213 * The caller must hold vm_token
215 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
216 vm_pindex_t, swb_index);
219 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
221 if (swb1->swb_index < swb2->swb_index)
222 return(-1);
223 if (swb1->swb_index > swb2->swb_index)
224 return(1);
225 return(0);
228 static
230 rb_swblock_scancmp(struct swblock *swb, void *data)
232 struct swfreeinfo *info = data;
234 if (swb->swb_index < info->basei)
235 return(-1);
236 if (swb->swb_index > info->endi)
237 return(1);
238 return(0);
241 static
243 rb_swblock_condcmp(struct swblock *swb, void *data)
245 struct swfreeinfo *info = data;
247 if (swb->swb_index < info->basei)
248 return(-1);
249 return(0);
253 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
254 * calls hooked from other parts of the VM system and do not appear here.
255 * (see vm/swap_pager.h).
258 static void swap_pager_dealloc (vm_object_t object);
259 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
260 static void swap_chain_iodone(struct bio *biox);
262 struct pagerops swappagerops = {
263 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
264 swap_pager_getpage, /* pagein */
265 swap_pager_putpages, /* pageout */
266 swap_pager_haspage /* get backing store status for page */
270 * SWB_DMMAX is in page-sized chunks with the new swap system. It was
271 * dev-bsized chunks in the old. SWB_DMMAX is always a power of 2.
273 * swap_*() routines are externally accessible. swp_*() routines are
274 * internal.
277 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
278 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
280 static __inline void swp_sizecheck (void);
281 static void swp_pager_async_iodone (struct bio *bio);
284 * Swap bitmap functions
287 static __inline void swp_pager_freeswapspace(vm_object_t object,
288 swblk_t blk, int npages);
289 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
292 * Metadata functions
295 static void swp_pager_meta_convert(vm_object_t);
296 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
297 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
298 static void swp_pager_meta_free_all(vm_object_t);
299 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
302 * SWP_SIZECHECK() - update swap_pager_full indication
304 * update the swap_pager_almost_full indication and warn when we are
305 * about to run out of swap space, using lowat/hiwat hysteresis.
307 * Clear swap_pager_full ( task killing ) indication when lowat is met.
309 * No restrictions on call
310 * This routine may not block.
311 * SMP races are ok.
313 static __inline void
314 swp_sizecheck(void)
316 if (vm_swap_size < nswap_lowat) {
317 if (swap_pager_almost_full == 0) {
318 kprintf("swap_pager: out of swap space\n");
319 swap_pager_almost_full = 1;
320 swap_fail_ticks = ticks;
322 } else {
323 swap_pager_full = 0;
324 if (vm_swap_size > nswap_hiwat)
325 swap_pager_almost_full = 0;
330 * SWAP_PAGER_INIT() - initialize the swap pager!
332 * Expected to be started from system init. NOTE: This code is run
333 * before much else so be careful what you depend on. Most of the VM
334 * system has yet to be initialized at this point.
336 * Called from the low level boot code only.
338 static void
339 swap_pager_init(void *arg __unused)
342 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
345 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
347 * Expected to be started from pageout process once, prior to entering
348 * its main loop.
350 * Called from the low level boot code only.
352 void
353 swap_pager_swap_init(void)
355 int n, n2;
358 * Number of in-transit swap bp operations. Don't
359 * exhaust the pbufs completely. Make sure we
360 * initialize workable values (0 will work for hysteresis
361 * but it isn't very efficient).
363 * The nsw_cluster_max is constrained by the number of pages an XIO
364 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
365 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
366 * constrained by the swap device interleave stripe size.
368 * Currently we hardwire nsw_wcount_async to 4. This limit is
369 * designed to prevent other I/O from having high latencies due to
370 * our pageout I/O. The value 4 works well for one or two active swap
371 * devices but is probably a little low if you have more. Even so,
372 * a higher value would probably generate only a limited improvement
373 * with three or four active swap devices since the system does not
374 * typically have to pageout at extreme bandwidths. We will want
375 * at least 2 per swap devices, and 4 is a pretty good value if you
376 * have one NFS swap device due to the command/ack latency over NFS.
377 * So it all works out pretty well.
380 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
382 nsw_rcount = (nswbuf_kva + 1) / 2;
383 nsw_wcount_sync = (nswbuf_kva + 3) / 4;
384 nsw_wcount_async = 4;
385 nsw_wcount_async_max = nsw_wcount_async;
388 * The zone is dynamically allocated so generally size it to
389 * maxswzone (32MB to 256GB of KVM). Set a minimum size based
390 * on physical memory of around 8x (each swblock can hold 16 pages).
392 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
393 * has increased dramatically.
395 n = vmstats.v_page_count / 2;
396 if (maxswzone && n < maxswzone / sizeof(struct swblock))
397 n = maxswzone / sizeof(struct swblock);
398 n2 = n;
400 do {
401 swap_zone = zinit(
402 "SWAPMETA",
403 sizeof(struct swblock),
405 ZONE_INTERRUPT);
406 if (swap_zone != NULL)
407 break;
409 * if the allocation failed, try a zone two thirds the
410 * size of the previous attempt.
412 n -= ((n + 2) / 3);
413 } while (n > 0);
415 if (swap_zone == NULL)
416 panic("swap_pager_swap_init: swap_zone == NULL");
417 if (n2 != n)
418 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
422 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
423 * its metadata structures.
425 * This routine is called from the mmap and fork code to create a new
426 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
427 * and then converting it with swp_pager_meta_convert().
429 * We only support unnamed objects.
431 * No restrictions.
433 vm_object_t
434 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
436 vm_object_t object;
438 KKASSERT(handle == NULL);
439 object = vm_object_allocate_hold(OBJT_DEFAULT,
440 OFF_TO_IDX(offset + PAGE_MASK + size));
441 swp_pager_meta_convert(object);
442 vm_object_drop(object);
444 return (object);
448 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
450 * The swap backing for the object is destroyed. The code is
451 * designed such that we can reinstantiate it later, but this
452 * routine is typically called only when the entire object is
453 * about to be destroyed.
455 * The object must be locked or unreferenceable.
456 * No other requirements.
458 static void
459 swap_pager_dealloc(vm_object_t object)
461 vm_object_hold(object);
462 vm_object_pip_wait(object, "swpdea");
465 * Free all remaining metadata. We only bother to free it from
466 * the swap meta data. We do not attempt to free swapblk's still
467 * associated with vm_page_t's for this object. We do not care
468 * if paging is still in progress on some objects.
470 swp_pager_meta_free_all(object);
471 vm_object_drop(object);
474 /************************************************************************
475 * SWAP PAGER BITMAP ROUTINES *
476 ************************************************************************/
479 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
481 * Allocate swap for the requested number of pages. The starting
482 * swap block number (a page index) is returned or SWAPBLK_NONE
483 * if the allocation failed.
485 * Also has the side effect of advising that somebody made a mistake
486 * when they configured swap and didn't configure enough.
488 * The caller must hold the object.
489 * This routine may not block.
491 static __inline swblk_t
492 swp_pager_getswapspace(vm_object_t object, int npages)
494 swblk_t blk;
496 lwkt_gettoken(&vm_token);
497 blk = blist_allocat(swapblist, npages, swapiterator);
498 if (blk == SWAPBLK_NONE)
499 blk = blist_allocat(swapblist, npages, 0);
500 if (blk == SWAPBLK_NONE) {
501 if (swap_pager_full != 2) {
502 if (vm_swap_max == 0)
503 kprintf("Warning: The system would like to "
504 "page to swap but no swap space "
505 "is configured!\n");
506 else
507 kprintf("swap_pager_getswapspace: "
508 "swap full allocating %d pages\n",
509 npages);
510 swap_pager_full = 2;
511 if (swap_pager_almost_full == 0)
512 swap_fail_ticks = ticks;
513 swap_pager_almost_full = 1;
515 } else {
516 /* swapiterator = blk; disable for now, doesn't work well */
517 swapacctspace(blk, -npages);
518 if (object->type == OBJT_SWAP)
519 vm_swap_anon_use += npages;
520 else
521 vm_swap_cache_use += npages;
522 swp_sizecheck();
524 lwkt_reltoken(&vm_token);
525 return(blk);
529 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
531 * This routine returns the specified swap blocks back to the bitmap.
533 * Note: This routine may not block (it could in the old swap code),
534 * and through the use of the new blist routines it does not block.
536 * This routine may not block.
539 static __inline void
540 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
542 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
544 lwkt_gettoken(&vm_token);
545 sp->sw_nused -= npages;
546 if (object->type == OBJT_SWAP)
547 vm_swap_anon_use -= npages;
548 else
549 vm_swap_cache_use -= npages;
551 if (sp->sw_flags & SW_CLOSING) {
552 lwkt_reltoken(&vm_token);
553 return;
556 blist_free(swapblist, blk, npages);
557 vm_swap_size += npages;
558 swp_sizecheck();
559 lwkt_reltoken(&vm_token);
563 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
564 * range within an object.
566 * This is a globally accessible routine.
568 * This routine removes swapblk assignments from swap metadata.
570 * The external callers of this routine typically have already destroyed
571 * or renamed vm_page_t's associated with this range in the object so
572 * we should be ok.
574 * No requirements.
576 void
577 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
579 vm_object_hold(object);
580 swp_pager_meta_free(object, start, size);
581 vm_object_drop(object);
585 * No requirements.
587 void
588 swap_pager_freespace_all(vm_object_t object)
590 vm_object_hold(object);
591 swp_pager_meta_free_all(object);
592 vm_object_drop(object);
596 * This function conditionally frees swap cache swap starting at
597 * (*basei) in the object. (count) swap blocks will be nominally freed.
598 * The actual number of blocks freed can be more or less than the
599 * requested number.
601 * This function nominally returns the number of blocks freed. However,
602 * the actual number of blocks freed may be less then the returned value.
603 * If the function is unable to exhaust the object or if it is able to
604 * free (approximately) the requested number of blocks it returns
605 * a value n > count.
607 * If we exhaust the object we will return a value n <= count.
609 * The caller must hold the object.
611 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
612 * callers should always pass a count value > 0.
614 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
617 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
619 struct swfreeinfo info;
620 int n;
621 int t;
623 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
625 info.object = object;
626 info.basei = *basei; /* skip up to this page index */
627 info.begi = count; /* max swap pages to destroy */
628 info.endi = count * 8; /* max swblocks to scan */
630 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
631 swap_pager_condfree_callback, &info);
632 *basei = info.basei;
635 * Take the higher difference swblocks vs pages
637 n = count - (int)info.begi;
638 t = count * 8 - (int)info.endi;
639 if (n < t)
640 n = t;
641 if (n < 1)
642 n = 1;
643 return(n);
647 * The idea is to free whole meta-block to avoid fragmenting
648 * the swap space or disk I/O. We only do this if NO VM pages
649 * are present.
651 * We do not have to deal with clearing PG_SWAPPED in related VM
652 * pages because there are no related VM pages.
654 * The caller must hold the object.
656 static int
657 swap_pager_condfree_callback(struct swblock *swap, void *data)
659 struct swfreeinfo *info = data;
660 vm_object_t object = info->object;
661 int i;
663 for (i = 0; i < SWAP_META_PAGES; ++i) {
664 if (vm_page_lookup(object, swap->swb_index + i))
665 break;
667 info->basei = swap->swb_index + SWAP_META_PAGES;
668 if (i == SWAP_META_PAGES) {
669 info->begi -= swap->swb_count;
670 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
672 --info->endi;
673 if ((int)info->begi < 0 || (int)info->endi < 0)
674 return(-1);
675 lwkt_yield();
676 return(0);
680 * Called by vm_page_alloc() when a new VM page is inserted
681 * into a VM object. Checks whether swap has been assigned to
682 * the page and sets PG_SWAPPED as necessary.
684 * No requirements.
686 void
687 swap_pager_page_inserted(vm_page_t m)
689 if (m->object->swblock_count) {
690 vm_object_hold(m->object);
691 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
692 vm_page_flag_set(m, PG_SWAPPED);
693 vm_object_drop(m->object);
698 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
700 * Assigns swap blocks to the specified range within the object. The
701 * swap blocks are not zerod. Any previous swap assignment is destroyed.
703 * Returns 0 on success, -1 on failure.
705 * The caller is responsible for avoiding races in the specified range.
706 * No other requirements.
709 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
711 int n = 0;
712 swblk_t blk = SWAPBLK_NONE;
713 vm_pindex_t beg = start; /* save start index */
715 vm_object_hold(object);
717 while (size) {
718 if (n == 0) {
719 n = BLIST_MAX_ALLOC;
720 while ((blk = swp_pager_getswapspace(object, n)) ==
721 SWAPBLK_NONE)
723 n >>= 1;
724 if (n == 0) {
725 swp_pager_meta_free(object, beg,
726 start - beg);
727 vm_object_drop(object);
728 return(-1);
732 swp_pager_meta_build(object, start, blk);
733 --size;
734 ++start;
735 ++blk;
736 --n;
738 swp_pager_meta_free(object, start, n);
739 vm_object_drop(object);
740 return(0);
744 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
745 * and destroy the source.
747 * Copy any valid swapblks from the source to the destination. In
748 * cases where both the source and destination have a valid swapblk,
749 * we keep the destination's.
751 * This routine is allowed to block. It may block allocating metadata
752 * indirectly through swp_pager_meta_build() or if paging is still in
753 * progress on the source.
755 * XXX vm_page_collapse() kinda expects us not to block because we
756 * supposedly do not need to allocate memory, but for the moment we
757 * *may* have to get a little memory from the zone allocator, but
758 * it is taken from the interrupt memory. We should be ok.
760 * The source object contains no vm_page_t's (which is just as well)
761 * The source object is of type OBJT_SWAP.
763 * The source and destination objects must be held by the caller.
765 void
766 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
767 vm_pindex_t base_index, int destroysource)
769 vm_pindex_t i;
771 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
772 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
775 * transfer source to destination.
777 for (i = 0; i < dstobject->size; ++i) {
778 swblk_t dstaddr;
781 * Locate (without changing) the swapblk on the destination,
782 * unless it is invalid in which case free it silently, or
783 * if the destination is a resident page, in which case the
784 * source is thrown away.
786 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
788 if (dstaddr == SWAPBLK_NONE) {
790 * Destination has no swapblk and is not resident,
791 * copy source.
793 swblk_t srcaddr;
795 srcaddr = swp_pager_meta_ctl(srcobject,
796 base_index + i, SWM_POP);
798 if (srcaddr != SWAPBLK_NONE)
799 swp_pager_meta_build(dstobject, i, srcaddr);
800 } else {
802 * Destination has valid swapblk or it is represented
803 * by a resident page. We destroy the sourceblock.
805 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
810 * Free left over swap blocks in source.
812 * We have to revert the type to OBJT_DEFAULT so we do not accidently
813 * double-remove the object from the swap queues.
815 if (destroysource) {
817 * Reverting the type is not necessary, the caller is going
818 * to destroy srcobject directly, but I'm doing it here
819 * for consistency since we've removed the object from its
820 * queues.
822 swp_pager_meta_free_all(srcobject);
823 if (srcobject->type == OBJT_SWAP)
824 srcobject->type = OBJT_DEFAULT;
829 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
830 * the requested page.
832 * We determine whether good backing store exists for the requested
833 * page and return TRUE if it does, FALSE if it doesn't.
835 * If TRUE, we also try to determine how much valid, contiguous backing
836 * store exists before and after the requested page within a reasonable
837 * distance. We do not try to restrict it to the swap device stripe
838 * (that is handled in getpages/putpages). It probably isn't worth
839 * doing here.
841 * No requirements.
843 boolean_t
844 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
846 swblk_t blk0;
849 * do we have good backing store at the requested index ?
851 vm_object_hold(object);
852 blk0 = swp_pager_meta_ctl(object, pindex, 0);
854 if (blk0 == SWAPBLK_NONE) {
855 vm_object_drop(object);
856 return (FALSE);
858 vm_object_drop(object);
859 return (TRUE);
863 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
865 * This removes any associated swap backing store, whether valid or
866 * not, from the page. This operates on any VM object, not just OBJT_SWAP
867 * objects.
869 * This routine is typically called when a page is made dirty, at
870 * which point any associated swap can be freed. MADV_FREE also
871 * calls us in a special-case situation
873 * NOTE!!! If the page is clean and the swap was valid, the caller
874 * should make the page dirty before calling this routine. This routine
875 * does NOT change the m->dirty status of the page. Also: MADV_FREE
876 * depends on it.
878 * The page must be busied.
879 * The caller can hold the object to avoid blocking, else we might block.
880 * No other requirements.
882 void
883 swap_pager_unswapped(vm_page_t m)
885 if (m->flags & PG_SWAPPED) {
886 vm_object_hold(m->object);
887 KKASSERT(m->flags & PG_SWAPPED);
888 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
889 vm_page_flag_clear(m, PG_SWAPPED);
890 vm_object_drop(m->object);
895 * SWAP_PAGER_STRATEGY() - read, write, free blocks
897 * This implements a VM OBJECT strategy function using swap backing store.
898 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
899 * types.
901 * This is intended to be a cacheless interface (i.e. caching occurs at
902 * higher levels), and is also used as a swap-based SSD cache for vnode
903 * and device objects.
905 * All I/O goes directly to and from the swap device.
907 * We currently attempt to run I/O synchronously or asynchronously as
908 * the caller requests. This isn't perfect because we loose error
909 * sequencing when we run multiple ops in parallel to satisfy a request.
910 * But this is swap, so we let it all hang out.
912 * No requirements.
914 void
915 swap_pager_strategy(vm_object_t object, struct bio *bio)
917 struct buf *bp = bio->bio_buf;
918 struct bio *nbio;
919 vm_pindex_t start;
920 vm_pindex_t biox_blkno = 0;
921 int count;
922 char *data;
923 struct bio *biox;
924 struct buf *bufx;
925 #if 0
926 struct bio_track *track;
927 #endif
929 #if 0
931 * tracking for swapdev vnode I/Os
933 if (bp->b_cmd == BUF_CMD_READ)
934 track = &swapdev_vp->v_track_read;
935 else
936 track = &swapdev_vp->v_track_write;
937 #endif
939 if (bp->b_bcount & PAGE_MASK) {
940 bp->b_error = EINVAL;
941 bp->b_flags |= B_ERROR | B_INVAL;
942 biodone(bio);
943 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
944 "not page bounded\n",
945 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
946 return;
950 * Clear error indication, initialize page index, count, data pointer.
952 bp->b_error = 0;
953 bp->b_flags &= ~B_ERROR;
954 bp->b_resid = bp->b_bcount;
956 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
957 count = howmany(bp->b_bcount, PAGE_SIZE);
958 data = bp->b_data;
961 * Deal with BUF_CMD_FREEBLKS
963 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
965 * FREE PAGE(s) - destroy underlying swap that is no longer
966 * needed.
968 vm_object_hold(object);
969 swp_pager_meta_free(object, start, count);
970 vm_object_drop(object);
971 bp->b_resid = 0;
972 biodone(bio);
973 return;
977 * We need to be able to create a new cluster of I/O's. We cannot
978 * use the caller fields of the passed bio so push a new one.
980 * Because nbio is just a placeholder for the cluster links,
981 * we can biodone() the original bio instead of nbio to make
982 * things a bit more efficient.
984 nbio = push_bio(bio);
985 nbio->bio_offset = bio->bio_offset;
986 nbio->bio_caller_info1.cluster_head = NULL;
987 nbio->bio_caller_info2.cluster_tail = NULL;
989 biox = NULL;
990 bufx = NULL;
993 * Execute read or write
995 vm_object_hold(object);
997 while (count > 0) {
998 swblk_t blk;
1001 * Obtain block. If block not found and writing, allocate a
1002 * new block and build it into the object.
1004 blk = swp_pager_meta_ctl(object, start, 0);
1005 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1006 blk = swp_pager_getswapspace(object, 1);
1007 if (blk == SWAPBLK_NONE) {
1008 bp->b_error = ENOMEM;
1009 bp->b_flags |= B_ERROR;
1010 break;
1012 swp_pager_meta_build(object, start, blk);
1016 * Do we have to flush our current collection? Yes if:
1018 * - no swap block at this index
1019 * - swap block is not contiguous
1020 * - we cross a physical disk boundry in the
1021 * stripe.
1023 if (
1024 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1025 ((biox_blkno ^ blk) & ~SWB_DMMASK)
1028 if (bp->b_cmd == BUF_CMD_READ) {
1029 ++mycpu->gd_cnt.v_swapin;
1030 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1031 } else {
1032 ++mycpu->gd_cnt.v_swapout;
1033 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1034 bufx->b_dirtyend = bufx->b_bcount;
1038 * Finished with this buf.
1040 KKASSERT(bufx->b_bcount != 0);
1041 if (bufx->b_cmd != BUF_CMD_READ)
1042 bufx->b_dirtyend = bufx->b_bcount;
1043 biox = NULL;
1044 bufx = NULL;
1048 * Add new swapblk to biox, instantiating biox if necessary.
1049 * Zero-fill reads are able to take a shortcut.
1051 if (blk == SWAPBLK_NONE) {
1053 * We can only get here if we are reading.
1055 bzero(data, PAGE_SIZE);
1056 bp->b_resid -= PAGE_SIZE;
1057 } else {
1058 if (biox == NULL) {
1059 /* XXX chain count > 4, wait to <= 4 */
1061 bufx = getpbuf(NULL);
1062 biox = &bufx->b_bio1;
1063 cluster_append(nbio, bufx);
1064 bufx->b_cmd = bp->b_cmd;
1065 biox->bio_done = swap_chain_iodone;
1066 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1067 biox->bio_caller_info1.cluster_parent = nbio;
1068 biox_blkno = blk;
1069 bufx->b_bcount = 0;
1070 bufx->b_data = data;
1072 bufx->b_bcount += PAGE_SIZE;
1074 --count;
1075 ++start;
1076 data += PAGE_SIZE;
1079 vm_object_drop(object);
1082 * Flush out last buffer
1084 if (biox) {
1085 if (bufx->b_cmd == BUF_CMD_READ) {
1086 ++mycpu->gd_cnt.v_swapin;
1087 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1088 } else {
1089 ++mycpu->gd_cnt.v_swapout;
1090 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1091 bufx->b_dirtyend = bufx->b_bcount;
1093 KKASSERT(bufx->b_bcount);
1094 if (bufx->b_cmd != BUF_CMD_READ)
1095 bufx->b_dirtyend = bufx->b_bcount;
1096 /* biox, bufx = NULL */
1100 * Now initiate all the I/O. Be careful looping on our chain as
1101 * I/O's may complete while we are still initiating them.
1103 * If the request is a 100% sparse read no bios will be present
1104 * and we just biodone() the buffer.
1106 nbio->bio_caller_info2.cluster_tail = NULL;
1107 bufx = nbio->bio_caller_info1.cluster_head;
1109 if (bufx) {
1110 while (bufx) {
1111 biox = &bufx->b_bio1;
1112 BUF_KERNPROC(bufx);
1113 bufx = bufx->b_cluster_next;
1114 vn_strategy(swapdev_vp, biox);
1116 } else {
1117 biodone(bio);
1121 * Completion of the cluster will also call biodone_chain(nbio).
1122 * We never call biodone(nbio) so we don't have to worry about
1123 * setting up a bio_done callback. It's handled in the sub-IO.
1125 /**/
1129 * biodone callback
1131 * No requirements.
1133 static void
1134 swap_chain_iodone(struct bio *biox)
1136 struct buf **nextp;
1137 struct buf *bufx; /* chained sub-buffer */
1138 struct bio *nbio; /* parent nbio with chain glue */
1139 struct buf *bp; /* original bp associated with nbio */
1140 int chain_empty;
1142 bufx = biox->bio_buf;
1143 nbio = biox->bio_caller_info1.cluster_parent;
1144 bp = nbio->bio_buf;
1147 * Update the original buffer
1149 KKASSERT(bp != NULL);
1150 if (bufx->b_flags & B_ERROR) {
1151 atomic_set_int(&bufx->b_flags, B_ERROR);
1152 bp->b_error = bufx->b_error; /* race ok */
1153 } else if (bufx->b_resid != 0) {
1154 atomic_set_int(&bufx->b_flags, B_ERROR);
1155 bp->b_error = EINVAL; /* race ok */
1156 } else {
1157 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1161 * Remove us from the chain.
1163 spin_lock(&swapbp_spin);
1164 nextp = &nbio->bio_caller_info1.cluster_head;
1165 while (*nextp != bufx) {
1166 KKASSERT(*nextp != NULL);
1167 nextp = &(*nextp)->b_cluster_next;
1169 *nextp = bufx->b_cluster_next;
1170 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1171 spin_unlock(&swapbp_spin);
1174 * Clean up bufx. If the chain is now empty we finish out
1175 * the parent. Note that we may be racing other completions
1176 * so we must use the chain_empty status from above.
1178 if (chain_empty) {
1179 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1180 atomic_set_int(&bp->b_flags, B_ERROR);
1181 bp->b_error = EINVAL;
1183 biodone_chain(nbio);
1185 relpbuf(bufx, NULL);
1189 * SWAP_PAGER_GETPAGES() - bring page in from swap
1191 * The requested page may have to be brought in from swap. Calculate the
1192 * swap block and bring in additional pages if possible. All pages must
1193 * have contiguous swap block assignments and reside in the same object.
1195 * The caller has a single vm_object_pip_add() reference prior to
1196 * calling us and we should return with the same.
1198 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1199 * and any additinal pages unbusied.
1201 * If the caller encounters a PG_RAM page it will pass it to us even though
1202 * it may be valid and dirty. We cannot overwrite the page in this case!
1203 * The case is used to allow us to issue pure read-aheads.
1205 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1206 * the PG_RAM page is validated at the same time as mreq. What we
1207 * really need to do is issue a separate read-ahead pbuf.
1209 * No requirements.
1211 static int
1212 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1214 struct buf *bp;
1215 struct bio *bio;
1216 vm_page_t mreq;
1217 vm_page_t m;
1218 vm_offset_t kva;
1219 swblk_t blk;
1220 int i;
1221 int j;
1222 int raonly;
1223 int error;
1224 u_int32_t flags;
1225 vm_page_t marray[XIO_INTERNAL_PAGES];
1227 mreq = *mpp;
1229 vm_object_hold(object);
1230 if (mreq->object != object) {
1231 panic("swap_pager_getpages: object mismatch %p/%p",
1232 object,
1233 mreq->object
1238 * We don't want to overwrite a fully valid page as it might be
1239 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1240 * valid page with PG_RAM set.
1242 * In this case we see if the next page is a suitable page-in
1243 * candidate and if it is we issue read-ahead. PG_RAM will be
1244 * set on the last page of the read-ahead to continue the pipeline.
1246 if (mreq->valid == VM_PAGE_BITS_ALL) {
1247 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1248 vm_object_drop(object);
1249 return(VM_PAGER_OK);
1251 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1252 if (blk == SWAPBLK_NONE) {
1253 vm_object_drop(object);
1254 return(VM_PAGER_OK);
1256 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1257 TRUE, &error);
1258 if (error) {
1259 vm_object_drop(object);
1260 return(VM_PAGER_OK);
1261 } else if (m == NULL) {
1263 * Use VM_ALLOC_QUICK to avoid blocking on cache
1264 * page reuse.
1266 m = vm_page_alloc(object, mreq->pindex + 1,
1267 VM_ALLOC_QUICK);
1268 if (m == NULL) {
1269 vm_object_drop(object);
1270 return(VM_PAGER_OK);
1272 } else {
1273 if (m->valid) {
1274 vm_page_wakeup(m);
1275 vm_object_drop(object);
1276 return(VM_PAGER_OK);
1278 vm_page_unqueue_nowakeup(m);
1280 /* page is busy */
1281 mreq = m;
1282 raonly = 1;
1283 } else {
1284 raonly = 0;
1288 * Try to block-read contiguous pages from swap if sequential,
1289 * otherwise just read one page. Contiguous pages from swap must
1290 * reside within a single device stripe because the I/O cannot be
1291 * broken up across multiple stripes.
1293 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1294 * set up such that the case(s) are handled implicitly.
1296 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1297 marray[0] = mreq;
1299 for (i = 1; i <= swap_burst_read &&
1300 i < XIO_INTERNAL_PAGES &&
1301 mreq->pindex + i < object->size; ++i) {
1302 swblk_t iblk;
1304 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1305 if (iblk != blk + i)
1306 break;
1307 if ((blk ^ iblk) & ~SWB_DMMASK)
1308 break;
1309 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1310 TRUE, &error);
1311 if (error) {
1312 break;
1313 } else if (m == NULL) {
1315 * Use VM_ALLOC_QUICK to avoid blocking on cache
1316 * page reuse.
1318 m = vm_page_alloc(object, mreq->pindex + i,
1319 VM_ALLOC_QUICK);
1320 if (m == NULL)
1321 break;
1322 } else {
1323 if (m->valid) {
1324 vm_page_wakeup(m);
1325 break;
1327 vm_page_unqueue_nowakeup(m);
1329 /* page is busy */
1330 marray[i] = m;
1332 if (i > 1)
1333 vm_page_flag_set(marray[i - 1], PG_RAM);
1336 * If mreq is the requested page and we have nothing to do return
1337 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1338 * page and must be cleaned up.
1340 if (blk == SWAPBLK_NONE) {
1341 KKASSERT(i == 1);
1342 if (raonly) {
1343 vnode_pager_freepage(mreq);
1344 vm_object_drop(object);
1345 return(VM_PAGER_OK);
1346 } else {
1347 vm_object_drop(object);
1348 return(VM_PAGER_FAIL);
1353 * map our page(s) into kva for input
1355 bp = getpbuf_kva(&nsw_rcount);
1356 bio = &bp->b_bio1;
1357 kva = (vm_offset_t) bp->b_kvabase;
1358 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1359 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1361 bp->b_data = (caddr_t)kva;
1362 bp->b_bcount = PAGE_SIZE * i;
1363 bp->b_xio.xio_npages = i;
1364 bio->bio_done = swp_pager_async_iodone;
1365 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1366 bio->bio_caller_info1.index = SWBIO_READ;
1369 * Set index. If raonly set the index beyond the array so all
1370 * the pages are treated the same, otherwise the original mreq is
1371 * at index 0.
1373 if (raonly)
1374 bio->bio_driver_info = (void *)(intptr_t)i;
1375 else
1376 bio->bio_driver_info = (void *)(intptr_t)0;
1378 for (j = 0; j < i; ++j)
1379 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1381 mycpu->gd_cnt.v_swapin++;
1382 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1385 * We still hold the lock on mreq, and our automatic completion routine
1386 * does not remove it.
1388 vm_object_pip_add(object, bp->b_xio.xio_npages);
1391 * perform the I/O. NOTE!!! bp cannot be considered valid after
1392 * this point because we automatically release it on completion.
1393 * Instead, we look at the one page we are interested in which we
1394 * still hold a lock on even through the I/O completion.
1396 * The other pages in our m[] array are also released on completion,
1397 * so we cannot assume they are valid anymore either.
1399 bp->b_cmd = BUF_CMD_READ;
1400 BUF_KERNPROC(bp);
1401 vn_strategy(swapdev_vp, bio);
1404 * Wait for the page we want to complete. PG_SWAPINPROG is always
1405 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1406 * is set in the meta-data.
1408 * If this is a read-ahead only we return immediately without
1409 * waiting for I/O.
1411 if (raonly) {
1412 vm_object_drop(object);
1413 return(VM_PAGER_OK);
1417 * Read-ahead includes originally requested page case.
1419 for (;;) {
1420 flags = mreq->flags;
1421 cpu_ccfence();
1422 if ((flags & PG_SWAPINPROG) == 0)
1423 break;
1424 tsleep_interlock(mreq, 0);
1425 if (!atomic_cmpset_int(&mreq->flags, flags,
1426 flags | PG_WANTED | PG_REFERENCED)) {
1427 continue;
1429 mycpu->gd_cnt.v_intrans++;
1430 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1431 kprintf(
1432 "swap_pager: indefinite wait buffer: "
1433 " bp %p offset: %lld, size: %ld\n",
1435 (long long)bio->bio_offset,
1436 (long)bp->b_bcount
1442 * mreq is left bussied after completion, but all the other pages
1443 * are freed. If we had an unrecoverable read error the page will
1444 * not be valid.
1446 vm_object_drop(object);
1447 if (mreq->valid != VM_PAGE_BITS_ALL)
1448 return(VM_PAGER_ERROR);
1449 else
1450 return(VM_PAGER_OK);
1453 * A final note: in a low swap situation, we cannot deallocate swap
1454 * and mark a page dirty here because the caller is likely to mark
1455 * the page clean when we return, causing the page to possibly revert
1456 * to all-zero's later.
1461 * swap_pager_putpages:
1463 * Assign swap (if necessary) and initiate I/O on the specified pages.
1465 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1466 * are automatically converted to SWAP objects.
1468 * In a low memory situation we may block in vn_strategy(), but the new
1469 * vm_page reservation system coupled with properly written VFS devices
1470 * should ensure that no low-memory deadlock occurs. This is an area
1471 * which needs work.
1473 * The parent has N vm_object_pip_add() references prior to
1474 * calling us and will remove references for rtvals[] that are
1475 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1476 * completion.
1478 * The parent has soft-busy'd the pages it passes us and will unbusy
1479 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1480 * We need to unbusy the rest on I/O completion.
1482 * No requirements.
1484 void
1485 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1486 int flags, int *rtvals)
1488 int i;
1489 int n = 0;
1491 vm_object_hold(object);
1493 if (count && m[0]->object != object) {
1494 panic("swap_pager_getpages: object mismatch %p/%p",
1495 object,
1496 m[0]->object
1501 * Step 1
1503 * Turn object into OBJT_SWAP
1504 * Check for bogus sysops
1506 * Force sync if not pageout process, we don't want any single
1507 * non-pageout process to be able to hog the I/O subsystem! This
1508 * can be overridden by setting.
1510 if (object->type == OBJT_DEFAULT) {
1511 if (object->type == OBJT_DEFAULT)
1512 swp_pager_meta_convert(object);
1516 * Normally we force synchronous swap I/O if this is not the
1517 * pageout daemon to prevent any single user process limited
1518 * via RLIMIT_RSS from hogging swap write bandwidth.
1520 if (curthread != pagethread && swap_user_async == 0)
1521 flags |= VM_PAGER_PUT_SYNC;
1524 * Step 2
1526 * Update nsw parameters from swap_async_max sysctl values.
1527 * Do not let the sysop crash the machine with bogus numbers.
1529 if (swap_async_max != nsw_wcount_async_max) {
1530 int n;
1533 * limit range
1535 if ((n = swap_async_max) > nswbuf_kva / 2)
1536 n = nswbuf_kva / 2;
1537 if (n < 1)
1538 n = 1;
1539 swap_async_max = n;
1542 * Adjust difference ( if possible ). If the current async
1543 * count is too low, we may not be able to make the adjustment
1544 * at this time.
1546 * vm_token needed for nsw_wcount sleep interlock
1548 lwkt_gettoken(&vm_token);
1549 n -= nsw_wcount_async_max;
1550 if (nsw_wcount_async + n >= 0) {
1551 nsw_wcount_async_max += n;
1552 pbuf_adjcount(&nsw_wcount_async, n);
1554 lwkt_reltoken(&vm_token);
1558 * Step 3
1560 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1561 * The page is left dirty until the pageout operation completes
1562 * successfully.
1565 for (i = 0; i < count; i += n) {
1566 struct buf *bp;
1567 struct bio *bio;
1568 swblk_t blk;
1569 int j;
1572 * Maximum I/O size is limited by a number of factors.
1575 n = min(BLIST_MAX_ALLOC, count - i);
1576 n = min(n, nsw_cluster_max);
1578 lwkt_gettoken(&vm_token);
1581 * Get biggest block of swap we can. If we fail, fall
1582 * back and try to allocate a smaller block. Don't go
1583 * overboard trying to allocate space if it would overly
1584 * fragment swap.
1586 while (
1587 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1588 n > 4
1590 n >>= 1;
1592 if (blk == SWAPBLK_NONE) {
1593 for (j = 0; j < n; ++j)
1594 rtvals[i+j] = VM_PAGER_FAIL;
1595 lwkt_reltoken(&vm_token);
1596 continue;
1598 if (vm_report_swap_allocs > 0) {
1599 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1600 --vm_report_swap_allocs;
1604 * The I/O we are constructing cannot cross a physical
1605 * disk boundry in the swap stripe.
1607 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1608 j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1609 swp_pager_freeswapspace(object, blk + j, n - j);
1610 n = j;
1614 * All I/O parameters have been satisfied, build the I/O
1615 * request and assign the swap space.
1617 if ((flags & VM_PAGER_PUT_SYNC))
1618 bp = getpbuf_kva(&nsw_wcount_sync);
1619 else
1620 bp = getpbuf_kva(&nsw_wcount_async);
1621 bio = &bp->b_bio1;
1623 lwkt_reltoken(&vm_token);
1625 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1627 bp->b_bcount = PAGE_SIZE * n;
1628 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1630 for (j = 0; j < n; ++j) {
1631 vm_page_t mreq = m[i+j];
1633 swp_pager_meta_build(mreq->object, mreq->pindex,
1634 blk + j);
1635 if (object->type == OBJT_SWAP)
1636 vm_page_dirty(mreq);
1637 rtvals[i+j] = VM_PAGER_OK;
1639 vm_page_flag_set(mreq, PG_SWAPINPROG);
1640 bp->b_xio.xio_pages[j] = mreq;
1642 bp->b_xio.xio_npages = n;
1644 mycpu->gd_cnt.v_swapout++;
1645 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1647 bp->b_dirtyoff = 0; /* req'd for NFS */
1648 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1649 bp->b_cmd = BUF_CMD_WRITE;
1650 bio->bio_caller_info1.index = SWBIO_WRITE;
1653 * asynchronous
1655 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1656 bio->bio_done = swp_pager_async_iodone;
1657 BUF_KERNPROC(bp);
1658 vn_strategy(swapdev_vp, bio);
1660 for (j = 0; j < n; ++j)
1661 rtvals[i+j] = VM_PAGER_PEND;
1662 continue;
1666 * Issue synchrnously.
1668 * Wait for the sync I/O to complete, then update rtvals.
1669 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1670 * our async completion routine at the end, thus avoiding a
1671 * double-free.
1673 bio->bio_caller_info1.index |= SWBIO_SYNC;
1674 if (flags & VM_PAGER_TRY_TO_CACHE)
1675 bio->bio_caller_info1.index |= SWBIO_TTC;
1676 bio->bio_done = biodone_sync;
1677 bio->bio_flags |= BIO_SYNC;
1678 vn_strategy(swapdev_vp, bio);
1679 biowait(bio, "swwrt");
1681 for (j = 0; j < n; ++j)
1682 rtvals[i+j] = VM_PAGER_PEND;
1685 * Now that we are through with the bp, we can call the
1686 * normal async completion, which frees everything up.
1688 swp_pager_async_iodone(bio);
1690 vm_object_drop(object);
1694 * No requirements.
1696 * Recalculate the low and high-water marks.
1698 void
1699 swap_pager_newswap(void)
1702 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1703 * limitation imposed by the blist code. Remember that this
1704 * will be divided by NSWAP_MAX (4), so each swap device is
1705 * limited to around a terrabyte.
1707 if (vm_swap_max) {
1708 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */
1709 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */
1710 kprintf("swap low/high-water marks set to %d/%d\n",
1711 nswap_lowat, nswap_hiwat);
1712 } else {
1713 nswap_lowat = 128;
1714 nswap_hiwat = 512;
1716 swp_sizecheck();
1720 * swp_pager_async_iodone:
1722 * Completion routine for asynchronous reads and writes from/to swap.
1723 * Also called manually by synchronous code to finish up a bp.
1725 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1726 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1727 * unbusy all pages except the 'main' request page. For WRITE
1728 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1729 * because we marked them all VM_PAGER_PEND on return from putpages ).
1731 * This routine may not block.
1733 * No requirements.
1735 static void
1736 swp_pager_async_iodone(struct bio *bio)
1738 struct buf *bp = bio->bio_buf;
1739 vm_object_t object = NULL;
1740 int i;
1741 int *nswptr;
1744 * report error
1746 if (bp->b_flags & B_ERROR) {
1747 kprintf(
1748 "swap_pager: I/O error - %s failed; offset %lld,"
1749 "size %ld, error %d\n",
1750 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1751 "pagein" : "pageout"),
1752 (long long)bio->bio_offset,
1753 (long)bp->b_bcount,
1754 bp->b_error
1759 * set object.
1761 if (bp->b_xio.xio_npages)
1762 object = bp->b_xio.xio_pages[0]->object;
1765 * remove the mapping for kernel virtual
1767 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1770 * cleanup pages. If an error occurs writing to swap, we are in
1771 * very serious trouble. If it happens to be a disk error, though,
1772 * we may be able to recover by reassigning the swap later on. So
1773 * in this case we remove the m->swapblk assignment for the page
1774 * but do not free it in the rlist. The errornous block(s) are thus
1775 * never reallocated as swap. Redirty the page and continue.
1777 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1778 vm_page_t m = bp->b_xio.xio_pages[i];
1780 if (bp->b_flags & B_ERROR) {
1782 * If an error occurs I'd love to throw the swapblk
1783 * away without freeing it back to swapspace, so it
1784 * can never be used again. But I can't from an
1785 * interrupt.
1788 if (bio->bio_caller_info1.index & SWBIO_READ) {
1790 * When reading, reqpage needs to stay
1791 * locked for the parent, but all other
1792 * pages can be freed. We still want to
1793 * wakeup the parent waiting on the page,
1794 * though. ( also: pg_reqpage can be -1 and
1795 * not match anything ).
1797 * We have to wake specifically requested pages
1798 * up too because we cleared PG_SWAPINPROG and
1799 * someone may be waiting for that.
1801 * NOTE: for reads, m->dirty will probably
1802 * be overridden by the original caller of
1803 * getpages so don't play cute tricks here.
1805 * NOTE: We can't actually free the page from
1806 * here, because this is an interrupt. It
1807 * is not legal to mess with object->memq
1808 * from an interrupt. Deactivate the page
1809 * instead.
1812 m->valid = 0;
1813 vm_page_flag_clear(m, PG_SWAPINPROG);
1816 * bio_driver_info holds the requested page
1817 * index.
1819 if (i != (int)(intptr_t)bio->bio_driver_info) {
1820 vm_page_deactivate(m);
1821 vm_page_wakeup(m);
1822 } else {
1823 vm_page_flash(m);
1826 * If i == bp->b_pager.pg_reqpage, do not wake
1827 * the page up. The caller needs to.
1829 } else {
1831 * If a write error occurs remove the swap
1832 * assignment (note that PG_SWAPPED may or
1833 * may not be set depending on prior activity).
1835 * Re-dirty OBJT_SWAP pages as there is no
1836 * other backing store, we can't throw the
1837 * page away.
1839 * Non-OBJT_SWAP pages (aka swapcache) must
1840 * not be dirtied since they may not have
1841 * been dirty in the first place, and they
1842 * do have backing store (the vnode).
1844 vm_page_busy_wait(m, FALSE, "swadpg");
1845 swp_pager_meta_ctl(m->object, m->pindex,
1846 SWM_FREE);
1847 vm_page_flag_clear(m, PG_SWAPPED);
1848 if (m->object->type == OBJT_SWAP) {
1849 vm_page_dirty(m);
1850 vm_page_activate(m);
1852 vm_page_flag_clear(m, PG_SWAPINPROG);
1853 vm_page_io_finish(m);
1854 vm_page_wakeup(m);
1856 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1858 * NOTE: for reads, m->dirty will probably be
1859 * overridden by the original caller of getpages so
1860 * we cannot set them in order to free the underlying
1861 * swap in a low-swap situation. I don't think we'd
1862 * want to do that anyway, but it was an optimization
1863 * that existed in the old swapper for a time before
1864 * it got ripped out due to precisely this problem.
1866 * If not the requested page then deactivate it.
1868 * Note that the requested page, reqpage, is left
1869 * busied, but we still have to wake it up. The
1870 * other pages are released (unbusied) by
1871 * vm_page_wakeup(). We do not set reqpage's
1872 * valid bits here, it is up to the caller.
1876 * NOTE: can't call pmap_clear_modify(m) from an
1877 * interrupt thread, the pmap code may have to map
1878 * non-kernel pmaps and currently asserts the case.
1880 /*pmap_clear_modify(m);*/
1881 m->valid = VM_PAGE_BITS_ALL;
1882 vm_page_undirty(m);
1883 vm_page_flag_clear(m, PG_SWAPINPROG);
1884 vm_page_flag_set(m, PG_SWAPPED);
1887 * We have to wake specifically requested pages
1888 * up too because we cleared PG_SWAPINPROG and
1889 * could be waiting for it in getpages. However,
1890 * be sure to not unbusy getpages specifically
1891 * requested page - getpages expects it to be
1892 * left busy.
1894 * bio_driver_info holds the requested page
1896 if (i != (int)(intptr_t)bio->bio_driver_info) {
1897 vm_page_deactivate(m);
1898 vm_page_wakeup(m);
1899 } else {
1900 vm_page_flash(m);
1902 } else {
1904 * Mark the page clean but do not mess with the
1905 * pmap-layer's modified state. That state should
1906 * also be clear since the caller protected the
1907 * page VM_PROT_READ, but allow the case.
1909 * We are in an interrupt, avoid pmap operations.
1911 * If we have a severe page deficit, deactivate the
1912 * page. Do not try to cache it (which would also
1913 * involve a pmap op), because the page might still
1914 * be read-heavy.
1916 * When using the swap to cache clean vnode pages
1917 * we do not mess with the page dirty bits.
1919 vm_page_busy_wait(m, FALSE, "swadpg");
1920 if (m->object->type == OBJT_SWAP)
1921 vm_page_undirty(m);
1922 vm_page_flag_clear(m, PG_SWAPINPROG);
1923 vm_page_flag_set(m, PG_SWAPPED);
1924 if (vm_page_count_severe())
1925 vm_page_deactivate(m);
1926 vm_page_io_finish(m);
1927 if (bio->bio_caller_info1.index & SWBIO_TTC)
1928 vm_page_try_to_cache(m);
1929 else
1930 vm_page_wakeup(m);
1935 * adjust pip. NOTE: the original parent may still have its own
1936 * pip refs on the object.
1939 if (object)
1940 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1943 * Release the physical I/O buffer.
1945 * NOTE: Due to synchronous operations in the write case b_cmd may
1946 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
1947 * been cleared.
1949 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1951 lwkt_gettoken(&vm_token);
1952 if (bio->bio_caller_info1.index & SWBIO_READ)
1953 nswptr = &nsw_rcount;
1954 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1955 nswptr = &nsw_wcount_sync;
1956 else
1957 nswptr = &nsw_wcount_async;
1958 bp->b_cmd = BUF_CMD_DONE;
1959 relpbuf(bp, nswptr);
1960 lwkt_reltoken(&vm_token);
1964 * Fault-in a potentially swapped page and remove the swap reference.
1965 * (used by swapoff code)
1967 * object must be held.
1969 static __inline void
1970 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
1972 struct vnode *vp;
1973 vm_page_t m;
1974 int error;
1976 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1978 if (object->type == OBJT_VNODE) {
1980 * Any swap related to a vnode is due to swapcache. We must
1981 * vget() the vnode in case it is not active (otherwise
1982 * vref() will panic). Calling vm_object_page_remove() will
1983 * ensure that any swap ref is removed interlocked with the
1984 * page. clean_only is set to TRUE so we don't throw away
1985 * dirty pages.
1987 vp = object->handle;
1988 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1989 if (error == 0) {
1990 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1991 vput(vp);
1993 } else {
1995 * Otherwise it is a normal OBJT_SWAP object and we can
1996 * fault the page in and remove the swap.
1998 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1999 VM_PROT_NONE,
2000 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2001 sharedp, &error);
2002 if (m)
2003 vm_page_unhold(m);
2008 * This removes all swap blocks related to a particular device. We have
2009 * to be careful of ripups during the scan.
2011 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2014 swap_pager_swapoff(int devidx)
2016 struct vm_object_hash *hash;
2017 struct swswapoffinfo info;
2018 struct vm_object marker;
2019 vm_object_t object;
2020 int n;
2022 bzero(&marker, sizeof(marker));
2023 marker.type = OBJT_MARKER;
2025 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2026 hash = &vm_object_hash[n];
2028 lwkt_gettoken(&hash->token);
2029 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2031 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2032 if (object->type == OBJT_MARKER)
2033 goto skip;
2034 if (object->type != OBJT_SWAP &&
2035 object->type != OBJT_VNODE)
2036 goto skip;
2037 vm_object_hold(object);
2038 if (object->type != OBJT_SWAP &&
2039 object->type != OBJT_VNODE) {
2040 vm_object_drop(object);
2041 goto skip;
2043 info.object = object;
2044 info.shared = 0;
2045 info.devidx = devidx;
2046 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2047 NULL, swp_pager_swapoff_callback,
2048 &info);
2049 vm_object_drop(object);
2050 skip:
2051 if (object == TAILQ_NEXT(&marker, object_list)) {
2052 TAILQ_REMOVE(&hash->list, &marker, object_list);
2053 TAILQ_INSERT_AFTER(&hash->list, object,
2054 &marker, object_list);
2057 TAILQ_REMOVE(&hash->list, &marker, object_list);
2058 lwkt_reltoken(&hash->token);
2062 * If we fail to locate all swblocks we just fail gracefully and
2063 * do not bother to restore paging on the swap device. If the
2064 * user wants to retry the user can retry.
2066 if (swdevt[devidx].sw_nused)
2067 return (1);
2068 else
2069 return (0);
2072 static
2074 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2076 struct swswapoffinfo *info = data;
2077 vm_object_t object = info->object;
2078 vm_pindex_t index;
2079 swblk_t v;
2080 int i;
2082 index = swap->swb_index;
2083 for (i = 0; i < SWAP_META_PAGES; ++i) {
2085 * Make sure we don't race a dying object. This will
2086 * kill the scan of the object's swap blocks entirely.
2088 if (object->flags & OBJ_DEAD)
2089 return(-1);
2092 * Fault the page, which can obviously block. If the swap
2093 * structure disappears break out.
2095 v = swap->swb_pages[i];
2096 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2097 swp_pager_fault_page(object, &info->shared,
2098 swap->swb_index + i);
2099 /* swap ptr might go away */
2100 if (RB_LOOKUP(swblock_rb_tree,
2101 &object->swblock_root, index) != swap) {
2102 break;
2106 return(0);
2109 /************************************************************************
2110 * SWAP META DATA *
2111 ************************************************************************
2113 * These routines manipulate the swap metadata stored in the
2114 * OBJT_SWAP object.
2116 * Swap metadata is implemented with a global hash and not directly
2117 * linked into the object. Instead the object simply contains
2118 * appropriate tracking counters.
2122 * Lookup the swblock containing the specified swap block index.
2124 * The caller must hold the object.
2126 static __inline
2127 struct swblock *
2128 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2130 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2131 index &= ~(vm_pindex_t)SWAP_META_MASK;
2132 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2136 * Remove a swblock from the RB tree.
2138 * The caller must hold the object.
2140 static __inline
2141 void
2142 swp_pager_remove(vm_object_t object, struct swblock *swap)
2144 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2145 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2149 * Convert default object to swap object if necessary
2151 * The caller must hold the object.
2153 static void
2154 swp_pager_meta_convert(vm_object_t object)
2156 if (object->type == OBJT_DEFAULT) {
2157 object->type = OBJT_SWAP;
2158 KKASSERT(object->swblock_count == 0);
2163 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2165 * We first convert the object to a swap object if it is a default
2166 * object. Vnode objects do not need to be converted.
2168 * The specified swapblk is added to the object's swap metadata. If
2169 * the swapblk is not valid, it is freed instead. Any previously
2170 * assigned swapblk is freed.
2172 * The caller must hold the object.
2174 static void
2175 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2177 struct swblock *swap;
2178 struct swblock *oswap;
2179 vm_pindex_t v;
2181 KKASSERT(swapblk != SWAPBLK_NONE);
2182 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2185 * Convert object if necessary
2187 if (object->type == OBJT_DEFAULT)
2188 swp_pager_meta_convert(object);
2191 * Locate swblock. If not found create, but if we aren't adding
2192 * anything just return. If we run out of space in the map we wait
2193 * and, since the hash table may have changed, retry.
2195 retry:
2196 swap = swp_pager_lookup(object, index);
2198 if (swap == NULL) {
2199 int i;
2201 swap = zalloc(swap_zone);
2202 if (swap == NULL) {
2203 vm_wait(0);
2204 goto retry;
2206 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2207 swap->swb_count = 0;
2209 ++object->swblock_count;
2211 for (i = 0; i < SWAP_META_PAGES; ++i)
2212 swap->swb_pages[i] = SWAPBLK_NONE;
2213 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2214 KKASSERT(oswap == NULL);
2218 * Delete prior contents of metadata.
2220 * NOTE: Decrement swb_count after the freeing operation (which
2221 * might block) to prevent racing destruction of the swblock.
2223 index &= SWAP_META_MASK;
2225 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2226 swap->swb_pages[index] = SWAPBLK_NONE;
2227 /* can block */
2228 swp_pager_freeswapspace(object, v, 1);
2229 --swap->swb_count;
2230 --mycpu->gd_vmtotal.t_vm;
2234 * Enter block into metadata
2236 swap->swb_pages[index] = swapblk;
2237 if (swapblk != SWAPBLK_NONE) {
2238 ++swap->swb_count;
2239 ++mycpu->gd_vmtotal.t_vm;
2244 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2246 * The requested range of blocks is freed, with any associated swap
2247 * returned to the swap bitmap.
2249 * This routine will free swap metadata structures as they are cleaned
2250 * out. This routine does *NOT* operate on swap metadata associated
2251 * with resident pages.
2253 * The caller must hold the object.
2255 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2257 static void
2258 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2260 struct swfreeinfo info;
2262 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2265 * Nothing to do
2267 if (object->swblock_count == 0) {
2268 KKASSERT(RB_EMPTY(&object->swblock_root));
2269 return;
2271 if (count == 0)
2272 return;
2275 * Setup for RB tree scan. Note that the pindex range can be huge
2276 * due to the 64 bit page index space so we cannot safely iterate.
2278 info.object = object;
2279 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2280 info.begi = index;
2281 info.endi = index + count - 1;
2282 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2283 swp_pager_meta_free_callback, &info);
2287 * The caller must hold the object.
2289 static
2291 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2293 struct swfreeinfo *info = data;
2294 vm_object_t object = info->object;
2295 int index;
2296 int eindex;
2299 * Figure out the range within the swblock. The wider scan may
2300 * return edge-case swap blocks when the start and/or end points
2301 * are in the middle of a block.
2303 if (swap->swb_index < info->begi)
2304 index = (int)info->begi & SWAP_META_MASK;
2305 else
2306 index = 0;
2308 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2309 eindex = (int)info->endi & SWAP_META_MASK;
2310 else
2311 eindex = SWAP_META_MASK;
2314 * Scan and free the blocks. The loop terminates early
2315 * if (swap) runs out of blocks and could be freed.
2317 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2318 * to deal with a zfree race.
2320 while (index <= eindex) {
2321 swblk_t v = swap->swb_pages[index];
2323 if (v != SWAPBLK_NONE) {
2324 swap->swb_pages[index] = SWAPBLK_NONE;
2325 /* can block */
2326 swp_pager_freeswapspace(object, v, 1);
2327 --mycpu->gd_vmtotal.t_vm;
2328 if (--swap->swb_count == 0) {
2329 swp_pager_remove(object, swap);
2330 zfree(swap_zone, swap);
2331 --object->swblock_count;
2332 break;
2335 ++index;
2338 /* swap may be invalid here due to zfree above */
2339 lwkt_yield();
2341 return(0);
2345 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2347 * This routine locates and destroys all swap metadata associated with
2348 * an object.
2350 * NOTE: Decrement swb_count after the freeing operation (which
2351 * might block) to prevent racing destruction of the swblock.
2353 * The caller must hold the object.
2355 static void
2356 swp_pager_meta_free_all(vm_object_t object)
2358 struct swblock *swap;
2359 int i;
2361 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2363 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2364 swp_pager_remove(object, swap);
2365 for (i = 0; i < SWAP_META_PAGES; ++i) {
2366 swblk_t v = swap->swb_pages[i];
2367 if (v != SWAPBLK_NONE) {
2368 /* can block */
2369 swp_pager_freeswapspace(object, v, 1);
2370 --swap->swb_count;
2371 --mycpu->gd_vmtotal.t_vm;
2374 if (swap->swb_count != 0)
2375 panic("swap_pager_meta_free_all: swb_count != 0");
2376 zfree(swap_zone, swap);
2377 --object->swblock_count;
2378 lwkt_yield();
2380 KKASSERT(object->swblock_count == 0);
2384 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2386 * This routine is capable of looking up, popping, or freeing
2387 * swapblk assignments in the swap meta data or in the vm_page_t.
2388 * The routine typically returns the swapblk being looked-up, or popped,
2389 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2390 * was invalid. This routine will automatically free any invalid
2391 * meta-data swapblks.
2393 * It is not possible to store invalid swapblks in the swap meta data
2394 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2396 * When acting on a busy resident page and paging is in progress, we
2397 * have to wait until paging is complete but otherwise can act on the
2398 * busy page.
2400 * SWM_FREE remove and free swap block from metadata
2401 * SWM_POP remove from meta data but do not free.. pop it out
2403 * The caller must hold the object.
2405 static swblk_t
2406 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2408 struct swblock *swap;
2409 swblk_t r1;
2411 if (object->swblock_count == 0)
2412 return(SWAPBLK_NONE);
2414 r1 = SWAPBLK_NONE;
2415 swap = swp_pager_lookup(object, index);
2417 if (swap != NULL) {
2418 index &= SWAP_META_MASK;
2419 r1 = swap->swb_pages[index];
2421 if (r1 != SWAPBLK_NONE) {
2422 if (flags & (SWM_FREE|SWM_POP)) {
2423 swap->swb_pages[index] = SWAPBLK_NONE;
2424 --mycpu->gd_vmtotal.t_vm;
2425 if (--swap->swb_count == 0) {
2426 swp_pager_remove(object, swap);
2427 zfree(swap_zone, swap);
2428 --object->swblock_count;
2431 /* swap ptr may be invalid */
2432 if (flags & SWM_FREE) {
2433 swp_pager_freeswapspace(object, r1, 1);
2434 r1 = SWAPBLK_NONE;
2437 /* swap ptr may be invalid */
2439 return(r1);