2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 2003-2017 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
9 * This code is derived from software contributed to The DragonFly Project
10 * by Matthew Dillon <dillon@backplane.com>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
68 * Virtual memory mapping module.
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
75 #include <sys/serialize.h>
77 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
87 #include <vm/vm_param.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_zone.h>
98 #include <sys/random.h>
99 #include <sys/sysctl.h>
100 #include <sys/spinlock.h>
102 #include <sys/thread2.h>
103 #include <sys/spinlock2.h>
106 * Virtual memory maps provide for the mapping, protection, and sharing
107 * of virtual memory objects. In addition, this module provides for an
108 * efficient virtual copy of memory from one map to another.
110 * Synchronization is required prior to most operations.
112 * Maps consist of an ordered doubly-linked list of simple entries.
113 * A hint and a RB tree is used to speed-up lookups.
115 * Callers looking to modify maps specify start/end addresses which cause
116 * the related map entry to be clipped if necessary, and then later
117 * recombined if the pieces remained compatible.
119 * Virtual copy operations are performed by copying VM object references
120 * from one map to another, and then marking both regions as copy-on-write.
122 static boolean_t
vmspace_ctor(void *obj
, void *privdata
, int ocflags
);
123 static void vmspace_dtor(void *obj
, void *privdata
);
124 static void vmspace_terminate(struct vmspace
*vm
, int final
);
126 MALLOC_DEFINE(M_VMSPACE
, "vmspace", "vmspace objcache backingstore");
127 static struct objcache
*vmspace_cache
;
130 * per-cpu page table cross mappings are initialized in early boot
131 * and might require a considerable number of vm_map_entry structures.
133 #define MAPENTRYBSP_CACHE (MAXCPU+1)
134 #define MAPENTRYAP_CACHE 8
137 * Partioning threaded programs with large anonymous memory areas can
138 * improve concurrent fault performance.
140 #define MAP_ENTRY_PARTITION_SIZE ((vm_offset_t)(32 * 1024 * 1024))
141 #define MAP_ENTRY_PARTITION_MASK (MAP_ENTRY_PARTITION_SIZE - 1)
143 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry) \
144 ((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
146 static struct vm_zone mapentzone_store
;
147 static vm_zone_t mapentzone
;
149 static struct vm_map_entry map_entry_init
[MAX_MAPENT
];
150 static struct vm_map_entry cpu_map_entry_init_bsp
[MAPENTRYBSP_CACHE
];
151 static struct vm_map_entry cpu_map_entry_init_ap
[MAXCPU
][MAPENTRYAP_CACHE
];
153 static int randomize_mmap
;
154 SYSCTL_INT(_vm
, OID_AUTO
, randomize_mmap
, CTLFLAG_RW
, &randomize_mmap
, 0,
155 "Randomize mmap offsets");
156 static int vm_map_relock_enable
= 1;
157 SYSCTL_INT(_vm
, OID_AUTO
, map_relock_enable
, CTLFLAG_RW
,
158 &vm_map_relock_enable
, 0, "insert pop pgtable optimization");
159 static int vm_map_partition_enable
= 1;
160 SYSCTL_INT(_vm
, OID_AUTO
, map_partition_enable
, CTLFLAG_RW
,
161 &vm_map_partition_enable
, 0, "Break up larger vm_map_entry's");
163 static void vmspace_drop_notoken(struct vmspace
*vm
);
164 static void vm_map_entry_shadow(vm_map_entry_t entry
, int addref
);
165 static vm_map_entry_t
vm_map_entry_create(vm_map_t map
, int *);
166 static void vm_map_entry_dispose (vm_map_t map
, vm_map_entry_t entry
, int *);
167 static void _vm_map_clip_end (vm_map_t
, vm_map_entry_t
, vm_offset_t
, int *);
168 static void _vm_map_clip_start (vm_map_t
, vm_map_entry_t
, vm_offset_t
, int *);
169 static void vm_map_entry_delete (vm_map_t
, vm_map_entry_t
, int *);
170 static void vm_map_entry_unwire (vm_map_t
, vm_map_entry_t
);
171 static void vm_map_copy_entry (vm_map_t
, vm_map_t
, vm_map_entry_t
,
173 static void vm_map_unclip_range (vm_map_t map
, vm_map_entry_t start_entry
,
174 vm_offset_t start
, vm_offset_t end
, int *countp
, int flags
);
175 static void vm_map_entry_partition(vm_map_t map
, vm_map_entry_t entry
,
176 vm_offset_t vaddr
, int *countp
);
179 * Initialize the vm_map module. Must be called before any other vm_map
182 * Map and entry structures are allocated from the general purpose
183 * memory pool with some exceptions:
185 * - The kernel map is allocated statically.
186 * - Initial kernel map entries are allocated out of a static pool.
187 * - We must set ZONE_SPECIAL here or the early boot code can get
188 * stuck if there are >63 cores.
190 * These restrictions are necessary since malloc() uses the
191 * maps and requires map entries.
193 * Called from the low level boot code only.
198 mapentzone
= &mapentzone_store
;
199 zbootinit(mapentzone
, "MAP ENTRY", sizeof (struct vm_map_entry
),
200 map_entry_init
, MAX_MAPENT
);
201 mapentzone_store
.zflags
|= ZONE_SPECIAL
;
205 * Called prior to any vmspace allocations.
207 * Called from the low level boot code only.
212 vmspace_cache
= objcache_create_mbacked(M_VMSPACE
,
213 sizeof(struct vmspace
),
215 vmspace_ctor
, vmspace_dtor
,
217 zinitna(mapentzone
, NULL
, 0, 0, ZONE_USE_RESERVE
| ZONE_SPECIAL
);
223 * objcache support. We leave the pmap root cached as long as possible
224 * for performance reasons.
228 vmspace_ctor(void *obj
, void *privdata
, int ocflags
)
230 struct vmspace
*vm
= obj
;
232 bzero(vm
, sizeof(*vm
));
233 vm
->vm_refcnt
= VM_REF_DELETED
;
240 vmspace_dtor(void *obj
, void *privdata
)
242 struct vmspace
*vm
= obj
;
244 KKASSERT(vm
->vm_refcnt
== VM_REF_DELETED
);
245 pmap_puninit(vmspace_pmap(vm
));
249 * Red black tree functions
251 * The caller must hold the related map lock.
253 static int rb_vm_map_compare(vm_map_entry_t a
, vm_map_entry_t b
);
254 RB_GENERATE(vm_map_rb_tree
, vm_map_entry
, rb_entry
, rb_vm_map_compare
);
256 /* a->start is address, and the only field has to be initialized */
258 rb_vm_map_compare(vm_map_entry_t a
, vm_map_entry_t b
)
260 if (a
->start
< b
->start
)
262 else if (a
->start
> b
->start
)
268 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
272 vmspace_initrefs(struct vmspace
*vm
)
279 * Allocate a vmspace structure, including a vm_map and pmap.
280 * Initialize numerous fields. While the initial allocation is zerod,
281 * subsequence reuse from the objcache leaves elements of the structure
282 * intact (particularly the pmap), so portions must be zerod.
284 * Returns a referenced vmspace.
289 vmspace_alloc(vm_offset_t min
, vm_offset_t max
)
293 vm
= objcache_get(vmspace_cache
, M_WAITOK
);
295 bzero(&vm
->vm_startcopy
,
296 (char *)&vm
->vm_endcopy
- (char *)&vm
->vm_startcopy
);
297 vm_map_init(&vm
->vm_map
, min
, max
, NULL
); /* initializes token */
300 * NOTE: hold to acquires token for safety.
302 * On return vmspace is referenced (refs=1, hold=1). That is,
303 * each refcnt also has a holdcnt. There can be additional holds
304 * (holdcnt) above and beyond the refcnt. Finalization is handled in
305 * two stages, one on refs 1->0, and the the second on hold 1->0.
307 KKASSERT(vm
->vm_holdcnt
== 0);
308 KKASSERT(vm
->vm_refcnt
== VM_REF_DELETED
);
309 vmspace_initrefs(vm
);
311 pmap_pinit(vmspace_pmap(vm
)); /* (some fields reused) */
312 vm
->vm_map
.pmap
= vmspace_pmap(vm
); /* XXX */
315 cpu_vmspace_alloc(vm
);
322 * NOTE: Can return 0 if the vmspace is exiting.
325 vmspace_getrefs(struct vmspace
*vm
)
331 if (n
& VM_REF_DELETED
)
337 vmspace_hold(struct vmspace
*vm
)
339 atomic_add_int(&vm
->vm_holdcnt
, 1);
340 lwkt_gettoken(&vm
->vm_map
.token
);
344 * Drop with final termination interlock.
347 vmspace_drop(struct vmspace
*vm
)
349 lwkt_reltoken(&vm
->vm_map
.token
);
350 vmspace_drop_notoken(vm
);
354 vmspace_drop_notoken(struct vmspace
*vm
)
356 if (atomic_fetchadd_int(&vm
->vm_holdcnt
, -1) == 1) {
357 if (vm
->vm_refcnt
& VM_REF_DELETED
)
358 vmspace_terminate(vm
, 1);
363 * A vmspace object must not be in a terminated state to be able to obtain
364 * additional refs on it.
366 * These are official references to the vmspace, the count is used to check
367 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'.
369 * XXX we need to combine hold & ref together into one 64-bit field to allow
370 * holds to prevent stage-1 termination.
373 vmspace_ref(struct vmspace
*vm
)
377 atomic_add_int(&vm
->vm_holdcnt
, 1);
378 n
= atomic_fetchadd_int(&vm
->vm_refcnt
, 1);
379 KKASSERT((n
& VM_REF_DELETED
) == 0);
383 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
384 * termination of the vmspace. Then, on the final drop of the hold we
385 * will do stage-2 final termination.
388 vmspace_rel(struct vmspace
*vm
)
393 * Drop refs. Each ref also has a hold which is also dropped.
395 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
396 * prevent finalization) to start termination processing.
397 * Finalization occurs when the last hold count drops to 0.
399 n
= atomic_fetchadd_int(&vm
->vm_refcnt
, -1) - 1;
401 if (atomic_cmpset_int(&vm
->vm_refcnt
, 0, VM_REF_DELETED
)) {
402 vmspace_terminate(vm
, 0);
408 vmspace_drop_notoken(vm
);
412 * This is called during exit indicating that the vmspace is no
413 * longer in used by an exiting process, but the process has not yet
416 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
417 * to prevent stage-2 until the process is reaped. Note hte order of
418 * operation, we must hold first.
423 vmspace_relexit(struct vmspace
*vm
)
425 atomic_add_int(&vm
->vm_holdcnt
, 1);
430 * Called during reap to disconnect the remainder of the vmspace from
431 * the process. On the hold drop the vmspace termination is finalized.
436 vmspace_exitfree(struct proc
*p
)
442 vmspace_drop_notoken(vm
);
446 * Called in two cases:
448 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
449 * called with final == 0. refcnt will be (u_int)-1 at this point,
450 * and holdcnt will still be non-zero.
452 * (2) When holdcnt becomes 0, called with final == 1. There should no
453 * longer be anyone with access to the vmspace.
455 * VMSPACE_EXIT1 flags the primary deactivation
456 * VMSPACE_EXIT2 flags the last reap
459 vmspace_terminate(struct vmspace
*vm
, int final
)
463 lwkt_gettoken(&vm
->vm_map
.token
);
465 KKASSERT((vm
->vm_flags
& VMSPACE_EXIT1
) == 0);
466 vm
->vm_flags
|= VMSPACE_EXIT1
;
469 * Get rid of most of the resources. Leave the kernel pmap
472 * If the pmap does not contain wired pages we can bulk-delete
473 * the pmap as a performance optimization before removing the
476 * If the pmap contains wired pages we cannot do this
477 * pre-optimization because currently vm_fault_unwire()
478 * expects the pmap pages to exist and will not decrement
479 * p->wire_count if they do not.
482 if (vmspace_pmap(vm
)->pm_stats
.wired_count
) {
483 vm_map_remove(&vm
->vm_map
, VM_MIN_USER_ADDRESS
,
484 VM_MAX_USER_ADDRESS
);
485 pmap_remove_pages(vmspace_pmap(vm
), VM_MIN_USER_ADDRESS
,
486 VM_MAX_USER_ADDRESS
);
488 pmap_remove_pages(vmspace_pmap(vm
), VM_MIN_USER_ADDRESS
,
489 VM_MAX_USER_ADDRESS
);
490 vm_map_remove(&vm
->vm_map
, VM_MIN_USER_ADDRESS
,
491 VM_MAX_USER_ADDRESS
);
493 lwkt_reltoken(&vm
->vm_map
.token
);
495 KKASSERT((vm
->vm_flags
& VMSPACE_EXIT1
) != 0);
496 KKASSERT((vm
->vm_flags
& VMSPACE_EXIT2
) == 0);
499 * Get rid of remaining basic resources.
501 vm
->vm_flags
|= VMSPACE_EXIT2
;
504 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
505 vm_map_lock(&vm
->vm_map
);
506 cpu_vmspace_free(vm
);
509 * Lock the map, to wait out all other references to it.
510 * Delete all of the mappings and pages they hold, then call
511 * the pmap module to reclaim anything left.
513 vm_map_delete(&vm
->vm_map
, vm
->vm_map
.min_offset
,
514 vm
->vm_map
.max_offset
, &count
);
515 vm_map_unlock(&vm
->vm_map
);
516 vm_map_entry_release(count
);
518 pmap_release(vmspace_pmap(vm
));
519 lwkt_reltoken(&vm
->vm_map
.token
);
520 objcache_put(vmspace_cache
, vm
);
525 * Swap useage is determined by taking the proportional swap used by
526 * VM objects backing the VM map. To make up for fractional losses,
527 * if the VM object has any swap use at all the associated map entries
528 * count for at least 1 swap page.
533 vmspace_swap_count(struct vmspace
*vm
)
535 vm_map_t map
= &vm
->vm_map
;
538 vm_offset_t count
= 0;
542 for (cur
= map
->header
.next
; cur
!= &map
->header
; cur
= cur
->next
) {
543 switch(cur
->maptype
) {
544 case VM_MAPTYPE_NORMAL
:
545 case VM_MAPTYPE_VPAGETABLE
:
546 if ((object
= cur
->object
.vm_object
) == NULL
)
548 if (object
->swblock_count
) {
549 n
= (cur
->end
- cur
->start
) / PAGE_SIZE
;
550 count
+= object
->swblock_count
*
551 SWAP_META_PAGES
* n
/ object
->size
+ 1;
564 * Calculate the approximate number of anonymous pages in use by
565 * this vmspace. To make up for fractional losses, we count each
566 * VM object as having at least 1 anonymous page.
571 vmspace_anonymous_count(struct vmspace
*vm
)
573 vm_map_t map
= &vm
->vm_map
;
576 vm_offset_t count
= 0;
579 for (cur
= map
->header
.next
; cur
!= &map
->header
; cur
= cur
->next
) {
580 switch(cur
->maptype
) {
581 case VM_MAPTYPE_NORMAL
:
582 case VM_MAPTYPE_VPAGETABLE
:
583 if ((object
= cur
->object
.vm_object
) == NULL
)
585 if (object
->type
!= OBJT_DEFAULT
&&
586 object
->type
!= OBJT_SWAP
) {
589 count
+= object
->resident_page_count
;
601 * Initialize an existing vm_map structure such as that in the vmspace
602 * structure. The pmap is initialized elsewhere.
607 vm_map_init(struct vm_map
*map
, vm_offset_t min
, vm_offset_t max
, pmap_t pmap
)
609 map
->header
.next
= map
->header
.prev
= &map
->header
;
610 RB_INIT(&map
->rb_root
);
611 spin_init(&map
->ilock_spin
, "ilock");
612 map
->ilock_base
= NULL
;
616 map
->min_offset
= min
;
617 map
->max_offset
= max
;
621 bzero(&map
->freehint
, sizeof(map
->freehint
));
622 lwkt_token_init(&map
->token
, "vm_map");
623 lockinit(&map
->lock
, "vm_maplk", (hz
+ 9) / 10, 0);
627 * Find the first possible free address for the specified request length.
628 * Returns 0 if we don't have one cached.
632 vm_map_freehint_find(vm_map_t map
, vm_size_t length
, vm_size_t align
)
634 vm_map_freehint_t
*scan
;
636 scan
= &map
->freehint
[0];
637 while (scan
< &map
->freehint
[VM_MAP_FFCOUNT
]) {
638 if (scan
->length
== length
&& scan
->align
== align
)
646 * Unconditionally set the freehint. Called by vm_map_findspace() after
647 * it finds an address. This will help us iterate optimally on the next
652 vm_map_freehint_update(vm_map_t map
, vm_offset_t start
,
653 vm_size_t length
, vm_size_t align
)
655 vm_map_freehint_t
*scan
;
657 scan
= &map
->freehint
[0];
658 while (scan
< &map
->freehint
[VM_MAP_FFCOUNT
]) {
659 if (scan
->length
== length
&& scan
->align
== align
) {
665 scan
= &map
->freehint
[map
->freehint_newindex
& VM_MAP_FFMASK
];
668 scan
->length
= length
;
669 ++map
->freehint_newindex
;
673 * Update any existing freehints (for any alignment), for the hole we just
678 vm_map_freehint_hole(vm_map_t map
, vm_offset_t start
, vm_size_t length
)
680 vm_map_freehint_t
*scan
;
682 scan
= &map
->freehint
[0];
683 while (scan
< &map
->freehint
[VM_MAP_FFCOUNT
]) {
684 if (scan
->length
<= length
&& scan
->start
> start
)
691 * Shadow the vm_map_entry's object. This typically needs to be done when
692 * a write fault is taken on an entry which had previously been cloned by
693 * fork(). The shared object (which might be NULL) must become private so
694 * we add a shadow layer above it.
696 * Object allocation for anonymous mappings is defered as long as possible.
697 * When creating a shadow, however, the underlying object must be instantiated
698 * so it can be shared.
700 * If the map segment is governed by a virtual page table then it is
701 * possible to address offsets beyond the mapped area. Just allocate
702 * a maximally sized object for this case.
704 * If addref is non-zero an additional reference is added to the returned
705 * entry. This mechanic exists because the additional reference might have
706 * to be added atomically and not after return to prevent a premature
709 * The vm_map must be exclusively locked.
710 * No other requirements.
714 vm_map_entry_shadow(vm_map_entry_t entry
, int addref
)
716 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
717 vm_object_shadow(&entry
->object
.vm_object
, &entry
->offset
,
718 0x7FFFFFFF, addref
); /* XXX */
720 vm_object_shadow(&entry
->object
.vm_object
, &entry
->offset
,
721 atop(entry
->end
- entry
->start
), addref
);
723 entry
->eflags
&= ~MAP_ENTRY_NEEDS_COPY
;
727 * Allocate an object for a vm_map_entry.
729 * Object allocation for anonymous mappings is defered as long as possible.
730 * This function is called when we can defer no longer, generally when a map
731 * entry might be split or forked or takes a page fault.
733 * If the map segment is governed by a virtual page table then it is
734 * possible to address offsets beyond the mapped area. Just allocate
735 * a maximally sized object for this case.
737 * The vm_map must be exclusively locked.
738 * No other requirements.
741 vm_map_entry_allocate_object(vm_map_entry_t entry
)
745 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
746 obj
= vm_object_allocate(OBJT_DEFAULT
, 0x7FFFFFFF); /* XXX */
748 obj
= vm_object_allocate(OBJT_DEFAULT
,
749 atop(entry
->end
- entry
->start
));
751 entry
->object
.vm_object
= obj
;
756 * Set an initial negative count so the first attempt to reserve
757 * space preloads a bunch of vm_map_entry's for this cpu. Also
758 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
759 * map a new page for vm_map_entry structures. SMP systems are
760 * particularly sensitive.
762 * This routine is called in early boot so we cannot just call
763 * vm_map_entry_reserve().
765 * Called from the low level boot code only (for each cpu)
767 * WARNING! Take care not to have too-big a static/BSS structure here
768 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
769 * can get blown out by the kernel plus the initrd image.
772 vm_map_entry_reserve_cpu_init(globaldata_t gd
)
774 vm_map_entry_t entry
;
778 atomic_add_int(&gd
->gd_vme_avail
, -MAP_RESERVE_COUNT
* 2);
779 if (gd
->gd_cpuid
== 0) {
780 entry
= &cpu_map_entry_init_bsp
[0];
781 count
= MAPENTRYBSP_CACHE
;
783 entry
= &cpu_map_entry_init_ap
[gd
->gd_cpuid
][0];
784 count
= MAPENTRYAP_CACHE
;
786 for (i
= 0; i
< count
; ++i
, ++entry
) {
787 entry
->next
= gd
->gd_vme_base
;
788 gd
->gd_vme_base
= entry
;
793 * Reserves vm_map_entry structures so code later-on can manipulate
794 * map_entry structures within a locked map without blocking trying
795 * to allocate a new vm_map_entry.
799 * WARNING! We must not decrement gd_vme_avail until after we have
800 * ensured that sufficient entries exist, otherwise we can
801 * get into an endless call recursion in the zalloc code
805 vm_map_entry_reserve(int count
)
807 struct globaldata
*gd
= mycpu
;
808 vm_map_entry_t entry
;
811 * Make sure we have enough structures in gd_vme_base to handle
812 * the reservation request.
814 * Use a critical section to protect against VM faults. It might
815 * not be needed, but we have to be careful here.
817 if (gd
->gd_vme_avail
< count
) {
819 while (gd
->gd_vme_avail
< count
) {
820 entry
= zalloc(mapentzone
);
821 entry
->next
= gd
->gd_vme_base
;
822 gd
->gd_vme_base
= entry
;
823 atomic_add_int(&gd
->gd_vme_avail
, 1);
827 atomic_add_int(&gd
->gd_vme_avail
, -count
);
833 * Releases previously reserved vm_map_entry structures that were not
834 * used. If we have too much junk in our per-cpu cache clean some of
840 vm_map_entry_release(int count
)
842 struct globaldata
*gd
= mycpu
;
843 vm_map_entry_t entry
;
844 vm_map_entry_t efree
;
846 count
= atomic_fetchadd_int(&gd
->gd_vme_avail
, count
) + count
;
847 if (gd
->gd_vme_avail
> MAP_RESERVE_SLOP
) {
850 while (gd
->gd_vme_avail
> MAP_RESERVE_HYST
) {
851 entry
= gd
->gd_vme_base
;
852 KKASSERT(entry
!= NULL
);
853 gd
->gd_vme_base
= entry
->next
;
854 atomic_add_int(&gd
->gd_vme_avail
, -1);
859 while ((entry
= efree
) != NULL
) {
861 zfree(mapentzone
, entry
);
867 * Reserve map entry structures for use in kernel_map itself. These
868 * entries have *ALREADY* been reserved on a per-cpu basis when the map
869 * was inited. This function is used by zalloc() to avoid a recursion
870 * when zalloc() itself needs to allocate additional kernel memory.
872 * This function works like the normal reserve but does not load the
873 * vm_map_entry cache (because that would result in an infinite
874 * recursion). Note that gd_vme_avail may go negative. This is expected.
876 * Any caller of this function must be sure to renormalize after
877 * potentially eating entries to ensure that the reserve supply
883 vm_map_entry_kreserve(int count
)
885 struct globaldata
*gd
= mycpu
;
887 atomic_add_int(&gd
->gd_vme_avail
, -count
);
888 KASSERT(gd
->gd_vme_base
!= NULL
,
889 ("no reserved entries left, gd_vme_avail = %d",
895 * Release previously reserved map entries for kernel_map. We do not
896 * attempt to clean up like the normal release function as this would
897 * cause an unnecessary (but probably not fatal) deep procedure call.
902 vm_map_entry_krelease(int count
)
904 struct globaldata
*gd
= mycpu
;
906 atomic_add_int(&gd
->gd_vme_avail
, count
);
910 * Allocates a VM map entry for insertion. No entry fields are filled in.
912 * The entries should have previously been reserved. The reservation count
913 * is tracked in (*countp).
917 static vm_map_entry_t
918 vm_map_entry_create(vm_map_t map
, int *countp
)
920 struct globaldata
*gd
= mycpu
;
921 vm_map_entry_t entry
;
923 KKASSERT(*countp
> 0);
926 entry
= gd
->gd_vme_base
;
927 KASSERT(entry
!= NULL
, ("gd_vme_base NULL! count %d", *countp
));
928 gd
->gd_vme_base
= entry
->next
;
935 * Dispose of a vm_map_entry that is no longer being referenced.
940 vm_map_entry_dispose(vm_map_t map
, vm_map_entry_t entry
, int *countp
)
942 struct globaldata
*gd
= mycpu
;
946 entry
->next
= gd
->gd_vme_base
;
947 gd
->gd_vme_base
= entry
;
953 * Insert/remove entries from maps.
955 * The related map must be exclusively locked.
956 * The caller must hold map->token
957 * No other requirements.
960 vm_map_entry_link(vm_map_t map
,
961 vm_map_entry_t after_where
,
962 vm_map_entry_t entry
)
964 ASSERT_VM_MAP_LOCKED(map
);
967 entry
->prev
= after_where
;
968 entry
->next
= after_where
->next
;
969 entry
->next
->prev
= entry
;
970 after_where
->next
= entry
;
971 if (vm_map_rb_tree_RB_INSERT(&map
->rb_root
, entry
))
972 panic("vm_map_entry_link: dup addr map %p ent %p", map
, entry
);
976 vm_map_entry_unlink(vm_map_t map
,
977 vm_map_entry_t entry
)
982 ASSERT_VM_MAP_LOCKED(map
);
984 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
985 panic("vm_map_entry_unlink: attempt to mess with "
986 "locked entry! %p", entry
);
992 vm_map_rb_tree_RB_REMOVE(&map
->rb_root
, entry
);
997 * Finds the map entry containing (or immediately preceding) the specified
998 * address in the given map. The entry is returned in (*entry).
1000 * The boolean result indicates whether the address is actually contained
1003 * The related map must be locked.
1004 * No other requirements.
1007 vm_map_lookup_entry(vm_map_t map
, vm_offset_t address
, vm_map_entry_t
*entry
)
1010 vm_map_entry_t last
;
1012 ASSERT_VM_MAP_LOCKED(map
);
1015 * Locate the record from the top of the tree. 'last' tracks the
1016 * closest prior record and is returned if no match is found, which
1017 * in binary tree terms means tracking the most recent right-branch
1018 * taken. If there is no prior record, &map->header is returned.
1020 last
= &map
->header
;
1021 tmp
= RB_ROOT(&map
->rb_root
);
1024 if (address
>= tmp
->start
) {
1025 if (address
< tmp
->end
) {
1030 tmp
= RB_RIGHT(tmp
, rb_entry
);
1032 tmp
= RB_LEFT(tmp
, rb_entry
);
1040 * Inserts the given whole VM object into the target map at the specified
1041 * address range. The object's size should match that of the address range.
1043 * The map must be exclusively locked.
1044 * The object must be held.
1045 * The caller must have reserved sufficient vm_map_entry structures.
1047 * If object is non-NULL, ref count must be bumped by caller prior to
1048 * making call to account for the new entry.
1051 vm_map_insert(vm_map_t map
, int *countp
, void *map_object
, void *map_aux
,
1052 vm_ooffset_t offset
, vm_offset_t start
, vm_offset_t end
,
1053 vm_maptype_t maptype
, vm_subsys_t id
,
1054 vm_prot_t prot
, vm_prot_t max
, int cow
)
1056 vm_map_entry_t new_entry
;
1057 vm_map_entry_t prev_entry
;
1058 vm_map_entry_t temp_entry
;
1059 vm_eflags_t protoeflags
;
1063 if (maptype
== VM_MAPTYPE_UKSMAP
)
1066 object
= map_object
;
1068 ASSERT_VM_MAP_LOCKED(map
);
1070 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object
));
1073 * Check that the start and end points are not bogus.
1075 if ((start
< map
->min_offset
) || (end
> map
->max_offset
) ||
1077 return (KERN_INVALID_ADDRESS
);
1080 * Find the entry prior to the proposed starting address; if it's part
1081 * of an existing entry, this range is bogus.
1083 if (vm_map_lookup_entry(map
, start
, &temp_entry
))
1084 return (KERN_NO_SPACE
);
1086 prev_entry
= temp_entry
;
1089 * Assert that the next entry doesn't overlap the end point.
1092 if ((prev_entry
->next
!= &map
->header
) &&
1093 (prev_entry
->next
->start
< end
))
1094 return (KERN_NO_SPACE
);
1098 if (cow
& MAP_COPY_ON_WRITE
)
1099 protoeflags
|= MAP_ENTRY_COW
|MAP_ENTRY_NEEDS_COPY
;
1101 if (cow
& MAP_NOFAULT
) {
1102 protoeflags
|= MAP_ENTRY_NOFAULT
;
1104 KASSERT(object
== NULL
,
1105 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1107 if (cow
& MAP_DISABLE_SYNCER
)
1108 protoeflags
|= MAP_ENTRY_NOSYNC
;
1109 if (cow
& MAP_DISABLE_COREDUMP
)
1110 protoeflags
|= MAP_ENTRY_NOCOREDUMP
;
1111 if (cow
& MAP_IS_STACK
)
1112 protoeflags
|= MAP_ENTRY_STACK
;
1113 if (cow
& MAP_IS_KSTACK
)
1114 protoeflags
|= MAP_ENTRY_KSTACK
;
1116 lwkt_gettoken(&map
->token
);
1120 * When object is non-NULL, it could be shared with another
1121 * process. We have to set or clear OBJ_ONEMAPPING
1124 * NOTE: This flag is only applicable to DEFAULT and SWAP
1125 * objects and will already be clear in other types
1126 * of objects, so a shared object lock is ok for
1129 if ((object
->ref_count
> 1) || (object
->shadow_count
!= 0)) {
1130 vm_object_clear_flag(object
, OBJ_ONEMAPPING
);
1133 else if ((prev_entry
!= &map
->header
) &&
1134 (prev_entry
->eflags
== protoeflags
) &&
1135 (prev_entry
->end
== start
) &&
1136 (prev_entry
->wired_count
== 0) &&
1137 (prev_entry
->id
== id
) &&
1138 prev_entry
->maptype
== maptype
&&
1139 maptype
== VM_MAPTYPE_NORMAL
&&
1140 ((prev_entry
->object
.vm_object
== NULL
) ||
1141 vm_object_coalesce(prev_entry
->object
.vm_object
,
1142 OFF_TO_IDX(prev_entry
->offset
),
1143 (vm_size_t
)(prev_entry
->end
- prev_entry
->start
),
1144 (vm_size_t
)(end
- prev_entry
->end
)))) {
1146 * We were able to extend the object. Determine if we
1147 * can extend the previous map entry to include the
1148 * new range as well.
1150 if ((prev_entry
->inheritance
== VM_INHERIT_DEFAULT
) &&
1151 (prev_entry
->protection
== prot
) &&
1152 (prev_entry
->max_protection
== max
)) {
1153 map
->size
+= (end
- prev_entry
->end
);
1154 prev_entry
->end
= end
;
1155 vm_map_simplify_entry(map
, prev_entry
, countp
);
1156 lwkt_reltoken(&map
->token
);
1157 return (KERN_SUCCESS
);
1161 * If we can extend the object but cannot extend the
1162 * map entry, we have to create a new map entry. We
1163 * must bump the ref count on the extended object to
1164 * account for it. object may be NULL.
1166 * XXX if object is NULL should we set offset to 0 here ?
1168 object
= prev_entry
->object
.vm_object
;
1169 offset
= prev_entry
->offset
+
1170 (prev_entry
->end
- prev_entry
->start
);
1172 vm_object_hold(object
);
1173 vm_object_chain_wait(object
, 0);
1174 vm_object_reference_locked(object
);
1176 map_object
= object
;
1181 * NOTE: if conditionals fail, object can be NULL here. This occurs
1182 * in things like the buffer map where we manage kva but do not manage
1187 * Create a new entry
1190 new_entry
= vm_map_entry_create(map
, countp
);
1191 new_entry
->start
= start
;
1192 new_entry
->end
= end
;
1195 new_entry
->maptype
= maptype
;
1196 new_entry
->eflags
= protoeflags
;
1197 new_entry
->object
.map_object
= map_object
;
1198 new_entry
->aux
.master_pde
= 0; /* in case size is different */
1199 new_entry
->aux
.map_aux
= map_aux
;
1200 new_entry
->offset
= offset
;
1202 new_entry
->inheritance
= VM_INHERIT_DEFAULT
;
1203 new_entry
->protection
= prot
;
1204 new_entry
->max_protection
= max
;
1205 new_entry
->wired_count
= 0;
1208 * Insert the new entry into the list
1211 vm_map_entry_link(map
, prev_entry
, new_entry
);
1212 map
->size
+= new_entry
->end
- new_entry
->start
;
1215 * Don't worry about updating freehint[] when inserting, allow
1216 * addresses to be lower than the actual first free spot.
1220 * Temporarily removed to avoid MAP_STACK panic, due to
1221 * MAP_STACK being a huge hack. Will be added back in
1222 * when MAP_STACK (and the user stack mapping) is fixed.
1225 * It may be possible to simplify the entry
1227 vm_map_simplify_entry(map
, new_entry
, countp
);
1231 * Try to pre-populate the page table. Mappings governed by virtual
1232 * page tables cannot be prepopulated without a lot of work, so
1235 if ((cow
& (MAP_PREFAULT
|MAP_PREFAULT_PARTIAL
)) &&
1236 maptype
!= VM_MAPTYPE_VPAGETABLE
&&
1237 maptype
!= VM_MAPTYPE_UKSMAP
) {
1239 if (vm_map_relock_enable
&& (cow
& MAP_PREFAULT_RELOCK
)) {
1241 vm_object_lock_swap();
1242 vm_object_drop(object
);
1244 pmap_object_init_pt(map
->pmap
, start
, prot
,
1245 object
, OFF_TO_IDX(offset
), end
- start
,
1246 cow
& MAP_PREFAULT_PARTIAL
);
1248 vm_object_hold(object
);
1249 vm_object_lock_swap();
1253 vm_object_drop(object
);
1255 lwkt_reltoken(&map
->token
);
1256 return (KERN_SUCCESS
);
1260 * Find sufficient space for `length' bytes in the given map, starting at
1261 * `start'. Returns 0 on success, 1 on no space.
1263 * This function will returned an arbitrarily aligned pointer. If no
1264 * particular alignment is required you should pass align as 1. Note that
1265 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1266 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1269 * 'align' should be a power of 2 but is not required to be.
1271 * The map must be exclusively locked.
1272 * No other requirements.
1275 vm_map_findspace(vm_map_t map
, vm_offset_t start
, vm_size_t length
,
1276 vm_size_t align
, int flags
, vm_offset_t
*addr
)
1278 vm_map_entry_t entry
, next
;
1280 vm_offset_t hole_start
;
1282 vm_offset_t align_mask
;
1284 if (start
< map
->min_offset
)
1285 start
= map
->min_offset
;
1286 if (start
> map
->max_offset
)
1290 * If the alignment is not a power of 2 we will have to use
1291 * a mod/division, set align_mask to a special value.
1293 if ((align
| (align
- 1)) + 1 != (align
<< 1))
1294 align_mask
= (vm_offset_t
)-1;
1296 align_mask
= align
- 1;
1299 * Use freehint to adjust the start point, hopefully reducing
1300 * the iteration to O(1).
1302 hole_start
= vm_map_freehint_find(map
, length
, align
);
1303 if (start
< hole_start
)
1305 if (vm_map_lookup_entry(map
, start
, &tmp
))
1310 * Look through the rest of the map, trying to fit a new region in the
1311 * gap between existing regions, or after the very last region.
1313 for (;; start
= (entry
= next
)->end
) {
1315 * Adjust the proposed start by the requested alignment,
1316 * be sure that we didn't wrap the address.
1318 if (align_mask
== (vm_offset_t
)-1)
1319 end
= roundup(start
, align
);
1321 end
= (start
+ align_mask
) & ~align_mask
;
1327 * Find the end of the proposed new region. Be sure we didn't
1328 * go beyond the end of the map, or wrap around the address.
1329 * Then check to see if this is the last entry or if the
1330 * proposed end fits in the gap between this and the next
1333 end
= start
+ length
;
1334 if (end
> map
->max_offset
|| end
< start
)
1339 * If the next entry's start address is beyond the desired
1340 * end address we may have found a good entry.
1342 * If the next entry is a stack mapping we do not map into
1343 * the stack's reserved space.
1345 * XXX continue to allow mapping into the stack's reserved
1346 * space if doing a MAP_STACK mapping inside a MAP_STACK
1347 * mapping, for backwards compatibility. But the caller
1348 * really should use MAP_STACK | MAP_TRYFIXED if they
1351 if (next
== &map
->header
)
1353 if (next
->start
>= end
) {
1354 if ((next
->eflags
& MAP_ENTRY_STACK
) == 0)
1356 if (flags
& MAP_STACK
)
1358 if (next
->start
- next
->aux
.avail_ssize
>= end
)
1364 * Update the freehint
1366 vm_map_freehint_update(map
, start
, length
, align
);
1369 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1370 * if it fails. The kernel_map is locked and nothing can steal
1371 * our address space if pmap_growkernel() blocks.
1373 * NOTE: This may be unconditionally called for kldload areas on
1374 * x86_64 because these do not bump kernel_vm_end (which would
1375 * fill 128G worth of page tables!). Therefore we must not
1378 if (map
== &kernel_map
) {
1381 kstop
= round_page(start
+ length
);
1382 if (kstop
> kernel_vm_end
)
1383 pmap_growkernel(start
, kstop
);
1390 * vm_map_find finds an unallocated region in the target address map with
1391 * the given length and allocates it. The search is defined to be first-fit
1392 * from the specified address; the region found is returned in the same
1395 * If object is non-NULL, ref count must be bumped by caller
1396 * prior to making call to account for the new entry.
1398 * No requirements. This function will lock the map temporarily.
1401 vm_map_find(vm_map_t map
, void *map_object
, void *map_aux
,
1402 vm_ooffset_t offset
, vm_offset_t
*addr
,
1403 vm_size_t length
, vm_size_t align
, boolean_t fitit
,
1404 vm_maptype_t maptype
, vm_subsys_t id
,
1405 vm_prot_t prot
, vm_prot_t max
, int cow
)
1412 if (maptype
== VM_MAPTYPE_UKSMAP
)
1415 object
= map_object
;
1419 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1422 vm_object_hold_shared(object
);
1424 if (vm_map_findspace(map
, start
, length
, align
, 0, addr
)) {
1426 vm_object_drop(object
);
1428 vm_map_entry_release(count
);
1429 return (KERN_NO_SPACE
);
1433 result
= vm_map_insert(map
, &count
, map_object
, map_aux
,
1434 offset
, start
, start
+ length
,
1435 maptype
, id
, prot
, max
, cow
);
1437 vm_object_drop(object
);
1439 vm_map_entry_release(count
);
1445 * Simplify the given map entry by merging with either neighbor. This
1446 * routine also has the ability to merge with both neighbors.
1448 * This routine guarentees that the passed entry remains valid (though
1449 * possibly extended). When merging, this routine may delete one or
1450 * both neighbors. No action is taken on entries which have their
1451 * in-transition flag set.
1453 * The map must be exclusively locked.
1456 vm_map_simplify_entry(vm_map_t map
, vm_map_entry_t entry
, int *countp
)
1458 vm_map_entry_t next
, prev
;
1459 vm_size_t prevsize
, esize
;
1461 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
1462 ++mycpu
->gd_cnt
.v_intrans_coll
;
1466 if (entry
->maptype
== VM_MAPTYPE_SUBMAP
)
1468 if (entry
->maptype
== VM_MAPTYPE_UKSMAP
)
1472 if (prev
!= &map
->header
) {
1473 prevsize
= prev
->end
- prev
->start
;
1474 if ( (prev
->end
== entry
->start
) &&
1475 (prev
->maptype
== entry
->maptype
) &&
1476 (prev
->object
.vm_object
== entry
->object
.vm_object
) &&
1477 (!prev
->object
.vm_object
||
1478 (prev
->offset
+ prevsize
== entry
->offset
)) &&
1479 (prev
->eflags
== entry
->eflags
) &&
1480 (prev
->protection
== entry
->protection
) &&
1481 (prev
->max_protection
== entry
->max_protection
) &&
1482 (prev
->inheritance
== entry
->inheritance
) &&
1483 (prev
->id
== entry
->id
) &&
1484 (prev
->wired_count
== entry
->wired_count
)) {
1485 vm_map_entry_unlink(map
, prev
);
1486 entry
->start
= prev
->start
;
1487 entry
->offset
= prev
->offset
;
1488 if (prev
->object
.vm_object
)
1489 vm_object_deallocate(prev
->object
.vm_object
);
1490 vm_map_entry_dispose(map
, prev
, countp
);
1495 if (next
!= &map
->header
) {
1496 esize
= entry
->end
- entry
->start
;
1497 if ((entry
->end
== next
->start
) &&
1498 (next
->maptype
== entry
->maptype
) &&
1499 (next
->object
.vm_object
== entry
->object
.vm_object
) &&
1500 (!entry
->object
.vm_object
||
1501 (entry
->offset
+ esize
== next
->offset
)) &&
1502 (next
->eflags
== entry
->eflags
) &&
1503 (next
->protection
== entry
->protection
) &&
1504 (next
->max_protection
== entry
->max_protection
) &&
1505 (next
->inheritance
== entry
->inheritance
) &&
1506 (next
->id
== entry
->id
) &&
1507 (next
->wired_count
== entry
->wired_count
)) {
1508 vm_map_entry_unlink(map
, next
);
1509 entry
->end
= next
->end
;
1510 if (next
->object
.vm_object
)
1511 vm_object_deallocate(next
->object
.vm_object
);
1512 vm_map_entry_dispose(map
, next
, countp
);
1518 * Asserts that the given entry begins at or after the specified address.
1519 * If necessary, it splits the entry into two.
1521 #define vm_map_clip_start(map, entry, startaddr, countp) \
1523 if (startaddr > entry->start) \
1524 _vm_map_clip_start(map, entry, startaddr, countp); \
1528 * This routine is called only when it is known that the entry must be split.
1530 * The map must be exclusively locked.
1533 _vm_map_clip_start(vm_map_t map
, vm_map_entry_t entry
, vm_offset_t start
,
1536 vm_map_entry_t new_entry
;
1539 * Split off the front portion -- note that we must insert the new
1540 * entry BEFORE this one, so that this entry has the specified
1544 vm_map_simplify_entry(map
, entry
, countp
);
1547 * If there is no object backing this entry, we might as well create
1548 * one now. If we defer it, an object can get created after the map
1549 * is clipped, and individual objects will be created for the split-up
1550 * map. This is a bit of a hack, but is also about the best place to
1551 * put this improvement.
1553 if (entry
->object
.vm_object
== NULL
&& !map
->system_map
&&
1554 VM_MAP_ENTRY_WITHIN_PARTITION(entry
)) {
1555 vm_map_entry_allocate_object(entry
);
1558 new_entry
= vm_map_entry_create(map
, countp
);
1559 *new_entry
= *entry
;
1561 new_entry
->end
= start
;
1562 entry
->offset
+= (start
- entry
->start
);
1563 entry
->start
= start
;
1565 vm_map_entry_link(map
, entry
->prev
, new_entry
);
1567 switch(entry
->maptype
) {
1568 case VM_MAPTYPE_NORMAL
:
1569 case VM_MAPTYPE_VPAGETABLE
:
1570 if (new_entry
->object
.vm_object
) {
1571 vm_object_hold(new_entry
->object
.vm_object
);
1572 vm_object_chain_wait(new_entry
->object
.vm_object
, 0);
1573 vm_object_reference_locked(new_entry
->object
.vm_object
);
1574 vm_object_drop(new_entry
->object
.vm_object
);
1583 * Asserts that the given entry ends at or before the specified address.
1584 * If necessary, it splits the entry into two.
1586 * The map must be exclusively locked.
1588 #define vm_map_clip_end(map, entry, endaddr, countp) \
1590 if (endaddr < entry->end) \
1591 _vm_map_clip_end(map, entry, endaddr, countp); \
1595 * This routine is called only when it is known that the entry must be split.
1597 * The map must be exclusively locked.
1600 _vm_map_clip_end(vm_map_t map
, vm_map_entry_t entry
, vm_offset_t end
,
1603 vm_map_entry_t new_entry
;
1606 * If there is no object backing this entry, we might as well create
1607 * one now. If we defer it, an object can get created after the map
1608 * is clipped, and individual objects will be created for the split-up
1609 * map. This is a bit of a hack, but is also about the best place to
1610 * put this improvement.
1613 if (entry
->object
.vm_object
== NULL
&& !map
->system_map
&&
1614 VM_MAP_ENTRY_WITHIN_PARTITION(entry
)) {
1615 vm_map_entry_allocate_object(entry
);
1619 * Create a new entry and insert it AFTER the specified entry
1621 new_entry
= vm_map_entry_create(map
, countp
);
1622 *new_entry
= *entry
;
1624 new_entry
->start
= entry
->end
= end
;
1625 new_entry
->offset
+= (end
- entry
->start
);
1627 vm_map_entry_link(map
, entry
, new_entry
);
1629 switch(entry
->maptype
) {
1630 case VM_MAPTYPE_NORMAL
:
1631 case VM_MAPTYPE_VPAGETABLE
:
1632 if (new_entry
->object
.vm_object
) {
1633 vm_object_hold(new_entry
->object
.vm_object
);
1634 vm_object_chain_wait(new_entry
->object
.vm_object
, 0);
1635 vm_object_reference_locked(new_entry
->object
.vm_object
);
1636 vm_object_drop(new_entry
->object
.vm_object
);
1645 * Asserts that the starting and ending region addresses fall within the
1646 * valid range for the map.
1648 #define VM_MAP_RANGE_CHECK(map, start, end) \
1650 if (start < vm_map_min(map)) \
1651 start = vm_map_min(map); \
1652 if (end > vm_map_max(map)) \
1653 end = vm_map_max(map); \
1659 * Used to block when an in-transition collison occurs. The map
1660 * is unlocked for the sleep and relocked before the return.
1663 vm_map_transition_wait(vm_map_t map
, int relock
)
1665 tsleep_interlock(map
, 0);
1667 tsleep(map
, PINTERLOCKED
, "vment", 0);
1673 * When we do blocking operations with the map lock held it is
1674 * possible that a clip might have occured on our in-transit entry,
1675 * requiring an adjustment to the entry in our loop. These macros
1676 * help the pageable and clip_range code deal with the case. The
1677 * conditional costs virtually nothing if no clipping has occured.
1680 #define CLIP_CHECK_BACK(entry, save_start) \
1682 while (entry->start != save_start) { \
1683 entry = entry->prev; \
1684 KASSERT(entry != &map->header, ("bad entry clip")); \
1688 #define CLIP_CHECK_FWD(entry, save_end) \
1690 while (entry->end != save_end) { \
1691 entry = entry->next; \
1692 KASSERT(entry != &map->header, ("bad entry clip")); \
1698 * Clip the specified range and return the base entry. The
1699 * range may cover several entries starting at the returned base
1700 * and the first and last entry in the covering sequence will be
1701 * properly clipped to the requested start and end address.
1703 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1706 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1707 * covered by the requested range.
1709 * The map must be exclusively locked on entry and will remain locked
1710 * on return. If no range exists or the range contains holes and you
1711 * specified that no holes were allowed, NULL will be returned. This
1712 * routine may temporarily unlock the map in order avoid a deadlock when
1717 vm_map_clip_range(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1718 int *countp
, int flags
)
1720 vm_map_entry_t start_entry
;
1721 vm_map_entry_t entry
;
1724 * Locate the entry and effect initial clipping. The in-transition
1725 * case does not occur very often so do not try to optimize it.
1728 if (vm_map_lookup_entry(map
, start
, &start_entry
) == FALSE
)
1730 entry
= start_entry
;
1731 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
1732 entry
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
1733 ++mycpu
->gd_cnt
.v_intrans_coll
;
1734 ++mycpu
->gd_cnt
.v_intrans_wait
;
1735 vm_map_transition_wait(map
, 1);
1737 * entry and/or start_entry may have been clipped while
1738 * we slept, or may have gone away entirely. We have
1739 * to restart from the lookup.
1745 * Since we hold an exclusive map lock we do not have to restart
1746 * after clipping, even though clipping may block in zalloc.
1748 vm_map_clip_start(map
, entry
, start
, countp
);
1749 vm_map_clip_end(map
, entry
, end
, countp
);
1750 entry
->eflags
|= MAP_ENTRY_IN_TRANSITION
;
1753 * Scan entries covered by the range. When working on the next
1754 * entry a restart need only re-loop on the current entry which
1755 * we have already locked, since 'next' may have changed. Also,
1756 * even though entry is safe, it may have been clipped so we
1757 * have to iterate forwards through the clip after sleeping.
1759 while (entry
->next
!= &map
->header
&& entry
->next
->start
< end
) {
1760 vm_map_entry_t next
= entry
->next
;
1762 if (flags
& MAP_CLIP_NO_HOLES
) {
1763 if (next
->start
> entry
->end
) {
1764 vm_map_unclip_range(map
, start_entry
,
1765 start
, entry
->end
, countp
, flags
);
1770 if (next
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
1771 vm_offset_t save_end
= entry
->end
;
1772 next
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
1773 ++mycpu
->gd_cnt
.v_intrans_coll
;
1774 ++mycpu
->gd_cnt
.v_intrans_wait
;
1775 vm_map_transition_wait(map
, 1);
1778 * clips might have occured while we blocked.
1780 CLIP_CHECK_FWD(entry
, save_end
);
1781 CLIP_CHECK_BACK(start_entry
, start
);
1786 * No restart necessary even though clip_end may block, we
1787 * are holding the map lock.
1789 vm_map_clip_end(map
, next
, end
, countp
);
1790 next
->eflags
|= MAP_ENTRY_IN_TRANSITION
;
1793 if (flags
& MAP_CLIP_NO_HOLES
) {
1794 if (entry
->end
!= end
) {
1795 vm_map_unclip_range(map
, start_entry
,
1796 start
, entry
->end
, countp
, flags
);
1800 return(start_entry
);
1804 * Undo the effect of vm_map_clip_range(). You should pass the same
1805 * flags and the same range that you passed to vm_map_clip_range().
1806 * This code will clear the in-transition flag on the entries and
1807 * wake up anyone waiting. This code will also simplify the sequence
1808 * and attempt to merge it with entries before and after the sequence.
1810 * The map must be locked on entry and will remain locked on return.
1812 * Note that you should also pass the start_entry returned by
1813 * vm_map_clip_range(). However, if you block between the two calls
1814 * with the map unlocked please be aware that the start_entry may
1815 * have been clipped and you may need to scan it backwards to find
1816 * the entry corresponding with the original start address. You are
1817 * responsible for this, vm_map_unclip_range() expects the correct
1818 * start_entry to be passed to it and will KASSERT otherwise.
1822 vm_map_unclip_range(vm_map_t map
, vm_map_entry_t start_entry
,
1823 vm_offset_t start
, vm_offset_t end
,
1824 int *countp
, int flags
)
1826 vm_map_entry_t entry
;
1828 entry
= start_entry
;
1830 KASSERT(entry
->start
== start
, ("unclip_range: illegal base entry"));
1831 while (entry
!= &map
->header
&& entry
->start
< end
) {
1832 KASSERT(entry
->eflags
& MAP_ENTRY_IN_TRANSITION
,
1833 ("in-transition flag not set during unclip on: %p",
1835 KASSERT(entry
->end
<= end
,
1836 ("unclip_range: tail wasn't clipped"));
1837 entry
->eflags
&= ~MAP_ENTRY_IN_TRANSITION
;
1838 if (entry
->eflags
& MAP_ENTRY_NEEDS_WAKEUP
) {
1839 entry
->eflags
&= ~MAP_ENTRY_NEEDS_WAKEUP
;
1842 entry
= entry
->next
;
1846 * Simplification does not block so there is no restart case.
1848 entry
= start_entry
;
1849 while (entry
!= &map
->header
&& entry
->start
< end
) {
1850 vm_map_simplify_entry(map
, entry
, countp
);
1851 entry
= entry
->next
;
1856 * Mark the given range as handled by a subordinate map.
1858 * This range must have been created with vm_map_find(), and no other
1859 * operations may have been performed on this range prior to calling
1862 * Submappings cannot be removed.
1867 vm_map_submap(vm_map_t map
, vm_offset_t start
, vm_offset_t end
, vm_map_t submap
)
1869 vm_map_entry_t entry
;
1870 int result
= KERN_INVALID_ARGUMENT
;
1873 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1876 VM_MAP_RANGE_CHECK(map
, start
, end
);
1878 if (vm_map_lookup_entry(map
, start
, &entry
)) {
1879 vm_map_clip_start(map
, entry
, start
, &count
);
1881 entry
= entry
->next
;
1884 vm_map_clip_end(map
, entry
, end
, &count
);
1886 if ((entry
->start
== start
) && (entry
->end
== end
) &&
1887 ((entry
->eflags
& MAP_ENTRY_COW
) == 0) &&
1888 (entry
->object
.vm_object
== NULL
)) {
1889 entry
->object
.sub_map
= submap
;
1890 entry
->maptype
= VM_MAPTYPE_SUBMAP
;
1891 result
= KERN_SUCCESS
;
1894 vm_map_entry_release(count
);
1900 * Sets the protection of the specified address region in the target map.
1901 * If "set_max" is specified, the maximum protection is to be set;
1902 * otherwise, only the current protection is affected.
1904 * The protection is not applicable to submaps, but is applicable to normal
1905 * maps and maps governed by virtual page tables. For example, when operating
1906 * on a virtual page table our protection basically controls how COW occurs
1907 * on the backing object, whereas the virtual page table abstraction itself
1908 * is an abstraction for userland.
1913 vm_map_protect(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1914 vm_prot_t new_prot
, boolean_t set_max
)
1916 vm_map_entry_t current
;
1917 vm_map_entry_t entry
;
1920 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1923 VM_MAP_RANGE_CHECK(map
, start
, end
);
1925 if (vm_map_lookup_entry(map
, start
, &entry
)) {
1926 vm_map_clip_start(map
, entry
, start
, &count
);
1928 entry
= entry
->next
;
1932 * Make a first pass to check for protection violations.
1935 while ((current
!= &map
->header
) && (current
->start
< end
)) {
1936 if (current
->maptype
== VM_MAPTYPE_SUBMAP
) {
1938 vm_map_entry_release(count
);
1939 return (KERN_INVALID_ARGUMENT
);
1941 if ((new_prot
& current
->max_protection
) != new_prot
) {
1943 vm_map_entry_release(count
);
1944 return (KERN_PROTECTION_FAILURE
);
1948 * When making a SHARED+RW file mmap writable, update
1951 if (new_prot
& PROT_WRITE
&&
1952 (current
->eflags
& MAP_ENTRY_NEEDS_COPY
) == 0 &&
1953 (current
->maptype
== VM_MAPTYPE_NORMAL
||
1954 current
->maptype
== VM_MAPTYPE_VPAGETABLE
) &&
1955 current
->object
.vm_object
&&
1956 current
->object
.vm_object
->type
== OBJT_VNODE
) {
1959 vp
= current
->object
.vm_object
->handle
;
1960 if (vp
&& vn_lock(vp
, LK_EXCLUSIVE
| LK_RETRY
| LK_NOWAIT
) == 0) {
1961 vfs_timestamp(&vp
->v_lastwrite_ts
);
1962 vsetflags(vp
, VLASTWRITETS
);
1966 current
= current
->next
;
1970 * Go back and fix up protections. [Note that clipping is not
1971 * necessary the second time.]
1975 while ((current
!= &map
->header
) && (current
->start
< end
)) {
1978 vm_map_clip_end(map
, current
, end
, &count
);
1980 old_prot
= current
->protection
;
1982 current
->max_protection
= new_prot
;
1983 current
->protection
= new_prot
& old_prot
;
1985 current
->protection
= new_prot
;
1989 * Update physical map if necessary. Worry about copy-on-write
1990 * here -- CHECK THIS XXX
1992 if (current
->protection
!= old_prot
) {
1993 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1996 pmap_protect(map
->pmap
, current
->start
,
1998 current
->protection
& MASK(current
));
2002 vm_map_simplify_entry(map
, current
, &count
);
2004 current
= current
->next
;
2007 vm_map_entry_release(count
);
2008 return (KERN_SUCCESS
);
2012 * This routine traverses a processes map handling the madvise
2013 * system call. Advisories are classified as either those effecting
2014 * the vm_map_entry structure, or those effecting the underlying
2017 * The <value> argument is used for extended madvise calls.
2022 vm_map_madvise(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
2023 int behav
, off_t value
)
2025 vm_map_entry_t current
, entry
;
2031 * Some madvise calls directly modify the vm_map_entry, in which case
2032 * we need to use an exclusive lock on the map and we need to perform
2033 * various clipping operations. Otherwise we only need a read-lock
2036 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2040 case MADV_SEQUENTIAL
:
2054 vm_map_lock_read(map
);
2057 vm_map_entry_release(count
);
2062 * Locate starting entry and clip if necessary.
2065 VM_MAP_RANGE_CHECK(map
, start
, end
);
2067 if (vm_map_lookup_entry(map
, start
, &entry
)) {
2069 vm_map_clip_start(map
, entry
, start
, &count
);
2071 entry
= entry
->next
;
2076 * madvise behaviors that are implemented in the vm_map_entry.
2078 * We clip the vm_map_entry so that behavioral changes are
2079 * limited to the specified address range.
2081 for (current
= entry
;
2082 (current
!= &map
->header
) && (current
->start
< end
);
2083 current
= current
->next
2085 if (current
->maptype
== VM_MAPTYPE_SUBMAP
)
2088 vm_map_clip_end(map
, current
, end
, &count
);
2092 vm_map_entry_set_behavior(current
, MAP_ENTRY_BEHAV_NORMAL
);
2094 case MADV_SEQUENTIAL
:
2095 vm_map_entry_set_behavior(current
, MAP_ENTRY_BEHAV_SEQUENTIAL
);
2098 vm_map_entry_set_behavior(current
, MAP_ENTRY_BEHAV_RANDOM
);
2101 current
->eflags
|= MAP_ENTRY_NOSYNC
;
2104 current
->eflags
&= ~MAP_ENTRY_NOSYNC
;
2107 current
->eflags
|= MAP_ENTRY_NOCOREDUMP
;
2110 current
->eflags
&= ~MAP_ENTRY_NOCOREDUMP
;
2114 * Set the page directory page for a map
2115 * governed by a virtual page table. Mark
2116 * the entry as being governed by a virtual
2117 * page table if it is not.
2119 * XXX the page directory page is stored
2120 * in the avail_ssize field if the map_entry.
2122 * XXX the map simplification code does not
2123 * compare this field so weird things may
2124 * happen if you do not apply this function
2125 * to the entire mapping governed by the
2126 * virtual page table.
2128 if (current
->maptype
!= VM_MAPTYPE_VPAGETABLE
) {
2132 current
->aux
.master_pde
= value
;
2133 pmap_remove(map
->pmap
,
2134 current
->start
, current
->end
);
2138 * Invalidate the related pmap entries, used
2139 * to flush portions of the real kernel's
2140 * pmap when the caller has removed or
2141 * modified existing mappings in a virtual
2144 * (exclusive locked map version does not
2145 * need the range interlock).
2147 pmap_remove(map
->pmap
,
2148 current
->start
, current
->end
);
2154 vm_map_simplify_entry(map
, current
, &count
);
2162 * madvise behaviors that are implemented in the underlying
2165 * Since we don't clip the vm_map_entry, we have to clip
2166 * the vm_object pindex and count.
2168 * NOTE! These functions are only supported on normal maps,
2169 * except MADV_INVAL which is also supported on
2170 * virtual page tables.
2172 for (current
= entry
;
2173 (current
!= &map
->header
) && (current
->start
< end
);
2174 current
= current
->next
2176 vm_offset_t useStart
;
2178 if (current
->maptype
!= VM_MAPTYPE_NORMAL
&&
2179 (current
->maptype
!= VM_MAPTYPE_VPAGETABLE
||
2180 behav
!= MADV_INVAL
)) {
2184 pindex
= OFF_TO_IDX(current
->offset
);
2185 delta
= atop(current
->end
- current
->start
);
2186 useStart
= current
->start
;
2188 if (current
->start
< start
) {
2189 pindex
+= atop(start
- current
->start
);
2190 delta
-= atop(start
- current
->start
);
2193 if (current
->end
> end
)
2194 delta
-= atop(current
->end
- end
);
2196 if ((vm_spindex_t
)delta
<= 0)
2199 if (behav
== MADV_INVAL
) {
2201 * Invalidate the related pmap entries, used
2202 * to flush portions of the real kernel's
2203 * pmap when the caller has removed or
2204 * modified existing mappings in a virtual
2207 * (shared locked map version needs the
2208 * interlock, see vm_fault()).
2210 struct vm_map_ilock ilock
;
2212 KASSERT(useStart
>= VM_MIN_USER_ADDRESS
&&
2213 useStart
+ ptoa(delta
) <=
2214 VM_MAX_USER_ADDRESS
,
2215 ("Bad range %016jx-%016jx (%016jx)",
2216 useStart
, useStart
+ ptoa(delta
),
2218 vm_map_interlock(map
, &ilock
,
2220 useStart
+ ptoa(delta
));
2221 pmap_remove(map
->pmap
,
2223 useStart
+ ptoa(delta
));
2224 vm_map_deinterlock(map
, &ilock
);
2226 vm_object_madvise(current
->object
.vm_object
,
2227 pindex
, delta
, behav
);
2231 * Try to populate the page table. Mappings governed
2232 * by virtual page tables cannot be pre-populated
2233 * without a lot of work so don't try.
2235 if (behav
== MADV_WILLNEED
&&
2236 current
->maptype
!= VM_MAPTYPE_VPAGETABLE
) {
2237 pmap_object_init_pt(
2240 current
->protection
,
2241 current
->object
.vm_object
,
2243 (count
<< PAGE_SHIFT
),
2244 MAP_PREFAULT_MADVISE
2248 vm_map_unlock_read(map
);
2250 vm_map_entry_release(count
);
2256 * Sets the inheritance of the specified address range in the target map.
2257 * Inheritance affects how the map will be shared with child maps at the
2258 * time of vm_map_fork.
2261 vm_map_inherit(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
2262 vm_inherit_t new_inheritance
)
2264 vm_map_entry_t entry
;
2265 vm_map_entry_t temp_entry
;
2268 switch (new_inheritance
) {
2269 case VM_INHERIT_NONE
:
2270 case VM_INHERIT_COPY
:
2271 case VM_INHERIT_SHARE
:
2274 return (KERN_INVALID_ARGUMENT
);
2277 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2280 VM_MAP_RANGE_CHECK(map
, start
, end
);
2282 if (vm_map_lookup_entry(map
, start
, &temp_entry
)) {
2284 vm_map_clip_start(map
, entry
, start
, &count
);
2286 entry
= temp_entry
->next
;
2288 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2289 vm_map_clip_end(map
, entry
, end
, &count
);
2291 entry
->inheritance
= new_inheritance
;
2293 vm_map_simplify_entry(map
, entry
, &count
);
2295 entry
= entry
->next
;
2298 vm_map_entry_release(count
);
2299 return (KERN_SUCCESS
);
2303 * Implement the semantics of mlock
2306 vm_map_unwire(vm_map_t map
, vm_offset_t start
, vm_offset_t real_end
,
2307 boolean_t new_pageable
)
2309 vm_map_entry_t entry
;
2310 vm_map_entry_t start_entry
;
2312 int rv
= KERN_SUCCESS
;
2315 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2317 VM_MAP_RANGE_CHECK(map
, start
, real_end
);
2320 start_entry
= vm_map_clip_range(map
, start
, end
, &count
,
2322 if (start_entry
== NULL
) {
2324 vm_map_entry_release(count
);
2325 return (KERN_INVALID_ADDRESS
);
2328 if (new_pageable
== 0) {
2329 entry
= start_entry
;
2330 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2331 vm_offset_t save_start
;
2332 vm_offset_t save_end
;
2335 * Already user wired or hard wired (trivial cases)
2337 if (entry
->eflags
& MAP_ENTRY_USER_WIRED
) {
2338 entry
= entry
->next
;
2341 if (entry
->wired_count
!= 0) {
2342 entry
->wired_count
++;
2343 entry
->eflags
|= MAP_ENTRY_USER_WIRED
;
2344 entry
= entry
->next
;
2349 * A new wiring requires instantiation of appropriate
2350 * management structures and the faulting in of the
2353 if (entry
->maptype
== VM_MAPTYPE_NORMAL
||
2354 entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
2355 int copyflag
= entry
->eflags
&
2356 MAP_ENTRY_NEEDS_COPY
;
2357 if (copyflag
&& ((entry
->protection
&
2358 VM_PROT_WRITE
) != 0)) {
2359 vm_map_entry_shadow(entry
, 0);
2360 } else if (entry
->object
.vm_object
== NULL
&&
2362 vm_map_entry_allocate_object(entry
);
2365 entry
->wired_count
++;
2366 entry
->eflags
|= MAP_ENTRY_USER_WIRED
;
2369 * Now fault in the area. Note that vm_fault_wire()
2370 * may release the map lock temporarily, it will be
2371 * relocked on return. The in-transition
2372 * flag protects the entries.
2374 save_start
= entry
->start
;
2375 save_end
= entry
->end
;
2376 rv
= vm_fault_wire(map
, entry
, TRUE
, 0);
2378 CLIP_CHECK_BACK(entry
, save_start
);
2380 KASSERT(entry
->wired_count
== 1, ("bad wired_count on entry"));
2381 entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
2382 entry
->wired_count
= 0;
2383 if (entry
->end
== save_end
)
2385 entry
= entry
->next
;
2386 KASSERT(entry
!= &map
->header
, ("bad entry clip during backout"));
2388 end
= save_start
; /* unwire the rest */
2392 * note that even though the entry might have been
2393 * clipped, the USER_WIRED flag we set prevents
2394 * duplication so we do not have to do a
2397 entry
= entry
->next
;
2401 * If we failed fall through to the unwiring section to
2402 * unwire what we had wired so far. 'end' has already
2409 * start_entry might have been clipped if we unlocked the
2410 * map and blocked. No matter how clipped it has gotten
2411 * there should be a fragment that is on our start boundary.
2413 CLIP_CHECK_BACK(start_entry
, start
);
2417 * Deal with the unwiring case.
2421 * This is the unwiring case. We must first ensure that the
2422 * range to be unwired is really wired down. We know there
2425 entry
= start_entry
;
2426 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2427 if ((entry
->eflags
& MAP_ENTRY_USER_WIRED
) == 0) {
2428 rv
= KERN_INVALID_ARGUMENT
;
2431 KASSERT(entry
->wired_count
!= 0, ("wired count was 0 with USER_WIRED set! %p", entry
));
2432 entry
= entry
->next
;
2436 * Now decrement the wiring count for each region. If a region
2437 * becomes completely unwired, unwire its physical pages and
2441 * The map entries are processed in a loop, checking to
2442 * make sure the entry is wired and asserting it has a wired
2443 * count. However, another loop was inserted more-or-less in
2444 * the middle of the unwiring path. This loop picks up the
2445 * "entry" loop variable from the first loop without first
2446 * setting it to start_entry. Naturally, the secound loop
2447 * is never entered and the pages backing the entries are
2448 * never unwired. This can lead to a leak of wired pages.
2450 entry
= start_entry
;
2451 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2452 KASSERT(entry
->eflags
& MAP_ENTRY_USER_WIRED
,
2453 ("expected USER_WIRED on entry %p", entry
));
2454 entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
2455 entry
->wired_count
--;
2456 if (entry
->wired_count
== 0)
2457 vm_fault_unwire(map
, entry
);
2458 entry
= entry
->next
;
2462 vm_map_unclip_range(map
, start_entry
, start
, real_end
, &count
,
2465 vm_map_entry_release(count
);
2471 * Sets the pageability of the specified address range in the target map.
2472 * Regions specified as not pageable require locked-down physical
2473 * memory and physical page maps.
2475 * The map must not be locked, but a reference must remain to the map
2476 * throughout the call.
2478 * This function may be called via the zalloc path and must properly
2479 * reserve map entries for kernel_map.
2484 vm_map_wire(vm_map_t map
, vm_offset_t start
, vm_offset_t real_end
, int kmflags
)
2486 vm_map_entry_t entry
;
2487 vm_map_entry_t start_entry
;
2489 int rv
= KERN_SUCCESS
;
2492 if (kmflags
& KM_KRESERVE
)
2493 count
= vm_map_entry_kreserve(MAP_RESERVE_COUNT
);
2495 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2497 VM_MAP_RANGE_CHECK(map
, start
, real_end
);
2500 start_entry
= vm_map_clip_range(map
, start
, end
, &count
,
2502 if (start_entry
== NULL
) {
2504 rv
= KERN_INVALID_ADDRESS
;
2507 if ((kmflags
& KM_PAGEABLE
) == 0) {
2511 * 1. Holding the write lock, we create any shadow or zero-fill
2512 * objects that need to be created. Then we clip each map
2513 * entry to the region to be wired and increment its wiring
2514 * count. We create objects before clipping the map entries
2515 * to avoid object proliferation.
2517 * 2. We downgrade to a read lock, and call vm_fault_wire to
2518 * fault in the pages for any newly wired area (wired_count is
2521 * Downgrading to a read lock for vm_fault_wire avoids a
2522 * possible deadlock with another process that may have faulted
2523 * on one of the pages to be wired (it would mark the page busy,
2524 * blocking us, then in turn block on the map lock that we
2525 * hold). Because of problems in the recursive lock package,
2526 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2527 * any actions that require the write lock must be done
2528 * beforehand. Because we keep the read lock on the map, the
2529 * copy-on-write status of the entries we modify here cannot
2532 entry
= start_entry
;
2533 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2535 * Trivial case if the entry is already wired
2537 if (entry
->wired_count
) {
2538 entry
->wired_count
++;
2539 entry
= entry
->next
;
2544 * The entry is being newly wired, we have to setup
2545 * appropriate management structures. A shadow
2546 * object is required for a copy-on-write region,
2547 * or a normal object for a zero-fill region. We
2548 * do not have to do this for entries that point to sub
2549 * maps because we won't hold the lock on the sub map.
2551 if (entry
->maptype
== VM_MAPTYPE_NORMAL
||
2552 entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
2553 int copyflag
= entry
->eflags
&
2554 MAP_ENTRY_NEEDS_COPY
;
2555 if (copyflag
&& ((entry
->protection
&
2556 VM_PROT_WRITE
) != 0)) {
2557 vm_map_entry_shadow(entry
, 0);
2558 } else if (entry
->object
.vm_object
== NULL
&&
2560 vm_map_entry_allocate_object(entry
);
2564 entry
->wired_count
++;
2565 entry
= entry
->next
;
2573 * HACK HACK HACK HACK
2575 * vm_fault_wire() temporarily unlocks the map to avoid
2576 * deadlocks. The in-transition flag from vm_map_clip_range
2577 * call should protect us from changes while the map is
2580 * NOTE: Previously this comment stated that clipping might
2581 * still occur while the entry is unlocked, but from
2582 * what I can tell it actually cannot.
2584 * It is unclear whether the CLIP_CHECK_*() calls
2585 * are still needed but we keep them in anyway.
2587 * HACK HACK HACK HACK
2590 entry
= start_entry
;
2591 while (entry
!= &map
->header
&& entry
->start
< end
) {
2593 * If vm_fault_wire fails for any page we need to undo
2594 * what has been done. We decrement the wiring count
2595 * for those pages which have not yet been wired (now)
2596 * and unwire those that have (later).
2598 vm_offset_t save_start
= entry
->start
;
2599 vm_offset_t save_end
= entry
->end
;
2601 if (entry
->wired_count
== 1)
2602 rv
= vm_fault_wire(map
, entry
, FALSE
, kmflags
);
2604 CLIP_CHECK_BACK(entry
, save_start
);
2606 KASSERT(entry
->wired_count
== 1, ("wired_count changed unexpectedly"));
2607 entry
->wired_count
= 0;
2608 if (entry
->end
== save_end
)
2610 entry
= entry
->next
;
2611 KASSERT(entry
!= &map
->header
, ("bad entry clip during backout"));
2616 CLIP_CHECK_FWD(entry
, save_end
);
2617 entry
= entry
->next
;
2621 * If a failure occured undo everything by falling through
2622 * to the unwiring code. 'end' has already been adjusted
2626 kmflags
|= KM_PAGEABLE
;
2629 * start_entry is still IN_TRANSITION but may have been
2630 * clipped since vm_fault_wire() unlocks and relocks the
2631 * map. No matter how clipped it has gotten there should
2632 * be a fragment that is on our start boundary.
2634 CLIP_CHECK_BACK(start_entry
, start
);
2637 if (kmflags
& KM_PAGEABLE
) {
2639 * This is the unwiring case. We must first ensure that the
2640 * range to be unwired is really wired down. We know there
2643 entry
= start_entry
;
2644 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2645 if (entry
->wired_count
== 0) {
2646 rv
= KERN_INVALID_ARGUMENT
;
2649 entry
= entry
->next
;
2653 * Now decrement the wiring count for each region. If a region
2654 * becomes completely unwired, unwire its physical pages and
2657 entry
= start_entry
;
2658 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2659 entry
->wired_count
--;
2660 if (entry
->wired_count
== 0)
2661 vm_fault_unwire(map
, entry
);
2662 entry
= entry
->next
;
2666 vm_map_unclip_range(map
, start_entry
, start
, real_end
,
2667 &count
, MAP_CLIP_NO_HOLES
);
2670 if (kmflags
& KM_KRESERVE
)
2671 vm_map_entry_krelease(count
);
2673 vm_map_entry_release(count
);
2678 * Mark a newly allocated address range as wired but do not fault in
2679 * the pages. The caller is expected to load the pages into the object.
2681 * The map must be locked on entry and will remain locked on return.
2682 * No other requirements.
2685 vm_map_set_wired_quick(vm_map_t map
, vm_offset_t addr
, vm_size_t size
,
2688 vm_map_entry_t scan
;
2689 vm_map_entry_t entry
;
2691 entry
= vm_map_clip_range(map
, addr
, addr
+ size
,
2692 countp
, MAP_CLIP_NO_HOLES
);
2694 scan
!= &map
->header
&& scan
->start
< addr
+ size
;
2695 scan
= scan
->next
) {
2696 KKASSERT(scan
->wired_count
== 0);
2697 scan
->wired_count
= 1;
2699 vm_map_unclip_range(map
, entry
, addr
, addr
+ size
,
2700 countp
, MAP_CLIP_NO_HOLES
);
2704 * Push any dirty cached pages in the address range to their pager.
2705 * If syncio is TRUE, dirty pages are written synchronously.
2706 * If invalidate is TRUE, any cached pages are freed as well.
2708 * This routine is called by sys_msync()
2710 * Returns an error if any part of the specified range is not mapped.
2715 vm_map_clean(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
2716 boolean_t syncio
, boolean_t invalidate
)
2718 vm_map_entry_t current
;
2719 vm_map_entry_t entry
;
2723 vm_ooffset_t offset
;
2725 vm_map_lock_read(map
);
2726 VM_MAP_RANGE_CHECK(map
, start
, end
);
2727 if (!vm_map_lookup_entry(map
, start
, &entry
)) {
2728 vm_map_unlock_read(map
);
2729 return (KERN_INVALID_ADDRESS
);
2731 lwkt_gettoken(&map
->token
);
2734 * Make a first pass to check for holes.
2736 for (current
= entry
; current
->start
< end
; current
= current
->next
) {
2737 if (current
->maptype
== VM_MAPTYPE_SUBMAP
) {
2738 lwkt_reltoken(&map
->token
);
2739 vm_map_unlock_read(map
);
2740 return (KERN_INVALID_ARGUMENT
);
2742 if (end
> current
->end
&&
2743 (current
->next
== &map
->header
||
2744 current
->end
!= current
->next
->start
)) {
2745 lwkt_reltoken(&map
->token
);
2746 vm_map_unlock_read(map
);
2747 return (KERN_INVALID_ADDRESS
);
2752 pmap_remove(vm_map_pmap(map
), start
, end
);
2755 * Make a second pass, cleaning/uncaching pages from the indicated
2758 for (current
= entry
; current
->start
< end
; current
= current
->next
) {
2759 offset
= current
->offset
+ (start
- current
->start
);
2760 size
= (end
<= current
->end
? end
: current
->end
) - start
;
2762 switch(current
->maptype
) {
2763 case VM_MAPTYPE_SUBMAP
:
2766 vm_map_entry_t tentry
;
2769 smap
= current
->object
.sub_map
;
2770 vm_map_lock_read(smap
);
2771 vm_map_lookup_entry(smap
, offset
, &tentry
);
2772 tsize
= tentry
->end
- offset
;
2775 object
= tentry
->object
.vm_object
;
2776 offset
= tentry
->offset
+ (offset
- tentry
->start
);
2777 vm_map_unlock_read(smap
);
2780 case VM_MAPTYPE_NORMAL
:
2781 case VM_MAPTYPE_VPAGETABLE
:
2782 object
= current
->object
.vm_object
;
2790 vm_object_hold(object
);
2793 * Note that there is absolutely no sense in writing out
2794 * anonymous objects, so we track down the vnode object
2796 * We invalidate (remove) all pages from the address space
2797 * anyway, for semantic correctness.
2799 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2800 * may start out with a NULL object.
2802 while (object
&& (tobj
= object
->backing_object
) != NULL
) {
2803 vm_object_hold(tobj
);
2804 if (tobj
== object
->backing_object
) {
2805 vm_object_lock_swap();
2806 offset
+= object
->backing_object_offset
;
2807 vm_object_drop(object
);
2809 if (object
->size
< OFF_TO_IDX(offset
+ size
))
2810 size
= IDX_TO_OFF(object
->size
) -
2814 vm_object_drop(tobj
);
2816 if (object
&& (object
->type
== OBJT_VNODE
) &&
2817 (current
->protection
& VM_PROT_WRITE
) &&
2818 (object
->flags
& OBJ_NOMSYNC
) == 0) {
2820 * Flush pages if writing is allowed, invalidate them
2821 * if invalidation requested. Pages undergoing I/O
2822 * will be ignored by vm_object_page_remove().
2824 * We cannot lock the vnode and then wait for paging
2825 * to complete without deadlocking against vm_fault.
2826 * Instead we simply call vm_object_page_remove() and
2827 * allow it to block internally on a page-by-page
2828 * basis when it encounters pages undergoing async
2833 /* no chain wait needed for vnode objects */
2834 vm_object_reference_locked(object
);
2835 vn_lock(object
->handle
, LK_EXCLUSIVE
| LK_RETRY
);
2836 flags
= (syncio
|| invalidate
) ? OBJPC_SYNC
: 0;
2837 flags
|= invalidate
? OBJPC_INVAL
: 0;
2840 * When operating on a virtual page table just
2841 * flush the whole object. XXX we probably ought
2844 switch(current
->maptype
) {
2845 case VM_MAPTYPE_NORMAL
:
2846 vm_object_page_clean(object
,
2848 OFF_TO_IDX(offset
+ size
+ PAGE_MASK
),
2851 case VM_MAPTYPE_VPAGETABLE
:
2852 vm_object_page_clean(object
, 0, 0, flags
);
2855 vn_unlock(((struct vnode
*)object
->handle
));
2856 vm_object_deallocate_locked(object
);
2858 if (object
&& invalidate
&&
2859 ((object
->type
== OBJT_VNODE
) ||
2860 (object
->type
== OBJT_DEVICE
) ||
2861 (object
->type
== OBJT_MGTDEVICE
))) {
2863 ((object
->type
== OBJT_DEVICE
) ||
2864 (object
->type
== OBJT_MGTDEVICE
)) ? FALSE
: TRUE
;
2865 /* no chain wait needed for vnode/device objects */
2866 vm_object_reference_locked(object
);
2867 switch(current
->maptype
) {
2868 case VM_MAPTYPE_NORMAL
:
2869 vm_object_page_remove(object
,
2871 OFF_TO_IDX(offset
+ size
+ PAGE_MASK
),
2874 case VM_MAPTYPE_VPAGETABLE
:
2875 vm_object_page_remove(object
, 0, 0, clean_only
);
2878 vm_object_deallocate_locked(object
);
2882 vm_object_drop(object
);
2885 lwkt_reltoken(&map
->token
);
2886 vm_map_unlock_read(map
);
2888 return (KERN_SUCCESS
);
2892 * Make the region specified by this entry pageable.
2894 * The vm_map must be exclusively locked.
2897 vm_map_entry_unwire(vm_map_t map
, vm_map_entry_t entry
)
2899 entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
2900 entry
->wired_count
= 0;
2901 vm_fault_unwire(map
, entry
);
2905 * Deallocate the given entry from the target map.
2907 * The vm_map must be exclusively locked.
2910 vm_map_entry_delete(vm_map_t map
, vm_map_entry_t entry
, int *countp
)
2912 vm_map_entry_unlink(map
, entry
);
2913 map
->size
-= entry
->end
- entry
->start
;
2915 switch(entry
->maptype
) {
2916 case VM_MAPTYPE_NORMAL
:
2917 case VM_MAPTYPE_VPAGETABLE
:
2918 case VM_MAPTYPE_SUBMAP
:
2919 vm_object_deallocate(entry
->object
.vm_object
);
2921 case VM_MAPTYPE_UKSMAP
:
2928 vm_map_entry_dispose(map
, entry
, countp
);
2932 * Deallocates the given address range from the target map.
2934 * The vm_map must be exclusively locked.
2937 vm_map_delete(vm_map_t map
, vm_offset_t start
, vm_offset_t end
, int *countp
)
2940 vm_map_entry_t entry
;
2941 vm_map_entry_t first_entry
;
2942 vm_offset_t hole_start
;
2944 ASSERT_VM_MAP_LOCKED(map
);
2945 lwkt_gettoken(&map
->token
);
2948 * Find the start of the region, and clip it. Set entry to point
2949 * at the first record containing the requested address or, if no
2950 * such record exists, the next record with a greater address. The
2951 * loop will run from this point until a record beyond the termination
2952 * address is encountered.
2954 * Adjust freehint[] for either the clip case or the extension case.
2956 * GGG see other GGG comment.
2958 if (vm_map_lookup_entry(map
, start
, &first_entry
)) {
2959 entry
= first_entry
;
2960 vm_map_clip_start(map
, entry
, start
, countp
);
2963 entry
= first_entry
->next
;
2964 if (entry
== &map
->header
)
2965 hole_start
= first_entry
->start
;
2967 hole_start
= first_entry
->end
;
2971 * Step through all entries in this region
2973 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2974 vm_map_entry_t next
;
2976 vm_pindex_t offidxstart
, offidxend
, count
;
2979 * If we hit an in-transition entry we have to sleep and
2980 * retry. It's easier (and not really slower) to just retry
2981 * since this case occurs so rarely and the hint is already
2982 * pointing at the right place. We have to reset the
2983 * start offset so as not to accidently delete an entry
2984 * another process just created in vacated space.
2986 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
2987 entry
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
2988 start
= entry
->start
;
2989 ++mycpu
->gd_cnt
.v_intrans_coll
;
2990 ++mycpu
->gd_cnt
.v_intrans_wait
;
2991 vm_map_transition_wait(map
, 1);
2994 vm_map_clip_end(map
, entry
, end
, countp
);
3000 offidxstart
= OFF_TO_IDX(entry
->offset
);
3001 count
= OFF_TO_IDX(e
- s
);
3003 switch(entry
->maptype
) {
3004 case VM_MAPTYPE_NORMAL
:
3005 case VM_MAPTYPE_VPAGETABLE
:
3006 case VM_MAPTYPE_SUBMAP
:
3007 object
= entry
->object
.vm_object
;
3015 * Unwire before removing addresses from the pmap; otherwise,
3016 * unwiring will put the entries back in the pmap.
3018 * Generally speaking, doing a bulk pmap_remove() before
3019 * removing the pages from the VM object is better at
3020 * reducing unnecessary IPIs. The pmap code is now optimized
3021 * to not blindly iterate the range when pt and pd pages
3024 if (entry
->wired_count
!= 0)
3025 vm_map_entry_unwire(map
, entry
);
3027 offidxend
= offidxstart
+ count
;
3029 if (object
== &kernel_object
) {
3030 pmap_remove(map
->pmap
, s
, e
);
3031 vm_object_hold(object
);
3032 vm_object_page_remove(object
, offidxstart
,
3034 vm_object_drop(object
);
3035 } else if (object
&& object
->type
!= OBJT_DEFAULT
&&
3036 object
->type
!= OBJT_SWAP
) {
3038 * vnode object routines cannot be chain-locked,
3039 * but since we aren't removing pages from the
3040 * object here we can use a shared hold.
3042 vm_object_hold_shared(object
);
3043 pmap_remove(map
->pmap
, s
, e
);
3044 vm_object_drop(object
);
3045 } else if (object
) {
3046 vm_object_hold(object
);
3047 vm_object_chain_acquire(object
, 0);
3048 pmap_remove(map
->pmap
, s
, e
);
3050 if (object
!= NULL
&&
3051 object
->ref_count
!= 1 &&
3052 (object
->flags
& (OBJ_NOSPLIT
|OBJ_ONEMAPPING
)) ==
3054 (object
->type
== OBJT_DEFAULT
||
3055 object
->type
== OBJT_SWAP
)) {
3057 * When ONEMAPPING is set we can destroy the
3058 * pages underlying the entry's range.
3060 vm_object_collapse(object
, NULL
);
3061 vm_object_page_remove(object
, offidxstart
,
3063 if (object
->type
== OBJT_SWAP
) {
3064 swap_pager_freespace(object
,
3068 if (offidxend
>= object
->size
&&
3069 offidxstart
< object
->size
) {
3070 object
->size
= offidxstart
;
3073 vm_object_chain_release(object
);
3074 vm_object_drop(object
);
3075 } else if (entry
->maptype
== VM_MAPTYPE_UKSMAP
) {
3076 pmap_remove(map
->pmap
, s
, e
);
3080 * Delete the entry (which may delete the object) only after
3081 * removing all pmap entries pointing to its pages.
3082 * (Otherwise, its page frames may be reallocated, and any
3083 * modify bits will be set in the wrong object!)
3085 vm_map_entry_delete(map
, entry
, countp
);
3088 if (entry
== &map
->header
)
3089 vm_map_freehint_hole(map
, hole_start
, entry
->end
- hole_start
);
3091 vm_map_freehint_hole(map
, hole_start
,
3092 entry
->start
- hole_start
);
3094 lwkt_reltoken(&map
->token
);
3096 return (KERN_SUCCESS
);
3100 * Remove the given address range from the target map.
3101 * This is the exported form of vm_map_delete.
3106 vm_map_remove(vm_map_t map
, vm_offset_t start
, vm_offset_t end
)
3111 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
3113 VM_MAP_RANGE_CHECK(map
, start
, end
);
3114 result
= vm_map_delete(map
, start
, end
, &count
);
3116 vm_map_entry_release(count
);
3122 * Assert that the target map allows the specified privilege on the
3123 * entire address region given. The entire region must be allocated.
3125 * The caller must specify whether the vm_map is already locked or not.
3128 vm_map_check_protection(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
3129 vm_prot_t protection
, boolean_t have_lock
)
3131 vm_map_entry_t entry
;
3132 vm_map_entry_t tmp_entry
;
3135 if (have_lock
== FALSE
)
3136 vm_map_lock_read(map
);
3138 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
3139 if (have_lock
== FALSE
)
3140 vm_map_unlock_read(map
);
3146 while (start
< end
) {
3147 if (entry
== &map
->header
) {
3155 if (start
< entry
->start
) {
3160 * Check protection associated with entry.
3163 if ((entry
->protection
& protection
) != protection
) {
3167 /* go to next entry */
3170 entry
= entry
->next
;
3172 if (have_lock
== FALSE
)
3173 vm_map_unlock_read(map
);
3178 * If appropriate this function shadows the original object with a new object
3179 * and moves the VM pages from the original object to the new object.
3180 * The original object will also be collapsed, if possible.
3182 * Caller must supply entry->object.vm_object held and chain_acquired, and
3183 * should chain_release and drop the object upon return.
3185 * We can only do this for normal memory objects with a single mapping, and
3186 * it only makes sense to do it if there are 2 or more refs on the original
3187 * object. i.e. typically a memory object that has been extended into
3188 * multiple vm_map_entry's with non-overlapping ranges.
3190 * This makes it easier to remove unused pages and keeps object inheritance
3191 * from being a negative impact on memory usage.
3193 * On return the (possibly new) entry->object.vm_object will have an
3194 * additional ref on it for the caller to dispose of (usually by cloning
3195 * the vm_map_entry). The additional ref had to be done in this routine
3196 * to avoid racing a collapse. The object's ONEMAPPING flag will also be
3199 * The vm_map must be locked and its token held.
3202 vm_map_split(vm_map_entry_t entry
, vm_object_t oobject
)
3205 vm_object_t nobject
, bobject
;
3208 vm_pindex_t offidxstart
, offidxend
, idx
;
3210 vm_ooffset_t offset
;
3214 * Optimize away object locks for vnode objects. Important exit/exec
3217 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3220 if (oobject
->type
!= OBJT_DEFAULT
&& oobject
->type
!= OBJT_SWAP
) {
3221 vm_object_reference_quick(oobject
);
3222 vm_object_clear_flag(oobject
, OBJ_ONEMAPPING
);
3228 * Original object cannot be split?
3230 if (oobject
->handle
== NULL
) {
3231 vm_object_reference_locked_chain_held(oobject
);
3232 vm_object_clear_flag(oobject
, OBJ_ONEMAPPING
);
3238 * Collapse original object with its backing store as an
3239 * optimization to reduce chain lengths when possible.
3241 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3242 * for oobject, so there's no point collapsing it.
3244 * Then re-check whether the object can be split.
3246 vm_object_collapse(oobject
, NULL
);
3248 if (oobject
->ref_count
<= 1 ||
3249 (oobject
->type
!= OBJT_DEFAULT
&& oobject
->type
!= OBJT_SWAP
) ||
3250 (oobject
->flags
& (OBJ_NOSPLIT
|OBJ_ONEMAPPING
)) != OBJ_ONEMAPPING
) {
3251 vm_object_reference_locked_chain_held(oobject
);
3252 vm_object_clear_flag(oobject
, OBJ_ONEMAPPING
);
3257 * Acquire the chain lock on the backing object.
3259 * Give bobject an additional ref count for when it will be shadowed
3263 if ((bobject
= oobject
->backing_object
) != NULL
) {
3264 if (bobject
->type
!= OBJT_VNODE
) {
3266 vm_object_hold(bobject
);
3267 vm_object_chain_wait(bobject
, 0);
3268 /* ref for shadowing below */
3269 vm_object_reference_locked(bobject
);
3270 vm_object_chain_acquire(bobject
, 0);
3271 KKASSERT(oobject
->backing_object
== bobject
);
3272 KKASSERT((bobject
->flags
& OBJ_DEAD
) == 0);
3275 * vnodes are not placed on the shadow list but
3276 * they still get another ref for the backing_object
3279 vm_object_reference_quick(bobject
);
3284 * Calculate the object page range and allocate the new object.
3286 offset
= entry
->offset
;
3290 offidxstart
= OFF_TO_IDX(offset
);
3291 offidxend
= offidxstart
+ OFF_TO_IDX(e
- s
);
3292 size
= offidxend
- offidxstart
;
3294 switch(oobject
->type
) {
3296 nobject
= default_pager_alloc(NULL
, IDX_TO_OFF(size
),
3300 nobject
= swap_pager_alloc(NULL
, IDX_TO_OFF(size
),
3310 * If we could not allocate nobject just clear ONEMAPPING on
3311 * oobject and return.
3313 if (nobject
== NULL
) {
3315 if (useshadowlist
) {
3316 vm_object_chain_release(bobject
);
3317 vm_object_deallocate(bobject
);
3318 vm_object_drop(bobject
);
3320 vm_object_deallocate(bobject
);
3323 vm_object_reference_locked_chain_held(oobject
);
3324 vm_object_clear_flag(oobject
, OBJ_ONEMAPPING
);
3329 * The new object will replace entry->object.vm_object so it needs
3330 * a second reference (the caller expects an additional ref).
3332 vm_object_hold(nobject
);
3333 vm_object_reference_locked(nobject
);
3334 vm_object_chain_acquire(nobject
, 0);
3337 * nobject shadows bobject (oobject already shadows bobject).
3339 * Adding an object to bobject's shadow list requires refing bobject
3340 * which we did above in the useshadowlist case.
3342 * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3346 nobject
->backing_object_offset
=
3347 oobject
->backing_object_offset
+ IDX_TO_OFF(offidxstart
);
3348 nobject
->backing_object
= bobject
;
3349 if (useshadowlist
) {
3350 bobject
->shadow_count
++;
3351 atomic_add_int(&bobject
->generation
, 1);
3352 LIST_INSERT_HEAD(&bobject
->shadow_head
,
3353 nobject
, shadow_list
);
3354 vm_object_clear_flag(bobject
, OBJ_ONEMAPPING
); /*XXX*/
3355 vm_object_set_flag(nobject
, OBJ_ONSHADOW
);
3360 * Move the VM pages from oobject to nobject
3362 for (idx
= 0; idx
< size
; idx
++) {
3365 m
= vm_page_lookup_busy_wait(oobject
, offidxstart
+ idx
,
3371 * We must wait for pending I/O to complete before we can
3374 * We do not have to VM_PROT_NONE the page as mappings should
3375 * not be changed by this operation.
3377 * NOTE: The act of renaming a page updates chaingen for both
3380 vm_page_rename(m
, nobject
, idx
);
3381 /* page automatically made dirty by rename and cache handled */
3382 /* page remains busy */
3385 if (oobject
->type
== OBJT_SWAP
) {
3386 vm_object_pip_add(oobject
, 1);
3388 * copy oobject pages into nobject and destroy unneeded
3389 * pages in shadow object.
3391 swap_pager_copy(oobject
, nobject
, offidxstart
, 0);
3392 vm_object_pip_wakeup(oobject
);
3396 * Wakeup the pages we played with. No spl protection is needed
3397 * for a simple wakeup.
3399 for (idx
= 0; idx
< size
; idx
++) {
3400 m
= vm_page_lookup(nobject
, idx
);
3402 KKASSERT(m
->busy_count
& PBUSY_LOCKED
);
3406 entry
->object
.vm_object
= nobject
;
3407 entry
->offset
= 0LL;
3410 * The map is being split and nobject is going to wind up on both
3411 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3414 vm_object_clear_flag(nobject
, OBJ_ONEMAPPING
);
3419 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3420 * related pages were moved and are no longer applicable to the
3423 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3424 * replaced by nobject).
3426 vm_object_chain_release(nobject
);
3427 vm_object_drop(nobject
);
3428 if (bobject
&& useshadowlist
) {
3429 vm_object_chain_release(bobject
);
3430 vm_object_drop(bobject
);
3434 if (oobject
->resident_page_count
) {
3435 kprintf("oobject %p still contains %jd pages!\n",
3436 oobject
, (intmax_t)oobject
->resident_page_count
);
3437 for (idx
= 0; idx
< size
; idx
++) {
3440 m
= vm_page_lookup_busy_wait(oobject
, offidxstart
+ idx
,
3443 kprintf("oobject %p idx %jd\n",
3451 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3452 vm_object_deallocate_locked(oobject
);
3456 * Copies the contents of the source entry to the destination
3457 * entry. The entries *must* be aligned properly.
3459 * The vm_maps must be exclusively locked.
3460 * The vm_map's token must be held.
3462 * Because the maps are locked no faults can be in progress during the
3466 vm_map_copy_entry(vm_map_t src_map
, vm_map_t dst_map
,
3467 vm_map_entry_t src_entry
, vm_map_entry_t dst_entry
)
3469 vm_object_t src_object
;
3470 vm_object_t oobject
;
3472 if (dst_entry
->maptype
== VM_MAPTYPE_SUBMAP
||
3473 dst_entry
->maptype
== VM_MAPTYPE_UKSMAP
)
3475 if (src_entry
->maptype
== VM_MAPTYPE_SUBMAP
||
3476 src_entry
->maptype
== VM_MAPTYPE_UKSMAP
)
3479 if (src_entry
->wired_count
== 0) {
3481 * If the source entry is marked needs_copy, it is already
3484 * To avoid interacting with a vm_fault that might have
3485 * released its vm_map, we must acquire the fronting
3488 oobject
= src_entry
->object
.vm_object
;
3490 vm_object_hold(oobject
);
3491 vm_object_chain_acquire(oobject
, 0);
3494 if ((src_entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) == 0) {
3495 pmap_protect(src_map
->pmap
,
3498 src_entry
->protection
& ~VM_PROT_WRITE
);
3502 * Make a copy of the object.
3504 * The object must be locked prior to checking the object type
3505 * and for the call to vm_object_collapse() and vm_map_split().
3506 * We cannot use *_hold() here because the split code will
3507 * probably try to destroy the object. The lock is a pool
3508 * token and doesn't care.
3510 * We must bump src_map->timestamp when setting
3511 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3512 * to retry, otherwise the concurrent fault might improperly
3513 * install a RW pte when its supposed to be a RO(COW) pte.
3514 * This race can occur because a vnode-backed fault may have
3515 * to temporarily release the map lock. This was handled
3516 * when the caller locked the map exclusively.
3519 vm_map_split(src_entry
, oobject
);
3521 src_object
= src_entry
->object
.vm_object
;
3522 dst_entry
->object
.vm_object
= src_object
;
3523 src_entry
->eflags
|= (MAP_ENTRY_COW
|
3524 MAP_ENTRY_NEEDS_COPY
);
3525 dst_entry
->eflags
|= (MAP_ENTRY_COW
|
3526 MAP_ENTRY_NEEDS_COPY
);
3527 dst_entry
->offset
= src_entry
->offset
;
3529 dst_entry
->object
.vm_object
= NULL
;
3530 dst_entry
->offset
= 0;
3532 pmap_copy(dst_map
->pmap
, src_map
->pmap
, dst_entry
->start
,
3533 dst_entry
->end
- dst_entry
->start
,
3536 vm_object_chain_release(oobject
);
3537 vm_object_drop(oobject
);
3541 * Of course, wired down pages can't be set copy-on-write.
3542 * Cause wired pages to be copied into the new map by
3543 * simulating faults (the new pages are pageable)
3545 vm_fault_copy_entry(dst_map
, src_map
, dst_entry
, src_entry
);
3551 * Create a new process vmspace structure and vm_map
3552 * based on those of an existing process. The new map
3553 * is based on the old map, according to the inheritance
3554 * values on the regions in that map.
3556 * The source map must not be locked.
3559 static void vmspace_fork_normal_entry(vm_map_t old_map
, vm_map_t new_map
,
3560 vm_map_entry_t old_entry
, int *countp
);
3561 static void vmspace_fork_uksmap_entry(vm_map_t old_map
, vm_map_t new_map
,
3562 vm_map_entry_t old_entry
, int *countp
);
3565 vmspace_fork(struct vmspace
*vm1
)
3567 struct vmspace
*vm2
;
3568 vm_map_t old_map
= &vm1
->vm_map
;
3570 vm_map_entry_t old_entry
;
3573 lwkt_gettoken(&vm1
->vm_map
.token
);
3574 vm_map_lock(old_map
);
3576 vm2
= vmspace_alloc(old_map
->min_offset
, old_map
->max_offset
);
3577 lwkt_gettoken(&vm2
->vm_map
.token
);
3580 * We must bump the timestamp to force any concurrent fault
3583 bcopy(&vm1
->vm_startcopy
, &vm2
->vm_startcopy
,
3584 (caddr_t
)&vm1
->vm_endcopy
- (caddr_t
)&vm1
->vm_startcopy
);
3585 new_map
= &vm2
->vm_map
; /* XXX */
3586 new_map
->timestamp
= 1;
3588 vm_map_lock(new_map
);
3591 old_entry
= old_map
->header
.next
;
3592 while (old_entry
!= &old_map
->header
) {
3594 old_entry
= old_entry
->next
;
3597 count
= vm_map_entry_reserve(count
+ MAP_RESERVE_COUNT
);
3599 old_entry
= old_map
->header
.next
;
3600 while (old_entry
!= &old_map
->header
) {
3601 switch(old_entry
->maptype
) {
3602 case VM_MAPTYPE_SUBMAP
:
3603 panic("vm_map_fork: encountered a submap");
3605 case VM_MAPTYPE_UKSMAP
:
3606 vmspace_fork_uksmap_entry(old_map
, new_map
,
3609 case VM_MAPTYPE_NORMAL
:
3610 case VM_MAPTYPE_VPAGETABLE
:
3611 vmspace_fork_normal_entry(old_map
, new_map
,
3615 old_entry
= old_entry
->next
;
3618 new_map
->size
= old_map
->size
;
3619 vm_map_unlock(old_map
);
3620 vm_map_unlock(new_map
);
3621 vm_map_entry_release(count
);
3623 lwkt_reltoken(&vm2
->vm_map
.token
);
3624 lwkt_reltoken(&vm1
->vm_map
.token
);
3631 vmspace_fork_normal_entry(vm_map_t old_map
, vm_map_t new_map
,
3632 vm_map_entry_t old_entry
, int *countp
)
3634 vm_map_entry_t new_entry
;
3637 switch (old_entry
->inheritance
) {
3638 case VM_INHERIT_NONE
:
3640 case VM_INHERIT_SHARE
:
3642 * Clone the entry, creating the shared object if
3645 if (old_entry
->object
.vm_object
== NULL
)
3646 vm_map_entry_allocate_object(old_entry
);
3648 if (old_entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) {
3650 * Shadow a map_entry which needs a copy,
3651 * replacing its object with a new object
3652 * that points to the old one. Ask the
3653 * shadow code to automatically add an
3654 * additional ref. We can't do it afterwords
3655 * because we might race a collapse. The call
3656 * to vm_map_entry_shadow() will also clear
3659 vm_map_entry_shadow(old_entry
, 1);
3660 } else if (old_entry
->object
.vm_object
) {
3662 * We will make a shared copy of the object,
3663 * and must clear OBJ_ONEMAPPING.
3665 * Optimize vnode objects. OBJ_ONEMAPPING
3666 * is non-applicable but clear it anyway,
3667 * and its terminal so we don't have to deal
3668 * with chains. Reduces SMP conflicts.
3670 * XXX assert that object.vm_object != NULL
3671 * since we allocate it above.
3673 object
= old_entry
->object
.vm_object
;
3674 if (object
->type
== OBJT_VNODE
) {
3675 vm_object_reference_quick(object
);
3676 vm_object_clear_flag(object
,
3679 vm_object_hold(object
);
3680 vm_object_chain_wait(object
, 0);
3681 vm_object_reference_locked(object
);
3682 vm_object_clear_flag(object
,
3684 vm_object_drop(object
);
3689 * Clone the entry. We've already bumped the ref on
3692 new_entry
= vm_map_entry_create(new_map
, countp
);
3693 *new_entry
= *old_entry
;
3694 new_entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
3695 new_entry
->wired_count
= 0;
3698 * Insert the entry into the new map -- we know we're
3699 * inserting at the end of the new map.
3701 vm_map_entry_link(new_map
, new_map
->header
.prev
,
3705 * Update the physical map
3707 pmap_copy(new_map
->pmap
, old_map
->pmap
,
3709 (old_entry
->end
- old_entry
->start
),
3712 case VM_INHERIT_COPY
:
3714 * Clone the entry and link into the map.
3716 new_entry
= vm_map_entry_create(new_map
, countp
);
3717 *new_entry
= *old_entry
;
3718 new_entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
3719 new_entry
->wired_count
= 0;
3720 new_entry
->object
.vm_object
= NULL
;
3721 vm_map_entry_link(new_map
, new_map
->header
.prev
,
3723 vm_map_copy_entry(old_map
, new_map
, old_entry
,
3730 * When forking user-kernel shared maps, the map might change in the
3731 * child so do not try to copy the underlying pmap entries.
3735 vmspace_fork_uksmap_entry(vm_map_t old_map
, vm_map_t new_map
,
3736 vm_map_entry_t old_entry
, int *countp
)
3738 vm_map_entry_t new_entry
;
3740 new_entry
= vm_map_entry_create(new_map
, countp
);
3741 *new_entry
= *old_entry
;
3742 new_entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
3743 new_entry
->wired_count
= 0;
3744 vm_map_entry_link(new_map
, new_map
->header
.prev
,
3749 * Create an auto-grow stack entry
3754 vm_map_stack (vm_map_t map
, vm_offset_t addrbos
, vm_size_t max_ssize
,
3755 int flags
, vm_prot_t prot
, vm_prot_t max
, int cow
)
3757 vm_map_entry_t prev_entry
;
3758 vm_map_entry_t new_stack_entry
;
3759 vm_size_t init_ssize
;
3762 vm_offset_t tmpaddr
;
3764 cow
|= MAP_IS_STACK
;
3766 if (max_ssize
< sgrowsiz
)
3767 init_ssize
= max_ssize
;
3769 init_ssize
= sgrowsiz
;
3771 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
3775 * Find space for the mapping
3777 if ((flags
& (MAP_FIXED
| MAP_TRYFIXED
)) == 0) {
3778 if (vm_map_findspace(map
, addrbos
, max_ssize
, 1,
3781 vm_map_entry_release(count
);
3782 return (KERN_NO_SPACE
);
3787 /* If addr is already mapped, no go */
3788 if (vm_map_lookup_entry(map
, addrbos
, &prev_entry
)) {
3790 vm_map_entry_release(count
);
3791 return (KERN_NO_SPACE
);
3795 /* XXX already handled by kern_mmap() */
3796 /* If we would blow our VMEM resource limit, no go */
3797 if (map
->size
+ init_ssize
>
3798 curproc
->p_rlimit
[RLIMIT_VMEM
].rlim_cur
) {
3800 vm_map_entry_release(count
);
3801 return (KERN_NO_SPACE
);
3806 * If we can't accomodate max_ssize in the current mapping,
3807 * no go. However, we need to be aware that subsequent user
3808 * mappings might map into the space we have reserved for
3809 * stack, and currently this space is not protected.
3811 * Hopefully we will at least detect this condition
3812 * when we try to grow the stack.
3814 if ((prev_entry
->next
!= &map
->header
) &&
3815 (prev_entry
->next
->start
< addrbos
+ max_ssize
)) {
3817 vm_map_entry_release(count
);
3818 return (KERN_NO_SPACE
);
3822 * We initially map a stack of only init_ssize. We will
3823 * grow as needed later. Since this is to be a grow
3824 * down stack, we map at the top of the range.
3826 * Note: we would normally expect prot and max to be
3827 * VM_PROT_ALL, and cow to be 0. Possibly we should
3828 * eliminate these as input parameters, and just
3829 * pass these values here in the insert call.
3831 rv
= vm_map_insert(map
, &count
, NULL
, NULL
,
3832 0, addrbos
+ max_ssize
- init_ssize
,
3833 addrbos
+ max_ssize
,
3835 VM_SUBSYS_STACK
, prot
, max
, cow
);
3837 /* Now set the avail_ssize amount */
3838 if (rv
== KERN_SUCCESS
) {
3839 if (prev_entry
!= &map
->header
)
3840 vm_map_clip_end(map
, prev_entry
, addrbos
+ max_ssize
- init_ssize
, &count
);
3841 new_stack_entry
= prev_entry
->next
;
3842 if (new_stack_entry
->end
!= addrbos
+ max_ssize
||
3843 new_stack_entry
->start
!= addrbos
+ max_ssize
- init_ssize
)
3844 panic ("Bad entry start/end for new stack entry");
3846 new_stack_entry
->aux
.avail_ssize
= max_ssize
- init_ssize
;
3850 vm_map_entry_release(count
);
3855 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3856 * desired address is already mapped, or if we successfully grow
3857 * the stack. Also returns KERN_SUCCESS if addr is outside the
3858 * stack range (this is strange, but preserves compatibility with
3859 * the grow function in vm_machdep.c).
3864 vm_map_growstack (vm_map_t map
, vm_offset_t addr
)
3866 vm_map_entry_t prev_entry
;
3867 vm_map_entry_t stack_entry
;
3868 vm_map_entry_t new_stack_entry
;
3874 int rv
= KERN_SUCCESS
;
3876 int use_read_lock
= 1;
3882 lp
= curthread
->td_lwp
;
3883 p
= curthread
->td_proc
;
3884 KKASSERT(lp
!= NULL
);
3885 vm
= lp
->lwp_vmspace
;
3888 * Growstack is only allowed on the current process. We disallow
3889 * other use cases, e.g. trying to access memory via procfs that
3890 * the stack hasn't grown into.
3892 if (map
!= &vm
->vm_map
) {
3893 return KERN_FAILURE
;
3896 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
3899 vm_map_lock_read(map
);
3903 /* If addr is already in the entry range, no need to grow.*/
3904 if (vm_map_lookup_entry(map
, addr
, &prev_entry
))
3907 if ((stack_entry
= prev_entry
->next
) == &map
->header
)
3909 if (prev_entry
== &map
->header
)
3910 end
= stack_entry
->start
- stack_entry
->aux
.avail_ssize
;
3912 end
= prev_entry
->end
;
3915 * This next test mimics the old grow function in vm_machdep.c.
3916 * It really doesn't quite make sense, but we do it anyway
3917 * for compatibility.
3919 * If not growable stack, return success. This signals the
3920 * caller to proceed as he would normally with normal vm.
3922 if (stack_entry
->aux
.avail_ssize
< 1 ||
3923 addr
>= stack_entry
->start
||
3924 addr
< stack_entry
->start
- stack_entry
->aux
.avail_ssize
) {
3928 /* Find the minimum grow amount */
3929 grow_amount
= roundup (stack_entry
->start
- addr
, PAGE_SIZE
);
3930 if (grow_amount
> stack_entry
->aux
.avail_ssize
) {
3936 * If there is no longer enough space between the entries
3937 * nogo, and adjust the available space. Note: this
3938 * should only happen if the user has mapped into the
3939 * stack area after the stack was created, and is
3940 * probably an error.
3942 * This also effectively destroys any guard page the user
3943 * might have intended by limiting the stack size.
3945 if (grow_amount
> stack_entry
->start
- end
) {
3946 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
3952 stack_entry
->aux
.avail_ssize
= stack_entry
->start
- end
;
3957 is_procstack
= addr
>= (vm_offset_t
)vm
->vm_maxsaddr
;
3959 /* If this is the main process stack, see if we're over the
3962 if (is_procstack
&& (ctob(vm
->vm_ssize
) + grow_amount
>
3963 p
->p_rlimit
[RLIMIT_STACK
].rlim_cur
)) {
3968 /* Round up the grow amount modulo SGROWSIZ */
3969 grow_amount
= roundup (grow_amount
, sgrowsiz
);
3970 if (grow_amount
> stack_entry
->aux
.avail_ssize
) {
3971 grow_amount
= stack_entry
->aux
.avail_ssize
;
3973 if (is_procstack
&& (ctob(vm
->vm_ssize
) + grow_amount
>
3974 p
->p_rlimit
[RLIMIT_STACK
].rlim_cur
)) {
3975 grow_amount
= p
->p_rlimit
[RLIMIT_STACK
].rlim_cur
-
3979 /* If we would blow our VMEM resource limit, no go */
3980 if (map
->size
+ grow_amount
> p
->p_rlimit
[RLIMIT_VMEM
].rlim_cur
) {
3985 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
3992 /* Get the preliminary new entry start value */
3993 addr
= stack_entry
->start
- grow_amount
;
3995 /* If this puts us into the previous entry, cut back our growth
3996 * to the available space. Also, see the note above.
3999 stack_entry
->aux
.avail_ssize
= stack_entry
->start
- end
;
4003 rv
= vm_map_insert(map
, &count
, NULL
, NULL
,
4004 0, addr
, stack_entry
->start
,
4006 VM_SUBSYS_STACK
, VM_PROT_ALL
, VM_PROT_ALL
, 0);
4008 /* Adjust the available stack space by the amount we grew. */
4009 if (rv
== KERN_SUCCESS
) {
4010 if (prev_entry
!= &map
->header
)
4011 vm_map_clip_end(map
, prev_entry
, addr
, &count
);
4012 new_stack_entry
= prev_entry
->next
;
4013 if (new_stack_entry
->end
!= stack_entry
->start
||
4014 new_stack_entry
->start
!= addr
)
4015 panic ("Bad stack grow start/end in new stack entry");
4017 new_stack_entry
->aux
.avail_ssize
=
4018 stack_entry
->aux
.avail_ssize
-
4019 (new_stack_entry
->end
- new_stack_entry
->start
);
4021 vm
->vm_ssize
+= btoc(new_stack_entry
->end
-
4022 new_stack_entry
->start
);
4025 if (map
->flags
& MAP_WIREFUTURE
)
4026 vm_map_unwire(map
, new_stack_entry
->start
,
4027 new_stack_entry
->end
, FALSE
);
4032 vm_map_unlock_read(map
);
4035 vm_map_entry_release(count
);
4040 * Unshare the specified VM space for exec. If other processes are
4041 * mapped to it, then create a new one. The new vmspace is null.
4046 vmspace_exec(struct proc
*p
, struct vmspace
*vmcopy
)
4048 struct vmspace
*oldvmspace
= p
->p_vmspace
;
4049 struct vmspace
*newvmspace
;
4050 vm_map_t map
= &p
->p_vmspace
->vm_map
;
4053 * If we are execing a resident vmspace we fork it, otherwise
4054 * we create a new vmspace. Note that exitingcnt is not
4055 * copied to the new vmspace.
4057 lwkt_gettoken(&oldvmspace
->vm_map
.token
);
4059 newvmspace
= vmspace_fork(vmcopy
);
4060 lwkt_gettoken(&newvmspace
->vm_map
.token
);
4062 newvmspace
= vmspace_alloc(map
->min_offset
, map
->max_offset
);
4063 lwkt_gettoken(&newvmspace
->vm_map
.token
);
4064 bcopy(&oldvmspace
->vm_startcopy
, &newvmspace
->vm_startcopy
,
4065 (caddr_t
)&oldvmspace
->vm_endcopy
-
4066 (caddr_t
)&oldvmspace
->vm_startcopy
);
4070 * Finish initializing the vmspace before assigning it
4071 * to the process. The vmspace will become the current vmspace
4074 pmap_pinit2(vmspace_pmap(newvmspace
));
4075 pmap_replacevm(p
, newvmspace
, 0);
4076 lwkt_reltoken(&newvmspace
->vm_map
.token
);
4077 lwkt_reltoken(&oldvmspace
->vm_map
.token
);
4078 vmspace_rel(oldvmspace
);
4082 * Unshare the specified VM space for forcing COW. This
4083 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4086 vmspace_unshare(struct proc
*p
)
4088 struct vmspace
*oldvmspace
= p
->p_vmspace
;
4089 struct vmspace
*newvmspace
;
4091 lwkt_gettoken(&oldvmspace
->vm_map
.token
);
4092 if (vmspace_getrefs(oldvmspace
) == 1) {
4093 lwkt_reltoken(&oldvmspace
->vm_map
.token
);
4096 newvmspace
= vmspace_fork(oldvmspace
);
4097 lwkt_gettoken(&newvmspace
->vm_map
.token
);
4098 pmap_pinit2(vmspace_pmap(newvmspace
));
4099 pmap_replacevm(p
, newvmspace
, 0);
4100 lwkt_reltoken(&newvmspace
->vm_map
.token
);
4101 lwkt_reltoken(&oldvmspace
->vm_map
.token
);
4102 vmspace_rel(oldvmspace
);
4106 * vm_map_hint: return the beginning of the best area suitable for
4107 * creating a new mapping with "prot" protection.
4112 vm_map_hint(struct proc
*p
, vm_offset_t addr
, vm_prot_t prot
)
4114 struct vmspace
*vms
= p
->p_vmspace
;
4116 if (!randomize_mmap
|| addr
!= 0) {
4118 * Set a reasonable start point for the hint if it was
4119 * not specified or if it falls within the heap space.
4120 * Hinted mmap()s do not allocate out of the heap space.
4123 (addr
>= round_page((vm_offset_t
)vms
->vm_taddr
) &&
4124 addr
< round_page((vm_offset_t
)vms
->vm_daddr
+ maxdsiz
))) {
4125 addr
= round_page((vm_offset_t
)vms
->vm_daddr
+ maxdsiz
);
4130 addr
= (vm_offset_t
)vms
->vm_daddr
+ MAXDSIZ
;
4131 addr
+= karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ
) - 1);
4133 return (round_page(addr
));
4137 * Finds the VM object, offset, and protection for a given virtual address
4138 * in the specified map, assuming a page fault of the type specified.
4140 * Leaves the map in question locked for read; return values are guaranteed
4141 * until a vm_map_lookup_done call is performed. Note that the map argument
4142 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4144 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4147 * If a lookup is requested with "write protection" specified, the map may
4148 * be changed to perform virtual copying operations, although the data
4149 * referenced will remain the same.
4154 vm_map_lookup(vm_map_t
*var_map
, /* IN/OUT */
4156 vm_prot_t fault_typea
,
4157 vm_map_entry_t
*out_entry
, /* OUT */
4158 vm_object_t
*object
, /* OUT */
4159 vm_pindex_t
*pindex
, /* OUT */
4160 vm_prot_t
*out_prot
, /* OUT */
4161 int *wflags
) /* OUT */
4163 vm_map_entry_t entry
;
4164 vm_map_t map
= *var_map
;
4166 vm_prot_t fault_type
= fault_typea
;
4167 int use_read_lock
= 1;
4168 int rv
= KERN_SUCCESS
;
4170 thread_t td
= curthread
;
4173 * vm_map_entry_reserve() implements an important mitigation
4174 * against mmap() span running the kernel out of vm_map_entry
4175 * structures, but it can also cause an infinite call recursion.
4176 * Use td_nest_count to prevent an infinite recursion (allows
4177 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4180 if (td
->td_nest_count
== 0) {
4181 ++td
->td_nest_count
;
4182 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
4183 --td
->td_nest_count
;
4187 vm_map_lock_read(map
);
4192 * Always do a full lookup. The hint doesn't get us much anymore
4193 * now that the map is RB'd.
4196 *out_entry
= &map
->header
;
4200 vm_map_entry_t tmp_entry
;
4202 if (!vm_map_lookup_entry(map
, vaddr
, &tmp_entry
)) {
4203 rv
= KERN_INVALID_ADDRESS
;
4213 if (entry
->maptype
== VM_MAPTYPE_SUBMAP
) {
4214 vm_map_t old_map
= map
;
4216 *var_map
= map
= entry
->object
.sub_map
;
4218 vm_map_unlock_read(old_map
);
4220 vm_map_unlock(old_map
);
4226 * Check whether this task is allowed to have this page.
4227 * Note the special case for MAP_ENTRY_COW pages with an override.
4228 * This is to implement a forced COW for debuggers.
4230 if (fault_type
& VM_PROT_OVERRIDE_WRITE
)
4231 prot
= entry
->max_protection
;
4233 prot
= entry
->protection
;
4235 fault_type
&= (VM_PROT_READ
|VM_PROT_WRITE
|VM_PROT_EXECUTE
);
4236 if ((fault_type
& prot
) != fault_type
) {
4237 rv
= KERN_PROTECTION_FAILURE
;
4241 if ((entry
->eflags
& MAP_ENTRY_USER_WIRED
) &&
4242 (entry
->eflags
& MAP_ENTRY_COW
) &&
4243 (fault_type
& VM_PROT_WRITE
) &&
4244 (fault_typea
& VM_PROT_OVERRIDE_WRITE
) == 0) {
4245 rv
= KERN_PROTECTION_FAILURE
;
4250 * If this page is not pageable, we have to get it for all possible
4254 if (entry
->wired_count
) {
4255 *wflags
|= FW_WIRED
;
4256 prot
= fault_type
= entry
->protection
;
4260 * Virtual page tables may need to update the accessed (A) bit
4261 * in a page table entry. Upgrade the fault to a write fault for
4262 * that case if the map will support it. If the map does not support
4263 * it the page table entry simply will not be updated.
4265 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
4266 if (prot
& VM_PROT_WRITE
)
4267 fault_type
|= VM_PROT_WRITE
;
4270 if (curthread
->td_lwp
&& curthread
->td_lwp
->lwp_vmspace
&&
4271 pmap_emulate_ad_bits(&curthread
->td_lwp
->lwp_vmspace
->vm_pmap
)) {
4272 if ((prot
& VM_PROT_WRITE
) == 0)
4273 fault_type
|= VM_PROT_WRITE
;
4277 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4279 if (entry
->maptype
!= VM_MAPTYPE_NORMAL
&&
4280 entry
->maptype
!= VM_MAPTYPE_VPAGETABLE
) {
4286 * If the entry was copy-on-write, we either ...
4288 if (entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) {
4290 * If we want to write the page, we may as well handle that
4291 * now since we've got the map locked.
4293 * If we don't need to write the page, we just demote the
4294 * permissions allowed.
4296 if (fault_type
& VM_PROT_WRITE
) {
4298 * Not allowed if TDF_NOFAULT is set as the shadowing
4299 * operation can deadlock against the faulting
4300 * function due to the copy-on-write.
4302 if (curthread
->td_flags
& TDF_NOFAULT
) {
4303 rv
= KERN_FAILURE_NOFAULT
;
4308 * Make a new object, and place it in the object
4309 * chain. Note that no new references have appeared
4310 * -- one just moved from the map to the new
4313 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
4319 vm_map_entry_shadow(entry
, 0);
4320 *wflags
|= FW_DIDCOW
;
4323 * We're attempting to read a copy-on-write page --
4324 * don't allow writes.
4326 prot
&= ~VM_PROT_WRITE
;
4331 * Create an object if necessary. This code also handles
4332 * partitioning large entries to improve vm_fault performance.
4334 if (entry
->object
.vm_object
== NULL
&& !map
->system_map
) {
4335 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
4343 * Partition large entries, giving each its own VM object,
4344 * to improve concurrent fault performance. This is only
4345 * applicable to userspace.
4347 if (map
!= &kernel_map
&&
4348 entry
->maptype
== VM_MAPTYPE_NORMAL
&&
4349 ((entry
->start
^ entry
->end
) & ~MAP_ENTRY_PARTITION_MASK
) &&
4350 vm_map_partition_enable
) {
4351 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
4352 entry
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
4353 ++mycpu
->gd_cnt
.v_intrans_coll
;
4354 ++mycpu
->gd_cnt
.v_intrans_wait
;
4355 vm_map_transition_wait(map
, 0);
4358 vm_map_entry_partition(map
, entry
, vaddr
, &count
);
4360 vm_map_entry_allocate_object(entry
);
4364 * Return the object/offset from this entry. If the entry was
4365 * copy-on-write or empty, it has been fixed up.
4367 *object
= entry
->object
.vm_object
;
4370 *pindex
= OFF_TO_IDX((vaddr
- entry
->start
) + entry
->offset
);
4373 * Return whether this is the only map sharing this data. On
4374 * success we return with a read lock held on the map. On failure
4375 * we return with the map unlocked.
4379 if (rv
== KERN_SUCCESS
) {
4380 if (use_read_lock
== 0)
4381 vm_map_lock_downgrade(map
);
4382 } else if (use_read_lock
) {
4383 vm_map_unlock_read(map
);
4388 vm_map_entry_release(count
);
4394 * Releases locks acquired by a vm_map_lookup()
4395 * (according to the handle returned by that lookup).
4397 * No other requirements.
4400 vm_map_lookup_done(vm_map_t map
, vm_map_entry_t entry
, int count
)
4403 * Unlock the main-level map
4405 vm_map_unlock_read(map
);
4407 vm_map_entry_release(count
);
4411 vm_map_entry_partition(vm_map_t map
, vm_map_entry_t entry
,
4412 vm_offset_t vaddr
, int *countp
)
4414 vaddr
&= ~MAP_ENTRY_PARTITION_MASK
;
4415 vm_map_clip_start(map
, entry
, vaddr
, countp
);
4416 vaddr
+= MAP_ENTRY_PARTITION_SIZE
;
4417 vm_map_clip_end(map
, entry
, vaddr
, countp
);
4421 * Quick hack, needs some help to make it more SMP friendly.
4424 vm_map_interlock(vm_map_t map
, struct vm_map_ilock
*ilock
,
4425 vm_offset_t ran_beg
, vm_offset_t ran_end
)
4427 struct vm_map_ilock
*scan
;
4429 ilock
->ran_beg
= ran_beg
;
4430 ilock
->ran_end
= ran_end
;
4433 spin_lock(&map
->ilock_spin
);
4435 for (scan
= map
->ilock_base
; scan
; scan
= scan
->next
) {
4436 if (ran_end
> scan
->ran_beg
&& ran_beg
< scan
->ran_end
) {
4437 scan
->flags
|= ILOCK_WAITING
;
4438 ssleep(scan
, &map
->ilock_spin
, 0, "ilock", 0);
4442 ilock
->next
= map
->ilock_base
;
4443 map
->ilock_base
= ilock
;
4444 spin_unlock(&map
->ilock_spin
);
4448 vm_map_deinterlock(vm_map_t map
, struct vm_map_ilock
*ilock
)
4450 struct vm_map_ilock
*scan
;
4451 struct vm_map_ilock
**scanp
;
4453 spin_lock(&map
->ilock_spin
);
4454 scanp
= &map
->ilock_base
;
4455 while ((scan
= *scanp
) != NULL
) {
4456 if (scan
== ilock
) {
4457 *scanp
= ilock
->next
;
4458 spin_unlock(&map
->ilock_spin
);
4459 if (ilock
->flags
& ILOCK_WAITING
)
4463 scanp
= &scan
->next
;
4465 spin_unlock(&map
->ilock_spin
);
4466 panic("vm_map_deinterlock: missing ilock!");
4469 #include "opt_ddb.h"
4471 #include <ddb/ddb.h>
4476 DB_SHOW_COMMAND(map
, vm_map_print
)
4479 /* XXX convert args. */
4480 vm_map_t map
= (vm_map_t
)addr
;
4481 boolean_t full
= have_addr
;
4483 vm_map_entry_t entry
;
4485 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4487 (void *)map
->pmap
, map
->nentries
, map
->timestamp
);
4490 if (!full
&& db_indent
)
4494 for (entry
= map
->header
.next
; entry
!= &map
->header
;
4495 entry
= entry
->next
) {
4496 db_iprintf("map entry %p: start=%p, end=%p\n",
4497 (void *)entry
, (void *)entry
->start
, (void *)entry
->end
);
4500 static char *inheritance_name
[4] =
4501 {"share", "copy", "none", "donate_copy"};
4503 db_iprintf(" prot=%x/%x/%s",
4505 entry
->max_protection
,
4506 inheritance_name
[(int)(unsigned char)
4507 entry
->inheritance
]);
4508 if (entry
->wired_count
!= 0)
4509 db_printf(", wired");
4511 switch(entry
->maptype
) {
4512 case VM_MAPTYPE_SUBMAP
:
4513 /* XXX no %qd in kernel. Truncate entry->offset. */
4514 db_printf(", share=%p, offset=0x%lx\n",
4515 (void *)entry
->object
.sub_map
,
4516 (long)entry
->offset
);
4518 if ((entry
->prev
== &map
->header
) ||
4519 (entry
->prev
->object
.sub_map
!=
4520 entry
->object
.sub_map
)) {
4522 vm_map_print((db_expr_t
)(intptr_t)
4523 entry
->object
.sub_map
,
4528 case VM_MAPTYPE_NORMAL
:
4529 case VM_MAPTYPE_VPAGETABLE
:
4530 /* XXX no %qd in kernel. Truncate entry->offset. */
4531 db_printf(", object=%p, offset=0x%lx",
4532 (void *)entry
->object
.vm_object
,
4533 (long)entry
->offset
);
4534 if (entry
->eflags
& MAP_ENTRY_COW
)
4535 db_printf(", copy (%s)",
4536 (entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) ? "needed" : "done");
4540 if ((entry
->prev
== &map
->header
) ||
4541 (entry
->prev
->object
.vm_object
!=
4542 entry
->object
.vm_object
)) {
4544 vm_object_print((db_expr_t
)(intptr_t)
4545 entry
->object
.vm_object
,
4551 case VM_MAPTYPE_UKSMAP
:
4552 db_printf(", uksmap=%p, offset=0x%lx",
4553 (void *)entry
->object
.uksmap
,
4554 (long)entry
->offset
);
4555 if (entry
->eflags
& MAP_ENTRY_COW
)
4556 db_printf(", copy (%s)",
4557 (entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) ? "needed" : "done");
4573 DB_SHOW_COMMAND(procvm
, procvm
)
4578 p
= (struct proc
*) addr
;
4583 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4584 (void *)p
, (void *)p
->p_vmspace
, (void *)&p
->p_vmspace
->vm_map
,
4585 (void *)vmspace_pmap(p
->p_vmspace
));
4587 vm_map_print((db_expr_t
)(intptr_t)&p
->p_vmspace
->vm_map
, 1, 0, NULL
);