sort - Don't live-loop threads
[dragonfly.git] / contrib / gcc-4.7 / gcc / ipa-inline.c
blobb4a32c1a2323f2950fd14e8db3a0951c082428ce
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "timevar.h"
105 #include "params.h"
106 #include "fibheap.h"
107 #include "intl.h"
108 #include "tree-pass.h"
109 #include "coverage.h"
110 #include "ggc.h"
111 #include "rtl.h"
112 #include "tree-flow.h"
113 #include "ipa-prop.h"
114 #include "except.h"
115 #include "target.h"
116 #include "ipa-inline.h"
117 #include "ipa-utils.h"
119 /* Statistics we collect about inlining algorithm. */
120 static int overall_size;
121 static gcov_type max_count;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
134 inlined. */
136 static bool
137 caller_growth_limits (struct cgraph_edge *e)
139 struct cgraph_node *to = e->caller;
140 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
141 int newsize;
142 int limit = 0;
143 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
144 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
154 while (true)
156 info = inline_summary (to);
157 if (limit < info->self_size)
158 limit = info->self_size;
159 if (stack_size_limit < info->estimated_self_stack_size)
160 stack_size_limit = info->estimated_self_stack_size;
161 if (to->global.inlined_to)
162 to = to->callers->caller;
163 else
164 break;
167 what_info = inline_summary (what);
169 if (limit < what_info->self_size)
170 limit = what_info->self_size;
172 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize = estimate_size_after_inlining (to, e);
177 if (newsize >= info->size
178 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
179 && newsize > limit)
181 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
182 return false;
185 if (!what_info->estimated_stack_size)
186 return true;
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit += ((gcov_type)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
196 inlined_stack = (outer_info->stack_frame_offset
197 + outer_info->estimated_self_stack_size
198 + what_info->estimated_stack_size);
199 /* Check new stack consumption with stack consumption at the place
200 stack is used. */
201 if (inlined_stack > stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
205 packing. */
206 && inlined_stack > info->estimated_stack_size
207 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
209 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
210 return false;
212 return true;
215 /* Dump info about why inlining has failed. */
217 static void
218 report_inline_failed_reason (struct cgraph_edge *e)
220 if (dump_file)
222 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
223 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
224 xstrdup (cgraph_node_name (e->callee)), e->callee->uid,
225 cgraph_inline_failed_string (e->inline_failed));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file. */
236 static bool
237 can_inline_edge_p (struct cgraph_edge *e, bool report)
239 bool inlinable = true;
240 enum availability avail;
241 struct cgraph_node *callee
242 = cgraph_function_or_thunk_node (e->callee, &avail);
243 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
244 tree callee_tree
245 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
246 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->decl);
247 struct function *callee_cfun
248 = callee ? DECL_STRUCT_FUNCTION (callee->decl) : NULL;
250 if (!caller_cfun && e->caller->clone_of)
251 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->decl);
253 if (!callee_cfun && callee && callee->clone_of)
254 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->decl);
256 gcc_assert (e->inline_failed);
258 if (!callee || !callee->analyzed)
260 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
261 inlinable = false;
263 else if (!inline_summary (callee)->inlinable)
265 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
266 inlinable = false;
268 else if (avail <= AVAIL_OVERWRITABLE)
270 e->inline_failed = CIF_OVERWRITABLE;
271 return false;
273 else if (e->call_stmt_cannot_inline_p)
275 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
276 inlinable = false;
278 /* Don't inline if the functions have different EH personalities. */
279 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
280 && DECL_FUNCTION_PERSONALITY (callee->decl)
281 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
282 != DECL_FUNCTION_PERSONALITY (callee->decl)))
284 e->inline_failed = CIF_EH_PERSONALITY;
285 inlinable = false;
287 /* TM pure functions should not be inlined into non-TM_pure
288 functions. */
289 else if (is_tm_pure (callee->decl)
290 && !is_tm_pure (e->caller->decl))
292 e->inline_failed = CIF_UNSPECIFIED;
293 inlinable = false;
295 /* Don't inline if the callee can throw non-call exceptions but the
296 caller cannot.
297 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
298 Move the flag into cgraph node or mirror it in the inline summary. */
299 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
300 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
302 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
303 inlinable = false;
305 /* Check compatibility of target optimization options. */
306 else if (!targetm.target_option.can_inline_p (e->caller->decl,
307 callee->decl))
309 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
310 inlinable = false;
312 /* Check if caller growth allows the inlining. */
313 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
314 && !lookup_attribute ("flatten",
315 DECL_ATTRIBUTES
316 (e->caller->global.inlined_to
317 ? e->caller->global.inlined_to->decl
318 : e->caller->decl))
319 && !caller_growth_limits (e))
320 inlinable = false;
321 /* Don't inline a function with a higher optimization level than the
322 caller. FIXME: this is really just tip of iceberg of handling
323 optimization attribute. */
324 else if (caller_tree != callee_tree)
326 struct cl_optimization *caller_opt
327 = TREE_OPTIMIZATION ((caller_tree)
328 ? caller_tree
329 : optimization_default_node);
331 struct cl_optimization *callee_opt
332 = TREE_OPTIMIZATION ((callee_tree)
333 ? callee_tree
334 : optimization_default_node);
336 if (((caller_opt->x_optimize > callee_opt->x_optimize)
337 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
338 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
339 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
341 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
342 inlinable = false;
346 if (!inlinable && report)
347 report_inline_failed_reason (e);
348 return inlinable;
352 /* Return true if the edge E is inlinable during early inlining. */
354 static bool
355 can_early_inline_edge_p (struct cgraph_edge *e)
357 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
358 NULL);
359 /* Early inliner might get called at WPA stage when IPA pass adds new
360 function. In this case we can not really do any of early inlining
361 because function bodies are missing. */
362 if (!gimple_has_body_p (callee->decl))
364 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
365 return false;
367 /* In early inliner some of callees may not be in SSA form yet
368 (i.e. the callgraph is cyclic and we did not process
369 the callee by early inliner, yet). We don't have CIF code for this
370 case; later we will re-do the decision in the real inliner. */
371 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
372 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
374 if (dump_file)
375 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
376 return false;
378 if (!can_inline_edge_p (e, true))
379 return false;
380 return true;
384 /* Return true when N is leaf function. Accept cheap builtins
385 in leaf functions. */
387 static bool
388 leaf_node_p (struct cgraph_node *n)
390 struct cgraph_edge *e;
391 for (e = n->callees; e; e = e->next_callee)
392 if (!is_inexpensive_builtin (e->callee->decl))
393 return false;
394 return true;
398 /* Return true if we are interested in inlining small function. */
400 static bool
401 want_early_inline_function_p (struct cgraph_edge *e)
403 bool want_inline = true;
404 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
406 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
408 else if (!DECL_DECLARED_INLINE_P (callee->decl)
409 && !flag_inline_small_functions)
411 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
412 report_inline_failed_reason (e);
413 want_inline = false;
415 else
417 int growth = estimate_edge_growth (e);
418 if (growth <= 0)
420 else if (!cgraph_maybe_hot_edge_p (e)
421 && growth > 0)
423 if (dump_file)
424 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
425 "call is cold and code would grow by %i\n",
426 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
427 xstrdup (cgraph_node_name (callee)), callee->uid,
428 growth);
429 want_inline = false;
431 else if (!leaf_node_p (callee)
432 && growth > 0)
434 if (dump_file)
435 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
436 "callee is not leaf and code would grow by %i\n",
437 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
438 xstrdup (cgraph_node_name (callee)), callee->uid,
439 growth);
440 want_inline = false;
442 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
444 if (dump_file)
445 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
446 "growth %i exceeds --param early-inlining-insns\n",
447 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
448 xstrdup (cgraph_node_name (callee)), callee->uid,
449 growth);
450 want_inline = false;
453 return want_inline;
456 /* Return true if we are interested in inlining small function.
457 When REPORT is true, report reason to dump file. */
459 static bool
460 want_inline_small_function_p (struct cgraph_edge *e, bool report)
462 bool want_inline = true;
463 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
465 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
467 else if (!DECL_DECLARED_INLINE_P (callee->decl)
468 && !flag_inline_small_functions)
470 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
471 want_inline = false;
473 else
475 int growth = estimate_edge_growth (e);
477 if (growth <= 0)
479 else if (DECL_DECLARED_INLINE_P (callee->decl)
480 && growth >= MAX_INLINE_INSNS_SINGLE)
482 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
483 want_inline = false;
485 /* Before giving up based on fact that caller size will grow, allow
486 functions that are called few times and eliminating the offline
487 copy will lead to overall code size reduction.
488 Not all of these will be handled by subsequent inlining of functions
489 called once: in particular weak functions are not handled or funcitons
490 that inline to multiple calls but a lot of bodies is optimized out.
491 Finally we want to inline earlier to allow inlining of callbacks.
493 This is slightly wrong on aggressive side: it is entirely possible
494 that function is called many times with a context where inlining
495 reduces code size and few times with a context where inlining increase
496 code size. Resoluting growth estimate will be negative even if it
497 would make more sense to keep offline copy and do not inline into the
498 call sites that makes the code size grow.
500 When badness orders the calls in a way that code reducing calls come
501 first, this situation is not a problem at all: after inlining all
502 "good" calls, we will realize that keeping the function around is
503 better. */
504 else if (growth <= MAX_INLINE_INSNS_SINGLE
505 /* Unlike for functions called once, we play unsafe with
506 COMDATs. We can allow that since we know functions
507 in consideration are small (and thus risk is small) and
508 moreover grow estimates already accounts that COMDAT
509 functions may or may not disappear when eliminated from
510 current unit. With good probability making aggressive
511 choice in all units is going to make overall program
512 smaller.
514 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
515 instead of
516 cgraph_will_be_removed_from_program_if_no_direct_calls */
517 && !DECL_EXTERNAL (callee->decl)
518 && cgraph_can_remove_if_no_direct_calls_p (callee)
519 && estimate_growth (callee) <= 0)
521 else if (!DECL_DECLARED_INLINE_P (callee->decl)
522 && !flag_inline_functions)
524 e->inline_failed = CIF_NOT_DECLARED_INLINED;
525 want_inline = false;
527 else if (!DECL_DECLARED_INLINE_P (callee->decl)
528 && growth >= MAX_INLINE_INSNS_AUTO)
530 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
531 want_inline = false;
533 /* If call is cold, do not inline when function body would grow. */
534 else if (!cgraph_maybe_hot_edge_p (e))
536 e->inline_failed = CIF_UNLIKELY_CALL;
537 want_inline = false;
540 if (!want_inline && report)
541 report_inline_failed_reason (e);
542 return want_inline;
545 /* EDGE is self recursive edge.
546 We hand two cases - when function A is inlining into itself
547 or when function A is being inlined into another inliner copy of function
548 A within function B.
550 In first case OUTER_NODE points to the toplevel copy of A, while
551 in the second case OUTER_NODE points to the outermost copy of A in B.
553 In both cases we want to be extra selective since
554 inlining the call will just introduce new recursive calls to appear. */
556 static bool
557 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
558 struct cgraph_node *outer_node,
559 bool peeling,
560 int depth)
562 char const *reason = NULL;
563 bool want_inline = true;
564 int caller_freq = CGRAPH_FREQ_BASE;
565 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
567 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
568 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
570 if (!cgraph_maybe_hot_edge_p (edge))
572 reason = "recursive call is cold";
573 want_inline = false;
575 else if (max_count && !outer_node->count)
577 reason = "not executed in profile";
578 want_inline = false;
580 else if (depth > max_depth)
582 reason = "--param max-inline-recursive-depth exceeded.";
583 want_inline = false;
586 if (outer_node->global.inlined_to)
587 caller_freq = outer_node->callers->frequency;
589 if (!want_inline)
591 /* Inlining of self recursive function into copy of itself within other function
592 is transformation similar to loop peeling.
594 Peeling is profitable if we can inline enough copies to make probability
595 of actual call to the self recursive function very small. Be sure that
596 the probability of recursion is small.
598 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
599 This way the expected number of recision is at most max_depth. */
600 else if (peeling)
602 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
603 / max_depth);
604 int i;
605 for (i = 1; i < depth; i++)
606 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
607 if (max_count
608 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
609 >= max_prob))
611 reason = "profile of recursive call is too large";
612 want_inline = false;
614 if (!max_count
615 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
616 >= max_prob))
618 reason = "frequency of recursive call is too large";
619 want_inline = false;
622 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
623 depth is large. We reduce function call overhead and increase chances that
624 things fit in hardware return predictor.
626 Recursive inlining might however increase cost of stack frame setup
627 actually slowing down functions whose recursion tree is wide rather than
628 deep.
630 Deciding reliably on when to do recursive inlining without profile feedback
631 is tricky. For now we disable recursive inlining when probability of self
632 recursion is low.
634 Recursive inlining of self recursive call within loop also results in large loop
635 depths that generally optimize badly. We may want to throttle down inlining
636 in those cases. In particular this seems to happen in one of libstdc++ rb tree
637 methods. */
638 else
640 if (max_count
641 && (edge->count * 100 / outer_node->count
642 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
644 reason = "profile of recursive call is too small";
645 want_inline = false;
647 else if (!max_count
648 && (edge->frequency * 100 / caller_freq
649 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
651 reason = "frequency of recursive call is too small";
652 want_inline = false;
655 if (!want_inline && dump_file)
656 fprintf (dump_file, " not inlining recursively: %s\n", reason);
657 return want_inline;
660 /* Return true when NODE has caller other than EDGE.
661 Worker for cgraph_for_node_and_aliases. */
663 static bool
664 check_caller_edge (struct cgraph_node *node, void *edge)
666 return (node->callers
667 && node->callers != edge);
671 /* Decide if NODE is called once inlining it would eliminate need
672 for the offline copy of function. */
674 static bool
675 want_inline_function_called_once_p (struct cgraph_node *node)
677 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
678 /* Already inlined? */
679 if (function->global.inlined_to)
680 return false;
681 /* Zero or more then one callers? */
682 if (!node->callers
683 || node->callers->next_caller)
684 return false;
685 /* Maybe other aliases has more direct calls. */
686 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
687 return false;
688 /* Recursive call makes no sense to inline. */
689 if (cgraph_edge_recursive_p (node->callers))
690 return false;
691 /* External functions are not really in the unit, so inlining
692 them when called once would just increase the program size. */
693 if (DECL_EXTERNAL (function->decl))
694 return false;
695 /* Offline body must be optimized out. */
696 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (function))
697 return false;
698 if (!can_inline_edge_p (node->callers, true))
699 return false;
700 return true;
704 /* Return relative time improvement for inlining EDGE in range
705 1...2^9. */
707 static inline int
708 relative_time_benefit (struct inline_summary *callee_info,
709 struct cgraph_edge *edge,
710 int time_growth)
712 int relbenefit;
713 gcov_type uninlined_call_time;
715 uninlined_call_time =
716 ((gcov_type)
717 (callee_info->time
718 + inline_edge_summary (edge)->call_stmt_time) * edge->frequency
719 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
720 /* Compute relative time benefit, i.e. how much the call becomes faster.
721 ??? perhaps computing how much the caller+calle together become faster
722 would lead to more realistic results. */
723 if (!uninlined_call_time)
724 uninlined_call_time = 1;
725 relbenefit =
726 (uninlined_call_time - time_growth) * 256 / (uninlined_call_time);
727 relbenefit = MIN (relbenefit, 512);
728 relbenefit = MAX (relbenefit, 1);
729 return relbenefit;
733 /* A cost model driving the inlining heuristics in a way so the edges with
734 smallest badness are inlined first. After each inlining is performed
735 the costs of all caller edges of nodes affected are recomputed so the
736 metrics may accurately depend on values such as number of inlinable callers
737 of the function or function body size. */
739 static int
740 edge_badness (struct cgraph_edge *edge, bool dump)
742 gcov_type badness;
743 int growth, time_growth;
744 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
745 NULL);
746 struct inline_summary *callee_info = inline_summary (callee);
748 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
749 return INT_MIN;
751 growth = estimate_edge_growth (edge);
752 time_growth = estimate_edge_time (edge);
754 if (dump)
756 fprintf (dump_file, " Badness calculation for %s -> %s\n",
757 xstrdup (cgraph_node_name (edge->caller)),
758 xstrdup (cgraph_node_name (callee)));
759 fprintf (dump_file, " size growth %i, time growth %i\n",
760 growth,
761 time_growth);
764 /* Always prefer inlining saving code size. */
765 if (growth <= 0)
767 badness = INT_MIN / 2 + growth;
768 if (dump)
769 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
770 growth);
773 /* When profiling is available, compute badness as:
775 relative_edge_count * relative_time_benefit
776 goodness = -------------------------------------------
777 edge_growth
778 badness = -goodness
780 The fraction is upside down, becuase on edge counts and time beneits
781 the bounds are known. Edge growth is essentially unlimited. */
783 else if (max_count)
785 int relbenefit = relative_time_benefit (callee_info, edge, time_growth);
786 badness =
787 ((int)
788 ((double) edge->count * INT_MIN / 2 / max_count / 512) *
789 relative_time_benefit (callee_info, edge, time_growth)) / growth;
791 /* Be sure that insanity of the profile won't lead to increasing counts
792 in the scalling and thus to overflow in the computation above. */
793 gcc_assert (max_count >= edge->count);
794 if (dump)
796 fprintf (dump_file,
797 " %i (relative %f): profile info. Relative count %f"
798 " * Relative benefit %f\n",
799 (int) badness, (double) badness / INT_MIN,
800 (double) edge->count / max_count,
801 relbenefit * 100 / 256.0);
805 /* When function local profile is available. Compute badness as:
808 growth_of_callee
809 badness = -------------------------------------- + growth_for-all
810 relative_time_benefit * edge_frequency
813 else if (flag_guess_branch_prob)
815 int div = edge->frequency * (1<<10) / CGRAPH_FREQ_MAX;
817 div = MAX (div, 1);
818 gcc_checking_assert (edge->frequency <= CGRAPH_FREQ_MAX);
819 div *= relative_time_benefit (callee_info, edge, time_growth);
821 /* frequency is normalized in range 1...2^10.
822 relbenefit in range 1...2^9
823 DIV should be in range 1....2^19. */
824 gcc_checking_assert (div >= 1 && div <= (1<<19));
826 /* Result must be integer in range 0...INT_MAX.
827 Set the base of fixed point calculation so we don't lose much of
828 precision for small bandesses (those are interesting) yet we don't
829 overflow for growths that are still in interesting range.
831 Fixed point arithmetic with point at 8th bit. */
832 badness = ((gcov_type)growth) * (1<<(19+8));
833 badness = (badness + div / 2) / div;
835 /* Overall growth of inlining all calls of function matters: we want to
836 inline so offline copy of function is no longer needed.
838 Additionally functions that can be fully inlined without much of
839 effort are better inline candidates than functions that can be fully
840 inlined only after noticeable overall unit growths. The latter
841 are better in a sense compressing of code size by factoring out common
842 code into separate function shared by multiple code paths.
844 We might mix the valud into the fraction by taking into account
845 relative growth of the unit, but for now just add the number
846 into resulting fraction. */
847 if (badness > INT_MAX / 2)
849 badness = INT_MAX / 2;
850 if (dump)
851 fprintf (dump_file, "Badness overflow\n");
853 if (dump)
855 fprintf (dump_file,
856 " %i: guessed profile. frequency %f,"
857 " benefit %f%%, divisor %i\n",
858 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
859 relative_time_benefit (callee_info, edge, time_growth) * 100 / 256.0, div);
862 /* When function local profile is not available or it does not give
863 useful information (ie frequency is zero), base the cost on
864 loop nest and overall size growth, so we optimize for overall number
865 of functions fully inlined in program. */
866 else
868 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
869 badness = growth * 256;
871 /* Decrease badness if call is nested. */
872 if (badness > 0)
873 badness >>= nest;
874 else
876 badness <<= nest;
878 if (dump)
879 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
880 nest);
883 /* Ensure that we did not overflow in all the fixed point math above. */
884 gcc_assert (badness >= INT_MIN);
885 gcc_assert (badness <= INT_MAX - 1);
886 /* Make recursive inlining happen always after other inlining is done. */
887 if (cgraph_edge_recursive_p (edge))
888 return badness + 1;
889 else
890 return badness;
893 /* Recompute badness of EDGE and update its key in HEAP if needed. */
894 static inline void
895 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
897 int badness = edge_badness (edge, false);
898 if (edge->aux)
900 fibnode_t n = (fibnode_t) edge->aux;
901 gcc_checking_assert (n->data == edge);
903 /* fibheap_replace_key only decrease the keys.
904 When we increase the key we do not update heap
905 and instead re-insert the element once it becomes
906 a minimum of heap. */
907 if (badness < n->key)
909 if (dump_file && (dump_flags & TDF_DETAILS))
911 fprintf (dump_file,
912 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
913 xstrdup (cgraph_node_name (edge->caller)),
914 edge->caller->uid,
915 xstrdup (cgraph_node_name (edge->callee)),
916 edge->callee->uid,
917 (int)n->key,
918 badness);
920 fibheap_replace_key (heap, n, badness);
921 gcc_checking_assert (n->key == badness);
924 else
926 if (dump_file && (dump_flags & TDF_DETAILS))
928 fprintf (dump_file,
929 " enqueuing call %s/%i -> %s/%i, badness %i\n",
930 xstrdup (cgraph_node_name (edge->caller)),
931 edge->caller->uid,
932 xstrdup (cgraph_node_name (edge->callee)),
933 edge->callee->uid,
934 badness);
936 edge->aux = fibheap_insert (heap, badness, edge);
941 /* NODE was inlined.
942 All caller edges needs to be resetted because
943 size estimates change. Similarly callees needs reset
944 because better context may be known. */
946 static void
947 reset_edge_caches (struct cgraph_node *node)
949 struct cgraph_edge *edge;
950 struct cgraph_edge *e = node->callees;
951 struct cgraph_node *where = node;
952 int i;
953 struct ipa_ref *ref;
955 if (where->global.inlined_to)
956 where = where->global.inlined_to;
958 /* WHERE body size has changed, the cached growth is invalid. */
959 reset_node_growth_cache (where);
961 for (edge = where->callers; edge; edge = edge->next_caller)
962 if (edge->inline_failed)
963 reset_edge_growth_cache (edge);
964 for (i = 0; ipa_ref_list_refering_iterate (&where->ref_list, i, ref); i++)
965 if (ref->use == IPA_REF_ALIAS)
966 reset_edge_caches (ipa_ref_refering_node (ref));
968 if (!e)
969 return;
971 while (true)
972 if (!e->inline_failed && e->callee->callees)
973 e = e->callee->callees;
974 else
976 if (e->inline_failed)
977 reset_edge_growth_cache (e);
978 if (e->next_callee)
979 e = e->next_callee;
980 else
984 if (e->caller == node)
985 return;
986 e = e->caller->callers;
988 while (!e->next_callee);
989 e = e->next_callee;
994 /* Recompute HEAP nodes for each of caller of NODE.
995 UPDATED_NODES track nodes we already visited, to avoid redundant work.
996 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
997 it is inlinable. Otherwise check all edges. */
999 static void
1000 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1001 bitmap updated_nodes,
1002 struct cgraph_edge *check_inlinablity_for)
1004 struct cgraph_edge *edge;
1005 int i;
1006 struct ipa_ref *ref;
1008 if ((!node->alias && !inline_summary (node)->inlinable)
1009 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1010 || node->global.inlined_to)
1011 return;
1012 if (!bitmap_set_bit (updated_nodes, node->uid))
1013 return;
1015 for (i = 0; ipa_ref_list_refering_iterate (&node->ref_list, i, ref); i++)
1016 if (ref->use == IPA_REF_ALIAS)
1018 struct cgraph_node *alias = ipa_ref_refering_node (ref);
1019 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1022 for (edge = node->callers; edge; edge = edge->next_caller)
1023 if (edge->inline_failed)
1025 if (!check_inlinablity_for
1026 || check_inlinablity_for == edge)
1028 if (can_inline_edge_p (edge, false)
1029 && want_inline_small_function_p (edge, false))
1030 update_edge_key (heap, edge);
1031 else if (edge->aux)
1033 report_inline_failed_reason (edge);
1034 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1035 edge->aux = NULL;
1038 else if (edge->aux)
1039 update_edge_key (heap, edge);
1043 /* Recompute HEAP nodes for each uninlined call in NODE.
1044 This is used when we know that edge badnesses are going only to increase
1045 (we introduced new call site) and thus all we need is to insert newly
1046 created edges into heap. */
1048 static void
1049 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1050 bitmap updated_nodes)
1052 struct cgraph_edge *e = node->callees;
1054 if (!e)
1055 return;
1056 while (true)
1057 if (!e->inline_failed && e->callee->callees)
1058 e = e->callee->callees;
1059 else
1061 enum availability avail;
1062 struct cgraph_node *callee;
1063 /* We do not reset callee growth cache here. Since we added a new call,
1064 growth chould have just increased and consequentely badness metric
1065 don't need updating. */
1066 if (e->inline_failed
1067 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1068 && inline_summary (callee)->inlinable
1069 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1070 && !bitmap_bit_p (updated_nodes, callee->uid))
1072 if (can_inline_edge_p (e, false)
1073 && want_inline_small_function_p (e, false))
1074 update_edge_key (heap, e);
1075 else if (e->aux)
1077 report_inline_failed_reason (e);
1078 fibheap_delete_node (heap, (fibnode_t) e->aux);
1079 e->aux = NULL;
1082 if (e->next_callee)
1083 e = e->next_callee;
1084 else
1088 if (e->caller == node)
1089 return;
1090 e = e->caller->callers;
1092 while (!e->next_callee);
1093 e = e->next_callee;
1098 /* Recompute heap nodes for each of caller edges of each of callees.
1099 Walk recursively into all inline clones. */
1101 static void
1102 update_all_callee_keys (fibheap_t heap, struct cgraph_node *node,
1103 bitmap updated_nodes)
1105 struct cgraph_edge *e = node->callees;
1106 if (!e)
1107 return;
1108 while (true)
1109 if (!e->inline_failed && e->callee->callees)
1110 e = e->callee->callees;
1111 else
1113 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
1114 NULL);
1116 /* We inlined and thus callees might have different number of calls.
1117 Reset their caches */
1118 reset_node_growth_cache (callee);
1119 if (e->inline_failed)
1120 update_caller_keys (heap, callee, updated_nodes, e);
1121 if (e->next_callee)
1122 e = e->next_callee;
1123 else
1127 if (e->caller == node)
1128 return;
1129 e = e->caller->callers;
1131 while (!e->next_callee);
1132 e = e->next_callee;
1137 /* Enqueue all recursive calls from NODE into priority queue depending on
1138 how likely we want to recursively inline the call. */
1140 static void
1141 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1142 fibheap_t heap)
1144 struct cgraph_edge *e;
1145 enum availability avail;
1147 for (e = where->callees; e; e = e->next_callee)
1148 if (e->callee == node
1149 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1150 && avail > AVAIL_OVERWRITABLE))
1152 /* When profile feedback is available, prioritize by expected number
1153 of calls. */
1154 fibheap_insert (heap,
1155 !max_count ? -e->frequency
1156 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1159 for (e = where->callees; e; e = e->next_callee)
1160 if (!e->inline_failed)
1161 lookup_recursive_calls (node, e->callee, heap);
1164 /* Decide on recursive inlining: in the case function has recursive calls,
1165 inline until body size reaches given argument. If any new indirect edges
1166 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1167 is NULL. */
1169 static bool
1170 recursive_inlining (struct cgraph_edge *edge,
1171 VEC (cgraph_edge_p, heap) **new_edges)
1173 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1174 fibheap_t heap;
1175 struct cgraph_node *node;
1176 struct cgraph_edge *e;
1177 struct cgraph_node *master_clone = NULL, *next;
1178 int depth = 0;
1179 int n = 0;
1181 node = edge->caller;
1182 if (node->global.inlined_to)
1183 node = node->global.inlined_to;
1185 if (DECL_DECLARED_INLINE_P (node->decl))
1186 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1188 /* Make sure that function is small enough to be considered for inlining. */
1189 if (estimate_size_after_inlining (node, edge) >= limit)
1190 return false;
1191 heap = fibheap_new ();
1192 lookup_recursive_calls (node, node, heap);
1193 if (fibheap_empty (heap))
1195 fibheap_delete (heap);
1196 return false;
1199 if (dump_file)
1200 fprintf (dump_file,
1201 " Performing recursive inlining on %s\n",
1202 cgraph_node_name (node));
1204 /* Do the inlining and update list of recursive call during process. */
1205 while (!fibheap_empty (heap))
1207 struct cgraph_edge *curr
1208 = (struct cgraph_edge *) fibheap_extract_min (heap);
1209 struct cgraph_node *cnode;
1211 if (estimate_size_after_inlining (node, curr) > limit)
1212 break;
1214 if (!can_inline_edge_p (curr, true))
1215 continue;
1217 depth = 1;
1218 for (cnode = curr->caller;
1219 cnode->global.inlined_to; cnode = cnode->callers->caller)
1220 if (node->decl
1221 == cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
1222 depth++;
1224 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1225 continue;
1227 if (dump_file)
1229 fprintf (dump_file,
1230 " Inlining call of depth %i", depth);
1231 if (node->count)
1233 fprintf (dump_file, " called approx. %.2f times per call",
1234 (double)curr->count / node->count);
1236 fprintf (dump_file, "\n");
1238 if (!master_clone)
1240 /* We need original clone to copy around. */
1241 master_clone = cgraph_clone_node (node, node->decl,
1242 node->count, CGRAPH_FREQ_BASE,
1243 false, NULL, true);
1244 for (e = master_clone->callees; e; e = e->next_callee)
1245 if (!e->inline_failed)
1246 clone_inlined_nodes (e, true, false, NULL);
1249 cgraph_redirect_edge_callee (curr, master_clone);
1250 inline_call (curr, false, new_edges, &overall_size);
1251 lookup_recursive_calls (node, curr->callee, heap);
1252 n++;
1255 if (!fibheap_empty (heap) && dump_file)
1256 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1257 fibheap_delete (heap);
1259 if (!master_clone)
1260 return false;
1262 if (dump_file)
1263 fprintf (dump_file,
1264 "\n Inlined %i times, "
1265 "body grown from size %i to %i, time %i to %i\n", n,
1266 inline_summary (master_clone)->size, inline_summary (node)->size,
1267 inline_summary (master_clone)->time, inline_summary (node)->time);
1269 /* Remove master clone we used for inlining. We rely that clones inlined
1270 into master clone gets queued just before master clone so we don't
1271 need recursion. */
1272 for (node = cgraph_nodes; node != master_clone;
1273 node = next)
1275 next = node->next;
1276 if (node->global.inlined_to == master_clone)
1277 cgraph_remove_node (node);
1279 cgraph_remove_node (master_clone);
1280 return true;
1284 /* Given whole compilation unit estimate of INSNS, compute how large we can
1285 allow the unit to grow. */
1287 static int
1288 compute_max_insns (int insns)
1290 int max_insns = insns;
1291 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1292 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1294 return ((HOST_WIDEST_INT) max_insns
1295 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1299 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1301 static void
1302 add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
1304 while (VEC_length (cgraph_edge_p, new_edges) > 0)
1306 struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
1308 gcc_assert (!edge->aux);
1309 if (edge->inline_failed
1310 && can_inline_edge_p (edge, true)
1311 && want_inline_small_function_p (edge, true))
1312 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1317 /* We use greedy algorithm for inlining of small functions:
1318 All inline candidates are put into prioritized heap ordered in
1319 increasing badness.
1321 The inlining of small functions is bounded by unit growth parameters. */
1323 static void
1324 inline_small_functions (void)
1326 struct cgraph_node *node;
1327 struct cgraph_edge *edge;
1328 fibheap_t heap = fibheap_new ();
1329 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1330 int min_size, max_size;
1331 VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
1332 int initial_size = 0;
1334 if (flag_indirect_inlining)
1335 new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
1337 if (dump_file)
1338 fprintf (dump_file,
1339 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1340 initial_size);
1342 /* Compute overall unit size and other global parameters used by badness
1343 metrics. */
1345 max_count = 0;
1346 initialize_growth_caches ();
1348 FOR_EACH_DEFINED_FUNCTION (node)
1349 if (!node->global.inlined_to)
1351 if (cgraph_function_with_gimple_body_p (node)
1352 || node->thunk.thunk_p)
1354 struct inline_summary *info = inline_summary (node);
1356 if (!DECL_EXTERNAL (node->decl))
1357 initial_size += info->size;
1360 for (edge = node->callers; edge; edge = edge->next_caller)
1361 if (max_count < edge->count)
1362 max_count = edge->count;
1365 overall_size = initial_size;
1366 max_size = compute_max_insns (overall_size);
1367 min_size = overall_size;
1369 /* Populate the heeap with all edges we might inline. */
1371 FOR_EACH_DEFINED_FUNCTION (node)
1372 if (!node->global.inlined_to)
1374 if (dump_file)
1375 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1376 cgraph_node_name (node), node->uid);
1378 for (edge = node->callers; edge; edge = edge->next_caller)
1379 if (edge->inline_failed
1380 && can_inline_edge_p (edge, true)
1381 && want_inline_small_function_p (edge, true)
1382 && edge->inline_failed)
1384 gcc_assert (!edge->aux);
1385 update_edge_key (heap, edge);
1389 gcc_assert (in_lto_p
1390 || !max_count
1391 || (profile_info && flag_branch_probabilities));
1393 while (!fibheap_empty (heap))
1395 int old_size = overall_size;
1396 struct cgraph_node *where, *callee;
1397 int badness = fibheap_min_key (heap);
1398 int current_badness;
1399 int cached_badness;
1400 int growth;
1402 edge = (struct cgraph_edge *) fibheap_extract_min (heap);
1403 gcc_assert (edge->aux);
1404 edge->aux = NULL;
1405 if (!edge->inline_failed)
1406 continue;
1408 /* Be sure that caches are maintained consistent.
1409 We can not make this ENABLE_CHECKING only because it cause differnt
1410 updates of the fibheap queue. */
1411 cached_badness = edge_badness (edge, false);
1412 reset_edge_growth_cache (edge);
1413 reset_node_growth_cache (edge->callee);
1415 /* When updating the edge costs, we only decrease badness in the keys.
1416 Increases of badness are handled lazilly; when we see key with out
1417 of date value on it, we re-insert it now. */
1418 current_badness = edge_badness (edge, false);
1419 gcc_assert (cached_badness == current_badness);
1420 gcc_assert (current_badness >= badness);
1421 if (current_badness != badness)
1423 edge->aux = fibheap_insert (heap, current_badness, edge);
1424 continue;
1427 if (!can_inline_edge_p (edge, true))
1428 continue;
1430 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1431 growth = estimate_edge_growth (edge);
1432 if (dump_file)
1434 fprintf (dump_file,
1435 "\nConsidering %s with %i size\n",
1436 cgraph_node_name (callee),
1437 inline_summary (callee)->size);
1438 fprintf (dump_file,
1439 " to be inlined into %s in %s:%i\n"
1440 " Estimated growth after inlined into all is %+i insns.\n"
1441 " Estimated badness is %i, frequency %.2f.\n",
1442 cgraph_node_name (edge->caller),
1443 flag_wpa ? "unknown"
1444 : gimple_filename ((const_gimple) edge->call_stmt),
1445 flag_wpa ? -1
1446 : gimple_lineno ((const_gimple) edge->call_stmt),
1447 estimate_growth (callee),
1448 badness,
1449 edge->frequency / (double)CGRAPH_FREQ_BASE);
1450 if (edge->count)
1451 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1452 edge->count);
1453 if (dump_flags & TDF_DETAILS)
1454 edge_badness (edge, true);
1457 if (overall_size + growth > max_size
1458 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1460 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1461 report_inline_failed_reason (edge);
1462 continue;
1465 if (!want_inline_small_function_p (edge, true))
1466 continue;
1468 /* Heuristics for inlining small functions works poorly for
1469 recursive calls where we do efect similar to loop unrolling.
1470 When inliing such edge seems profitable, leave decision on
1471 specific inliner. */
1472 if (cgraph_edge_recursive_p (edge))
1474 where = edge->caller;
1475 if (where->global.inlined_to)
1476 where = where->global.inlined_to;
1477 if (!recursive_inlining (edge,
1478 flag_indirect_inlining
1479 ? &new_indirect_edges : NULL))
1481 edge->inline_failed = CIF_RECURSIVE_INLINING;
1482 continue;
1484 reset_edge_caches (where);
1485 /* Recursive inliner inlines all recursive calls of the function
1486 at once. Consequently we need to update all callee keys. */
1487 if (flag_indirect_inlining)
1488 add_new_edges_to_heap (heap, new_indirect_edges);
1489 update_all_callee_keys (heap, where, updated_nodes);
1491 else
1493 struct cgraph_node *outer_node = NULL;
1494 int depth = 0;
1496 /* Consider the case where self recursive function A is inlined into B.
1497 This is desired optimization in some cases, since it leads to effect
1498 similar of loop peeling and we might completely optimize out the
1499 recursive call. However we must be extra selective. */
1501 where = edge->caller;
1502 while (where->global.inlined_to)
1504 if (where->decl == callee->decl)
1505 outer_node = where, depth++;
1506 where = where->callers->caller;
1508 if (outer_node
1509 && !want_inline_self_recursive_call_p (edge, outer_node,
1510 true, depth))
1512 edge->inline_failed
1513 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1514 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1515 continue;
1517 else if (depth && dump_file)
1518 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1520 gcc_checking_assert (!callee->global.inlined_to);
1521 inline_call (edge, true, &new_indirect_edges, &overall_size);
1522 if (flag_indirect_inlining)
1523 add_new_edges_to_heap (heap, new_indirect_edges);
1525 reset_edge_caches (edge->callee);
1526 reset_node_growth_cache (callee);
1528 /* We inlined last offline copy to the body. This might lead
1529 to callees of function having fewer call sites and thus they
1530 may need updating.
1532 FIXME: the callee size could also shrink because more information
1533 is propagated from caller. We don't track when this happen and
1534 thus we need to recompute everything all the time. Once this is
1535 solved, "|| 1" should go away. */
1536 if (callee->global.inlined_to || 1)
1537 update_all_callee_keys (heap, callee, updated_nodes);
1538 else
1539 update_callee_keys (heap, edge->callee, updated_nodes);
1541 where = edge->caller;
1542 if (where->global.inlined_to)
1543 where = where->global.inlined_to;
1545 /* Our profitability metric can depend on local properties
1546 such as number of inlinable calls and size of the function body.
1547 After inlining these properties might change for the function we
1548 inlined into (since it's body size changed) and for the functions
1549 called by function we inlined (since number of it inlinable callers
1550 might change). */
1551 update_caller_keys (heap, where, updated_nodes, NULL);
1553 /* We removed one call of the function we just inlined. If offline
1554 copy is still needed, be sure to update the keys. */
1555 if (callee != where && !callee->global.inlined_to)
1556 update_caller_keys (heap, callee, updated_nodes, NULL);
1557 bitmap_clear (updated_nodes);
1559 if (dump_file)
1561 fprintf (dump_file,
1562 " Inlined into %s which now has time %i and size %i,"
1563 "net change of %+i.\n",
1564 cgraph_node_name (edge->caller),
1565 inline_summary (edge->caller)->time,
1566 inline_summary (edge->caller)->size,
1567 overall_size - old_size);
1569 if (min_size > overall_size)
1571 min_size = overall_size;
1572 max_size = compute_max_insns (min_size);
1574 if (dump_file)
1575 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1579 free_growth_caches ();
1580 if (new_indirect_edges)
1581 VEC_free (cgraph_edge_p, heap, new_indirect_edges);
1582 fibheap_delete (heap);
1583 if (dump_file)
1584 fprintf (dump_file,
1585 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1586 initial_size, overall_size,
1587 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1588 BITMAP_FREE (updated_nodes);
1591 /* Flatten NODE. Performed both during early inlining and
1592 at IPA inlining time. */
1594 static void
1595 flatten_function (struct cgraph_node *node, bool early)
1597 struct cgraph_edge *e;
1599 /* We shouldn't be called recursively when we are being processed. */
1600 gcc_assert (node->aux == NULL);
1602 node->aux = (void *) node;
1604 for (e = node->callees; e; e = e->next_callee)
1606 struct cgraph_node *orig_callee;
1607 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1609 /* We've hit cycle? It is time to give up. */
1610 if (callee->aux)
1612 if (dump_file)
1613 fprintf (dump_file,
1614 "Not inlining %s into %s to avoid cycle.\n",
1615 xstrdup (cgraph_node_name (callee)),
1616 xstrdup (cgraph_node_name (e->caller)));
1617 e->inline_failed = CIF_RECURSIVE_INLINING;
1618 continue;
1621 /* When the edge is already inlined, we just need to recurse into
1622 it in order to fully flatten the leaves. */
1623 if (!e->inline_failed)
1625 flatten_function (callee, early);
1626 continue;
1629 /* Flatten attribute needs to be processed during late inlining. For
1630 extra code quality we however do flattening during early optimization,
1631 too. */
1632 if (!early
1633 ? !can_inline_edge_p (e, true)
1634 : !can_early_inline_edge_p (e))
1635 continue;
1637 if (cgraph_edge_recursive_p (e))
1639 if (dump_file)
1640 fprintf (dump_file, "Not inlining: recursive call.\n");
1641 continue;
1644 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1645 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1647 if (dump_file)
1648 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1649 continue;
1652 /* Inline the edge and flatten the inline clone. Avoid
1653 recursing through the original node if the node was cloned. */
1654 if (dump_file)
1655 fprintf (dump_file, " Inlining %s into %s.\n",
1656 xstrdup (cgraph_node_name (callee)),
1657 xstrdup (cgraph_node_name (e->caller)));
1658 orig_callee = callee;
1659 inline_call (e, true, NULL, NULL);
1660 if (e->callee != orig_callee)
1661 orig_callee->aux = (void *) node;
1662 flatten_function (e->callee, early);
1663 if (e->callee != orig_callee)
1664 orig_callee->aux = NULL;
1667 node->aux = NULL;
1670 /* Decide on the inlining. We do so in the topological order to avoid
1671 expenses on updating data structures. */
1673 static unsigned int
1674 ipa_inline (void)
1676 struct cgraph_node *node;
1677 int nnodes;
1678 struct cgraph_node **order =
1679 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1680 int i;
1682 if (in_lto_p && optimize)
1683 ipa_update_after_lto_read ();
1685 if (dump_file)
1686 dump_inline_summaries (dump_file);
1688 nnodes = ipa_reverse_postorder (order);
1690 for (node = cgraph_nodes; node; node = node->next)
1691 node->aux = 0;
1693 if (dump_file)
1694 fprintf (dump_file, "\nFlattening functions:\n");
1696 /* In the first pass handle functions to be flattened. Do this with
1697 a priority so none of our later choices will make this impossible. */
1698 for (i = nnodes - 1; i >= 0; i--)
1700 node = order[i];
1702 /* Handle nodes to be flattened.
1703 Ideally when processing callees we stop inlining at the
1704 entry of cycles, possibly cloning that entry point and
1705 try to flatten itself turning it into a self-recursive
1706 function. */
1707 if (lookup_attribute ("flatten",
1708 DECL_ATTRIBUTES (node->decl)) != NULL)
1710 if (dump_file)
1711 fprintf (dump_file,
1712 "Flattening %s\n", cgraph_node_name (node));
1713 flatten_function (node, false);
1717 inline_small_functions ();
1718 cgraph_remove_unreachable_nodes (true, dump_file);
1719 free (order);
1721 /* We already perform some inlining of functions called once during
1722 inlining small functions above. After unreachable nodes are removed,
1723 we still might do a quick check that nothing new is found. */
1724 if (flag_inline_functions_called_once)
1726 int cold;
1727 if (dump_file)
1728 fprintf (dump_file, "\nDeciding on functions called once:\n");
1730 /* Inlining one function called once has good chance of preventing
1731 inlining other function into the same callee. Ideally we should
1732 work in priority order, but probably inlining hot functions first
1733 is good cut without the extra pain of maintaining the queue.
1735 ??? this is not really fitting the bill perfectly: inlining function
1736 into callee often leads to better optimization of callee due to
1737 increased context for optimization.
1738 For example if main() function calls a function that outputs help
1739 and then function that does the main optmization, we should inline
1740 the second with priority even if both calls are cold by themselves.
1742 We probably want to implement new predicate replacing our use of
1743 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1744 to be hot. */
1745 for (cold = 0; cold <= 1; cold ++)
1747 for (node = cgraph_nodes; node; node = node->next)
1749 if (want_inline_function_called_once_p (node)
1750 && (cold
1751 || cgraph_maybe_hot_edge_p (node->callers)))
1753 struct cgraph_node *caller = node->callers->caller;
1755 if (dump_file)
1757 fprintf (dump_file,
1758 "\nInlining %s size %i.\n",
1759 cgraph_node_name (node),
1760 inline_summary (node)->size);
1761 fprintf (dump_file,
1762 " Called once from %s %i insns.\n",
1763 cgraph_node_name (node->callers->caller),
1764 inline_summary (node->callers->caller)->size);
1767 inline_call (node->callers, true, NULL, NULL);
1768 if (dump_file)
1769 fprintf (dump_file,
1770 " Inlined into %s which now has %i size\n",
1771 cgraph_node_name (caller),
1772 inline_summary (caller)->size);
1778 /* Free ipa-prop structures if they are no longer needed. */
1779 if (optimize)
1780 ipa_free_all_structures_after_iinln ();
1782 if (dump_file)
1783 fprintf (dump_file,
1784 "\nInlined %i calls, eliminated %i functions\n\n",
1785 ncalls_inlined, nfunctions_inlined);
1787 if (dump_file)
1788 dump_inline_summaries (dump_file);
1789 /* In WPA we use inline summaries for partitioning process. */
1790 if (!flag_wpa)
1791 inline_free_summary ();
1792 return 0;
1795 /* Inline always-inline function calls in NODE. */
1797 static bool
1798 inline_always_inline_functions (struct cgraph_node *node)
1800 struct cgraph_edge *e;
1801 bool inlined = false;
1803 for (e = node->callees; e; e = e->next_callee)
1805 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1806 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1807 continue;
1809 if (cgraph_edge_recursive_p (e))
1811 if (dump_file)
1812 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1813 cgraph_node_name (e->callee));
1814 e->inline_failed = CIF_RECURSIVE_INLINING;
1815 continue;
1818 if (!can_early_inline_edge_p (e))
1819 continue;
1821 if (dump_file)
1822 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1823 xstrdup (cgraph_node_name (e->callee)),
1824 xstrdup (cgraph_node_name (e->caller)));
1825 inline_call (e, true, NULL, NULL);
1826 inlined = true;
1829 return inlined;
1832 /* Decide on the inlining. We do so in the topological order to avoid
1833 expenses on updating data structures. */
1835 static bool
1836 early_inline_small_functions (struct cgraph_node *node)
1838 struct cgraph_edge *e;
1839 bool inlined = false;
1841 for (e = node->callees; e; e = e->next_callee)
1843 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1844 if (!inline_summary (callee)->inlinable
1845 || !e->inline_failed)
1846 continue;
1848 /* Do not consider functions not declared inline. */
1849 if (!DECL_DECLARED_INLINE_P (callee->decl)
1850 && !flag_inline_small_functions
1851 && !flag_inline_functions)
1852 continue;
1854 if (dump_file)
1855 fprintf (dump_file, "Considering inline candidate %s.\n",
1856 cgraph_node_name (callee));
1858 if (!can_early_inline_edge_p (e))
1859 continue;
1861 if (cgraph_edge_recursive_p (e))
1863 if (dump_file)
1864 fprintf (dump_file, " Not inlining: recursive call.\n");
1865 continue;
1868 if (!want_early_inline_function_p (e))
1869 continue;
1871 if (dump_file)
1872 fprintf (dump_file, " Inlining %s into %s.\n",
1873 xstrdup (cgraph_node_name (callee)),
1874 xstrdup (cgraph_node_name (e->caller)));
1875 inline_call (e, true, NULL, NULL);
1876 inlined = true;
1879 return inlined;
1882 /* Do inlining of small functions. Doing so early helps profiling and other
1883 passes to be somewhat more effective and avoids some code duplication in
1884 later real inlining pass for testcases with very many function calls. */
1885 static unsigned int
1886 early_inliner (void)
1888 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1889 struct cgraph_edge *edge;
1890 unsigned int todo = 0;
1891 int iterations = 0;
1892 bool inlined = false;
1894 if (seen_error ())
1895 return 0;
1897 /* Do nothing if datastructures for ipa-inliner are already computed. This
1898 happens when some pass decides to construct new function and
1899 cgraph_add_new_function calls lowering passes and early optimization on
1900 it. This may confuse ourself when early inliner decide to inline call to
1901 function clone, because function clones don't have parameter list in
1902 ipa-prop matching their signature. */
1903 if (ipa_node_params_vector)
1904 return 0;
1906 #ifdef ENABLE_CHECKING
1907 verify_cgraph_node (node);
1908 #endif
1910 /* Even when not optimizing or not inlining inline always-inline
1911 functions. */
1912 inlined = inline_always_inline_functions (node);
1914 if (!optimize
1915 || flag_no_inline
1916 || !flag_early_inlining
1917 /* Never inline regular functions into always-inline functions
1918 during incremental inlining. This sucks as functions calling
1919 always inline functions will get less optimized, but at the
1920 same time inlining of functions calling always inline
1921 function into an always inline function might introduce
1922 cycles of edges to be always inlined in the callgraph.
1924 We might want to be smarter and just avoid this type of inlining. */
1925 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
1927 else if (lookup_attribute ("flatten",
1928 DECL_ATTRIBUTES (node->decl)) != NULL)
1930 /* When the function is marked to be flattened, recursively inline
1931 all calls in it. */
1932 if (dump_file)
1933 fprintf (dump_file,
1934 "Flattening %s\n", cgraph_node_name (node));
1935 flatten_function (node, true);
1936 inlined = true;
1938 else
1940 /* We iterate incremental inlining to get trivial cases of indirect
1941 inlining. */
1942 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
1943 && early_inline_small_functions (node))
1945 timevar_push (TV_INTEGRATION);
1946 todo |= optimize_inline_calls (current_function_decl);
1948 /* Technically we ought to recompute inline parameters so the new
1949 iteration of early inliner works as expected. We however have
1950 values approximately right and thus we only need to update edge
1951 info that might be cleared out for newly discovered edges. */
1952 for (edge = node->callees; edge; edge = edge->next_callee)
1954 struct inline_edge_summary *es = inline_edge_summary (edge);
1955 es->call_stmt_size
1956 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
1957 es->call_stmt_time
1958 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
1959 if (edge->callee->decl
1960 && !gimple_check_call_matching_types (edge->call_stmt,
1961 edge->callee->decl))
1962 edge->call_stmt_cannot_inline_p = true;
1964 timevar_pop (TV_INTEGRATION);
1965 iterations++;
1966 inlined = false;
1968 if (dump_file)
1969 fprintf (dump_file, "Iterations: %i\n", iterations);
1972 if (inlined)
1974 timevar_push (TV_INTEGRATION);
1975 todo |= optimize_inline_calls (current_function_decl);
1976 timevar_pop (TV_INTEGRATION);
1979 cfun->always_inline_functions_inlined = true;
1981 return todo;
1984 struct gimple_opt_pass pass_early_inline =
1987 GIMPLE_PASS,
1988 "einline", /* name */
1989 NULL, /* gate */
1990 early_inliner, /* execute */
1991 NULL, /* sub */
1992 NULL, /* next */
1993 0, /* static_pass_number */
1994 TV_INLINE_HEURISTICS, /* tv_id */
1995 PROP_ssa, /* properties_required */
1996 0, /* properties_provided */
1997 0, /* properties_destroyed */
1998 0, /* todo_flags_start */
1999 0 /* todo_flags_finish */
2004 /* When to run IPA inlining. Inlining of always-inline functions
2005 happens during early inlining.
2007 Enable inlining unconditoinally at -flto. We need size estimates to
2008 drive partitioning. */
2010 static bool
2011 gate_ipa_inline (void)
2013 return optimize || flag_lto || flag_wpa;
2016 struct ipa_opt_pass_d pass_ipa_inline =
2019 IPA_PASS,
2020 "inline", /* name */
2021 gate_ipa_inline, /* gate */
2022 ipa_inline, /* execute */
2023 NULL, /* sub */
2024 NULL, /* next */
2025 0, /* static_pass_number */
2026 TV_INLINE_HEURISTICS, /* tv_id */
2027 0, /* properties_required */
2028 0, /* properties_provided */
2029 0, /* properties_destroyed */
2030 TODO_remove_functions, /* todo_flags_finish */
2031 TODO_dump_cgraph
2032 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2034 inline_generate_summary, /* generate_summary */
2035 inline_write_summary, /* write_summary */
2036 inline_read_summary, /* read_summary */
2037 NULL, /* write_optimization_summary */
2038 NULL, /* read_optimization_summary */
2039 NULL, /* stmt_fixup */
2040 0, /* TODOs */
2041 inline_transform, /* function_transform */
2042 NULL, /* variable_transform */