kernel - CAM cleanup 1/N - Remove ancient scsi pccard drivers ncv, nsp, stg
[dragonfly.git] / contrib / libpcap / gencode.c
blobca4c2726faee2a5750339ee7646333e9dd011c21
1 /*#define CHASE_CHAIN*/
2 /*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22 #ifndef lint
23 static const char rcsid[] _U_ =
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
25 #endif
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #if HAVE_INTTYPES_H
35 #include <inttypes.h>
36 #elif HAVE_STDINT_H
37 #include <stdint.h>
38 #endif
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
41 #endif
42 #include <sys/types.h>
43 #include <sys/socket.h>
44 #endif /* WIN32 */
47 * XXX - why was this included even on UNIX?
49 #ifdef __MINGW32__
50 #include "ip6_misc.h"
51 #endif
53 #ifndef WIN32
55 #ifdef __NetBSD__
56 #include <sys/param.h>
57 #endif
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
62 #endif /* WIN32 */
64 #include <stdlib.h>
65 #include <string.h>
66 #include <memory.h>
67 #include <setjmp.h>
68 #include <stdarg.h>
70 #ifdef MSDOS
71 #include "pcap-dos.h"
72 #endif
74 #include "pcap-int.h"
76 #include "ethertype.h"
77 #include "nlpid.h"
78 #include "llc.h"
79 #include "gencode.h"
80 #include "ieee80211.h"
81 #include "atmuni31.h"
82 #include "sunatmpos.h"
83 #include "ppp.h"
84 #include "pcap/sll.h"
85 #include "pcap/ipnet.h"
86 #include "arcnet.h"
87 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88 #include <linux/types.h>
89 #include <linux/if_packet.h>
90 #include <linux/filter.h>
91 #endif
92 #ifdef HAVE_NET_PFVAR_H
93 #include <sys/socket.h>
94 #include <net/if.h>
95 #include <net/pf/pfvar.h>
96 #include <net/pf/if_pflog.h>
97 #endif
98 #ifndef offsetof
99 #define offsetof(s, e) ((size_t)&((s *)0)->e)
100 #endif
101 #ifdef INET6
102 #ifndef WIN32
103 #include <netdb.h> /* for "struct addrinfo" */
104 #endif /* WIN32 */
105 #endif /*INET6*/
106 #include <pcap/namedb.h>
108 #define ETHERMTU 1500
110 #ifndef IPPROTO_HOPOPTS
111 #define IPPROTO_HOPOPTS 0
112 #endif
113 #ifndef IPPROTO_ROUTING
114 #define IPPROTO_ROUTING 43
115 #endif
116 #ifndef IPPROTO_FRAGMENT
117 #define IPPROTO_FRAGMENT 44
118 #endif
119 #ifndef IPPROTO_DSTOPTS
120 #define IPPROTO_DSTOPTS 60
121 #endif
122 #ifndef IPPROTO_SCTP
123 #define IPPROTO_SCTP 132
124 #endif
126 #ifdef HAVE_OS_PROTO_H
127 #include "os-proto.h"
128 #endif
130 #define JMP(c) ((c)|BPF_JMP|BPF_K)
132 /* Locals */
133 static jmp_buf top_ctx;
134 static pcap_t *bpf_pcap;
136 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
137 #ifdef WIN32
138 static u_int orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
139 #else
140 static u_int orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
141 #endif
143 /* XXX */
144 #ifdef PCAP_FDDIPAD
145 static int pcap_fddipad;
146 #endif
148 /* VARARGS */
149 void
150 bpf_error(const char *fmt, ...)
152 va_list ap;
154 va_start(ap, fmt);
155 if (bpf_pcap != NULL)
156 (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
157 fmt, ap);
158 va_end(ap);
159 longjmp(top_ctx, 1);
160 /* NOTREACHED */
163 static void init_linktype(pcap_t *);
165 static void init_regs(void);
166 static int alloc_reg(void);
167 static void free_reg(int);
169 static struct block *root;
172 * Value passed to gen_load_a() to indicate what the offset argument
173 * is relative to.
175 enum e_offrel {
176 OR_PACKET, /* relative to the beginning of the packet */
177 OR_LINK, /* relative to the beginning of the link-layer header */
178 OR_MACPL, /* relative to the end of the MAC-layer header */
179 OR_NET, /* relative to the network-layer header */
180 OR_NET_NOSNAP, /* relative to the network-layer header, with no SNAP header at the link layer */
181 OR_TRAN_IPV4, /* relative to the transport-layer header, with IPv4 network layer */
182 OR_TRAN_IPV6 /* relative to the transport-layer header, with IPv6 network layer */
185 #ifdef INET6
187 * As errors are handled by a longjmp, anything allocated must be freed
188 * in the longjmp handler, so it must be reachable from that handler.
189 * One thing that's allocated is the result of pcap_nametoaddrinfo();
190 * it must be freed with freeaddrinfo(). This variable points to any
191 * addrinfo structure that would need to be freed.
193 static struct addrinfo *ai;
194 #endif
197 * We divy out chunks of memory rather than call malloc each time so
198 * we don't have to worry about leaking memory. It's probably
199 * not a big deal if all this memory was wasted but if this ever
200 * goes into a library that would probably not be a good idea.
202 * XXX - this *is* in a library....
204 #define NCHUNKS 16
205 #define CHUNK0SIZE 1024
206 struct chunk {
207 u_int n_left;
208 void *m;
211 static struct chunk chunks[NCHUNKS];
212 static int cur_chunk;
214 static void *newchunk(u_int);
215 static void freechunks(void);
216 static inline struct block *new_block(int);
217 static inline struct slist *new_stmt(int);
218 static struct block *gen_retblk(int);
219 static inline void syntax(void);
221 static void backpatch(struct block *, struct block *);
222 static void merge(struct block *, struct block *);
223 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
224 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
225 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
226 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
227 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
228 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
229 bpf_u_int32);
230 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
231 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
232 bpf_u_int32, bpf_u_int32, int, bpf_int32);
233 static struct slist *gen_load_llrel(u_int, u_int);
234 static struct slist *gen_load_macplrel(u_int, u_int);
235 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
236 static struct slist *gen_loadx_iphdrlen(void);
237 static struct block *gen_uncond(int);
238 static inline struct block *gen_true(void);
239 static inline struct block *gen_false(void);
240 static struct block *gen_ether_linktype(int);
241 static struct block *gen_ipnet_linktype(int);
242 static struct block *gen_linux_sll_linktype(int);
243 static struct slist *gen_load_prism_llprefixlen(void);
244 static struct slist *gen_load_avs_llprefixlen(void);
245 static struct slist *gen_load_radiotap_llprefixlen(void);
246 static struct slist *gen_load_ppi_llprefixlen(void);
247 static void insert_compute_vloffsets(struct block *);
248 static struct slist *gen_llprefixlen(void);
249 static struct slist *gen_off_macpl(void);
250 static int ethertype_to_ppptype(int);
251 static struct block *gen_linktype(int);
252 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
253 static struct block *gen_llc_linktype(int);
254 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
255 #ifdef INET6
256 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
257 #endif
258 static struct block *gen_ahostop(const u_char *, int);
259 static struct block *gen_ehostop(const u_char *, int);
260 static struct block *gen_fhostop(const u_char *, int);
261 static struct block *gen_thostop(const u_char *, int);
262 static struct block *gen_wlanhostop(const u_char *, int);
263 static struct block *gen_ipfchostop(const u_char *, int);
264 static struct block *gen_dnhostop(bpf_u_int32, int);
265 static struct block *gen_mpls_linktype(int);
266 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
267 #ifdef INET6
268 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
269 #endif
270 #ifndef INET6
271 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
272 #endif
273 static struct block *gen_ipfrag(void);
274 static struct block *gen_portatom(int, bpf_int32);
275 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
276 static struct block *gen_portatom6(int, bpf_int32);
277 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
278 struct block *gen_portop(int, int, int);
279 static struct block *gen_port(int, int, int);
280 struct block *gen_portrangeop(int, int, int, int);
281 static struct block *gen_portrange(int, int, int, int);
282 struct block *gen_portop6(int, int, int);
283 static struct block *gen_port6(int, int, int);
284 struct block *gen_portrangeop6(int, int, int, int);
285 static struct block *gen_portrange6(int, int, int, int);
286 static int lookup_proto(const char *, int);
287 static struct block *gen_protochain(int, int, int);
288 static struct block *gen_proto(int, int, int);
289 static struct slist *xfer_to_x(struct arth *);
290 static struct slist *xfer_to_a(struct arth *);
291 static struct block *gen_mac_multicast(int);
292 static struct block *gen_len(int, int);
293 static struct block *gen_check_802_11_data_frame(void);
295 static struct block *gen_ppi_dlt_check(void);
296 static struct block *gen_msg_abbrev(int type);
298 static void *
299 newchunk(n)
300 u_int n;
302 struct chunk *cp;
303 int k;
304 size_t size;
306 #ifndef __NetBSD__
307 /* XXX Round up to nearest long. */
308 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
309 #else
310 /* XXX Round up to structure boundary. */
311 n = ALIGN(n);
312 #endif
314 cp = &chunks[cur_chunk];
315 if (n > cp->n_left) {
316 ++cp, k = ++cur_chunk;
317 if (k >= NCHUNKS)
318 bpf_error("out of memory");
319 size = CHUNK0SIZE << k;
320 cp->m = (void *)malloc(size);
321 if (cp->m == NULL)
322 bpf_error("out of memory");
323 memset((char *)cp->m, 0, size);
324 cp->n_left = size;
325 if (n > size)
326 bpf_error("out of memory");
328 cp->n_left -= n;
329 return (void *)((char *)cp->m + cp->n_left);
332 static void
333 freechunks()
335 int i;
337 cur_chunk = 0;
338 for (i = 0; i < NCHUNKS; ++i)
339 if (chunks[i].m != NULL) {
340 free(chunks[i].m);
341 chunks[i].m = NULL;
346 * A strdup whose allocations are freed after code generation is over.
348 char *
349 sdup(s)
350 register const char *s;
352 int n = strlen(s) + 1;
353 char *cp = newchunk(n);
355 strlcpy(cp, s, n);
356 return (cp);
359 static inline struct block *
360 new_block(code)
361 int code;
363 struct block *p;
365 p = (struct block *)newchunk(sizeof(*p));
366 p->s.code = code;
367 p->head = p;
369 return p;
372 static inline struct slist *
373 new_stmt(code)
374 int code;
376 struct slist *p;
378 p = (struct slist *)newchunk(sizeof(*p));
379 p->s.code = code;
381 return p;
384 static struct block *
385 gen_retblk(v)
386 int v;
388 struct block *b = new_block(BPF_RET|BPF_K);
390 b->s.k = v;
391 return b;
394 static inline void
395 syntax()
397 bpf_error("syntax error in filter expression");
400 static bpf_u_int32 netmask;
401 static int snaplen;
402 int no_optimize;
403 #ifdef WIN32
404 static int
405 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
406 const char *buf, int optimize, bpf_u_int32 mask);
409 pcap_compile(pcap_t *p, struct bpf_program *program,
410 const char *buf, int optimize, bpf_u_int32 mask)
412 int result;
414 EnterCriticalSection(&g_PcapCompileCriticalSection);
416 result = pcap_compile_unsafe(p, program, buf, optimize, mask);
418 LeaveCriticalSection(&g_PcapCompileCriticalSection);
420 return result;
423 static int
424 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
425 const char *buf, int optimize, bpf_u_int32 mask)
426 #else /* WIN32 */
428 pcap_compile(pcap_t *p, struct bpf_program *program,
429 const char *buf, int optimize, bpf_u_int32 mask)
430 #endif /* WIN32 */
432 extern int n_errors;
433 const char * volatile xbuf = buf;
434 u_int len;
437 * If this pcap_t hasn't been activated, it doesn't have a
438 * link-layer type, so we can't use it.
440 if (!p->activated) {
441 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
442 "not-yet-activated pcap_t passed to pcap_compile");
443 return (-1);
445 no_optimize = 0;
446 n_errors = 0;
447 root = NULL;
448 bpf_pcap = p;
449 init_regs();
450 if (setjmp(top_ctx)) {
451 #ifdef INET6
452 if (ai != NULL) {
453 freeaddrinfo(ai);
454 ai = NULL;
456 #endif
457 lex_cleanup();
458 freechunks();
459 return (-1);
462 netmask = mask;
464 snaplen = pcap_snapshot(p);
465 if (snaplen == 0) {
466 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
467 "snaplen of 0 rejects all packets");
468 return -1;
471 lex_init(xbuf ? xbuf : "");
472 init_linktype(p);
473 (void)pcap_parse();
475 if (n_errors)
476 syntax();
478 if (root == NULL)
479 root = gen_retblk(snaplen);
481 if (optimize && !no_optimize) {
482 bpf_optimize(&root);
483 if (root == NULL ||
484 (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
485 bpf_error("expression rejects all packets");
487 program->bf_insns = icode_to_fcode(root, &len);
488 program->bf_len = len;
490 lex_cleanup();
491 freechunks();
492 return (0);
496 * entry point for using the compiler with no pcap open
497 * pass in all the stuff that is needed explicitly instead.
500 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
501 struct bpf_program *program,
502 const char *buf, int optimize, bpf_u_int32 mask)
504 pcap_t *p;
505 int ret;
507 p = pcap_open_dead(linktype_arg, snaplen_arg);
508 if (p == NULL)
509 return (-1);
510 ret = pcap_compile(p, program, buf, optimize, mask);
511 pcap_close(p);
512 return (ret);
516 * Clean up a "struct bpf_program" by freeing all the memory allocated
517 * in it.
519 void
520 pcap_freecode(struct bpf_program *program)
522 program->bf_len = 0;
523 if (program->bf_insns != NULL) {
524 free((char *)program->bf_insns);
525 program->bf_insns = NULL;
530 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
531 * which of the jt and jf fields has been resolved and which is a pointer
532 * back to another unresolved block (or nil). At least one of the fields
533 * in each block is already resolved.
535 static void
536 backpatch(list, target)
537 struct block *list, *target;
539 struct block *next;
541 while (list) {
542 if (!list->sense) {
543 next = JT(list);
544 JT(list) = target;
545 } else {
546 next = JF(list);
547 JF(list) = target;
549 list = next;
554 * Merge the lists in b0 and b1, using the 'sense' field to indicate
555 * which of jt and jf is the link.
557 static void
558 merge(b0, b1)
559 struct block *b0, *b1;
561 register struct block **p = &b0;
563 /* Find end of list. */
564 while (*p)
565 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
567 /* Concatenate the lists. */
568 *p = b1;
571 void
572 finish_parse(p)
573 struct block *p;
575 struct block *ppi_dlt_check;
578 * Insert before the statements of the first (root) block any
579 * statements needed to load the lengths of any variable-length
580 * headers into registers.
582 * XXX - a fancier strategy would be to insert those before the
583 * statements of all blocks that use those lengths and that
584 * have no predecessors that use them, so that we only compute
585 * the lengths if we need them. There might be even better
586 * approaches than that.
588 * However, those strategies would be more complicated, and
589 * as we don't generate code to compute a length if the
590 * program has no tests that use the length, and as most
591 * tests will probably use those lengths, we would just
592 * postpone computing the lengths so that it's not done
593 * for tests that fail early, and it's not clear that's
594 * worth the effort.
596 insert_compute_vloffsets(p->head);
599 * For DLT_PPI captures, generate a check of the per-packet
600 * DLT value to make sure it's DLT_IEEE802_11.
602 ppi_dlt_check = gen_ppi_dlt_check();
603 if (ppi_dlt_check != NULL)
604 gen_and(ppi_dlt_check, p);
606 backpatch(p, gen_retblk(snaplen));
607 p->sense = !p->sense;
608 backpatch(p, gen_retblk(0));
609 root = p->head;
612 void
613 gen_and(b0, b1)
614 struct block *b0, *b1;
616 backpatch(b0, b1->head);
617 b0->sense = !b0->sense;
618 b1->sense = !b1->sense;
619 merge(b1, b0);
620 b1->sense = !b1->sense;
621 b1->head = b0->head;
624 void
625 gen_or(b0, b1)
626 struct block *b0, *b1;
628 b0->sense = !b0->sense;
629 backpatch(b0, b1->head);
630 b0->sense = !b0->sense;
631 merge(b1, b0);
632 b1->head = b0->head;
635 void
636 gen_not(b)
637 struct block *b;
639 b->sense = !b->sense;
642 static struct block *
643 gen_cmp(offrel, offset, size, v)
644 enum e_offrel offrel;
645 u_int offset, size;
646 bpf_int32 v;
648 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
651 static struct block *
652 gen_cmp_gt(offrel, offset, size, v)
653 enum e_offrel offrel;
654 u_int offset, size;
655 bpf_int32 v;
657 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
660 static struct block *
661 gen_cmp_ge(offrel, offset, size, v)
662 enum e_offrel offrel;
663 u_int offset, size;
664 bpf_int32 v;
666 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
669 static struct block *
670 gen_cmp_lt(offrel, offset, size, v)
671 enum e_offrel offrel;
672 u_int offset, size;
673 bpf_int32 v;
675 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
678 static struct block *
679 gen_cmp_le(offrel, offset, size, v)
680 enum e_offrel offrel;
681 u_int offset, size;
682 bpf_int32 v;
684 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
687 static struct block *
688 gen_mcmp(offrel, offset, size, v, mask)
689 enum e_offrel offrel;
690 u_int offset, size;
691 bpf_int32 v;
692 bpf_u_int32 mask;
694 return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
697 static struct block *
698 gen_bcmp(offrel, offset, size, v)
699 enum e_offrel offrel;
700 register u_int offset, size;
701 register const u_char *v;
703 register struct block *b, *tmp;
705 b = NULL;
706 while (size >= 4) {
707 register const u_char *p = &v[size - 4];
708 bpf_int32 w = ((bpf_int32)p[0] << 24) |
709 ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
711 tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
712 if (b != NULL)
713 gen_and(b, tmp);
714 b = tmp;
715 size -= 4;
717 while (size >= 2) {
718 register const u_char *p = &v[size - 2];
719 bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
721 tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
722 if (b != NULL)
723 gen_and(b, tmp);
724 b = tmp;
725 size -= 2;
727 if (size > 0) {
728 tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
729 if (b != NULL)
730 gen_and(b, tmp);
731 b = tmp;
733 return b;
737 * AND the field of size "size" at offset "offset" relative to the header
738 * specified by "offrel" with "mask", and compare it with the value "v"
739 * with the test specified by "jtype"; if "reverse" is true, the test
740 * should test the opposite of "jtype".
742 static struct block *
743 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
744 enum e_offrel offrel;
745 bpf_int32 v;
746 bpf_u_int32 offset, size, mask, jtype;
747 int reverse;
749 struct slist *s, *s2;
750 struct block *b;
752 s = gen_load_a(offrel, offset, size);
754 if (mask != 0xffffffff) {
755 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
756 s2->s.k = mask;
757 sappend(s, s2);
760 b = new_block(JMP(jtype));
761 b->stmts = s;
762 b->s.k = v;
763 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
764 gen_not(b);
765 return b;
769 * Various code constructs need to know the layout of the data link
770 * layer. These variables give the necessary offsets from the beginning
771 * of the packet data.
775 * This is the offset of the beginning of the link-layer header from
776 * the beginning of the raw packet data.
778 * It's usually 0, except for 802.11 with a fixed-length radio header.
779 * (For 802.11 with a variable-length radio header, we have to generate
780 * code to compute that offset; off_ll is 0 in that case.)
782 static u_int off_ll;
785 * If there's a variable-length header preceding the link-layer header,
786 * "reg_off_ll" is the register number for a register containing the
787 * length of that header, and therefore the offset of the link-layer
788 * header from the beginning of the raw packet data. Otherwise,
789 * "reg_off_ll" is -1.
791 static int reg_off_ll;
794 * This is the offset of the beginning of the MAC-layer header from
795 * the beginning of the link-layer header.
796 * It's usually 0, except for ATM LANE, where it's the offset, relative
797 * to the beginning of the raw packet data, of the Ethernet header, and
798 * for Ethernet with various additional information.
800 static u_int off_mac;
803 * This is the offset of the beginning of the MAC-layer payload,
804 * from the beginning of the raw packet data.
806 * I.e., it's the sum of the length of the link-layer header (without,
807 * for example, any 802.2 LLC header, so it's the MAC-layer
808 * portion of that header), plus any prefix preceding the
809 * link-layer header.
811 static u_int off_macpl;
814 * This is 1 if the offset of the beginning of the MAC-layer payload
815 * from the beginning of the link-layer header is variable-length.
817 static int off_macpl_is_variable;
820 * If the link layer has variable_length headers, "reg_off_macpl"
821 * is the register number for a register containing the length of the
822 * link-layer header plus the length of any variable-length header
823 * preceding the link-layer header. Otherwise, "reg_off_macpl"
824 * is -1.
826 static int reg_off_macpl;
829 * "off_linktype" is the offset to information in the link-layer header
830 * giving the packet type. This offset is relative to the beginning
831 * of the link-layer header (i.e., it doesn't include off_ll).
833 * For Ethernet, it's the offset of the Ethernet type field.
835 * For link-layer types that always use 802.2 headers, it's the
836 * offset of the LLC header.
838 * For PPP, it's the offset of the PPP type field.
840 * For Cisco HDLC, it's the offset of the CHDLC type field.
842 * For BSD loopback, it's the offset of the AF_ value.
844 * For Linux cooked sockets, it's the offset of the type field.
846 * It's set to -1 for no encapsulation, in which case, IP is assumed.
848 static u_int off_linktype;
851 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
852 * checks to check the PPP header, assumed to follow a LAN-style link-
853 * layer header and a PPPoE session header.
855 static int is_pppoes = 0;
858 * TRUE if the link layer includes an ATM pseudo-header.
860 static int is_atm = 0;
863 * TRUE if "lane" appeared in the filter; it causes us to generate
864 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
866 static int is_lane = 0;
869 * These are offsets for the ATM pseudo-header.
871 static u_int off_vpi;
872 static u_int off_vci;
873 static u_int off_proto;
876 * These are offsets for the MTP2 fields.
878 static u_int off_li;
881 * These are offsets for the MTP3 fields.
883 static u_int off_sio;
884 static u_int off_opc;
885 static u_int off_dpc;
886 static u_int off_sls;
889 * This is the offset of the first byte after the ATM pseudo_header,
890 * or -1 if there is no ATM pseudo-header.
892 static u_int off_payload;
895 * These are offsets to the beginning of the network-layer header.
896 * They are relative to the beginning of the MAC-layer payload (i.e.,
897 * they don't include off_ll or off_macpl).
899 * If the link layer never uses 802.2 LLC:
901 * "off_nl" and "off_nl_nosnap" are the same.
903 * If the link layer always uses 802.2 LLC:
905 * "off_nl" is the offset if there's a SNAP header following
906 * the 802.2 header;
908 * "off_nl_nosnap" is the offset if there's no SNAP header.
910 * If the link layer is Ethernet:
912 * "off_nl" is the offset if the packet is an Ethernet II packet
913 * (we assume no 802.3+802.2+SNAP);
915 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
916 * with an 802.2 header following it.
918 static u_int off_nl;
919 static u_int off_nl_nosnap;
921 static int linktype;
923 static void
924 init_linktype(p)
925 pcap_t *p;
927 linktype = pcap_datalink(p);
928 #ifdef PCAP_FDDIPAD
929 pcap_fddipad = p->fddipad;
930 #endif
933 * Assume it's not raw ATM with a pseudo-header, for now.
935 off_mac = 0;
936 is_atm = 0;
937 is_lane = 0;
938 off_vpi = -1;
939 off_vci = -1;
940 off_proto = -1;
941 off_payload = -1;
944 * And that we're not doing PPPoE.
946 is_pppoes = 0;
949 * And assume we're not doing SS7.
951 off_li = -1;
952 off_sio = -1;
953 off_opc = -1;
954 off_dpc = -1;
955 off_sls = -1;
958 * Also assume it's not 802.11.
960 off_ll = 0;
961 off_macpl = 0;
962 off_macpl_is_variable = 0;
964 orig_linktype = -1;
965 orig_nl = -1;
966 label_stack_depth = 0;
968 reg_off_ll = -1;
969 reg_off_macpl = -1;
971 switch (linktype) {
973 case DLT_ARCNET:
974 off_linktype = 2;
975 off_macpl = 6;
976 off_nl = 0; /* XXX in reality, variable! */
977 off_nl_nosnap = 0; /* no 802.2 LLC */
978 return;
980 case DLT_ARCNET_LINUX:
981 off_linktype = 4;
982 off_macpl = 8;
983 off_nl = 0; /* XXX in reality, variable! */
984 off_nl_nosnap = 0; /* no 802.2 LLC */
985 return;
987 case DLT_EN10MB:
988 off_linktype = 12;
989 off_macpl = 14; /* Ethernet header length */
990 off_nl = 0; /* Ethernet II */
991 off_nl_nosnap = 3; /* 802.3+802.2 */
992 return;
994 case DLT_SLIP:
996 * SLIP doesn't have a link level type. The 16 byte
997 * header is hacked into our SLIP driver.
999 off_linktype = -1;
1000 off_macpl = 16;
1001 off_nl = 0;
1002 off_nl_nosnap = 0; /* no 802.2 LLC */
1003 return;
1005 case DLT_SLIP_BSDOS:
1006 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1007 off_linktype = -1;
1008 /* XXX end */
1009 off_macpl = 24;
1010 off_nl = 0;
1011 off_nl_nosnap = 0; /* no 802.2 LLC */
1012 return;
1014 case DLT_NULL:
1015 case DLT_LOOP:
1016 off_linktype = 0;
1017 off_macpl = 4;
1018 off_nl = 0;
1019 off_nl_nosnap = 0; /* no 802.2 LLC */
1020 return;
1022 case DLT_ENC:
1023 off_linktype = 0;
1024 off_macpl = 12;
1025 off_nl = 0;
1026 off_nl_nosnap = 0; /* no 802.2 LLC */
1027 return;
1029 case DLT_PPP:
1030 case DLT_PPP_PPPD:
1031 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1032 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1033 off_linktype = 2;
1034 off_macpl = 4;
1035 off_nl = 0;
1036 off_nl_nosnap = 0; /* no 802.2 LLC */
1037 return;
1039 case DLT_PPP_ETHER:
1041 * This does no include the Ethernet header, and
1042 * only covers session state.
1044 off_linktype = 6;
1045 off_macpl = 8;
1046 off_nl = 0;
1047 off_nl_nosnap = 0; /* no 802.2 LLC */
1048 return;
1050 case DLT_PPP_BSDOS:
1051 off_linktype = 5;
1052 off_macpl = 24;
1053 off_nl = 0;
1054 off_nl_nosnap = 0; /* no 802.2 LLC */
1055 return;
1057 case DLT_FDDI:
1059 * FDDI doesn't really have a link-level type field.
1060 * We set "off_linktype" to the offset of the LLC header.
1062 * To check for Ethernet types, we assume that SSAP = SNAP
1063 * is being used and pick out the encapsulated Ethernet type.
1064 * XXX - should we generate code to check for SNAP?
1066 off_linktype = 13;
1067 #ifdef PCAP_FDDIPAD
1068 off_linktype += pcap_fddipad;
1069 #endif
1070 off_macpl = 13; /* FDDI MAC header length */
1071 #ifdef PCAP_FDDIPAD
1072 off_macpl += pcap_fddipad;
1073 #endif
1074 off_nl = 8; /* 802.2+SNAP */
1075 off_nl_nosnap = 3; /* 802.2 */
1076 return;
1078 case DLT_IEEE802:
1080 * Token Ring doesn't really have a link-level type field.
1081 * We set "off_linktype" to the offset of the LLC header.
1083 * To check for Ethernet types, we assume that SSAP = SNAP
1084 * is being used and pick out the encapsulated Ethernet type.
1085 * XXX - should we generate code to check for SNAP?
1087 * XXX - the header is actually variable-length.
1088 * Some various Linux patched versions gave 38
1089 * as "off_linktype" and 40 as "off_nl"; however,
1090 * if a token ring packet has *no* routing
1091 * information, i.e. is not source-routed, the correct
1092 * values are 20 and 22, as they are in the vanilla code.
1094 * A packet is source-routed iff the uppermost bit
1095 * of the first byte of the source address, at an
1096 * offset of 8, has the uppermost bit set. If the
1097 * packet is source-routed, the total number of bytes
1098 * of routing information is 2 plus bits 0x1F00 of
1099 * the 16-bit value at an offset of 14 (shifted right
1100 * 8 - figure out which byte that is).
1102 off_linktype = 14;
1103 off_macpl = 14; /* Token Ring MAC header length */
1104 off_nl = 8; /* 802.2+SNAP */
1105 off_nl_nosnap = 3; /* 802.2 */
1106 return;
1108 case DLT_IEEE802_11:
1109 case DLT_PRISM_HEADER:
1110 case DLT_IEEE802_11_RADIO_AVS:
1111 case DLT_IEEE802_11_RADIO:
1113 * 802.11 doesn't really have a link-level type field.
1114 * We set "off_linktype" to the offset of the LLC header.
1116 * To check for Ethernet types, we assume that SSAP = SNAP
1117 * is being used and pick out the encapsulated Ethernet type.
1118 * XXX - should we generate code to check for SNAP?
1120 * We also handle variable-length radio headers here.
1121 * The Prism header is in theory variable-length, but in
1122 * practice it's always 144 bytes long. However, some
1123 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1124 * sometimes or always supply an AVS header, so we
1125 * have to check whether the radio header is a Prism
1126 * header or an AVS header, so, in practice, it's
1127 * variable-length.
1129 off_linktype = 24;
1130 off_macpl = 0; /* link-layer header is variable-length */
1131 off_macpl_is_variable = 1;
1132 off_nl = 8; /* 802.2+SNAP */
1133 off_nl_nosnap = 3; /* 802.2 */
1134 return;
1136 case DLT_PPI:
1138 * At the moment we treat PPI the same way that we treat
1139 * normal Radiotap encoded packets. The difference is in
1140 * the function that generates the code at the beginning
1141 * to compute the header length. Since this code generator
1142 * of PPI supports bare 802.11 encapsulation only (i.e.
1143 * the encapsulated DLT should be DLT_IEEE802_11) we
1144 * generate code to check for this too.
1146 off_linktype = 24;
1147 off_macpl = 0; /* link-layer header is variable-length */
1148 off_macpl_is_variable = 1;
1149 off_nl = 8; /* 802.2+SNAP */
1150 off_nl_nosnap = 3; /* 802.2 */
1151 return;
1153 case DLT_ATM_RFC1483:
1154 case DLT_ATM_CLIP: /* Linux ATM defines this */
1156 * assume routed, non-ISO PDUs
1157 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1159 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1160 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1161 * latter would presumably be treated the way PPPoE
1162 * should be, so you can do "pppoe and udp port 2049"
1163 * or "pppoa and tcp port 80" and have it check for
1164 * PPPo{A,E} and a PPP protocol of IP and....
1166 off_linktype = 0;
1167 off_macpl = 0; /* packet begins with LLC header */
1168 off_nl = 8; /* 802.2+SNAP */
1169 off_nl_nosnap = 3; /* 802.2 */
1170 return;
1172 case DLT_SUNATM:
1174 * Full Frontal ATM; you get AALn PDUs with an ATM
1175 * pseudo-header.
1177 is_atm = 1;
1178 off_vpi = SUNATM_VPI_POS;
1179 off_vci = SUNATM_VCI_POS;
1180 off_proto = PROTO_POS;
1181 off_mac = -1; /* assume LLC-encapsulated, so no MAC-layer header */
1182 off_payload = SUNATM_PKT_BEGIN_POS;
1183 off_linktype = off_payload;
1184 off_macpl = off_payload; /* if LLC-encapsulated */
1185 off_nl = 8; /* 802.2+SNAP */
1186 off_nl_nosnap = 3; /* 802.2 */
1187 return;
1189 case DLT_RAW:
1190 case DLT_IPV4:
1191 case DLT_IPV6:
1192 off_linktype = -1;
1193 off_macpl = 0;
1194 off_nl = 0;
1195 off_nl_nosnap = 0; /* no 802.2 LLC */
1196 return;
1198 case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
1199 off_linktype = 14;
1200 off_macpl = 16;
1201 off_nl = 0;
1202 off_nl_nosnap = 0; /* no 802.2 LLC */
1203 return;
1205 case DLT_LTALK:
1207 * LocalTalk does have a 1-byte type field in the LLAP header,
1208 * but really it just indicates whether there is a "short" or
1209 * "long" DDP packet following.
1211 off_linktype = -1;
1212 off_macpl = 0;
1213 off_nl = 0;
1214 off_nl_nosnap = 0; /* no 802.2 LLC */
1215 return;
1217 case DLT_IP_OVER_FC:
1219 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1220 * link-level type field. We set "off_linktype" to the
1221 * offset of the LLC header.
1223 * To check for Ethernet types, we assume that SSAP = SNAP
1224 * is being used and pick out the encapsulated Ethernet type.
1225 * XXX - should we generate code to check for SNAP? RFC
1226 * 2625 says SNAP should be used.
1228 off_linktype = 16;
1229 off_macpl = 16;
1230 off_nl = 8; /* 802.2+SNAP */
1231 off_nl_nosnap = 3; /* 802.2 */
1232 return;
1234 case DLT_FRELAY:
1236 * XXX - we should set this to handle SNAP-encapsulated
1237 * frames (NLPID of 0x80).
1239 off_linktype = -1;
1240 off_macpl = 0;
1241 off_nl = 0;
1242 off_nl_nosnap = 0; /* no 802.2 LLC */
1243 return;
1246 * the only BPF-interesting FRF.16 frames are non-control frames;
1247 * Frame Relay has a variable length link-layer
1248 * so lets start with offset 4 for now and increments later on (FIXME);
1250 case DLT_MFR:
1251 off_linktype = -1;
1252 off_macpl = 0;
1253 off_nl = 4;
1254 off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1255 return;
1257 case DLT_APPLE_IP_OVER_IEEE1394:
1258 off_linktype = 16;
1259 off_macpl = 18;
1260 off_nl = 0;
1261 off_nl_nosnap = 0; /* no 802.2 LLC */
1262 return;
1264 case DLT_SYMANTEC_FIREWALL:
1265 off_linktype = 6;
1266 off_macpl = 44;
1267 off_nl = 0; /* Ethernet II */
1268 off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1269 return;
1271 #ifdef HAVE_NET_PFVAR_H
1272 case DLT_PFLOG:
1273 off_linktype = 0;
1274 off_macpl = PFLOG_HDRLEN;
1275 off_nl = 0;
1276 off_nl_nosnap = 0; /* no 802.2 LLC */
1277 return;
1278 #endif
1280 case DLT_JUNIPER_MFR:
1281 case DLT_JUNIPER_MLFR:
1282 case DLT_JUNIPER_MLPPP:
1283 case DLT_JUNIPER_PPP:
1284 case DLT_JUNIPER_CHDLC:
1285 case DLT_JUNIPER_FRELAY:
1286 off_linktype = 4;
1287 off_macpl = 4;
1288 off_nl = 0;
1289 off_nl_nosnap = -1; /* no 802.2 LLC */
1290 return;
1292 case DLT_JUNIPER_ATM1:
1293 off_linktype = 4; /* in reality variable between 4-8 */
1294 off_macpl = 4; /* in reality variable between 4-8 */
1295 off_nl = 0;
1296 off_nl_nosnap = 10;
1297 return;
1299 case DLT_JUNIPER_ATM2:
1300 off_linktype = 8; /* in reality variable between 8-12 */
1301 off_macpl = 8; /* in reality variable between 8-12 */
1302 off_nl = 0;
1303 off_nl_nosnap = 10;
1304 return;
1306 /* frames captured on a Juniper PPPoE service PIC
1307 * contain raw ethernet frames */
1308 case DLT_JUNIPER_PPPOE:
1309 case DLT_JUNIPER_ETHER:
1310 off_macpl = 14;
1311 off_linktype = 16;
1312 off_nl = 18; /* Ethernet II */
1313 off_nl_nosnap = 21; /* 802.3+802.2 */
1314 return;
1316 case DLT_JUNIPER_PPPOE_ATM:
1317 off_linktype = 4;
1318 off_macpl = 6;
1319 off_nl = 0;
1320 off_nl_nosnap = -1; /* no 802.2 LLC */
1321 return;
1323 case DLT_JUNIPER_GGSN:
1324 off_linktype = 6;
1325 off_macpl = 12;
1326 off_nl = 0;
1327 off_nl_nosnap = -1; /* no 802.2 LLC */
1328 return;
1330 case DLT_JUNIPER_ES:
1331 off_linktype = 6;
1332 off_macpl = -1; /* not really a network layer but raw IP addresses */
1333 off_nl = -1; /* not really a network layer but raw IP addresses */
1334 off_nl_nosnap = -1; /* no 802.2 LLC */
1335 return;
1337 case DLT_JUNIPER_MONITOR:
1338 off_linktype = 12;
1339 off_macpl = 12;
1340 off_nl = 0; /* raw IP/IP6 header */
1341 off_nl_nosnap = -1; /* no 802.2 LLC */
1342 return;
1344 case DLT_JUNIPER_SERVICES:
1345 off_linktype = 12;
1346 off_macpl = -1; /* L3 proto location dep. on cookie type */
1347 off_nl = -1; /* L3 proto location dep. on cookie type */
1348 off_nl_nosnap = -1; /* no 802.2 LLC */
1349 return;
1351 case DLT_JUNIPER_VP:
1352 off_linktype = 18;
1353 off_macpl = -1;
1354 off_nl = -1;
1355 off_nl_nosnap = -1;
1356 return;
1358 case DLT_JUNIPER_ST:
1359 off_linktype = 18;
1360 off_macpl = -1;
1361 off_nl = -1;
1362 off_nl_nosnap = -1;
1363 return;
1365 case DLT_JUNIPER_ISM:
1366 off_linktype = 8;
1367 off_macpl = -1;
1368 off_nl = -1;
1369 off_nl_nosnap = -1;
1370 return;
1372 case DLT_JUNIPER_VS:
1373 case DLT_JUNIPER_SRX_E2E:
1374 case DLT_JUNIPER_FIBRECHANNEL:
1375 case DLT_JUNIPER_ATM_CEMIC:
1376 off_linktype = 8;
1377 off_macpl = -1;
1378 off_nl = -1;
1379 off_nl_nosnap = -1;
1380 return;
1382 case DLT_MTP2:
1383 off_li = 2;
1384 off_sio = 3;
1385 off_opc = 4;
1386 off_dpc = 4;
1387 off_sls = 7;
1388 off_linktype = -1;
1389 off_macpl = -1;
1390 off_nl = -1;
1391 off_nl_nosnap = -1;
1392 return;
1394 case DLT_MTP2_WITH_PHDR:
1395 off_li = 6;
1396 off_sio = 7;
1397 off_opc = 8;
1398 off_dpc = 8;
1399 off_sls = 11;
1400 off_linktype = -1;
1401 off_macpl = -1;
1402 off_nl = -1;
1403 off_nl_nosnap = -1;
1404 return;
1406 case DLT_ERF:
1407 off_li = 22;
1408 off_sio = 23;
1409 off_opc = 24;
1410 off_dpc = 24;
1411 off_sls = 27;
1412 off_linktype = -1;
1413 off_macpl = -1;
1414 off_nl = -1;
1415 off_nl_nosnap = -1;
1416 return;
1418 case DLT_PFSYNC:
1419 off_linktype = -1;
1420 off_macpl = 4;
1421 off_nl = 0;
1422 off_nl_nosnap = 0;
1423 return;
1425 case DLT_AX25_KISS:
1427 * Currently, only raw "link[N:M]" filtering is supported.
1429 off_linktype = -1; /* variable, min 15, max 71 steps of 7 */
1430 off_macpl = -1;
1431 off_nl = -1; /* variable, min 16, max 71 steps of 7 */
1432 off_nl_nosnap = -1; /* no 802.2 LLC */
1433 off_mac = 1; /* step over the kiss length byte */
1434 return;
1436 case DLT_IPNET:
1437 off_linktype = 1;
1438 off_macpl = 24; /* ipnet header length */
1439 off_nl = 0;
1440 off_nl_nosnap = -1;
1441 return;
1443 case DLT_NETANALYZER:
1444 off_mac = 4; /* MAC header is past 4-byte pseudo-header */
1445 off_linktype = 16; /* includes 4-byte pseudo-header */
1446 off_macpl = 18; /* pseudo-header+Ethernet header length */
1447 off_nl = 0; /* Ethernet II */
1448 off_nl_nosnap = 3; /* 802.3+802.2 */
1449 return;
1451 case DLT_NETANALYZER_TRANSPARENT:
1452 off_mac = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1453 off_linktype = 24; /* includes 4-byte pseudo-header+preamble+SFD */
1454 off_macpl = 26; /* pseudo-header+preamble+SFD+Ethernet header length */
1455 off_nl = 0; /* Ethernet II */
1456 off_nl_nosnap = 3; /* 802.3+802.2 */
1457 return;
1459 default:
1461 * For values in the range in which we've assigned new
1462 * DLT_ values, only raw "link[N:M]" filtering is supported.
1464 if (linktype >= DLT_MATCHING_MIN &&
1465 linktype <= DLT_MATCHING_MAX) {
1466 off_linktype = -1;
1467 off_macpl = -1;
1468 off_nl = -1;
1469 off_nl_nosnap = -1;
1470 return;
1474 bpf_error("unknown data link type %d", linktype);
1475 /* NOTREACHED */
1479 * Load a value relative to the beginning of the link-layer header.
1480 * The link-layer header doesn't necessarily begin at the beginning
1481 * of the packet data; there might be a variable-length prefix containing
1482 * radio information.
1484 static struct slist *
1485 gen_load_llrel(offset, size)
1486 u_int offset, size;
1488 struct slist *s, *s2;
1490 s = gen_llprefixlen();
1493 * If "s" is non-null, it has code to arrange that the X register
1494 * contains the length of the prefix preceding the link-layer
1495 * header.
1497 * Otherwise, the length of the prefix preceding the link-layer
1498 * header is "off_ll".
1500 if (s != NULL) {
1502 * There's a variable-length prefix preceding the
1503 * link-layer header. "s" points to a list of statements
1504 * that put the length of that prefix into the X register.
1505 * do an indirect load, to use the X register as an offset.
1507 s2 = new_stmt(BPF_LD|BPF_IND|size);
1508 s2->s.k = offset;
1509 sappend(s, s2);
1510 } else {
1512 * There is no variable-length header preceding the
1513 * link-layer header; add in off_ll, which, if there's
1514 * a fixed-length header preceding the link-layer header,
1515 * is the length of that header.
1517 s = new_stmt(BPF_LD|BPF_ABS|size);
1518 s->s.k = offset + off_ll;
1520 return s;
1524 * Load a value relative to the beginning of the MAC-layer payload.
1526 static struct slist *
1527 gen_load_macplrel(offset, size)
1528 u_int offset, size;
1530 struct slist *s, *s2;
1532 s = gen_off_macpl();
1535 * If s is non-null, the offset of the MAC-layer payload is
1536 * variable, and s points to a list of instructions that
1537 * arrange that the X register contains that offset.
1539 * Otherwise, the offset of the MAC-layer payload is constant,
1540 * and is in off_macpl.
1542 if (s != NULL) {
1544 * The offset of the MAC-layer payload is in the X
1545 * register. Do an indirect load, to use the X register
1546 * as an offset.
1548 s2 = new_stmt(BPF_LD|BPF_IND|size);
1549 s2->s.k = offset;
1550 sappend(s, s2);
1551 } else {
1553 * The offset of the MAC-layer payload is constant,
1554 * and is in off_macpl; load the value at that offset
1555 * plus the specified offset.
1557 s = new_stmt(BPF_LD|BPF_ABS|size);
1558 s->s.k = off_macpl + offset;
1560 return s;
1564 * Load a value relative to the beginning of the specified header.
1566 static struct slist *
1567 gen_load_a(offrel, offset, size)
1568 enum e_offrel offrel;
1569 u_int offset, size;
1571 struct slist *s, *s2;
1573 switch (offrel) {
1575 case OR_PACKET:
1576 s = new_stmt(BPF_LD|BPF_ABS|size);
1577 s->s.k = offset;
1578 break;
1580 case OR_LINK:
1581 s = gen_load_llrel(offset, size);
1582 break;
1584 case OR_MACPL:
1585 s = gen_load_macplrel(offset, size);
1586 break;
1588 case OR_NET:
1589 s = gen_load_macplrel(off_nl + offset, size);
1590 break;
1592 case OR_NET_NOSNAP:
1593 s = gen_load_macplrel(off_nl_nosnap + offset, size);
1594 break;
1596 case OR_TRAN_IPV4:
1598 * Load the X register with the length of the IPv4 header
1599 * (plus the offset of the link-layer header, if it's
1600 * preceded by a variable-length header such as a radio
1601 * header), in bytes.
1603 s = gen_loadx_iphdrlen();
1606 * Load the item at {offset of the MAC-layer payload} +
1607 * {offset, relative to the start of the MAC-layer
1608 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1609 * {specified offset}.
1611 * (If the offset of the MAC-layer payload is variable,
1612 * it's included in the value in the X register, and
1613 * off_macpl is 0.)
1615 s2 = new_stmt(BPF_LD|BPF_IND|size);
1616 s2->s.k = off_macpl + off_nl + offset;
1617 sappend(s, s2);
1618 break;
1620 case OR_TRAN_IPV6:
1621 s = gen_load_macplrel(off_nl + 40 + offset, size);
1622 break;
1624 default:
1625 abort();
1626 return NULL;
1628 return s;
1632 * Generate code to load into the X register the sum of the length of
1633 * the IPv4 header and any variable-length header preceding the link-layer
1634 * header.
1636 static struct slist *
1637 gen_loadx_iphdrlen()
1639 struct slist *s, *s2;
1641 s = gen_off_macpl();
1642 if (s != NULL) {
1644 * There's a variable-length prefix preceding the
1645 * link-layer header, or the link-layer header is itself
1646 * variable-length. "s" points to a list of statements
1647 * that put the offset of the MAC-layer payload into
1648 * the X register.
1650 * The 4*([k]&0xf) addressing mode can't be used, as we
1651 * don't have a constant offset, so we have to load the
1652 * value in question into the A register and add to it
1653 * the value from the X register.
1655 s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1656 s2->s.k = off_nl;
1657 sappend(s, s2);
1658 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1659 s2->s.k = 0xf;
1660 sappend(s, s2);
1661 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1662 s2->s.k = 2;
1663 sappend(s, s2);
1666 * The A register now contains the length of the
1667 * IP header. We need to add to it the offset of
1668 * the MAC-layer payload, which is still in the X
1669 * register, and move the result into the X register.
1671 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1672 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1673 } else {
1675 * There is no variable-length header preceding the
1676 * link-layer header, and the link-layer header is
1677 * fixed-length; load the length of the IPv4 header,
1678 * which is at an offset of off_nl from the beginning
1679 * of the MAC-layer payload, and thus at an offset
1680 * of off_mac_pl + off_nl from the beginning of the
1681 * raw packet data.
1683 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1684 s->s.k = off_macpl + off_nl;
1686 return s;
1689 static struct block *
1690 gen_uncond(rsense)
1691 int rsense;
1693 struct block *b;
1694 struct slist *s;
1696 s = new_stmt(BPF_LD|BPF_IMM);
1697 s->s.k = !rsense;
1698 b = new_block(JMP(BPF_JEQ));
1699 b->stmts = s;
1701 return b;
1704 static inline struct block *
1705 gen_true()
1707 return gen_uncond(1);
1710 static inline struct block *
1711 gen_false()
1713 return gen_uncond(0);
1717 * Byte-swap a 32-bit number.
1718 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1719 * big-endian platforms.)
1721 #define SWAPLONG(y) \
1722 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1725 * Generate code to match a particular packet type.
1727 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1728 * value, if <= ETHERMTU. We use that to determine whether to
1729 * match the type/length field or to check the type/length field for
1730 * a value <= ETHERMTU to see whether it's a type field and then do
1731 * the appropriate test.
1733 static struct block *
1734 gen_ether_linktype(proto)
1735 register int proto;
1737 struct block *b0, *b1;
1739 switch (proto) {
1741 case LLCSAP_ISONS:
1742 case LLCSAP_IP:
1743 case LLCSAP_NETBEUI:
1745 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1746 * so we check the DSAP and SSAP.
1748 * LLCSAP_IP checks for IP-over-802.2, rather
1749 * than IP-over-Ethernet or IP-over-SNAP.
1751 * XXX - should we check both the DSAP and the
1752 * SSAP, like this, or should we check just the
1753 * DSAP, as we do for other types <= ETHERMTU
1754 * (i.e., other SAP values)?
1756 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1757 gen_not(b0);
1758 b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1759 ((proto << 8) | proto));
1760 gen_and(b0, b1);
1761 return b1;
1763 case LLCSAP_IPX:
1765 * Check for;
1767 * Ethernet_II frames, which are Ethernet
1768 * frames with a frame type of ETHERTYPE_IPX;
1770 * Ethernet_802.3 frames, which are 802.3
1771 * frames (i.e., the type/length field is
1772 * a length field, <= ETHERMTU, rather than
1773 * a type field) with the first two bytes
1774 * after the Ethernet/802.3 header being
1775 * 0xFFFF;
1777 * Ethernet_802.2 frames, which are 802.3
1778 * frames with an 802.2 LLC header and
1779 * with the IPX LSAP as the DSAP in the LLC
1780 * header;
1782 * Ethernet_SNAP frames, which are 802.3
1783 * frames with an LLC header and a SNAP
1784 * header and with an OUI of 0x000000
1785 * (encapsulated Ethernet) and a protocol
1786 * ID of ETHERTYPE_IPX in the SNAP header.
1788 * XXX - should we generate the same code both
1789 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1793 * This generates code to check both for the
1794 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1796 b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1797 b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1798 gen_or(b0, b1);
1801 * Now we add code to check for SNAP frames with
1802 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1804 b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1805 gen_or(b0, b1);
1808 * Now we generate code to check for 802.3
1809 * frames in general.
1811 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1812 gen_not(b0);
1815 * Now add the check for 802.3 frames before the
1816 * check for Ethernet_802.2 and Ethernet_802.3,
1817 * as those checks should only be done on 802.3
1818 * frames, not on Ethernet frames.
1820 gen_and(b0, b1);
1823 * Now add the check for Ethernet_II frames, and
1824 * do that before checking for the other frame
1825 * types.
1827 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1828 (bpf_int32)ETHERTYPE_IPX);
1829 gen_or(b0, b1);
1830 return b1;
1832 case ETHERTYPE_ATALK:
1833 case ETHERTYPE_AARP:
1835 * EtherTalk (AppleTalk protocols on Ethernet link
1836 * layer) may use 802.2 encapsulation.
1840 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1841 * we check for an Ethernet type field less than
1842 * 1500, which means it's an 802.3 length field.
1844 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1845 gen_not(b0);
1848 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1849 * SNAP packets with an organization code of
1850 * 0x080007 (Apple, for Appletalk) and a protocol
1851 * type of ETHERTYPE_ATALK (Appletalk).
1853 * 802.2-encapsulated ETHERTYPE_AARP packets are
1854 * SNAP packets with an organization code of
1855 * 0x000000 (encapsulated Ethernet) and a protocol
1856 * type of ETHERTYPE_AARP (Appletalk ARP).
1858 if (proto == ETHERTYPE_ATALK)
1859 b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1860 else /* proto == ETHERTYPE_AARP */
1861 b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1862 gen_and(b0, b1);
1865 * Check for Ethernet encapsulation (Ethertalk
1866 * phase 1?); we just check for the Ethernet
1867 * protocol type.
1869 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1871 gen_or(b0, b1);
1872 return b1;
1874 default:
1875 if (proto <= ETHERMTU) {
1877 * This is an LLC SAP value, so the frames
1878 * that match would be 802.2 frames.
1879 * Check that the frame is an 802.2 frame
1880 * (i.e., that the length/type field is
1881 * a length field, <= ETHERMTU) and
1882 * then check the DSAP.
1884 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1885 gen_not(b0);
1886 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1887 (bpf_int32)proto);
1888 gen_and(b0, b1);
1889 return b1;
1890 } else {
1892 * This is an Ethernet type, so compare
1893 * the length/type field with it (if
1894 * the frame is an 802.2 frame, the length
1895 * field will be <= ETHERMTU, and, as
1896 * "proto" is > ETHERMTU, this test
1897 * will fail and the frame won't match,
1898 * which is what we want).
1900 return gen_cmp(OR_LINK, off_linktype, BPF_H,
1901 (bpf_int32)proto);
1907 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1908 * or IPv6 then we have an error.
1910 static struct block *
1911 gen_ipnet_linktype(proto)
1912 register int proto;
1914 switch (proto) {
1916 case ETHERTYPE_IP:
1917 return gen_cmp(OR_LINK, off_linktype, BPF_B,
1918 (bpf_int32)IPH_AF_INET);
1919 /* NOTREACHED */
1921 case ETHERTYPE_IPV6:
1922 return gen_cmp(OR_LINK, off_linktype, BPF_B,
1923 (bpf_int32)IPH_AF_INET6);
1924 /* NOTREACHED */
1926 default:
1927 break;
1930 return gen_false();
1934 * Generate code to match a particular packet type.
1936 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1937 * value, if <= ETHERMTU. We use that to determine whether to
1938 * match the type field or to check the type field for the special
1939 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1941 static struct block *
1942 gen_linux_sll_linktype(proto)
1943 register int proto;
1945 struct block *b0, *b1;
1947 switch (proto) {
1949 case LLCSAP_ISONS:
1950 case LLCSAP_IP:
1951 case LLCSAP_NETBEUI:
1953 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1954 * so we check the DSAP and SSAP.
1956 * LLCSAP_IP checks for IP-over-802.2, rather
1957 * than IP-over-Ethernet or IP-over-SNAP.
1959 * XXX - should we check both the DSAP and the
1960 * SSAP, like this, or should we check just the
1961 * DSAP, as we do for other types <= ETHERMTU
1962 * (i.e., other SAP values)?
1964 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1965 b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1966 ((proto << 8) | proto));
1967 gen_and(b0, b1);
1968 return b1;
1970 case LLCSAP_IPX:
1972 * Ethernet_II frames, which are Ethernet
1973 * frames with a frame type of ETHERTYPE_IPX;
1975 * Ethernet_802.3 frames, which have a frame
1976 * type of LINUX_SLL_P_802_3;
1978 * Ethernet_802.2 frames, which are 802.3
1979 * frames with an 802.2 LLC header (i.e, have
1980 * a frame type of LINUX_SLL_P_802_2) and
1981 * with the IPX LSAP as the DSAP in the LLC
1982 * header;
1984 * Ethernet_SNAP frames, which are 802.3
1985 * frames with an LLC header and a SNAP
1986 * header and with an OUI of 0x000000
1987 * (encapsulated Ethernet) and a protocol
1988 * ID of ETHERTYPE_IPX in the SNAP header.
1990 * First, do the checks on LINUX_SLL_P_802_2
1991 * frames; generate the check for either
1992 * Ethernet_802.2 or Ethernet_SNAP frames, and
1993 * then put a check for LINUX_SLL_P_802_2 frames
1994 * before it.
1996 b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1997 b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1998 gen_or(b0, b1);
1999 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2000 gen_and(b0, b1);
2003 * Now check for 802.3 frames and OR that with
2004 * the previous test.
2006 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2007 gen_or(b0, b1);
2010 * Now add the check for Ethernet_II frames, and
2011 * do that before checking for the other frame
2012 * types.
2014 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2015 (bpf_int32)ETHERTYPE_IPX);
2016 gen_or(b0, b1);
2017 return b1;
2019 case ETHERTYPE_ATALK:
2020 case ETHERTYPE_AARP:
2022 * EtherTalk (AppleTalk protocols on Ethernet link
2023 * layer) may use 802.2 encapsulation.
2027 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2028 * we check for the 802.2 protocol type in the
2029 * "Ethernet type" field.
2031 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2034 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2035 * SNAP packets with an organization code of
2036 * 0x080007 (Apple, for Appletalk) and a protocol
2037 * type of ETHERTYPE_ATALK (Appletalk).
2039 * 802.2-encapsulated ETHERTYPE_AARP packets are
2040 * SNAP packets with an organization code of
2041 * 0x000000 (encapsulated Ethernet) and a protocol
2042 * type of ETHERTYPE_AARP (Appletalk ARP).
2044 if (proto == ETHERTYPE_ATALK)
2045 b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2046 else /* proto == ETHERTYPE_AARP */
2047 b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2048 gen_and(b0, b1);
2051 * Check for Ethernet encapsulation (Ethertalk
2052 * phase 1?); we just check for the Ethernet
2053 * protocol type.
2055 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2057 gen_or(b0, b1);
2058 return b1;
2060 default:
2061 if (proto <= ETHERMTU) {
2063 * This is an LLC SAP value, so the frames
2064 * that match would be 802.2 frames.
2065 * Check for the 802.2 protocol type
2066 * in the "Ethernet type" field, and
2067 * then check the DSAP.
2069 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2070 LINUX_SLL_P_802_2);
2071 b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2072 (bpf_int32)proto);
2073 gen_and(b0, b1);
2074 return b1;
2075 } else {
2077 * This is an Ethernet type, so compare
2078 * the length/type field with it (if
2079 * the frame is an 802.2 frame, the length
2080 * field will be <= ETHERMTU, and, as
2081 * "proto" is > ETHERMTU, this test
2082 * will fail and the frame won't match,
2083 * which is what we want).
2085 return gen_cmp(OR_LINK, off_linktype, BPF_H,
2086 (bpf_int32)proto);
2091 static struct slist *
2092 gen_load_prism_llprefixlen()
2094 struct slist *s1, *s2;
2095 struct slist *sjeq_avs_cookie;
2096 struct slist *sjcommon;
2099 * This code is not compatible with the optimizer, as
2100 * we are generating jmp instructions within a normal
2101 * slist of instructions
2103 no_optimize = 1;
2106 * Generate code to load the length of the radio header into
2107 * the register assigned to hold that length, if one has been
2108 * assigned. (If one hasn't been assigned, no code we've
2109 * generated uses that prefix, so we don't need to generate any
2110 * code to load it.)
2112 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2113 * or always use the AVS header rather than the Prism header.
2114 * We load a 4-byte big-endian value at the beginning of the
2115 * raw packet data, and see whether, when masked with 0xFFFFF000,
2116 * it's equal to 0x80211000. If so, that indicates that it's
2117 * an AVS header (the masked-out bits are the version number).
2118 * Otherwise, it's a Prism header.
2120 * XXX - the Prism header is also, in theory, variable-length,
2121 * but no known software generates headers that aren't 144
2122 * bytes long.
2124 if (reg_off_ll != -1) {
2126 * Load the cookie.
2128 s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2129 s1->s.k = 0;
2132 * AND it with 0xFFFFF000.
2134 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2135 s2->s.k = 0xFFFFF000;
2136 sappend(s1, s2);
2139 * Compare with 0x80211000.
2141 sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2142 sjeq_avs_cookie->s.k = 0x80211000;
2143 sappend(s1, sjeq_avs_cookie);
2146 * If it's AVS:
2148 * The 4 bytes at an offset of 4 from the beginning of
2149 * the AVS header are the length of the AVS header.
2150 * That field is big-endian.
2152 s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2153 s2->s.k = 4;
2154 sappend(s1, s2);
2155 sjeq_avs_cookie->s.jt = s2;
2158 * Now jump to the code to allocate a register
2159 * into which to save the header length and
2160 * store the length there. (The "jump always"
2161 * instruction needs to have the k field set;
2162 * it's added to the PC, so, as we're jumping
2163 * over a single instruction, it should be 1.)
2165 sjcommon = new_stmt(JMP(BPF_JA));
2166 sjcommon->s.k = 1;
2167 sappend(s1, sjcommon);
2170 * Now for the code that handles the Prism header.
2171 * Just load the length of the Prism header (144)
2172 * into the A register. Have the test for an AVS
2173 * header branch here if we don't have an AVS header.
2175 s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2176 s2->s.k = 144;
2177 sappend(s1, s2);
2178 sjeq_avs_cookie->s.jf = s2;
2181 * Now allocate a register to hold that value and store
2182 * it. The code for the AVS header will jump here after
2183 * loading the length of the AVS header.
2185 s2 = new_stmt(BPF_ST);
2186 s2->s.k = reg_off_ll;
2187 sappend(s1, s2);
2188 sjcommon->s.jf = s2;
2191 * Now move it into the X register.
2193 s2 = new_stmt(BPF_MISC|BPF_TAX);
2194 sappend(s1, s2);
2196 return (s1);
2197 } else
2198 return (NULL);
2201 static struct slist *
2202 gen_load_avs_llprefixlen()
2204 struct slist *s1, *s2;
2207 * Generate code to load the length of the AVS header into
2208 * the register assigned to hold that length, if one has been
2209 * assigned. (If one hasn't been assigned, no code we've
2210 * generated uses that prefix, so we don't need to generate any
2211 * code to load it.)
2213 if (reg_off_ll != -1) {
2215 * The 4 bytes at an offset of 4 from the beginning of
2216 * the AVS header are the length of the AVS header.
2217 * That field is big-endian.
2219 s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2220 s1->s.k = 4;
2223 * Now allocate a register to hold that value and store
2224 * it.
2226 s2 = new_stmt(BPF_ST);
2227 s2->s.k = reg_off_ll;
2228 sappend(s1, s2);
2231 * Now move it into the X register.
2233 s2 = new_stmt(BPF_MISC|BPF_TAX);
2234 sappend(s1, s2);
2236 return (s1);
2237 } else
2238 return (NULL);
2241 static struct slist *
2242 gen_load_radiotap_llprefixlen()
2244 struct slist *s1, *s2;
2247 * Generate code to load the length of the radiotap header into
2248 * the register assigned to hold that length, if one has been
2249 * assigned. (If one hasn't been assigned, no code we've
2250 * generated uses that prefix, so we don't need to generate any
2251 * code to load it.)
2253 if (reg_off_ll != -1) {
2255 * The 2 bytes at offsets of 2 and 3 from the beginning
2256 * of the radiotap header are the length of the radiotap
2257 * header; unfortunately, it's little-endian, so we have
2258 * to load it a byte at a time and construct the value.
2262 * Load the high-order byte, at an offset of 3, shift it
2263 * left a byte, and put the result in the X register.
2265 s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2266 s1->s.k = 3;
2267 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2268 sappend(s1, s2);
2269 s2->s.k = 8;
2270 s2 = new_stmt(BPF_MISC|BPF_TAX);
2271 sappend(s1, s2);
2274 * Load the next byte, at an offset of 2, and OR the
2275 * value from the X register into it.
2277 s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2278 sappend(s1, s2);
2279 s2->s.k = 2;
2280 s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2281 sappend(s1, s2);
2284 * Now allocate a register to hold that value and store
2285 * it.
2287 s2 = new_stmt(BPF_ST);
2288 s2->s.k = reg_off_ll;
2289 sappend(s1, s2);
2292 * Now move it into the X register.
2294 s2 = new_stmt(BPF_MISC|BPF_TAX);
2295 sappend(s1, s2);
2297 return (s1);
2298 } else
2299 return (NULL);
2303 * At the moment we treat PPI as normal Radiotap encoded
2304 * packets. The difference is in the function that generates
2305 * the code at the beginning to compute the header length.
2306 * Since this code generator of PPI supports bare 802.11
2307 * encapsulation only (i.e. the encapsulated DLT should be
2308 * DLT_IEEE802_11) we generate code to check for this too;
2309 * that's done in finish_parse().
2311 static struct slist *
2312 gen_load_ppi_llprefixlen()
2314 struct slist *s1, *s2;
2317 * Generate code to load the length of the radiotap header
2318 * into the register assigned to hold that length, if one has
2319 * been assigned.
2321 if (reg_off_ll != -1) {
2323 * The 2 bytes at offsets of 2 and 3 from the beginning
2324 * of the radiotap header are the length of the radiotap
2325 * header; unfortunately, it's little-endian, so we have
2326 * to load it a byte at a time and construct the value.
2330 * Load the high-order byte, at an offset of 3, shift it
2331 * left a byte, and put the result in the X register.
2333 s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2334 s1->s.k = 3;
2335 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2336 sappend(s1, s2);
2337 s2->s.k = 8;
2338 s2 = new_stmt(BPF_MISC|BPF_TAX);
2339 sappend(s1, s2);
2342 * Load the next byte, at an offset of 2, and OR the
2343 * value from the X register into it.
2345 s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2346 sappend(s1, s2);
2347 s2->s.k = 2;
2348 s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2349 sappend(s1, s2);
2352 * Now allocate a register to hold that value and store
2353 * it.
2355 s2 = new_stmt(BPF_ST);
2356 s2->s.k = reg_off_ll;
2357 sappend(s1, s2);
2360 * Now move it into the X register.
2362 s2 = new_stmt(BPF_MISC|BPF_TAX);
2363 sappend(s1, s2);
2365 return (s1);
2366 } else
2367 return (NULL);
2371 * Load a value relative to the beginning of the link-layer header after the 802.11
2372 * header, i.e. LLC_SNAP.
2373 * The link-layer header doesn't necessarily begin at the beginning
2374 * of the packet data; there might be a variable-length prefix containing
2375 * radio information.
2377 static struct slist *
2378 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2380 struct slist *s2;
2381 struct slist *sjset_data_frame_1;
2382 struct slist *sjset_data_frame_2;
2383 struct slist *sjset_qos;
2384 struct slist *sjset_radiotap_flags;
2385 struct slist *sjset_radiotap_tsft;
2386 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2387 struct slist *s_roundup;
2389 if (reg_off_macpl == -1) {
2391 * No register has been assigned to the offset of
2392 * the MAC-layer payload, which means nobody needs
2393 * it; don't bother computing it - just return
2394 * what we already have.
2396 return (s);
2400 * This code is not compatible with the optimizer, as
2401 * we are generating jmp instructions within a normal
2402 * slist of instructions
2404 no_optimize = 1;
2407 * If "s" is non-null, it has code to arrange that the X register
2408 * contains the length of the prefix preceding the link-layer
2409 * header.
2411 * Otherwise, the length of the prefix preceding the link-layer
2412 * header is "off_ll".
2414 if (s == NULL) {
2416 * There is no variable-length header preceding the
2417 * link-layer header.
2419 * Load the length of the fixed-length prefix preceding
2420 * the link-layer header (if any) into the X register,
2421 * and store it in the reg_off_macpl register.
2422 * That length is off_ll.
2424 s = new_stmt(BPF_LDX|BPF_IMM);
2425 s->s.k = off_ll;
2429 * The X register contains the offset of the beginning of the
2430 * link-layer header; add 24, which is the minimum length
2431 * of the MAC header for a data frame, to that, and store it
2432 * in reg_off_macpl, and then load the Frame Control field,
2433 * which is at the offset in the X register, with an indexed load.
2435 s2 = new_stmt(BPF_MISC|BPF_TXA);
2436 sappend(s, s2);
2437 s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2438 s2->s.k = 24;
2439 sappend(s, s2);
2440 s2 = new_stmt(BPF_ST);
2441 s2->s.k = reg_off_macpl;
2442 sappend(s, s2);
2444 s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2445 s2->s.k = 0;
2446 sappend(s, s2);
2449 * Check the Frame Control field to see if this is a data frame;
2450 * a data frame has the 0x08 bit (b3) in that field set and the
2451 * 0x04 bit (b2) clear.
2453 sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2454 sjset_data_frame_1->s.k = 0x08;
2455 sappend(s, sjset_data_frame_1);
2458 * If b3 is set, test b2, otherwise go to the first statement of
2459 * the rest of the program.
2461 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2462 sjset_data_frame_2->s.k = 0x04;
2463 sappend(s, sjset_data_frame_2);
2464 sjset_data_frame_1->s.jf = snext;
2467 * If b2 is not set, this is a data frame; test the QoS bit.
2468 * Otherwise, go to the first statement of the rest of the
2469 * program.
2471 sjset_data_frame_2->s.jt = snext;
2472 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2473 sjset_qos->s.k = 0x80; /* QoS bit */
2474 sappend(s, sjset_qos);
2477 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2478 * field.
2479 * Otherwise, go to the first statement of the rest of the
2480 * program.
2482 sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2483 s2->s.k = reg_off_macpl;
2484 sappend(s, s2);
2485 s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2486 s2->s.k = 2;
2487 sappend(s, s2);
2488 s2 = new_stmt(BPF_ST);
2489 s2->s.k = reg_off_macpl;
2490 sappend(s, s2);
2493 * If we have a radiotap header, look at it to see whether
2494 * there's Atheros padding between the MAC-layer header
2495 * and the payload.
2497 * Note: all of the fields in the radiotap header are
2498 * little-endian, so we byte-swap all of the values
2499 * we test against, as they will be loaded as big-endian
2500 * values.
2502 if (linktype == DLT_IEEE802_11_RADIO) {
2504 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2505 * in the presence flag?
2507 sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2508 s2->s.k = 4;
2509 sappend(s, s2);
2511 sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2512 sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2513 sappend(s, sjset_radiotap_flags);
2516 * If not, skip all of this.
2518 sjset_radiotap_flags->s.jf = snext;
2521 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2523 sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2524 new_stmt(JMP(BPF_JSET));
2525 sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2526 sappend(s, sjset_radiotap_tsft);
2529 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2530 * at an offset of 16 from the beginning of the raw packet
2531 * data (8 bytes for the radiotap header and 8 bytes for
2532 * the TSFT field).
2534 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2535 * is set.
2537 sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2538 s2->s.k = 16;
2539 sappend(s, s2);
2541 sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2542 sjset_tsft_datapad->s.k = 0x20;
2543 sappend(s, sjset_tsft_datapad);
2546 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2547 * at an offset of 8 from the beginning of the raw packet
2548 * data (8 bytes for the radiotap header).
2550 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2551 * is set.
2553 sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2554 s2->s.k = 8;
2555 sappend(s, s2);
2557 sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2558 sjset_notsft_datapad->s.k = 0x20;
2559 sappend(s, sjset_notsft_datapad);
2562 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2563 * set, round the length of the 802.11 header to
2564 * a multiple of 4. Do that by adding 3 and then
2565 * dividing by and multiplying by 4, which we do by
2566 * ANDing with ~3.
2568 s_roundup = new_stmt(BPF_LD|BPF_MEM);
2569 s_roundup->s.k = reg_off_macpl;
2570 sappend(s, s_roundup);
2571 s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2572 s2->s.k = 3;
2573 sappend(s, s2);
2574 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2575 s2->s.k = ~3;
2576 sappend(s, s2);
2577 s2 = new_stmt(BPF_ST);
2578 s2->s.k = reg_off_macpl;
2579 sappend(s, s2);
2581 sjset_tsft_datapad->s.jt = s_roundup;
2582 sjset_tsft_datapad->s.jf = snext;
2583 sjset_notsft_datapad->s.jt = s_roundup;
2584 sjset_notsft_datapad->s.jf = snext;
2585 } else
2586 sjset_qos->s.jf = snext;
2588 return s;
2591 static void
2592 insert_compute_vloffsets(b)
2593 struct block *b;
2595 struct slist *s;
2598 * For link-layer types that have a variable-length header
2599 * preceding the link-layer header, generate code to load
2600 * the offset of the link-layer header into the register
2601 * assigned to that offset, if any.
2603 switch (linktype) {
2605 case DLT_PRISM_HEADER:
2606 s = gen_load_prism_llprefixlen();
2607 break;
2609 case DLT_IEEE802_11_RADIO_AVS:
2610 s = gen_load_avs_llprefixlen();
2611 break;
2613 case DLT_IEEE802_11_RADIO:
2614 s = gen_load_radiotap_llprefixlen();
2615 break;
2617 case DLT_PPI:
2618 s = gen_load_ppi_llprefixlen();
2619 break;
2621 default:
2622 s = NULL;
2623 break;
2627 * For link-layer types that have a variable-length link-layer
2628 * header, generate code to load the offset of the MAC-layer
2629 * payload into the register assigned to that offset, if any.
2631 switch (linktype) {
2633 case DLT_IEEE802_11:
2634 case DLT_PRISM_HEADER:
2635 case DLT_IEEE802_11_RADIO_AVS:
2636 case DLT_IEEE802_11_RADIO:
2637 case DLT_PPI:
2638 s = gen_load_802_11_header_len(s, b->stmts);
2639 break;
2643 * If we have any offset-loading code, append all the
2644 * existing statements in the block to those statements,
2645 * and make the resulting list the list of statements
2646 * for the block.
2648 if (s != NULL) {
2649 sappend(s, b->stmts);
2650 b->stmts = s;
2654 static struct block *
2655 gen_ppi_dlt_check(void)
2657 struct slist *s_load_dlt;
2658 struct block *b;
2660 if (linktype == DLT_PPI)
2662 /* Create the statements that check for the DLT
2664 s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2665 s_load_dlt->s.k = 4;
2667 b = new_block(JMP(BPF_JEQ));
2669 b->stmts = s_load_dlt;
2670 b->s.k = SWAPLONG(DLT_IEEE802_11);
2672 else
2674 b = NULL;
2677 return b;
2680 static struct slist *
2681 gen_prism_llprefixlen(void)
2683 struct slist *s;
2685 if (reg_off_ll == -1) {
2687 * We haven't yet assigned a register for the length
2688 * of the radio header; allocate one.
2690 reg_off_ll = alloc_reg();
2694 * Load the register containing the radio length
2695 * into the X register.
2697 s = new_stmt(BPF_LDX|BPF_MEM);
2698 s->s.k = reg_off_ll;
2699 return s;
2702 static struct slist *
2703 gen_avs_llprefixlen(void)
2705 struct slist *s;
2707 if (reg_off_ll == -1) {
2709 * We haven't yet assigned a register for the length
2710 * of the AVS header; allocate one.
2712 reg_off_ll = alloc_reg();
2716 * Load the register containing the AVS length
2717 * into the X register.
2719 s = new_stmt(BPF_LDX|BPF_MEM);
2720 s->s.k = reg_off_ll;
2721 return s;
2724 static struct slist *
2725 gen_radiotap_llprefixlen(void)
2727 struct slist *s;
2729 if (reg_off_ll == -1) {
2731 * We haven't yet assigned a register for the length
2732 * of the radiotap header; allocate one.
2734 reg_off_ll = alloc_reg();
2738 * Load the register containing the radiotap length
2739 * into the X register.
2741 s = new_stmt(BPF_LDX|BPF_MEM);
2742 s->s.k = reg_off_ll;
2743 return s;
2747 * At the moment we treat PPI as normal Radiotap encoded
2748 * packets. The difference is in the function that generates
2749 * the code at the beginning to compute the header length.
2750 * Since this code generator of PPI supports bare 802.11
2751 * encapsulation only (i.e. the encapsulated DLT should be
2752 * DLT_IEEE802_11) we generate code to check for this too.
2754 static struct slist *
2755 gen_ppi_llprefixlen(void)
2757 struct slist *s;
2759 if (reg_off_ll == -1) {
2761 * We haven't yet assigned a register for the length
2762 * of the radiotap header; allocate one.
2764 reg_off_ll = alloc_reg();
2768 * Load the register containing the PPI length
2769 * into the X register.
2771 s = new_stmt(BPF_LDX|BPF_MEM);
2772 s->s.k = reg_off_ll;
2773 return s;
2777 * Generate code to compute the link-layer header length, if necessary,
2778 * putting it into the X register, and to return either a pointer to a
2779 * "struct slist" for the list of statements in that code, or NULL if
2780 * no code is necessary.
2782 static struct slist *
2783 gen_llprefixlen(void)
2785 switch (linktype) {
2787 case DLT_PRISM_HEADER:
2788 return gen_prism_llprefixlen();
2790 case DLT_IEEE802_11_RADIO_AVS:
2791 return gen_avs_llprefixlen();
2793 case DLT_IEEE802_11_RADIO:
2794 return gen_radiotap_llprefixlen();
2796 case DLT_PPI:
2797 return gen_ppi_llprefixlen();
2799 default:
2800 return NULL;
2805 * Generate code to load the register containing the offset of the
2806 * MAC-layer payload into the X register; if no register for that offset
2807 * has been allocated, allocate it first.
2809 static struct slist *
2810 gen_off_macpl(void)
2812 struct slist *s;
2814 if (off_macpl_is_variable) {
2815 if (reg_off_macpl == -1) {
2817 * We haven't yet assigned a register for the offset
2818 * of the MAC-layer payload; allocate one.
2820 reg_off_macpl = alloc_reg();
2824 * Load the register containing the offset of the MAC-layer
2825 * payload into the X register.
2827 s = new_stmt(BPF_LDX|BPF_MEM);
2828 s->s.k = reg_off_macpl;
2829 return s;
2830 } else {
2832 * That offset isn't variable, so we don't need to
2833 * generate any code.
2835 return NULL;
2840 * Map an Ethernet type to the equivalent PPP type.
2842 static int
2843 ethertype_to_ppptype(proto)
2844 int proto;
2846 switch (proto) {
2848 case ETHERTYPE_IP:
2849 proto = PPP_IP;
2850 break;
2852 case ETHERTYPE_IPV6:
2853 proto = PPP_IPV6;
2854 break;
2856 case ETHERTYPE_DN:
2857 proto = PPP_DECNET;
2858 break;
2860 case ETHERTYPE_ATALK:
2861 proto = PPP_APPLE;
2862 break;
2864 case ETHERTYPE_NS:
2865 proto = PPP_NS;
2866 break;
2868 case LLCSAP_ISONS:
2869 proto = PPP_OSI;
2870 break;
2872 case LLCSAP_8021D:
2874 * I'm assuming the "Bridging PDU"s that go
2875 * over PPP are Spanning Tree Protocol
2876 * Bridging PDUs.
2878 proto = PPP_BRPDU;
2879 break;
2881 case LLCSAP_IPX:
2882 proto = PPP_IPX;
2883 break;
2885 return (proto);
2889 * Generate code to match a particular packet type by matching the
2890 * link-layer type field or fields in the 802.2 LLC header.
2892 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2893 * value, if <= ETHERMTU.
2895 static struct block *
2896 gen_linktype(proto)
2897 register int proto;
2899 struct block *b0, *b1, *b2;
2901 /* are we checking MPLS-encapsulated packets? */
2902 if (label_stack_depth > 0) {
2903 switch (proto) {
2904 case ETHERTYPE_IP:
2905 case PPP_IP:
2906 /* FIXME add other L3 proto IDs */
2907 return gen_mpls_linktype(Q_IP);
2909 case ETHERTYPE_IPV6:
2910 case PPP_IPV6:
2911 /* FIXME add other L3 proto IDs */
2912 return gen_mpls_linktype(Q_IPV6);
2914 default:
2915 bpf_error("unsupported protocol over mpls");
2916 /* NOTREACHED */
2921 * Are we testing PPPoE packets?
2923 if (is_pppoes) {
2925 * The PPPoE session header is part of the
2926 * MAC-layer payload, so all references
2927 * should be relative to the beginning of
2928 * that payload.
2932 * We use Ethernet protocol types inside libpcap;
2933 * map them to the corresponding PPP protocol types.
2935 proto = ethertype_to_ppptype(proto);
2936 return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2939 switch (linktype) {
2941 case DLT_EN10MB:
2942 case DLT_NETANALYZER:
2943 case DLT_NETANALYZER_TRANSPARENT:
2944 return gen_ether_linktype(proto);
2945 /*NOTREACHED*/
2946 break;
2948 case DLT_C_HDLC:
2949 switch (proto) {
2951 case LLCSAP_ISONS:
2952 proto = (proto << 8 | LLCSAP_ISONS);
2953 /* fall through */
2955 default:
2956 return gen_cmp(OR_LINK, off_linktype, BPF_H,
2957 (bpf_int32)proto);
2958 /*NOTREACHED*/
2959 break;
2961 break;
2963 case DLT_IEEE802_11:
2964 case DLT_PRISM_HEADER:
2965 case DLT_IEEE802_11_RADIO_AVS:
2966 case DLT_IEEE802_11_RADIO:
2967 case DLT_PPI:
2969 * Check that we have a data frame.
2971 b0 = gen_check_802_11_data_frame();
2974 * Now check for the specified link-layer type.
2976 b1 = gen_llc_linktype(proto);
2977 gen_and(b0, b1);
2978 return b1;
2979 /*NOTREACHED*/
2980 break;
2982 case DLT_FDDI:
2984 * XXX - check for asynchronous frames, as per RFC 1103.
2986 return gen_llc_linktype(proto);
2987 /*NOTREACHED*/
2988 break;
2990 case DLT_IEEE802:
2992 * XXX - check for LLC PDUs, as per IEEE 802.5.
2994 return gen_llc_linktype(proto);
2995 /*NOTREACHED*/
2996 break;
2998 case DLT_ATM_RFC1483:
2999 case DLT_ATM_CLIP:
3000 case DLT_IP_OVER_FC:
3001 return gen_llc_linktype(proto);
3002 /*NOTREACHED*/
3003 break;
3005 case DLT_SUNATM:
3007 * If "is_lane" is set, check for a LANE-encapsulated
3008 * version of this protocol, otherwise check for an
3009 * LLC-encapsulated version of this protocol.
3011 * We assume LANE means Ethernet, not Token Ring.
3013 if (is_lane) {
3015 * Check that the packet doesn't begin with an
3016 * LE Control marker. (We've already generated
3017 * a test for LANE.)
3019 b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3020 0xFF00);
3021 gen_not(b0);
3024 * Now generate an Ethernet test.
3026 b1 = gen_ether_linktype(proto);
3027 gen_and(b0, b1);
3028 return b1;
3029 } else {
3031 * Check for LLC encapsulation and then check the
3032 * protocol.
3034 b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3035 b1 = gen_llc_linktype(proto);
3036 gen_and(b0, b1);
3037 return b1;
3039 /*NOTREACHED*/
3040 break;
3042 case DLT_LINUX_SLL:
3043 return gen_linux_sll_linktype(proto);
3044 /*NOTREACHED*/
3045 break;
3047 case DLT_SLIP:
3048 case DLT_SLIP_BSDOS:
3049 case DLT_RAW:
3051 * These types don't provide any type field; packets
3052 * are always IPv4 or IPv6.
3054 * XXX - for IPv4, check for a version number of 4, and,
3055 * for IPv6, check for a version number of 6?
3057 switch (proto) {
3059 case ETHERTYPE_IP:
3060 /* Check for a version number of 4. */
3061 return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3063 case ETHERTYPE_IPV6:
3064 /* Check for a version number of 6. */
3065 return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3067 default:
3068 return gen_false(); /* always false */
3070 /*NOTREACHED*/
3071 break;
3073 case DLT_IPV4:
3075 * Raw IPv4, so no type field.
3077 if (proto == ETHERTYPE_IP)
3078 return gen_true(); /* always true */
3080 /* Checking for something other than IPv4; always false */
3081 return gen_false();
3082 /*NOTREACHED*/
3083 break;
3085 case DLT_IPV6:
3087 * Raw IPv6, so no type field.
3089 if (proto == ETHERTYPE_IPV6)
3090 return gen_true(); /* always true */
3092 /* Checking for something other than IPv6; always false */
3093 return gen_false();
3094 /*NOTREACHED*/
3095 break;
3097 case DLT_PPP:
3098 case DLT_PPP_PPPD:
3099 case DLT_PPP_SERIAL:
3100 case DLT_PPP_ETHER:
3102 * We use Ethernet protocol types inside libpcap;
3103 * map them to the corresponding PPP protocol types.
3105 proto = ethertype_to_ppptype(proto);
3106 return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3107 /*NOTREACHED*/
3108 break;
3110 case DLT_PPP_BSDOS:
3112 * We use Ethernet protocol types inside libpcap;
3113 * map them to the corresponding PPP protocol types.
3115 switch (proto) {
3117 case ETHERTYPE_IP:
3119 * Also check for Van Jacobson-compressed IP.
3120 * XXX - do this for other forms of PPP?
3122 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3123 b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3124 gen_or(b0, b1);
3125 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3126 gen_or(b1, b0);
3127 return b0;
3129 default:
3130 proto = ethertype_to_ppptype(proto);
3131 return gen_cmp(OR_LINK, off_linktype, BPF_H,
3132 (bpf_int32)proto);
3134 /*NOTREACHED*/
3135 break;
3137 case DLT_NULL:
3138 case DLT_LOOP:
3139 case DLT_ENC:
3141 * For DLT_NULL, the link-layer header is a 32-bit
3142 * word containing an AF_ value in *host* byte order,
3143 * and for DLT_ENC, the link-layer header begins
3144 * with a 32-bit work containing an AF_ value in
3145 * host byte order.
3147 * In addition, if we're reading a saved capture file,
3148 * the host byte order in the capture may not be the
3149 * same as the host byte order on this machine.
3151 * For DLT_LOOP, the link-layer header is a 32-bit
3152 * word containing an AF_ value in *network* byte order.
3154 * XXX - AF_ values may, unfortunately, be platform-
3155 * dependent; for example, FreeBSD's AF_INET6 is 24
3156 * whilst NetBSD's and OpenBSD's is 26.
3158 * This means that, when reading a capture file, just
3159 * checking for our AF_INET6 value won't work if the
3160 * capture file came from another OS.
3162 switch (proto) {
3164 case ETHERTYPE_IP:
3165 proto = AF_INET;
3166 break;
3168 #ifdef INET6
3169 case ETHERTYPE_IPV6:
3170 proto = AF_INET6;
3171 break;
3172 #endif
3174 default:
3176 * Not a type on which we support filtering.
3177 * XXX - support those that have AF_ values
3178 * #defined on this platform, at least?
3180 return gen_false();
3183 if (linktype == DLT_NULL || linktype == DLT_ENC) {
3185 * The AF_ value is in host byte order, but
3186 * the BPF interpreter will convert it to
3187 * network byte order.
3189 * If this is a save file, and it's from a
3190 * machine with the opposite byte order to
3191 * ours, we byte-swap the AF_ value.
3193 * Then we run it through "htonl()", and
3194 * generate code to compare against the result.
3196 if (bpf_pcap->sf.rfile != NULL &&
3197 bpf_pcap->sf.swapped)
3198 proto = SWAPLONG(proto);
3199 proto = htonl(proto);
3201 return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3203 #ifdef HAVE_NET_PFVAR_H
3204 case DLT_PFLOG:
3206 * af field is host byte order in contrast to the rest of
3207 * the packet.
3209 if (proto == ETHERTYPE_IP)
3210 return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3211 BPF_B, (bpf_int32)AF_INET));
3212 else if (proto == ETHERTYPE_IPV6)
3213 return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3214 BPF_B, (bpf_int32)AF_INET6));
3215 else
3216 return gen_false();
3217 /*NOTREACHED*/
3218 break;
3219 #endif /* HAVE_NET_PFVAR_H */
3221 case DLT_ARCNET:
3222 case DLT_ARCNET_LINUX:
3224 * XXX should we check for first fragment if the protocol
3225 * uses PHDS?
3227 switch (proto) {
3229 default:
3230 return gen_false();
3232 case ETHERTYPE_IPV6:
3233 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3234 (bpf_int32)ARCTYPE_INET6));
3236 case ETHERTYPE_IP:
3237 b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3238 (bpf_int32)ARCTYPE_IP);
3239 b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240 (bpf_int32)ARCTYPE_IP_OLD);
3241 gen_or(b0, b1);
3242 return (b1);
3244 case ETHERTYPE_ARP:
3245 b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3246 (bpf_int32)ARCTYPE_ARP);
3247 b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3248 (bpf_int32)ARCTYPE_ARP_OLD);
3249 gen_or(b0, b1);
3250 return (b1);
3252 case ETHERTYPE_REVARP:
3253 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3254 (bpf_int32)ARCTYPE_REVARP));
3256 case ETHERTYPE_ATALK:
3257 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3258 (bpf_int32)ARCTYPE_ATALK));
3260 /*NOTREACHED*/
3261 break;
3263 case DLT_LTALK:
3264 switch (proto) {
3265 case ETHERTYPE_ATALK:
3266 return gen_true();
3267 default:
3268 return gen_false();
3270 /*NOTREACHED*/
3271 break;
3273 case DLT_FRELAY:
3275 * XXX - assumes a 2-byte Frame Relay header with
3276 * DLCI and flags. What if the address is longer?
3278 switch (proto) {
3280 case ETHERTYPE_IP:
3282 * Check for the special NLPID for IP.
3284 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3286 case ETHERTYPE_IPV6:
3288 * Check for the special NLPID for IPv6.
3290 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3292 case LLCSAP_ISONS:
3294 * Check for several OSI protocols.
3296 * Frame Relay packets typically have an OSI
3297 * NLPID at the beginning; we check for each
3298 * of them.
3300 * What we check for is the NLPID and a frame
3301 * control field of UI, i.e. 0x03 followed
3302 * by the NLPID.
3304 b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3305 b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3306 b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3307 gen_or(b1, b2);
3308 gen_or(b0, b2);
3309 return b2;
3311 default:
3312 return gen_false();
3314 /*NOTREACHED*/
3315 break;
3317 case DLT_MFR:
3318 bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3320 case DLT_JUNIPER_MFR:
3321 case DLT_JUNIPER_MLFR:
3322 case DLT_JUNIPER_MLPPP:
3323 case DLT_JUNIPER_ATM1:
3324 case DLT_JUNIPER_ATM2:
3325 case DLT_JUNIPER_PPPOE:
3326 case DLT_JUNIPER_PPPOE_ATM:
3327 case DLT_JUNIPER_GGSN:
3328 case DLT_JUNIPER_ES:
3329 case DLT_JUNIPER_MONITOR:
3330 case DLT_JUNIPER_SERVICES:
3331 case DLT_JUNIPER_ETHER:
3332 case DLT_JUNIPER_PPP:
3333 case DLT_JUNIPER_FRELAY:
3334 case DLT_JUNIPER_CHDLC:
3335 case DLT_JUNIPER_VP:
3336 case DLT_JUNIPER_ST:
3337 case DLT_JUNIPER_ISM:
3338 case DLT_JUNIPER_VS:
3339 case DLT_JUNIPER_SRX_E2E:
3340 case DLT_JUNIPER_FIBRECHANNEL:
3341 case DLT_JUNIPER_ATM_CEMIC:
3343 /* just lets verify the magic number for now -
3344 * on ATM we may have up to 6 different encapsulations on the wire
3345 * and need a lot of heuristics to figure out that the payload
3346 * might be;
3348 * FIXME encapsulation specific BPF_ filters
3350 return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3352 case DLT_IPNET:
3353 return gen_ipnet_linktype(proto);
3355 case DLT_LINUX_IRDA:
3356 bpf_error("IrDA link-layer type filtering not implemented");
3358 case DLT_DOCSIS:
3359 bpf_error("DOCSIS link-layer type filtering not implemented");
3361 case DLT_MTP2:
3362 case DLT_MTP2_WITH_PHDR:
3363 bpf_error("MTP2 link-layer type filtering not implemented");
3365 case DLT_ERF:
3366 bpf_error("ERF link-layer type filtering not implemented");
3368 case DLT_PFSYNC:
3369 bpf_error("PFSYNC link-layer type filtering not implemented");
3371 case DLT_LINUX_LAPD:
3372 bpf_error("LAPD link-layer type filtering not implemented");
3374 case DLT_USB:
3375 case DLT_USB_LINUX:
3376 case DLT_USB_LINUX_MMAPPED:
3377 bpf_error("USB link-layer type filtering not implemented");
3379 case DLT_BLUETOOTH_HCI_H4:
3380 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3381 bpf_error("Bluetooth link-layer type filtering not implemented");
3383 case DLT_CAN20B:
3384 case DLT_CAN_SOCKETCAN:
3385 bpf_error("CAN link-layer type filtering not implemented");
3387 case DLT_IEEE802_15_4:
3388 case DLT_IEEE802_15_4_LINUX:
3389 case DLT_IEEE802_15_4_NONASK_PHY:
3390 case DLT_IEEE802_15_4_NOFCS:
3391 bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3393 case DLT_IEEE802_16_MAC_CPS_RADIO:
3394 bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3396 case DLT_SITA:
3397 bpf_error("SITA link-layer type filtering not implemented");
3399 case DLT_RAIF1:
3400 bpf_error("RAIF1 link-layer type filtering not implemented");
3402 case DLT_IPMB:
3403 bpf_error("IPMB link-layer type filtering not implemented");
3405 case DLT_AX25_KISS:
3406 bpf_error("AX.25 link-layer type filtering not implemented");
3410 * All the types that have no encapsulation should either be
3411 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3412 * all packets are IP packets, or should be handled in some
3413 * special case, if none of them are (if some are and some
3414 * aren't, the lack of encapsulation is a problem, as we'd
3415 * have to find some other way of determining the packet type).
3417 * Therefore, if "off_linktype" is -1, there's an error.
3419 if (off_linktype == (u_int)-1)
3420 abort();
3423 * Any type not handled above should always have an Ethernet
3424 * type at an offset of "off_linktype".
3426 return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3430 * Check for an LLC SNAP packet with a given organization code and
3431 * protocol type; we check the entire contents of the 802.2 LLC and
3432 * snap headers, checking for DSAP and SSAP of SNAP and a control
3433 * field of 0x03 in the LLC header, and for the specified organization
3434 * code and protocol type in the SNAP header.
3436 static struct block *
3437 gen_snap(orgcode, ptype)
3438 bpf_u_int32 orgcode;
3439 bpf_u_int32 ptype;
3441 u_char snapblock[8];
3443 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3444 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3445 snapblock[2] = 0x03; /* control = UI */
3446 snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
3447 snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
3448 snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
3449 snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
3450 snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
3451 return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3455 * Generate code to match a particular packet type, for link-layer types
3456 * using 802.2 LLC headers.
3458 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3459 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3461 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3462 * value, if <= ETHERMTU. We use that to determine whether to
3463 * match the DSAP or both DSAP and LSAP or to check the OUI and
3464 * protocol ID in a SNAP header.
3466 static struct block *
3467 gen_llc_linktype(proto)
3468 int proto;
3471 * XXX - handle token-ring variable-length header.
3473 switch (proto) {
3475 case LLCSAP_IP:
3476 case LLCSAP_ISONS:
3477 case LLCSAP_NETBEUI:
3479 * XXX - should we check both the DSAP and the
3480 * SSAP, like this, or should we check just the
3481 * DSAP, as we do for other types <= ETHERMTU
3482 * (i.e., other SAP values)?
3484 return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3485 ((proto << 8) | proto));
3487 case LLCSAP_IPX:
3489 * XXX - are there ever SNAP frames for IPX on
3490 * non-Ethernet 802.x networks?
3492 return gen_cmp(OR_MACPL, 0, BPF_B,
3493 (bpf_int32)LLCSAP_IPX);
3495 case ETHERTYPE_ATALK:
3497 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3498 * SNAP packets with an organization code of
3499 * 0x080007 (Apple, for Appletalk) and a protocol
3500 * type of ETHERTYPE_ATALK (Appletalk).
3502 * XXX - check for an organization code of
3503 * encapsulated Ethernet as well?
3505 return gen_snap(0x080007, ETHERTYPE_ATALK);
3507 default:
3509 * XXX - we don't have to check for IPX 802.3
3510 * here, but should we check for the IPX Ethertype?
3512 if (proto <= ETHERMTU) {
3514 * This is an LLC SAP value, so check
3515 * the DSAP.
3517 return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3518 } else {
3520 * This is an Ethernet type; we assume that it's
3521 * unlikely that it'll appear in the right place
3522 * at random, and therefore check only the
3523 * location that would hold the Ethernet type
3524 * in a SNAP frame with an organization code of
3525 * 0x000000 (encapsulated Ethernet).
3527 * XXX - if we were to check for the SNAP DSAP and
3528 * LSAP, as per XXX, and were also to check for an
3529 * organization code of 0x000000 (encapsulated
3530 * Ethernet), we'd do
3532 * return gen_snap(0x000000, proto);
3534 * here; for now, we don't, as per the above.
3535 * I don't know whether it's worth the extra CPU
3536 * time to do the right check or not.
3538 return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3543 static struct block *
3544 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3545 bpf_u_int32 addr;
3546 bpf_u_int32 mask;
3547 int dir, proto;
3548 u_int src_off, dst_off;
3550 struct block *b0, *b1;
3551 u_int offset;
3553 switch (dir) {
3555 case Q_SRC:
3556 offset = src_off;
3557 break;
3559 case Q_DST:
3560 offset = dst_off;
3561 break;
3563 case Q_AND:
3564 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3565 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3566 gen_and(b0, b1);
3567 return b1;
3569 case Q_OR:
3570 case Q_DEFAULT:
3571 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3572 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3573 gen_or(b0, b1);
3574 return b1;
3576 default:
3577 abort();
3579 b0 = gen_linktype(proto);
3580 b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3581 gen_and(b0, b1);
3582 return b1;
3585 #ifdef INET6
3586 static struct block *
3587 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3588 struct in6_addr *addr;
3589 struct in6_addr *mask;
3590 int dir, proto;
3591 u_int src_off, dst_off;
3593 struct block *b0, *b1;
3594 u_int offset;
3595 u_int32_t *a, *m;
3597 switch (dir) {
3599 case Q_SRC:
3600 offset = src_off;
3601 break;
3603 case Q_DST:
3604 offset = dst_off;
3605 break;
3607 case Q_AND:
3608 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3609 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3610 gen_and(b0, b1);
3611 return b1;
3613 case Q_OR:
3614 case Q_DEFAULT:
3615 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3616 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3617 gen_or(b0, b1);
3618 return b1;
3620 default:
3621 abort();
3623 /* this order is important */
3624 a = (u_int32_t *)addr;
3625 m = (u_int32_t *)mask;
3626 b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3627 b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3628 gen_and(b0, b1);
3629 b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3630 gen_and(b0, b1);
3631 b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3632 gen_and(b0, b1);
3633 b0 = gen_linktype(proto);
3634 gen_and(b0, b1);
3635 return b1;
3637 #endif
3639 static struct block *
3640 gen_ehostop(eaddr, dir)
3641 register const u_char *eaddr;
3642 register int dir;
3644 register struct block *b0, *b1;
3646 switch (dir) {
3647 case Q_SRC:
3648 return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3650 case Q_DST:
3651 return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3653 case Q_AND:
3654 b0 = gen_ehostop(eaddr, Q_SRC);
3655 b1 = gen_ehostop(eaddr, Q_DST);
3656 gen_and(b0, b1);
3657 return b1;
3659 case Q_DEFAULT:
3660 case Q_OR:
3661 b0 = gen_ehostop(eaddr, Q_SRC);
3662 b1 = gen_ehostop(eaddr, Q_DST);
3663 gen_or(b0, b1);
3664 return b1;
3666 case Q_ADDR1:
3667 bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3668 break;
3670 case Q_ADDR2:
3671 bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3672 break;
3674 case Q_ADDR3:
3675 bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3676 break;
3678 case Q_ADDR4:
3679 bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3680 break;
3682 case Q_RA:
3683 bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3684 break;
3686 case Q_TA:
3687 bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3688 break;
3690 abort();
3691 /* NOTREACHED */
3695 * Like gen_ehostop, but for DLT_FDDI
3697 static struct block *
3698 gen_fhostop(eaddr, dir)
3699 register const u_char *eaddr;
3700 register int dir;
3702 struct block *b0, *b1;
3704 switch (dir) {
3705 case Q_SRC:
3706 #ifdef PCAP_FDDIPAD
3707 return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3708 #else
3709 return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3710 #endif
3712 case Q_DST:
3713 #ifdef PCAP_FDDIPAD
3714 return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3715 #else
3716 return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3717 #endif
3719 case Q_AND:
3720 b0 = gen_fhostop(eaddr, Q_SRC);
3721 b1 = gen_fhostop(eaddr, Q_DST);
3722 gen_and(b0, b1);
3723 return b1;
3725 case Q_DEFAULT:
3726 case Q_OR:
3727 b0 = gen_fhostop(eaddr, Q_SRC);
3728 b1 = gen_fhostop(eaddr, Q_DST);
3729 gen_or(b0, b1);
3730 return b1;
3732 case Q_ADDR1:
3733 bpf_error("'addr1' is only supported on 802.11");
3734 break;
3736 case Q_ADDR2:
3737 bpf_error("'addr2' is only supported on 802.11");
3738 break;
3740 case Q_ADDR3:
3741 bpf_error("'addr3' is only supported on 802.11");
3742 break;
3744 case Q_ADDR4:
3745 bpf_error("'addr4' is only supported on 802.11");
3746 break;
3748 case Q_RA:
3749 bpf_error("'ra' is only supported on 802.11");
3750 break;
3752 case Q_TA:
3753 bpf_error("'ta' is only supported on 802.11");
3754 break;
3756 abort();
3757 /* NOTREACHED */
3761 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3763 static struct block *
3764 gen_thostop(eaddr, dir)
3765 register const u_char *eaddr;
3766 register int dir;
3768 register struct block *b0, *b1;
3770 switch (dir) {
3771 case Q_SRC:
3772 return gen_bcmp(OR_LINK, 8, 6, eaddr);
3774 case Q_DST:
3775 return gen_bcmp(OR_LINK, 2, 6, eaddr);
3777 case Q_AND:
3778 b0 = gen_thostop(eaddr, Q_SRC);
3779 b1 = gen_thostop(eaddr, Q_DST);
3780 gen_and(b0, b1);
3781 return b1;
3783 case Q_DEFAULT:
3784 case Q_OR:
3785 b0 = gen_thostop(eaddr, Q_SRC);
3786 b1 = gen_thostop(eaddr, Q_DST);
3787 gen_or(b0, b1);
3788 return b1;
3790 case Q_ADDR1:
3791 bpf_error("'addr1' is only supported on 802.11");
3792 break;
3794 case Q_ADDR2:
3795 bpf_error("'addr2' is only supported on 802.11");
3796 break;
3798 case Q_ADDR3:
3799 bpf_error("'addr3' is only supported on 802.11");
3800 break;
3802 case Q_ADDR4:
3803 bpf_error("'addr4' is only supported on 802.11");
3804 break;
3806 case Q_RA:
3807 bpf_error("'ra' is only supported on 802.11");
3808 break;
3810 case Q_TA:
3811 bpf_error("'ta' is only supported on 802.11");
3812 break;
3814 abort();
3815 /* NOTREACHED */
3819 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3820 * various 802.11 + radio headers.
3822 static struct block *
3823 gen_wlanhostop(eaddr, dir)
3824 register const u_char *eaddr;
3825 register int dir;
3827 register struct block *b0, *b1, *b2;
3828 register struct slist *s;
3830 #ifdef ENABLE_WLAN_FILTERING_PATCH
3832 * TODO GV 20070613
3833 * We need to disable the optimizer because the optimizer is buggy
3834 * and wipes out some LD instructions generated by the below
3835 * code to validate the Frame Control bits
3837 no_optimize = 1;
3838 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3840 switch (dir) {
3841 case Q_SRC:
3843 * Oh, yuk.
3845 * For control frames, there is no SA.
3847 * For management frames, SA is at an
3848 * offset of 10 from the beginning of
3849 * the packet.
3851 * For data frames, SA is at an offset
3852 * of 10 from the beginning of the packet
3853 * if From DS is clear, at an offset of
3854 * 16 from the beginning of the packet
3855 * if From DS is set and To DS is clear,
3856 * and an offset of 24 from the beginning
3857 * of the packet if From DS is set and To DS
3858 * is set.
3862 * Generate the tests to be done for data frames
3863 * with From DS set.
3865 * First, check for To DS set, i.e. check "link[1] & 0x01".
3867 s = gen_load_a(OR_LINK, 1, BPF_B);
3868 b1 = new_block(JMP(BPF_JSET));
3869 b1->s.k = 0x01; /* To DS */
3870 b1->stmts = s;
3873 * If To DS is set, the SA is at 24.
3875 b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3876 gen_and(b1, b0);
3879 * Now, check for To DS not set, i.e. check
3880 * "!(link[1] & 0x01)".
3882 s = gen_load_a(OR_LINK, 1, BPF_B);
3883 b2 = new_block(JMP(BPF_JSET));
3884 b2->s.k = 0x01; /* To DS */
3885 b2->stmts = s;
3886 gen_not(b2);
3889 * If To DS is not set, the SA is at 16.
3891 b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3892 gen_and(b2, b1);
3895 * Now OR together the last two checks. That gives
3896 * the complete set of checks for data frames with
3897 * From DS set.
3899 gen_or(b1, b0);
3902 * Now check for From DS being set, and AND that with
3903 * the ORed-together checks.
3905 s = gen_load_a(OR_LINK, 1, BPF_B);
3906 b1 = new_block(JMP(BPF_JSET));
3907 b1->s.k = 0x02; /* From DS */
3908 b1->stmts = s;
3909 gen_and(b1, b0);
3912 * Now check for data frames with From DS not set.
3914 s = gen_load_a(OR_LINK, 1, BPF_B);
3915 b2 = new_block(JMP(BPF_JSET));
3916 b2->s.k = 0x02; /* From DS */
3917 b2->stmts = s;
3918 gen_not(b2);
3921 * If From DS isn't set, the SA is at 10.
3923 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3924 gen_and(b2, b1);
3927 * Now OR together the checks for data frames with
3928 * From DS not set and for data frames with From DS
3929 * set; that gives the checks done for data frames.
3931 gen_or(b1, b0);
3934 * Now check for a data frame.
3935 * I.e, check "link[0] & 0x08".
3937 s = gen_load_a(OR_LINK, 0, BPF_B);
3938 b1 = new_block(JMP(BPF_JSET));
3939 b1->s.k = 0x08;
3940 b1->stmts = s;
3943 * AND that with the checks done for data frames.
3945 gen_and(b1, b0);
3948 * If the high-order bit of the type value is 0, this
3949 * is a management frame.
3950 * I.e, check "!(link[0] & 0x08)".
3952 s = gen_load_a(OR_LINK, 0, BPF_B);
3953 b2 = new_block(JMP(BPF_JSET));
3954 b2->s.k = 0x08;
3955 b2->stmts = s;
3956 gen_not(b2);
3959 * For management frames, the SA is at 10.
3961 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3962 gen_and(b2, b1);
3965 * OR that with the checks done for data frames.
3966 * That gives the checks done for management and
3967 * data frames.
3969 gen_or(b1, b0);
3972 * If the low-order bit of the type value is 1,
3973 * this is either a control frame or a frame
3974 * with a reserved type, and thus not a
3975 * frame with an SA.
3977 * I.e., check "!(link[0] & 0x04)".
3979 s = gen_load_a(OR_LINK, 0, BPF_B);
3980 b1 = new_block(JMP(BPF_JSET));
3981 b1->s.k = 0x04;
3982 b1->stmts = s;
3983 gen_not(b1);
3986 * AND that with the checks for data and management
3987 * frames.
3989 gen_and(b1, b0);
3990 return b0;
3992 case Q_DST:
3994 * Oh, yuk.
3996 * For control frames, there is no DA.
3998 * For management frames, DA is at an
3999 * offset of 4 from the beginning of
4000 * the packet.
4002 * For data frames, DA is at an offset
4003 * of 4 from the beginning of the packet
4004 * if To DS is clear and at an offset of
4005 * 16 from the beginning of the packet
4006 * if To DS is set.
4010 * Generate the tests to be done for data frames.
4012 * First, check for To DS set, i.e. "link[1] & 0x01".
4014 s = gen_load_a(OR_LINK, 1, BPF_B);
4015 b1 = new_block(JMP(BPF_JSET));
4016 b1->s.k = 0x01; /* To DS */
4017 b1->stmts = s;
4020 * If To DS is set, the DA is at 16.
4022 b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4023 gen_and(b1, b0);
4026 * Now, check for To DS not set, i.e. check
4027 * "!(link[1] & 0x01)".
4029 s = gen_load_a(OR_LINK, 1, BPF_B);
4030 b2 = new_block(JMP(BPF_JSET));
4031 b2->s.k = 0x01; /* To DS */
4032 b2->stmts = s;
4033 gen_not(b2);
4036 * If To DS is not set, the DA is at 4.
4038 b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4039 gen_and(b2, b1);
4042 * Now OR together the last two checks. That gives
4043 * the complete set of checks for data frames.
4045 gen_or(b1, b0);
4048 * Now check for a data frame.
4049 * I.e, check "link[0] & 0x08".
4051 s = gen_load_a(OR_LINK, 0, BPF_B);
4052 b1 = new_block(JMP(BPF_JSET));
4053 b1->s.k = 0x08;
4054 b1->stmts = s;
4057 * AND that with the checks done for data frames.
4059 gen_and(b1, b0);
4062 * If the high-order bit of the type value is 0, this
4063 * is a management frame.
4064 * I.e, check "!(link[0] & 0x08)".
4066 s = gen_load_a(OR_LINK, 0, BPF_B);
4067 b2 = new_block(JMP(BPF_JSET));
4068 b2->s.k = 0x08;
4069 b2->stmts = s;
4070 gen_not(b2);
4073 * For management frames, the DA is at 4.
4075 b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4076 gen_and(b2, b1);
4079 * OR that with the checks done for data frames.
4080 * That gives the checks done for management and
4081 * data frames.
4083 gen_or(b1, b0);
4086 * If the low-order bit of the type value is 1,
4087 * this is either a control frame or a frame
4088 * with a reserved type, and thus not a
4089 * frame with an SA.
4091 * I.e., check "!(link[0] & 0x04)".
4093 s = gen_load_a(OR_LINK, 0, BPF_B);
4094 b1 = new_block(JMP(BPF_JSET));
4095 b1->s.k = 0x04;
4096 b1->stmts = s;
4097 gen_not(b1);
4100 * AND that with the checks for data and management
4101 * frames.
4103 gen_and(b1, b0);
4104 return b0;
4106 case Q_RA:
4108 * Not present in management frames; addr1 in other
4109 * frames.
4113 * If the high-order bit of the type value is 0, this
4114 * is a management frame.
4115 * I.e, check "(link[0] & 0x08)".
4117 s = gen_load_a(OR_LINK, 0, BPF_B);
4118 b1 = new_block(JMP(BPF_JSET));
4119 b1->s.k = 0x08;
4120 b1->stmts = s;
4123 * Check addr1.
4125 b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4128 * AND that with the check of addr1.
4130 gen_and(b1, b0);
4131 return (b0);
4133 case Q_TA:
4135 * Not present in management frames; addr2, if present,
4136 * in other frames.
4140 * Not present in CTS or ACK control frames.
4142 b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4143 IEEE80211_FC0_TYPE_MASK);
4144 gen_not(b0);
4145 b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4146 IEEE80211_FC0_SUBTYPE_MASK);
4147 gen_not(b1);
4148 b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4149 IEEE80211_FC0_SUBTYPE_MASK);
4150 gen_not(b2);
4151 gen_and(b1, b2);
4152 gen_or(b0, b2);
4155 * If the high-order bit of the type value is 0, this
4156 * is a management frame.
4157 * I.e, check "(link[0] & 0x08)".
4159 s = gen_load_a(OR_LINK, 0, BPF_B);
4160 b1 = new_block(JMP(BPF_JSET));
4161 b1->s.k = 0x08;
4162 b1->stmts = s;
4165 * AND that with the check for frames other than
4166 * CTS and ACK frames.
4168 gen_and(b1, b2);
4171 * Check addr2.
4173 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4174 gen_and(b2, b1);
4175 return b1;
4178 * XXX - add BSSID keyword?
4180 case Q_ADDR1:
4181 return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4183 case Q_ADDR2:
4185 * Not present in CTS or ACK control frames.
4187 b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4188 IEEE80211_FC0_TYPE_MASK);
4189 gen_not(b0);
4190 b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4191 IEEE80211_FC0_SUBTYPE_MASK);
4192 gen_not(b1);
4193 b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4194 IEEE80211_FC0_SUBTYPE_MASK);
4195 gen_not(b2);
4196 gen_and(b1, b2);
4197 gen_or(b0, b2);
4198 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4199 gen_and(b2, b1);
4200 return b1;
4202 case Q_ADDR3:
4204 * Not present in control frames.
4206 b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4207 IEEE80211_FC0_TYPE_MASK);
4208 gen_not(b0);
4209 b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4210 gen_and(b0, b1);
4211 return b1;
4213 case Q_ADDR4:
4215 * Present only if the direction mask has both "From DS"
4216 * and "To DS" set. Neither control frames nor management
4217 * frames should have both of those set, so we don't
4218 * check the frame type.
4220 b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4221 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4222 b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4223 gen_and(b0, b1);
4224 return b1;
4226 case Q_AND:
4227 b0 = gen_wlanhostop(eaddr, Q_SRC);
4228 b1 = gen_wlanhostop(eaddr, Q_DST);
4229 gen_and(b0, b1);
4230 return b1;
4232 case Q_DEFAULT:
4233 case Q_OR:
4234 b0 = gen_wlanhostop(eaddr, Q_SRC);
4235 b1 = gen_wlanhostop(eaddr, Q_DST);
4236 gen_or(b0, b1);
4237 return b1;
4239 abort();
4240 /* NOTREACHED */
4244 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4245 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4246 * as the RFC states.)
4248 static struct block *
4249 gen_ipfchostop(eaddr, dir)
4250 register const u_char *eaddr;
4251 register int dir;
4253 register struct block *b0, *b1;
4255 switch (dir) {
4256 case Q_SRC:
4257 return gen_bcmp(OR_LINK, 10, 6, eaddr);
4259 case Q_DST:
4260 return gen_bcmp(OR_LINK, 2, 6, eaddr);
4262 case Q_AND:
4263 b0 = gen_ipfchostop(eaddr, Q_SRC);
4264 b1 = gen_ipfchostop(eaddr, Q_DST);
4265 gen_and(b0, b1);
4266 return b1;
4268 case Q_DEFAULT:
4269 case Q_OR:
4270 b0 = gen_ipfchostop(eaddr, Q_SRC);
4271 b1 = gen_ipfchostop(eaddr, Q_DST);
4272 gen_or(b0, b1);
4273 return b1;
4275 case Q_ADDR1:
4276 bpf_error("'addr1' is only supported on 802.11");
4277 break;
4279 case Q_ADDR2:
4280 bpf_error("'addr2' is only supported on 802.11");
4281 break;
4283 case Q_ADDR3:
4284 bpf_error("'addr3' is only supported on 802.11");
4285 break;
4287 case Q_ADDR4:
4288 bpf_error("'addr4' is only supported on 802.11");
4289 break;
4291 case Q_RA:
4292 bpf_error("'ra' is only supported on 802.11");
4293 break;
4295 case Q_TA:
4296 bpf_error("'ta' is only supported on 802.11");
4297 break;
4299 abort();
4300 /* NOTREACHED */
4304 * This is quite tricky because there may be pad bytes in front of the
4305 * DECNET header, and then there are two possible data packet formats that
4306 * carry both src and dst addresses, plus 5 packet types in a format that
4307 * carries only the src node, plus 2 types that use a different format and
4308 * also carry just the src node.
4310 * Yuck.
4312 * Instead of doing those all right, we just look for data packets with
4313 * 0 or 1 bytes of padding. If you want to look at other packets, that
4314 * will require a lot more hacking.
4316 * To add support for filtering on DECNET "areas" (network numbers)
4317 * one would want to add a "mask" argument to this routine. That would
4318 * make the filter even more inefficient, although one could be clever
4319 * and not generate masking instructions if the mask is 0xFFFF.
4321 static struct block *
4322 gen_dnhostop(addr, dir)
4323 bpf_u_int32 addr;
4324 int dir;
4326 struct block *b0, *b1, *b2, *tmp;
4327 u_int offset_lh; /* offset if long header is received */
4328 u_int offset_sh; /* offset if short header is received */
4330 switch (dir) {
4332 case Q_DST:
4333 offset_sh = 1; /* follows flags */
4334 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4335 break;
4337 case Q_SRC:
4338 offset_sh = 3; /* follows flags, dstnode */
4339 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4340 break;
4342 case Q_AND:
4343 /* Inefficient because we do our Calvinball dance twice */
4344 b0 = gen_dnhostop(addr, Q_SRC);
4345 b1 = gen_dnhostop(addr, Q_DST);
4346 gen_and(b0, b1);
4347 return b1;
4349 case Q_OR:
4350 case Q_DEFAULT:
4351 /* Inefficient because we do our Calvinball dance twice */
4352 b0 = gen_dnhostop(addr, Q_SRC);
4353 b1 = gen_dnhostop(addr, Q_DST);
4354 gen_or(b0, b1);
4355 return b1;
4357 case Q_ISO:
4358 bpf_error("ISO host filtering not implemented");
4360 default:
4361 abort();
4363 b0 = gen_linktype(ETHERTYPE_DN);
4364 /* Check for pad = 1, long header case */
4365 tmp = gen_mcmp(OR_NET, 2, BPF_H,
4366 (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4367 b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4368 BPF_H, (bpf_int32)ntohs((u_short)addr));
4369 gen_and(tmp, b1);
4370 /* Check for pad = 0, long header case */
4371 tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4372 b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4373 gen_and(tmp, b2);
4374 gen_or(b2, b1);
4375 /* Check for pad = 1, short header case */
4376 tmp = gen_mcmp(OR_NET, 2, BPF_H,
4377 (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4378 b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4379 gen_and(tmp, b2);
4380 gen_or(b2, b1);
4381 /* Check for pad = 0, short header case */
4382 tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4383 b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4384 gen_and(tmp, b2);
4385 gen_or(b2, b1);
4387 /* Combine with test for linktype */
4388 gen_and(b0, b1);
4389 return b1;
4393 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4394 * test the bottom-of-stack bit, and then check the version number
4395 * field in the IP header.
4397 static struct block *
4398 gen_mpls_linktype(proto)
4399 int proto;
4401 struct block *b0, *b1;
4403 switch (proto) {
4405 case Q_IP:
4406 /* match the bottom-of-stack bit */
4407 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4408 /* match the IPv4 version number */
4409 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4410 gen_and(b0, b1);
4411 return b1;
4413 case Q_IPV6:
4414 /* match the bottom-of-stack bit */
4415 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4416 /* match the IPv4 version number */
4417 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4418 gen_and(b0, b1);
4419 return b1;
4421 default:
4422 abort();
4426 static struct block *
4427 gen_host(addr, mask, proto, dir, type)
4428 bpf_u_int32 addr;
4429 bpf_u_int32 mask;
4430 int proto;
4431 int dir;
4432 int type;
4434 struct block *b0, *b1;
4435 const char *typestr;
4437 if (type == Q_NET)
4438 typestr = "net";
4439 else
4440 typestr = "host";
4442 switch (proto) {
4444 case Q_DEFAULT:
4445 b0 = gen_host(addr, mask, Q_IP, dir, type);
4447 * Only check for non-IPv4 addresses if we're not
4448 * checking MPLS-encapsulated packets.
4450 if (label_stack_depth == 0) {
4451 b1 = gen_host(addr, mask, Q_ARP, dir, type);
4452 gen_or(b0, b1);
4453 b0 = gen_host(addr, mask, Q_RARP, dir, type);
4454 gen_or(b1, b0);
4456 return b0;
4458 case Q_IP:
4459 return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4461 case Q_RARP:
4462 return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4464 case Q_ARP:
4465 return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4467 case Q_TCP:
4468 bpf_error("'tcp' modifier applied to %s", typestr);
4470 case Q_SCTP:
4471 bpf_error("'sctp' modifier applied to %s", typestr);
4473 case Q_UDP:
4474 bpf_error("'udp' modifier applied to %s", typestr);
4476 case Q_ICMP:
4477 bpf_error("'icmp' modifier applied to %s", typestr);
4479 case Q_IGMP:
4480 bpf_error("'igmp' modifier applied to %s", typestr);
4482 case Q_IGRP:
4483 bpf_error("'igrp' modifier applied to %s", typestr);
4485 case Q_PIM:
4486 bpf_error("'pim' modifier applied to %s", typestr);
4488 case Q_VRRP:
4489 bpf_error("'vrrp' modifier applied to %s", typestr);
4491 case Q_CARP:
4492 bpf_error("'carp' modifier applied to %s", typestr);
4494 case Q_ATALK:
4495 bpf_error("ATALK host filtering not implemented");
4497 case Q_AARP:
4498 bpf_error("AARP host filtering not implemented");
4500 case Q_DECNET:
4501 return gen_dnhostop(addr, dir);
4503 case Q_SCA:
4504 bpf_error("SCA host filtering not implemented");
4506 case Q_LAT:
4507 bpf_error("LAT host filtering not implemented");
4509 case Q_MOPDL:
4510 bpf_error("MOPDL host filtering not implemented");
4512 case Q_MOPRC:
4513 bpf_error("MOPRC host filtering not implemented");
4515 case Q_IPV6:
4516 bpf_error("'ip6' modifier applied to ip host");
4518 case Q_ICMPV6:
4519 bpf_error("'icmp6' modifier applied to %s", typestr);
4521 case Q_AH:
4522 bpf_error("'ah' modifier applied to %s", typestr);
4524 case Q_ESP:
4525 bpf_error("'esp' modifier applied to %s", typestr);
4527 case Q_ISO:
4528 bpf_error("ISO host filtering not implemented");
4530 case Q_ESIS:
4531 bpf_error("'esis' modifier applied to %s", typestr);
4533 case Q_ISIS:
4534 bpf_error("'isis' modifier applied to %s", typestr);
4536 case Q_CLNP:
4537 bpf_error("'clnp' modifier applied to %s", typestr);
4539 case Q_STP:
4540 bpf_error("'stp' modifier applied to %s", typestr);
4542 case Q_IPX:
4543 bpf_error("IPX host filtering not implemented");
4545 case Q_NETBEUI:
4546 bpf_error("'netbeui' modifier applied to %s", typestr);
4548 case Q_RADIO:
4549 bpf_error("'radio' modifier applied to %s", typestr);
4551 default:
4552 abort();
4554 /* NOTREACHED */
4557 #ifdef INET6
4558 static struct block *
4559 gen_host6(addr, mask, proto, dir, type)
4560 struct in6_addr *addr;
4561 struct in6_addr *mask;
4562 int proto;
4563 int dir;
4564 int type;
4566 const char *typestr;
4568 if (type == Q_NET)
4569 typestr = "net";
4570 else
4571 typestr = "host";
4573 switch (proto) {
4575 case Q_DEFAULT:
4576 return gen_host6(addr, mask, Q_IPV6, dir, type);
4578 case Q_IP:
4579 bpf_error("'ip' modifier applied to ip6 %s", typestr);
4581 case Q_RARP:
4582 bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4584 case Q_ARP:
4585 bpf_error("'arp' modifier applied to ip6 %s", typestr);
4587 case Q_SCTP:
4588 bpf_error("'sctp' modifier applied to %s", typestr);
4590 case Q_TCP:
4591 bpf_error("'tcp' modifier applied to %s", typestr);
4593 case Q_UDP:
4594 bpf_error("'udp' modifier applied to %s", typestr);
4596 case Q_ICMP:
4597 bpf_error("'icmp' modifier applied to %s", typestr);
4599 case Q_IGMP:
4600 bpf_error("'igmp' modifier applied to %s", typestr);
4602 case Q_IGRP:
4603 bpf_error("'igrp' modifier applied to %s", typestr);
4605 case Q_PIM:
4606 bpf_error("'pim' modifier applied to %s", typestr);
4608 case Q_VRRP:
4609 bpf_error("'vrrp' modifier applied to %s", typestr);
4611 case Q_CARP:
4612 bpf_error("'carp' modifier applied to %s", typestr);
4614 case Q_ATALK:
4615 bpf_error("ATALK host filtering not implemented");
4617 case Q_AARP:
4618 bpf_error("AARP host filtering not implemented");
4620 case Q_DECNET:
4621 bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4623 case Q_SCA:
4624 bpf_error("SCA host filtering not implemented");
4626 case Q_LAT:
4627 bpf_error("LAT host filtering not implemented");
4629 case Q_MOPDL:
4630 bpf_error("MOPDL host filtering not implemented");
4632 case Q_MOPRC:
4633 bpf_error("MOPRC host filtering not implemented");
4635 case Q_IPV6:
4636 return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4638 case Q_ICMPV6:
4639 bpf_error("'icmp6' modifier applied to %s", typestr);
4641 case Q_AH:
4642 bpf_error("'ah' modifier applied to %s", typestr);
4644 case Q_ESP:
4645 bpf_error("'esp' modifier applied to %s", typestr);
4647 case Q_ISO:
4648 bpf_error("ISO host filtering not implemented");
4650 case Q_ESIS:
4651 bpf_error("'esis' modifier applied to %s", typestr);
4653 case Q_ISIS:
4654 bpf_error("'isis' modifier applied to %s", typestr);
4656 case Q_CLNP:
4657 bpf_error("'clnp' modifier applied to %s", typestr);
4659 case Q_STP:
4660 bpf_error("'stp' modifier applied to %s", typestr);
4662 case Q_IPX:
4663 bpf_error("IPX host filtering not implemented");
4665 case Q_NETBEUI:
4666 bpf_error("'netbeui' modifier applied to %s", typestr);
4668 case Q_RADIO:
4669 bpf_error("'radio' modifier applied to %s", typestr);
4671 default:
4672 abort();
4674 /* NOTREACHED */
4676 #endif
4678 #ifndef INET6
4679 static struct block *
4680 gen_gateway(eaddr, alist, proto, dir)
4681 const u_char *eaddr;
4682 bpf_u_int32 **alist;
4683 int proto;
4684 int dir;
4686 struct block *b0, *b1, *tmp;
4688 if (dir != 0)
4689 bpf_error("direction applied to 'gateway'");
4691 switch (proto) {
4692 case Q_DEFAULT:
4693 case Q_IP:
4694 case Q_ARP:
4695 case Q_RARP:
4696 switch (linktype) {
4697 case DLT_EN10MB:
4698 case DLT_NETANALYZER:
4699 case DLT_NETANALYZER_TRANSPARENT:
4700 b0 = gen_ehostop(eaddr, Q_OR);
4701 break;
4702 case DLT_FDDI:
4703 b0 = gen_fhostop(eaddr, Q_OR);
4704 break;
4705 case DLT_IEEE802:
4706 b0 = gen_thostop(eaddr, Q_OR);
4707 break;
4708 case DLT_IEEE802_11:
4709 case DLT_PRISM_HEADER:
4710 case DLT_IEEE802_11_RADIO_AVS:
4711 case DLT_IEEE802_11_RADIO:
4712 case DLT_PPI:
4713 b0 = gen_wlanhostop(eaddr, Q_OR);
4714 break;
4715 case DLT_SUNATM:
4716 if (!is_lane)
4717 bpf_error(
4718 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4720 * Check that the packet doesn't begin with an
4721 * LE Control marker. (We've already generated
4722 * a test for LANE.)
4724 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4725 BPF_H, 0xFF00);
4726 gen_not(b1);
4729 * Now check the MAC address.
4731 b0 = gen_ehostop(eaddr, Q_OR);
4732 gen_and(b1, b0);
4733 break;
4734 case DLT_IP_OVER_FC:
4735 b0 = gen_ipfchostop(eaddr, Q_OR);
4736 break;
4737 default:
4738 bpf_error(
4739 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4741 b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4742 while (*alist) {
4743 tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4744 Q_HOST);
4745 gen_or(b1, tmp);
4746 b1 = tmp;
4748 gen_not(b1);
4749 gen_and(b0, b1);
4750 return b1;
4752 bpf_error("illegal modifier of 'gateway'");
4753 /* NOTREACHED */
4755 #endif
4757 struct block *
4758 gen_proto_abbrev(proto)
4759 int proto;
4761 struct block *b0;
4762 struct block *b1;
4764 switch (proto) {
4766 case Q_SCTP:
4767 b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4768 b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4769 gen_or(b0, b1);
4770 break;
4772 case Q_TCP:
4773 b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4774 b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4775 gen_or(b0, b1);
4776 break;
4778 case Q_UDP:
4779 b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4780 b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4781 gen_or(b0, b1);
4782 break;
4784 case Q_ICMP:
4785 b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4786 break;
4788 #ifndef IPPROTO_IGMP
4789 #define IPPROTO_IGMP 2
4790 #endif
4792 case Q_IGMP:
4793 b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4794 break;
4796 #ifndef IPPROTO_IGRP
4797 #define IPPROTO_IGRP 9
4798 #endif
4799 case Q_IGRP:
4800 b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4801 break;
4803 #ifndef IPPROTO_PIM
4804 #define IPPROTO_PIM 103
4805 #endif
4807 case Q_PIM:
4808 b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4809 b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4810 gen_or(b0, b1);
4811 break;
4813 #ifndef IPPROTO_VRRP
4814 #define IPPROTO_VRRP 112
4815 #endif
4817 case Q_VRRP:
4818 b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4819 break;
4821 #ifndef IPPROTO_CARP
4822 #define IPPROTO_CARP 112
4823 #endif
4825 case Q_CARP:
4826 b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4827 break;
4829 case Q_IP:
4830 b1 = gen_linktype(ETHERTYPE_IP);
4831 break;
4833 case Q_ARP:
4834 b1 = gen_linktype(ETHERTYPE_ARP);
4835 break;
4837 case Q_RARP:
4838 b1 = gen_linktype(ETHERTYPE_REVARP);
4839 break;
4841 case Q_LINK:
4842 bpf_error("link layer applied in wrong context");
4844 case Q_ATALK:
4845 b1 = gen_linktype(ETHERTYPE_ATALK);
4846 break;
4848 case Q_AARP:
4849 b1 = gen_linktype(ETHERTYPE_AARP);
4850 break;
4852 case Q_DECNET:
4853 b1 = gen_linktype(ETHERTYPE_DN);
4854 break;
4856 case Q_SCA:
4857 b1 = gen_linktype(ETHERTYPE_SCA);
4858 break;
4860 case Q_LAT:
4861 b1 = gen_linktype(ETHERTYPE_LAT);
4862 break;
4864 case Q_MOPDL:
4865 b1 = gen_linktype(ETHERTYPE_MOPDL);
4866 break;
4868 case Q_MOPRC:
4869 b1 = gen_linktype(ETHERTYPE_MOPRC);
4870 break;
4872 case Q_IPV6:
4873 b1 = gen_linktype(ETHERTYPE_IPV6);
4874 break;
4876 #ifndef IPPROTO_ICMPV6
4877 #define IPPROTO_ICMPV6 58
4878 #endif
4879 case Q_ICMPV6:
4880 b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4881 break;
4883 #ifndef IPPROTO_AH
4884 #define IPPROTO_AH 51
4885 #endif
4886 case Q_AH:
4887 b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4888 b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4889 gen_or(b0, b1);
4890 break;
4892 #ifndef IPPROTO_ESP
4893 #define IPPROTO_ESP 50
4894 #endif
4895 case Q_ESP:
4896 b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4897 b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4898 gen_or(b0, b1);
4899 break;
4901 case Q_ISO:
4902 b1 = gen_linktype(LLCSAP_ISONS);
4903 break;
4905 case Q_ESIS:
4906 b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4907 break;
4909 case Q_ISIS:
4910 b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4911 break;
4913 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4914 b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4915 b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4916 gen_or(b0, b1);
4917 b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4918 gen_or(b0, b1);
4919 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4920 gen_or(b0, b1);
4921 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4922 gen_or(b0, b1);
4923 break;
4925 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4926 b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4927 b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4928 gen_or(b0, b1);
4929 b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4930 gen_or(b0, b1);
4931 b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4932 gen_or(b0, b1);
4933 b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4934 gen_or(b0, b1);
4935 break;
4937 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4938 b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4939 b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4940 gen_or(b0, b1);
4941 b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4942 gen_or(b0, b1);
4943 break;
4945 case Q_ISIS_LSP:
4946 b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4947 b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4948 gen_or(b0, b1);
4949 break;
4951 case Q_ISIS_SNP:
4952 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4953 b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4954 gen_or(b0, b1);
4955 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4956 gen_or(b0, b1);
4957 b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4958 gen_or(b0, b1);
4959 break;
4961 case Q_ISIS_CSNP:
4962 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4963 b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4964 gen_or(b0, b1);
4965 break;
4967 case Q_ISIS_PSNP:
4968 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4969 b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4970 gen_or(b0, b1);
4971 break;
4973 case Q_CLNP:
4974 b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4975 break;
4977 case Q_STP:
4978 b1 = gen_linktype(LLCSAP_8021D);
4979 break;
4981 case Q_IPX:
4982 b1 = gen_linktype(LLCSAP_IPX);
4983 break;
4985 case Q_NETBEUI:
4986 b1 = gen_linktype(LLCSAP_NETBEUI);
4987 break;
4989 case Q_RADIO:
4990 bpf_error("'radio' is not a valid protocol type");
4992 default:
4993 abort();
4995 return b1;
4998 static struct block *
4999 gen_ipfrag()
5001 struct slist *s;
5002 struct block *b;
5004 /* not IPv4 frag other than the first frag */
5005 s = gen_load_a(OR_NET, 6, BPF_H);
5006 b = new_block(JMP(BPF_JSET));
5007 b->s.k = 0x1fff;
5008 b->stmts = s;
5009 gen_not(b);
5011 return b;
5015 * Generate a comparison to a port value in the transport-layer header
5016 * at the specified offset from the beginning of that header.
5018 * XXX - this handles a variable-length prefix preceding the link-layer
5019 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5020 * variable-length link-layer headers (such as Token Ring or 802.11
5021 * headers).
5023 static struct block *
5024 gen_portatom(off, v)
5025 int off;
5026 bpf_int32 v;
5028 return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5031 static struct block *
5032 gen_portatom6(off, v)
5033 int off;
5034 bpf_int32 v;
5036 return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5039 struct block *
5040 gen_portop(port, proto, dir)
5041 int port, proto, dir;
5043 struct block *b0, *b1, *tmp;
5045 /* ip proto 'proto' and not a fragment other than the first fragment */
5046 tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5047 b0 = gen_ipfrag();
5048 gen_and(tmp, b0);
5050 switch (dir) {
5051 case Q_SRC:
5052 b1 = gen_portatom(0, (bpf_int32)port);
5053 break;
5055 case Q_DST:
5056 b1 = gen_portatom(2, (bpf_int32)port);
5057 break;
5059 case Q_OR:
5060 case Q_DEFAULT:
5061 tmp = gen_portatom(0, (bpf_int32)port);
5062 b1 = gen_portatom(2, (bpf_int32)port);
5063 gen_or(tmp, b1);
5064 break;
5066 case Q_AND:
5067 tmp = gen_portatom(0, (bpf_int32)port);
5068 b1 = gen_portatom(2, (bpf_int32)port);
5069 gen_and(tmp, b1);
5070 break;
5072 default:
5073 abort();
5075 gen_and(b0, b1);
5077 return b1;
5080 static struct block *
5081 gen_port(port, ip_proto, dir)
5082 int port;
5083 int ip_proto;
5084 int dir;
5086 struct block *b0, *b1, *tmp;
5089 * ether proto ip
5091 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5092 * not LLC encapsulation with LLCSAP_IP.
5094 * For IEEE 802 networks - which includes 802.5 token ring
5095 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5096 * says that SNAP encapsulation is used, not LLC encapsulation
5097 * with LLCSAP_IP.
5099 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5100 * RFC 2225 say that SNAP encapsulation is used, not LLC
5101 * encapsulation with LLCSAP_IP.
5103 * So we always check for ETHERTYPE_IP.
5105 b0 = gen_linktype(ETHERTYPE_IP);
5107 switch (ip_proto) {
5108 case IPPROTO_UDP:
5109 case IPPROTO_TCP:
5110 case IPPROTO_SCTP:
5111 b1 = gen_portop(port, ip_proto, dir);
5112 break;
5114 case PROTO_UNDEF:
5115 tmp = gen_portop(port, IPPROTO_TCP, dir);
5116 b1 = gen_portop(port, IPPROTO_UDP, dir);
5117 gen_or(tmp, b1);
5118 tmp = gen_portop(port, IPPROTO_SCTP, dir);
5119 gen_or(tmp, b1);
5120 break;
5122 default:
5123 abort();
5125 gen_and(b0, b1);
5126 return b1;
5129 struct block *
5130 gen_portop6(port, proto, dir)
5131 int port, proto, dir;
5133 struct block *b0, *b1, *tmp;
5135 /* ip6 proto 'proto' */
5136 /* XXX - catch the first fragment of a fragmented packet? */
5137 b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5139 switch (dir) {
5140 case Q_SRC:
5141 b1 = gen_portatom6(0, (bpf_int32)port);
5142 break;
5144 case Q_DST:
5145 b1 = gen_portatom6(2, (bpf_int32)port);
5146 break;
5148 case Q_OR:
5149 case Q_DEFAULT:
5150 tmp = gen_portatom6(0, (bpf_int32)port);
5151 b1 = gen_portatom6(2, (bpf_int32)port);
5152 gen_or(tmp, b1);
5153 break;
5155 case Q_AND:
5156 tmp = gen_portatom6(0, (bpf_int32)port);
5157 b1 = gen_portatom6(2, (bpf_int32)port);
5158 gen_and(tmp, b1);
5159 break;
5161 default:
5162 abort();
5164 gen_and(b0, b1);
5166 return b1;
5169 static struct block *
5170 gen_port6(port, ip_proto, dir)
5171 int port;
5172 int ip_proto;
5173 int dir;
5175 struct block *b0, *b1, *tmp;
5177 /* link proto ip6 */
5178 b0 = gen_linktype(ETHERTYPE_IPV6);
5180 switch (ip_proto) {
5181 case IPPROTO_UDP:
5182 case IPPROTO_TCP:
5183 case IPPROTO_SCTP:
5184 b1 = gen_portop6(port, ip_proto, dir);
5185 break;
5187 case PROTO_UNDEF:
5188 tmp = gen_portop6(port, IPPROTO_TCP, dir);
5189 b1 = gen_portop6(port, IPPROTO_UDP, dir);
5190 gen_or(tmp, b1);
5191 tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5192 gen_or(tmp, b1);
5193 break;
5195 default:
5196 abort();
5198 gen_and(b0, b1);
5199 return b1;
5202 /* gen_portrange code */
5203 static struct block *
5204 gen_portrangeatom(off, v1, v2)
5205 int off;
5206 bpf_int32 v1, v2;
5208 struct block *b1, *b2;
5210 if (v1 > v2) {
5212 * Reverse the order of the ports, so v1 is the lower one.
5214 bpf_int32 vtemp;
5216 vtemp = v1;
5217 v1 = v2;
5218 v2 = vtemp;
5221 b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5222 b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5224 gen_and(b1, b2);
5226 return b2;
5229 struct block *
5230 gen_portrangeop(port1, port2, proto, dir)
5231 int port1, port2;
5232 int proto;
5233 int dir;
5235 struct block *b0, *b1, *tmp;
5237 /* ip proto 'proto' and not a fragment other than the first fragment */
5238 tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5239 b0 = gen_ipfrag();
5240 gen_and(tmp, b0);
5242 switch (dir) {
5243 case Q_SRC:
5244 b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5245 break;
5247 case Q_DST:
5248 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5249 break;
5251 case Q_OR:
5252 case Q_DEFAULT:
5253 tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5254 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5255 gen_or(tmp, b1);
5256 break;
5258 case Q_AND:
5259 tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5260 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5261 gen_and(tmp, b1);
5262 break;
5264 default:
5265 abort();
5267 gen_and(b0, b1);
5269 return b1;
5272 static struct block *
5273 gen_portrange(port1, port2, ip_proto, dir)
5274 int port1, port2;
5275 int ip_proto;
5276 int dir;
5278 struct block *b0, *b1, *tmp;
5280 /* link proto ip */
5281 b0 = gen_linktype(ETHERTYPE_IP);
5283 switch (ip_proto) {
5284 case IPPROTO_UDP:
5285 case IPPROTO_TCP:
5286 case IPPROTO_SCTP:
5287 b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5288 break;
5290 case PROTO_UNDEF:
5291 tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5292 b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5293 gen_or(tmp, b1);
5294 tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5295 gen_or(tmp, b1);
5296 break;
5298 default:
5299 abort();
5301 gen_and(b0, b1);
5302 return b1;
5305 static struct block *
5306 gen_portrangeatom6(off, v1, v2)
5307 int off;
5308 bpf_int32 v1, v2;
5310 struct block *b1, *b2;
5312 if (v1 > v2) {
5314 * Reverse the order of the ports, so v1 is the lower one.
5316 bpf_int32 vtemp;
5318 vtemp = v1;
5319 v1 = v2;
5320 v2 = vtemp;
5323 b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5324 b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5326 gen_and(b1, b2);
5328 return b2;
5331 struct block *
5332 gen_portrangeop6(port1, port2, proto, dir)
5333 int port1, port2;
5334 int proto;
5335 int dir;
5337 struct block *b0, *b1, *tmp;
5339 /* ip6 proto 'proto' */
5340 /* XXX - catch the first fragment of a fragmented packet? */
5341 b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5343 switch (dir) {
5344 case Q_SRC:
5345 b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5346 break;
5348 case Q_DST:
5349 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5350 break;
5352 case Q_OR:
5353 case Q_DEFAULT:
5354 tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5355 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5356 gen_or(tmp, b1);
5357 break;
5359 case Q_AND:
5360 tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5361 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5362 gen_and(tmp, b1);
5363 break;
5365 default:
5366 abort();
5368 gen_and(b0, b1);
5370 return b1;
5373 static struct block *
5374 gen_portrange6(port1, port2, ip_proto, dir)
5375 int port1, port2;
5376 int ip_proto;
5377 int dir;
5379 struct block *b0, *b1, *tmp;
5381 /* link proto ip6 */
5382 b0 = gen_linktype(ETHERTYPE_IPV6);
5384 switch (ip_proto) {
5385 case IPPROTO_UDP:
5386 case IPPROTO_TCP:
5387 case IPPROTO_SCTP:
5388 b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5389 break;
5391 case PROTO_UNDEF:
5392 tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5393 b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5394 gen_or(tmp, b1);
5395 tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5396 gen_or(tmp, b1);
5397 break;
5399 default:
5400 abort();
5402 gen_and(b0, b1);
5403 return b1;
5406 static int
5407 lookup_proto(name, proto)
5408 register const char *name;
5409 register int proto;
5411 register int v;
5413 switch (proto) {
5415 case Q_DEFAULT:
5416 case Q_IP:
5417 case Q_IPV6:
5418 v = pcap_nametoproto(name);
5419 if (v == PROTO_UNDEF)
5420 bpf_error("unknown ip proto '%s'", name);
5421 break;
5423 case Q_LINK:
5424 /* XXX should look up h/w protocol type based on linktype */
5425 v = pcap_nametoeproto(name);
5426 if (v == PROTO_UNDEF) {
5427 v = pcap_nametollc(name);
5428 if (v == PROTO_UNDEF)
5429 bpf_error("unknown ether proto '%s'", name);
5431 break;
5433 case Q_ISO:
5434 if (strcmp(name, "esis") == 0)
5435 v = ISO9542_ESIS;
5436 else if (strcmp(name, "isis") == 0)
5437 v = ISO10589_ISIS;
5438 else if (strcmp(name, "clnp") == 0)
5439 v = ISO8473_CLNP;
5440 else
5441 bpf_error("unknown osi proto '%s'", name);
5442 break;
5444 default:
5445 v = PROTO_UNDEF;
5446 break;
5448 return v;
5451 #if 0
5452 struct stmt *
5453 gen_joinsp(s, n)
5454 struct stmt **s;
5455 int n;
5457 return NULL;
5459 #endif
5461 static struct block *
5462 gen_protochain(v, proto, dir)
5463 int v;
5464 int proto;
5465 int dir;
5467 #ifdef NO_PROTOCHAIN
5468 return gen_proto(v, proto, dir);
5469 #else
5470 struct block *b0, *b;
5471 struct slist *s[100];
5472 int fix2, fix3, fix4, fix5;
5473 int ahcheck, again, end;
5474 int i, max;
5475 int reg2 = alloc_reg();
5477 memset(s, 0, sizeof(s));
5478 fix2 = fix3 = fix4 = fix5 = 0;
5480 switch (proto) {
5481 case Q_IP:
5482 case Q_IPV6:
5483 break;
5484 case Q_DEFAULT:
5485 b0 = gen_protochain(v, Q_IP, dir);
5486 b = gen_protochain(v, Q_IPV6, dir);
5487 gen_or(b0, b);
5488 return b;
5489 default:
5490 bpf_error("bad protocol applied for 'protochain'");
5491 /*NOTREACHED*/
5495 * We don't handle variable-length prefixes before the link-layer
5496 * header, or variable-length link-layer headers, here yet.
5497 * We might want to add BPF instructions to do the protochain
5498 * work, to simplify that and, on platforms that have a BPF
5499 * interpreter with the new instructions, let the filtering
5500 * be done in the kernel. (We already require a modified BPF
5501 * engine to do the protochain stuff, to support backward
5502 * branches, and backward branch support is unlikely to appear
5503 * in kernel BPF engines.)
5505 switch (linktype) {
5507 case DLT_IEEE802_11:
5508 case DLT_PRISM_HEADER:
5509 case DLT_IEEE802_11_RADIO_AVS:
5510 case DLT_IEEE802_11_RADIO:
5511 case DLT_PPI:
5512 bpf_error("'protochain' not supported with 802.11");
5515 no_optimize = 1; /*this code is not compatible with optimzer yet */
5518 * s[0] is a dummy entry to protect other BPF insn from damage
5519 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5520 * hard to find interdependency made by jump table fixup.
5522 i = 0;
5523 s[i] = new_stmt(0); /*dummy*/
5524 i++;
5526 switch (proto) {
5527 case Q_IP:
5528 b0 = gen_linktype(ETHERTYPE_IP);
5530 /* A = ip->ip_p */
5531 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5532 s[i]->s.k = off_macpl + off_nl + 9;
5533 i++;
5534 /* X = ip->ip_hl << 2 */
5535 s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5536 s[i]->s.k = off_macpl + off_nl;
5537 i++;
5538 break;
5540 case Q_IPV6:
5541 b0 = gen_linktype(ETHERTYPE_IPV6);
5543 /* A = ip6->ip_nxt */
5544 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5545 s[i]->s.k = off_macpl + off_nl + 6;
5546 i++;
5547 /* X = sizeof(struct ip6_hdr) */
5548 s[i] = new_stmt(BPF_LDX|BPF_IMM);
5549 s[i]->s.k = 40;
5550 i++;
5551 break;
5553 default:
5554 bpf_error("unsupported proto to gen_protochain");
5555 /*NOTREACHED*/
5558 /* again: if (A == v) goto end; else fall through; */
5559 again = i;
5560 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5561 s[i]->s.k = v;
5562 s[i]->s.jt = NULL; /*later*/
5563 s[i]->s.jf = NULL; /*update in next stmt*/
5564 fix5 = i;
5565 i++;
5567 #ifndef IPPROTO_NONE
5568 #define IPPROTO_NONE 59
5569 #endif
5570 /* if (A == IPPROTO_NONE) goto end */
5571 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5572 s[i]->s.jt = NULL; /*later*/
5573 s[i]->s.jf = NULL; /*update in next stmt*/
5574 s[i]->s.k = IPPROTO_NONE;
5575 s[fix5]->s.jf = s[i];
5576 fix2 = i;
5577 i++;
5579 if (proto == Q_IPV6) {
5580 int v6start, v6end, v6advance, j;
5582 v6start = i;
5583 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5584 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5585 s[i]->s.jt = NULL; /*later*/
5586 s[i]->s.jf = NULL; /*update in next stmt*/
5587 s[i]->s.k = IPPROTO_HOPOPTS;
5588 s[fix2]->s.jf = s[i];
5589 i++;
5590 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5591 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5592 s[i]->s.jt = NULL; /*later*/
5593 s[i]->s.jf = NULL; /*update in next stmt*/
5594 s[i]->s.k = IPPROTO_DSTOPTS;
5595 i++;
5596 /* if (A == IPPROTO_ROUTING) goto v6advance */
5597 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5598 s[i]->s.jt = NULL; /*later*/
5599 s[i]->s.jf = NULL; /*update in next stmt*/
5600 s[i]->s.k = IPPROTO_ROUTING;
5601 i++;
5602 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5603 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5604 s[i]->s.jt = NULL; /*later*/
5605 s[i]->s.jf = NULL; /*later*/
5606 s[i]->s.k = IPPROTO_FRAGMENT;
5607 fix3 = i;
5608 v6end = i;
5609 i++;
5611 /* v6advance: */
5612 v6advance = i;
5615 * in short,
5616 * A = P[X + packet head];
5617 * X = X + (P[X + packet head + 1] + 1) * 8;
5619 /* A = P[X + packet head] */
5620 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5621 s[i]->s.k = off_macpl + off_nl;
5622 i++;
5623 /* MEM[reg2] = A */
5624 s[i] = new_stmt(BPF_ST);
5625 s[i]->s.k = reg2;
5626 i++;
5627 /* A = P[X + packet head + 1]; */
5628 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5629 s[i]->s.k = off_macpl + off_nl + 1;
5630 i++;
5631 /* A += 1 */
5632 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5633 s[i]->s.k = 1;
5634 i++;
5635 /* A *= 8 */
5636 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5637 s[i]->s.k = 8;
5638 i++;
5639 /* A += X */
5640 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5641 s[i]->s.k = 0;
5642 i++;
5643 /* X = A; */
5644 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5645 i++;
5646 /* A = MEM[reg2] */
5647 s[i] = new_stmt(BPF_LD|BPF_MEM);
5648 s[i]->s.k = reg2;
5649 i++;
5651 /* goto again; (must use BPF_JA for backward jump) */
5652 s[i] = new_stmt(BPF_JMP|BPF_JA);
5653 s[i]->s.k = again - i - 1;
5654 s[i - 1]->s.jf = s[i];
5655 i++;
5657 /* fixup */
5658 for (j = v6start; j <= v6end; j++)
5659 s[j]->s.jt = s[v6advance];
5660 } else {
5661 /* nop */
5662 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5663 s[i]->s.k = 0;
5664 s[fix2]->s.jf = s[i];
5665 i++;
5668 /* ahcheck: */
5669 ahcheck = i;
5670 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5671 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5672 s[i]->s.jt = NULL; /*later*/
5673 s[i]->s.jf = NULL; /*later*/
5674 s[i]->s.k = IPPROTO_AH;
5675 if (fix3)
5676 s[fix3]->s.jf = s[ahcheck];
5677 fix4 = i;
5678 i++;
5681 * in short,
5682 * A = P[X];
5683 * X = X + (P[X + 1] + 2) * 4;
5685 /* A = X */
5686 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5687 i++;
5688 /* A = P[X + packet head]; */
5689 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5690 s[i]->s.k = off_macpl + off_nl;
5691 i++;
5692 /* MEM[reg2] = A */
5693 s[i] = new_stmt(BPF_ST);
5694 s[i]->s.k = reg2;
5695 i++;
5696 /* A = X */
5697 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5698 i++;
5699 /* A += 1 */
5700 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5701 s[i]->s.k = 1;
5702 i++;
5703 /* X = A */
5704 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5705 i++;
5706 /* A = P[X + packet head] */
5707 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5708 s[i]->s.k = off_macpl + off_nl;
5709 i++;
5710 /* A += 2 */
5711 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5712 s[i]->s.k = 2;
5713 i++;
5714 /* A *= 4 */
5715 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5716 s[i]->s.k = 4;
5717 i++;
5718 /* X = A; */
5719 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5720 i++;
5721 /* A = MEM[reg2] */
5722 s[i] = new_stmt(BPF_LD|BPF_MEM);
5723 s[i]->s.k = reg2;
5724 i++;
5726 /* goto again; (must use BPF_JA for backward jump) */
5727 s[i] = new_stmt(BPF_JMP|BPF_JA);
5728 s[i]->s.k = again - i - 1;
5729 i++;
5731 /* end: nop */
5732 end = i;
5733 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5734 s[i]->s.k = 0;
5735 s[fix2]->s.jt = s[end];
5736 s[fix4]->s.jf = s[end];
5737 s[fix5]->s.jt = s[end];
5738 i++;
5741 * make slist chain
5743 max = i;
5744 for (i = 0; i < max - 1; i++)
5745 s[i]->next = s[i + 1];
5746 s[max - 1]->next = NULL;
5749 * emit final check
5751 b = new_block(JMP(BPF_JEQ));
5752 b->stmts = s[1]; /*remember, s[0] is dummy*/
5753 b->s.k = v;
5755 free_reg(reg2);
5757 gen_and(b0, b);
5758 return b;
5759 #endif
5762 static struct block *
5763 gen_check_802_11_data_frame()
5765 struct slist *s;
5766 struct block *b0, *b1;
5769 * A data frame has the 0x08 bit (b3) in the frame control field set
5770 * and the 0x04 bit (b2) clear.
5772 s = gen_load_a(OR_LINK, 0, BPF_B);
5773 b0 = new_block(JMP(BPF_JSET));
5774 b0->s.k = 0x08;
5775 b0->stmts = s;
5777 s = gen_load_a(OR_LINK, 0, BPF_B);
5778 b1 = new_block(JMP(BPF_JSET));
5779 b1->s.k = 0x04;
5780 b1->stmts = s;
5781 gen_not(b1);
5783 gen_and(b1, b0);
5785 return b0;
5789 * Generate code that checks whether the packet is a packet for protocol
5790 * <proto> and whether the type field in that protocol's header has
5791 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5792 * IP packet and checks the protocol number in the IP header against <v>.
5794 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5795 * against Q_IP and Q_IPV6.
5797 static struct block *
5798 gen_proto(v, proto, dir)
5799 int v;
5800 int proto;
5801 int dir;
5803 struct block *b0, *b1;
5804 #ifndef CHASE_CHAIN
5805 struct block *b2;
5806 #endif
5808 if (dir != Q_DEFAULT)
5809 bpf_error("direction applied to 'proto'");
5811 switch (proto) {
5812 case Q_DEFAULT:
5813 b0 = gen_proto(v, Q_IP, dir);
5814 b1 = gen_proto(v, Q_IPV6, dir);
5815 gen_or(b0, b1);
5816 return b1;
5818 case Q_IP:
5820 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5821 * not LLC encapsulation with LLCSAP_IP.
5823 * For IEEE 802 networks - which includes 802.5 token ring
5824 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5825 * says that SNAP encapsulation is used, not LLC encapsulation
5826 * with LLCSAP_IP.
5828 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5829 * RFC 2225 say that SNAP encapsulation is used, not LLC
5830 * encapsulation with LLCSAP_IP.
5832 * So we always check for ETHERTYPE_IP.
5834 b0 = gen_linktype(ETHERTYPE_IP);
5835 #ifndef CHASE_CHAIN
5836 b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5837 #else
5838 b1 = gen_protochain(v, Q_IP);
5839 #endif
5840 gen_and(b0, b1);
5841 return b1;
5843 case Q_ISO:
5844 switch (linktype) {
5846 case DLT_FRELAY:
5848 * Frame Relay packets typically have an OSI
5849 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5850 * generates code to check for all the OSI
5851 * NLPIDs, so calling it and then adding a check
5852 * for the particular NLPID for which we're
5853 * looking is bogus, as we can just check for
5854 * the NLPID.
5856 * What we check for is the NLPID and a frame
5857 * control field value of UI, i.e. 0x03 followed
5858 * by the NLPID.
5860 * XXX - assumes a 2-byte Frame Relay header with
5861 * DLCI and flags. What if the address is longer?
5863 * XXX - what about SNAP-encapsulated frames?
5865 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5866 /*NOTREACHED*/
5867 break;
5869 case DLT_C_HDLC:
5871 * Cisco uses an Ethertype lookalike - for OSI,
5872 * it's 0xfefe.
5874 b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5875 /* OSI in C-HDLC is stuffed with a fudge byte */
5876 b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5877 gen_and(b0, b1);
5878 return b1;
5880 default:
5881 b0 = gen_linktype(LLCSAP_ISONS);
5882 b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5883 gen_and(b0, b1);
5884 return b1;
5887 case Q_ISIS:
5888 b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5890 * 4 is the offset of the PDU type relative to the IS-IS
5891 * header.
5893 b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5894 gen_and(b0, b1);
5895 return b1;
5897 case Q_ARP:
5898 bpf_error("arp does not encapsulate another protocol");
5899 /* NOTREACHED */
5901 case Q_RARP:
5902 bpf_error("rarp does not encapsulate another protocol");
5903 /* NOTREACHED */
5905 case Q_ATALK:
5906 bpf_error("atalk encapsulation is not specifiable");
5907 /* NOTREACHED */
5909 case Q_DECNET:
5910 bpf_error("decnet encapsulation is not specifiable");
5911 /* NOTREACHED */
5913 case Q_SCA:
5914 bpf_error("sca does not encapsulate another protocol");
5915 /* NOTREACHED */
5917 case Q_LAT:
5918 bpf_error("lat does not encapsulate another protocol");
5919 /* NOTREACHED */
5921 case Q_MOPRC:
5922 bpf_error("moprc does not encapsulate another protocol");
5923 /* NOTREACHED */
5925 case Q_MOPDL:
5926 bpf_error("mopdl does not encapsulate another protocol");
5927 /* NOTREACHED */
5929 case Q_LINK:
5930 return gen_linktype(v);
5932 case Q_UDP:
5933 bpf_error("'udp proto' is bogus");
5934 /* NOTREACHED */
5936 case Q_TCP:
5937 bpf_error("'tcp proto' is bogus");
5938 /* NOTREACHED */
5940 case Q_SCTP:
5941 bpf_error("'sctp proto' is bogus");
5942 /* NOTREACHED */
5944 case Q_ICMP:
5945 bpf_error("'icmp proto' is bogus");
5946 /* NOTREACHED */
5948 case Q_IGMP:
5949 bpf_error("'igmp proto' is bogus");
5950 /* NOTREACHED */
5952 case Q_IGRP:
5953 bpf_error("'igrp proto' is bogus");
5954 /* NOTREACHED */
5956 case Q_PIM:
5957 bpf_error("'pim proto' is bogus");
5958 /* NOTREACHED */
5960 case Q_VRRP:
5961 bpf_error("'vrrp proto' is bogus");
5962 /* NOTREACHED */
5964 case Q_CARP:
5965 bpf_error("'carp proto' is bogus");
5966 /* NOTREACHED */
5968 case Q_IPV6:
5969 b0 = gen_linktype(ETHERTYPE_IPV6);
5970 #ifndef CHASE_CHAIN
5972 * Also check for a fragment header before the final
5973 * header.
5975 b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5976 b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5977 gen_and(b2, b1);
5978 b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5979 gen_or(b2, b1);
5980 #else
5981 b1 = gen_protochain(v, Q_IPV6);
5982 #endif
5983 gen_and(b0, b1);
5984 return b1;
5986 case Q_ICMPV6:
5987 bpf_error("'icmp6 proto' is bogus");
5989 case Q_AH:
5990 bpf_error("'ah proto' is bogus");
5992 case Q_ESP:
5993 bpf_error("'ah proto' is bogus");
5995 case Q_STP:
5996 bpf_error("'stp proto' is bogus");
5998 case Q_IPX:
5999 bpf_error("'ipx proto' is bogus");
6001 case Q_NETBEUI:
6002 bpf_error("'netbeui proto' is bogus");
6004 case Q_RADIO:
6005 bpf_error("'radio proto' is bogus");
6007 default:
6008 abort();
6009 /* NOTREACHED */
6011 /* NOTREACHED */
6014 struct block *
6015 gen_scode(name, q)
6016 register const char *name;
6017 struct qual q;
6019 int proto = q.proto;
6020 int dir = q.dir;
6021 int tproto;
6022 u_char *eaddr;
6023 bpf_u_int32 mask, addr;
6024 #ifndef INET6
6025 bpf_u_int32 **alist;
6026 #else
6027 int tproto6;
6028 struct sockaddr_in *sin4;
6029 struct sockaddr_in6 *sin6;
6030 struct addrinfo *res, *res0;
6031 struct in6_addr mask128;
6032 #endif /*INET6*/
6033 struct block *b, *tmp;
6034 int port, real_proto;
6035 int port1, port2;
6037 switch (q.addr) {
6039 case Q_NET:
6040 addr = pcap_nametonetaddr(name);
6041 if (addr == 0)
6042 bpf_error("unknown network '%s'", name);
6043 /* Left justify network addr and calculate its network mask */
6044 mask = 0xffffffff;
6045 while (addr && (addr & 0xff000000) == 0) {
6046 addr <<= 8;
6047 mask <<= 8;
6049 return gen_host(addr, mask, proto, dir, q.addr);
6051 case Q_DEFAULT:
6052 case Q_HOST:
6053 if (proto == Q_LINK) {
6054 switch (linktype) {
6056 case DLT_EN10MB:
6057 case DLT_NETANALYZER:
6058 case DLT_NETANALYZER_TRANSPARENT:
6059 eaddr = pcap_ether_hostton(name);
6060 if (eaddr == NULL)
6061 bpf_error(
6062 "unknown ether host '%s'", name);
6063 b = gen_ehostop(eaddr, dir);
6064 free(eaddr);
6065 return b;
6067 case DLT_FDDI:
6068 eaddr = pcap_ether_hostton(name);
6069 if (eaddr == NULL)
6070 bpf_error(
6071 "unknown FDDI host '%s'", name);
6072 b = gen_fhostop(eaddr, dir);
6073 free(eaddr);
6074 return b;
6076 case DLT_IEEE802:
6077 eaddr = pcap_ether_hostton(name);
6078 if (eaddr == NULL)
6079 bpf_error(
6080 "unknown token ring host '%s'", name);
6081 b = gen_thostop(eaddr, dir);
6082 free(eaddr);
6083 return b;
6085 case DLT_IEEE802_11:
6086 case DLT_PRISM_HEADER:
6087 case DLT_IEEE802_11_RADIO_AVS:
6088 case DLT_IEEE802_11_RADIO:
6089 case DLT_PPI:
6090 eaddr = pcap_ether_hostton(name);
6091 if (eaddr == NULL)
6092 bpf_error(
6093 "unknown 802.11 host '%s'", name);
6094 b = gen_wlanhostop(eaddr, dir);
6095 free(eaddr);
6096 return b;
6098 case DLT_IP_OVER_FC:
6099 eaddr = pcap_ether_hostton(name);
6100 if (eaddr == NULL)
6101 bpf_error(
6102 "unknown Fibre Channel host '%s'", name);
6103 b = gen_ipfchostop(eaddr, dir);
6104 free(eaddr);
6105 return b;
6107 case DLT_SUNATM:
6108 if (!is_lane)
6109 break;
6112 * Check that the packet doesn't begin
6113 * with an LE Control marker. (We've
6114 * already generated a test for LANE.)
6116 tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6117 BPF_H, 0xFF00);
6118 gen_not(tmp);
6120 eaddr = pcap_ether_hostton(name);
6121 if (eaddr == NULL)
6122 bpf_error(
6123 "unknown ether host '%s'", name);
6124 b = gen_ehostop(eaddr, dir);
6125 gen_and(tmp, b);
6126 free(eaddr);
6127 return b;
6130 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6131 } else if (proto == Q_DECNET) {
6132 unsigned short dn_addr = __pcap_nametodnaddr(name);
6134 * I don't think DECNET hosts can be multihomed, so
6135 * there is no need to build up a list of addresses
6137 return (gen_host(dn_addr, 0, proto, dir, q.addr));
6138 } else {
6139 #ifndef INET6
6140 alist = pcap_nametoaddr(name);
6141 if (alist == NULL || *alist == NULL)
6142 bpf_error("unknown host '%s'", name);
6143 tproto = proto;
6144 if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6145 tproto = Q_IP;
6146 b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6147 while (*alist) {
6148 tmp = gen_host(**alist++, 0xffffffff,
6149 tproto, dir, q.addr);
6150 gen_or(b, tmp);
6151 b = tmp;
6153 return b;
6154 #else
6155 memset(&mask128, 0xff, sizeof(mask128));
6156 res0 = res = pcap_nametoaddrinfo(name);
6157 if (res == NULL)
6158 bpf_error("unknown host '%s'", name);
6159 ai = res;
6160 b = tmp = NULL;
6161 tproto = tproto6 = proto;
6162 if (off_linktype == -1 && tproto == Q_DEFAULT) {
6163 tproto = Q_IP;
6164 tproto6 = Q_IPV6;
6166 for (res = res0; res; res = res->ai_next) {
6167 switch (res->ai_family) {
6168 case AF_INET:
6169 if (tproto == Q_IPV6)
6170 continue;
6172 sin4 = (struct sockaddr_in *)
6173 res->ai_addr;
6174 tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6175 0xffffffff, tproto, dir, q.addr);
6176 break;
6177 case AF_INET6:
6178 if (tproto6 == Q_IP)
6179 continue;
6181 sin6 = (struct sockaddr_in6 *)
6182 res->ai_addr;
6183 tmp = gen_host6(&sin6->sin6_addr,
6184 &mask128, tproto6, dir, q.addr);
6185 break;
6186 default:
6187 continue;
6189 if (b)
6190 gen_or(b, tmp);
6191 b = tmp;
6193 ai = NULL;
6194 freeaddrinfo(res0);
6195 if (b == NULL) {
6196 bpf_error("unknown host '%s'%s", name,
6197 (proto == Q_DEFAULT)
6198 ? ""
6199 : " for specified address family");
6201 return b;
6202 #endif /*INET6*/
6205 case Q_PORT:
6206 if (proto != Q_DEFAULT &&
6207 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6208 bpf_error("illegal qualifier of 'port'");
6209 if (pcap_nametoport(name, &port, &real_proto) == 0)
6210 bpf_error("unknown port '%s'", name);
6211 if (proto == Q_UDP) {
6212 if (real_proto == IPPROTO_TCP)
6213 bpf_error("port '%s' is tcp", name);
6214 else if (real_proto == IPPROTO_SCTP)
6215 bpf_error("port '%s' is sctp", name);
6216 else
6217 /* override PROTO_UNDEF */
6218 real_proto = IPPROTO_UDP;
6220 if (proto == Q_TCP) {
6221 if (real_proto == IPPROTO_UDP)
6222 bpf_error("port '%s' is udp", name);
6224 else if (real_proto == IPPROTO_SCTP)
6225 bpf_error("port '%s' is sctp", name);
6226 else
6227 /* override PROTO_UNDEF */
6228 real_proto = IPPROTO_TCP;
6230 if (proto == Q_SCTP) {
6231 if (real_proto == IPPROTO_UDP)
6232 bpf_error("port '%s' is udp", name);
6234 else if (real_proto == IPPROTO_TCP)
6235 bpf_error("port '%s' is tcp", name);
6236 else
6237 /* override PROTO_UNDEF */
6238 real_proto = IPPROTO_SCTP;
6240 if (port < 0)
6241 bpf_error("illegal port number %d < 0", port);
6242 if (port > 65535)
6243 bpf_error("illegal port number %d > 65535", port);
6244 b = gen_port(port, real_proto, dir);
6245 gen_or(gen_port6(port, real_proto, dir), b);
6246 return b;
6248 case Q_PORTRANGE:
6249 if (proto != Q_DEFAULT &&
6250 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6251 bpf_error("illegal qualifier of 'portrange'");
6252 if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6253 bpf_error("unknown port in range '%s'", name);
6254 if (proto == Q_UDP) {
6255 if (real_proto == IPPROTO_TCP)
6256 bpf_error("port in range '%s' is tcp", name);
6257 else if (real_proto == IPPROTO_SCTP)
6258 bpf_error("port in range '%s' is sctp", name);
6259 else
6260 /* override PROTO_UNDEF */
6261 real_proto = IPPROTO_UDP;
6263 if (proto == Q_TCP) {
6264 if (real_proto == IPPROTO_UDP)
6265 bpf_error("port in range '%s' is udp", name);
6266 else if (real_proto == IPPROTO_SCTP)
6267 bpf_error("port in range '%s' is sctp", name);
6268 else
6269 /* override PROTO_UNDEF */
6270 real_proto = IPPROTO_TCP;
6272 if (proto == Q_SCTP) {
6273 if (real_proto == IPPROTO_UDP)
6274 bpf_error("port in range '%s' is udp", name);
6275 else if (real_proto == IPPROTO_TCP)
6276 bpf_error("port in range '%s' is tcp", name);
6277 else
6278 /* override PROTO_UNDEF */
6279 real_proto = IPPROTO_SCTP;
6281 if (port1 < 0)
6282 bpf_error("illegal port number %d < 0", port1);
6283 if (port1 > 65535)
6284 bpf_error("illegal port number %d > 65535", port1);
6285 if (port2 < 0)
6286 bpf_error("illegal port number %d < 0", port2);
6287 if (port2 > 65535)
6288 bpf_error("illegal port number %d > 65535", port2);
6290 b = gen_portrange(port1, port2, real_proto, dir);
6291 gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6292 return b;
6294 case Q_GATEWAY:
6295 #ifndef INET6
6296 eaddr = pcap_ether_hostton(name);
6297 if (eaddr == NULL)
6298 bpf_error("unknown ether host: %s", name);
6300 alist = pcap_nametoaddr(name);
6301 if (alist == NULL || *alist == NULL)
6302 bpf_error("unknown host '%s'", name);
6303 b = gen_gateway(eaddr, alist, proto, dir);
6304 free(eaddr);
6305 return b;
6306 #else
6307 bpf_error("'gateway' not supported in this configuration");
6308 #endif /*INET6*/
6310 case Q_PROTO:
6311 real_proto = lookup_proto(name, proto);
6312 if (real_proto >= 0)
6313 return gen_proto(real_proto, proto, dir);
6314 else
6315 bpf_error("unknown protocol: %s", name);
6317 case Q_PROTOCHAIN:
6318 real_proto = lookup_proto(name, proto);
6319 if (real_proto >= 0)
6320 return gen_protochain(real_proto, proto, dir);
6321 else
6322 bpf_error("unknown protocol: %s", name);
6324 case Q_UNDEF:
6325 syntax();
6326 /* NOTREACHED */
6328 abort();
6329 /* NOTREACHED */
6332 struct block *
6333 gen_mcode(s1, s2, masklen, q)
6334 register const char *s1, *s2;
6335 register int masklen;
6336 struct qual q;
6338 register int nlen, mlen;
6339 bpf_u_int32 n, m;
6341 nlen = __pcap_atoin(s1, &n);
6342 /* Promote short ipaddr */
6343 n <<= 32 - nlen;
6345 if (s2 != NULL) {
6346 mlen = __pcap_atoin(s2, &m);
6347 /* Promote short ipaddr */
6348 m <<= 32 - mlen;
6349 if ((n & ~m) != 0)
6350 bpf_error("non-network bits set in \"%s mask %s\"",
6351 s1, s2);
6352 } else {
6353 /* Convert mask len to mask */
6354 if (masklen > 32)
6355 bpf_error("mask length must be <= 32");
6356 if (masklen == 0) {
6358 * X << 32 is not guaranteed by C to be 0; it's
6359 * undefined.
6361 m = 0;
6362 } else
6363 m = 0xffffffff << (32 - masklen);
6364 if ((n & ~m) != 0)
6365 bpf_error("non-network bits set in \"%s/%d\"",
6366 s1, masklen);
6369 switch (q.addr) {
6371 case Q_NET:
6372 return gen_host(n, m, q.proto, q.dir, q.addr);
6374 default:
6375 bpf_error("Mask syntax for networks only");
6376 /* NOTREACHED */
6378 /* NOTREACHED */
6379 return NULL;
6382 struct block *
6383 gen_ncode(s, v, q)
6384 register const char *s;
6385 bpf_u_int32 v;
6386 struct qual q;
6388 bpf_u_int32 mask;
6389 int proto = q.proto;
6390 int dir = q.dir;
6391 register int vlen;
6393 if (s == NULL)
6394 vlen = 32;
6395 else if (q.proto == Q_DECNET)
6396 vlen = __pcap_atodn(s, &v);
6397 else
6398 vlen = __pcap_atoin(s, &v);
6400 switch (q.addr) {
6402 case Q_DEFAULT:
6403 case Q_HOST:
6404 case Q_NET:
6405 if (proto == Q_DECNET)
6406 return gen_host(v, 0, proto, dir, q.addr);
6407 else if (proto == Q_LINK) {
6408 bpf_error("illegal link layer address");
6409 } else {
6410 mask = 0xffffffff;
6411 if (s == NULL && q.addr == Q_NET) {
6412 /* Promote short net number */
6413 while (v && (v & 0xff000000) == 0) {
6414 v <<= 8;
6415 mask <<= 8;
6417 } else {
6418 /* Promote short ipaddr */
6419 v <<= 32 - vlen;
6420 mask <<= 32 - vlen;
6422 return gen_host(v, mask, proto, dir, q.addr);
6425 case Q_PORT:
6426 if (proto == Q_UDP)
6427 proto = IPPROTO_UDP;
6428 else if (proto == Q_TCP)
6429 proto = IPPROTO_TCP;
6430 else if (proto == Q_SCTP)
6431 proto = IPPROTO_SCTP;
6432 else if (proto == Q_DEFAULT)
6433 proto = PROTO_UNDEF;
6434 else
6435 bpf_error("illegal qualifier of 'port'");
6437 if (v > 65535)
6438 bpf_error("illegal port number %u > 65535", v);
6441 struct block *b;
6442 b = gen_port((int)v, proto, dir);
6443 gen_or(gen_port6((int)v, proto, dir), b);
6444 return b;
6447 case Q_PORTRANGE:
6448 if (proto == Q_UDP)
6449 proto = IPPROTO_UDP;
6450 else if (proto == Q_TCP)
6451 proto = IPPROTO_TCP;
6452 else if (proto == Q_SCTP)
6453 proto = IPPROTO_SCTP;
6454 else if (proto == Q_DEFAULT)
6455 proto = PROTO_UNDEF;
6456 else
6457 bpf_error("illegal qualifier of 'portrange'");
6459 if (v > 65535)
6460 bpf_error("illegal port number %u > 65535", v);
6463 struct block *b;
6464 b = gen_portrange((int)v, (int)v, proto, dir);
6465 gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6466 return b;
6469 case Q_GATEWAY:
6470 bpf_error("'gateway' requires a name");
6471 /* NOTREACHED */
6473 case Q_PROTO:
6474 return gen_proto((int)v, proto, dir);
6476 case Q_PROTOCHAIN:
6477 return gen_protochain((int)v, proto, dir);
6479 case Q_UNDEF:
6480 syntax();
6481 /* NOTREACHED */
6483 default:
6484 abort();
6485 /* NOTREACHED */
6487 /* NOTREACHED */
6490 #ifdef INET6
6491 struct block *
6492 gen_mcode6(s1, s2, masklen, q)
6493 register const char *s1, *s2;
6494 register int masklen;
6495 struct qual q;
6497 struct addrinfo *res;
6498 struct in6_addr *addr;
6499 struct in6_addr mask;
6500 struct block *b;
6501 u_int32_t *a, *m;
6503 if (s2)
6504 bpf_error("no mask %s supported", s2);
6506 res = pcap_nametoaddrinfo(s1);
6507 if (!res)
6508 bpf_error("invalid ip6 address %s", s1);
6509 ai = res;
6510 if (res->ai_next)
6511 bpf_error("%s resolved to multiple address", s1);
6512 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6514 if (sizeof(mask) * 8 < masklen)
6515 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6516 memset(&mask, 0, sizeof(mask));
6517 memset(&mask, 0xff, masklen / 8);
6518 if (masklen % 8) {
6519 mask.s6_addr[masklen / 8] =
6520 (0xff << (8 - masklen % 8)) & 0xff;
6523 a = (u_int32_t *)addr;
6524 m = (u_int32_t *)&mask;
6525 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6526 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6527 bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6530 switch (q.addr) {
6532 case Q_DEFAULT:
6533 case Q_HOST:
6534 if (masklen != 128)
6535 bpf_error("Mask syntax for networks only");
6536 /* FALLTHROUGH */
6538 case Q_NET:
6539 b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6540 ai = NULL;
6541 freeaddrinfo(res);
6542 return b;
6544 default:
6545 bpf_error("invalid qualifier against IPv6 address");
6546 /* NOTREACHED */
6548 return NULL;
6550 #endif /*INET6*/
6552 struct block *
6553 gen_ecode(eaddr, q)
6554 register const u_char *eaddr;
6555 struct qual q;
6557 struct block *b, *tmp;
6559 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6560 switch (linktype) {
6561 case DLT_EN10MB:
6562 case DLT_NETANALYZER:
6563 case DLT_NETANALYZER_TRANSPARENT:
6564 return gen_ehostop(eaddr, (int)q.dir);
6565 case DLT_FDDI:
6566 return gen_fhostop(eaddr, (int)q.dir);
6567 case DLT_IEEE802:
6568 return gen_thostop(eaddr, (int)q.dir);
6569 case DLT_IEEE802_11:
6570 case DLT_PRISM_HEADER:
6571 case DLT_IEEE802_11_RADIO_AVS:
6572 case DLT_IEEE802_11_RADIO:
6573 case DLT_PPI:
6574 return gen_wlanhostop(eaddr, (int)q.dir);
6575 case DLT_SUNATM:
6576 if (is_lane) {
6578 * Check that the packet doesn't begin with an
6579 * LE Control marker. (We've already generated
6580 * a test for LANE.)
6582 tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6583 0xFF00);
6584 gen_not(tmp);
6587 * Now check the MAC address.
6589 b = gen_ehostop(eaddr, (int)q.dir);
6590 gen_and(tmp, b);
6591 return b;
6593 break;
6594 case DLT_IP_OVER_FC:
6595 return gen_ipfchostop(eaddr, (int)q.dir);
6596 default:
6597 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6598 break;
6601 bpf_error("ethernet address used in non-ether expression");
6602 /* NOTREACHED */
6603 return NULL;
6606 void
6607 sappend(s0, s1)
6608 struct slist *s0, *s1;
6611 * This is definitely not the best way to do this, but the
6612 * lists will rarely get long.
6614 while (s0->next)
6615 s0 = s0->next;
6616 s0->next = s1;
6619 static struct slist *
6620 xfer_to_x(a)
6621 struct arth *a;
6623 struct slist *s;
6625 s = new_stmt(BPF_LDX|BPF_MEM);
6626 s->s.k = a->regno;
6627 return s;
6630 static struct slist *
6631 xfer_to_a(a)
6632 struct arth *a;
6634 struct slist *s;
6636 s = new_stmt(BPF_LD|BPF_MEM);
6637 s->s.k = a->regno;
6638 return s;
6642 * Modify "index" to use the value stored into its register as an
6643 * offset relative to the beginning of the header for the protocol
6644 * "proto", and allocate a register and put an item "size" bytes long
6645 * (1, 2, or 4) at that offset into that register, making it the register
6646 * for "index".
6648 struct arth *
6649 gen_load(proto, inst, size)
6650 int proto;
6651 struct arth *inst;
6652 int size;
6654 struct slist *s, *tmp;
6655 struct block *b;
6656 int regno = alloc_reg();
6658 free_reg(inst->regno);
6659 switch (size) {
6661 default:
6662 bpf_error("data size must be 1, 2, or 4");
6664 case 1:
6665 size = BPF_B;
6666 break;
6668 case 2:
6669 size = BPF_H;
6670 break;
6672 case 4:
6673 size = BPF_W;
6674 break;
6676 switch (proto) {
6677 default:
6678 bpf_error("unsupported index operation");
6680 case Q_RADIO:
6682 * The offset is relative to the beginning of the packet
6683 * data, if we have a radio header. (If we don't, this
6684 * is an error.)
6686 if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6687 linktype != DLT_IEEE802_11_RADIO &&
6688 linktype != DLT_PRISM_HEADER)
6689 bpf_error("radio information not present in capture");
6692 * Load into the X register the offset computed into the
6693 * register specified by "index".
6695 s = xfer_to_x(inst);
6698 * Load the item at that offset.
6700 tmp = new_stmt(BPF_LD|BPF_IND|size);
6701 sappend(s, tmp);
6702 sappend(inst->s, s);
6703 break;
6705 case Q_LINK:
6707 * The offset is relative to the beginning of
6708 * the link-layer header.
6710 * XXX - what about ATM LANE? Should the index be
6711 * relative to the beginning of the AAL5 frame, so
6712 * that 0 refers to the beginning of the LE Control
6713 * field, or relative to the beginning of the LAN
6714 * frame, so that 0 refers, for Ethernet LANE, to
6715 * the beginning of the destination address?
6717 s = gen_llprefixlen();
6720 * If "s" is non-null, it has code to arrange that the
6721 * X register contains the length of the prefix preceding
6722 * the link-layer header. Add to it the offset computed
6723 * into the register specified by "index", and move that
6724 * into the X register. Otherwise, just load into the X
6725 * register the offset computed into the register specified
6726 * by "index".
6728 if (s != NULL) {
6729 sappend(s, xfer_to_a(inst));
6730 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6731 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6732 } else
6733 s = xfer_to_x(inst);
6736 * Load the item at the sum of the offset we've put in the
6737 * X register and the offset of the start of the link
6738 * layer header (which is 0 if the radio header is
6739 * variable-length; that header length is what we put
6740 * into the X register and then added to the index).
6742 tmp = new_stmt(BPF_LD|BPF_IND|size);
6743 tmp->s.k = off_ll;
6744 sappend(s, tmp);
6745 sappend(inst->s, s);
6746 break;
6748 case Q_IP:
6749 case Q_ARP:
6750 case Q_RARP:
6751 case Q_ATALK:
6752 case Q_DECNET:
6753 case Q_SCA:
6754 case Q_LAT:
6755 case Q_MOPRC:
6756 case Q_MOPDL:
6757 case Q_IPV6:
6759 * The offset is relative to the beginning of
6760 * the network-layer header.
6761 * XXX - are there any cases where we want
6762 * off_nl_nosnap?
6764 s = gen_off_macpl();
6767 * If "s" is non-null, it has code to arrange that the
6768 * X register contains the offset of the MAC-layer
6769 * payload. Add to it the offset computed into the
6770 * register specified by "index", and move that into
6771 * the X register. Otherwise, just load into the X
6772 * register the offset computed into the register specified
6773 * by "index".
6775 if (s != NULL) {
6776 sappend(s, xfer_to_a(inst));
6777 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6778 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6779 } else
6780 s = xfer_to_x(inst);
6783 * Load the item at the sum of the offset we've put in the
6784 * X register, the offset of the start of the network
6785 * layer header from the beginning of the MAC-layer
6786 * payload, and the purported offset of the start of the
6787 * MAC-layer payload (which might be 0 if there's a
6788 * variable-length prefix before the link-layer header
6789 * or the link-layer header itself is variable-length;
6790 * the variable-length offset of the start of the
6791 * MAC-layer payload is what we put into the X register
6792 * and then added to the index).
6794 tmp = new_stmt(BPF_LD|BPF_IND|size);
6795 tmp->s.k = off_macpl + off_nl;
6796 sappend(s, tmp);
6797 sappend(inst->s, s);
6800 * Do the computation only if the packet contains
6801 * the protocol in question.
6803 b = gen_proto_abbrev(proto);
6804 if (inst->b)
6805 gen_and(inst->b, b);
6806 inst->b = b;
6807 break;
6809 case Q_SCTP:
6810 case Q_TCP:
6811 case Q_UDP:
6812 case Q_ICMP:
6813 case Q_IGMP:
6814 case Q_IGRP:
6815 case Q_PIM:
6816 case Q_VRRP:
6817 case Q_CARP:
6819 * The offset is relative to the beginning of
6820 * the transport-layer header.
6822 * Load the X register with the length of the IPv4 header
6823 * (plus the offset of the link-layer header, if it's
6824 * a variable-length header), in bytes.
6826 * XXX - are there any cases where we want
6827 * off_nl_nosnap?
6828 * XXX - we should, if we're built with
6829 * IPv6 support, generate code to load either
6830 * IPv4, IPv6, or both, as appropriate.
6832 s = gen_loadx_iphdrlen();
6835 * The X register now contains the sum of the length
6836 * of any variable-length header preceding the link-layer
6837 * header, any variable-length link-layer header, and the
6838 * length of the network-layer header.
6840 * Load into the A register the offset relative to
6841 * the beginning of the transport layer header,
6842 * add the X register to that, move that to the
6843 * X register, and load with an offset from the
6844 * X register equal to the offset of the network
6845 * layer header relative to the beginning of
6846 * the MAC-layer payload plus the fixed-length
6847 * portion of the offset of the MAC-layer payload
6848 * from the beginning of the raw packet data.
6850 sappend(s, xfer_to_a(inst));
6851 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6852 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6853 sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6854 tmp->s.k = off_macpl + off_nl;
6855 sappend(inst->s, s);
6858 * Do the computation only if the packet contains
6859 * the protocol in question - which is true only
6860 * if this is an IP datagram and is the first or
6861 * only fragment of that datagram.
6863 gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6864 if (inst->b)
6865 gen_and(inst->b, b);
6866 gen_and(gen_proto_abbrev(Q_IP), b);
6867 inst->b = b;
6868 break;
6869 case Q_ICMPV6:
6870 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6871 /*NOTREACHED*/
6873 inst->regno = regno;
6874 s = new_stmt(BPF_ST);
6875 s->s.k = regno;
6876 sappend(inst->s, s);
6878 return inst;
6881 struct block *
6882 gen_relation(code, a0, a1, reversed)
6883 int code;
6884 struct arth *a0, *a1;
6885 int reversed;
6887 struct slist *s0, *s1, *s2;
6888 struct block *b, *tmp;
6890 s0 = xfer_to_x(a1);
6891 s1 = xfer_to_a(a0);
6892 if (code == BPF_JEQ) {
6893 s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6894 b = new_block(JMP(code));
6895 sappend(s1, s2);
6897 else
6898 b = new_block(BPF_JMP|code|BPF_X);
6899 if (reversed)
6900 gen_not(b);
6902 sappend(s0, s1);
6903 sappend(a1->s, s0);
6904 sappend(a0->s, a1->s);
6906 b->stmts = a0->s;
6908 free_reg(a0->regno);
6909 free_reg(a1->regno);
6911 /* 'and' together protocol checks */
6912 if (a0->b) {
6913 if (a1->b) {
6914 gen_and(a0->b, tmp = a1->b);
6916 else
6917 tmp = a0->b;
6918 } else
6919 tmp = a1->b;
6921 if (tmp)
6922 gen_and(tmp, b);
6924 return b;
6927 struct arth *
6928 gen_loadlen()
6930 int regno = alloc_reg();
6931 struct arth *a = (struct arth *)newchunk(sizeof(*a));
6932 struct slist *s;
6934 s = new_stmt(BPF_LD|BPF_LEN);
6935 s->next = new_stmt(BPF_ST);
6936 s->next->s.k = regno;
6937 a->s = s;
6938 a->regno = regno;
6940 return a;
6943 struct arth *
6944 gen_loadi(val)
6945 int val;
6947 struct arth *a;
6948 struct slist *s;
6949 int reg;
6951 a = (struct arth *)newchunk(sizeof(*a));
6953 reg = alloc_reg();
6955 s = new_stmt(BPF_LD|BPF_IMM);
6956 s->s.k = val;
6957 s->next = new_stmt(BPF_ST);
6958 s->next->s.k = reg;
6959 a->s = s;
6960 a->regno = reg;
6962 return a;
6965 struct arth *
6966 gen_neg(a)
6967 struct arth *a;
6969 struct slist *s;
6971 s = xfer_to_a(a);
6972 sappend(a->s, s);
6973 s = new_stmt(BPF_ALU|BPF_NEG);
6974 s->s.k = 0;
6975 sappend(a->s, s);
6976 s = new_stmt(BPF_ST);
6977 s->s.k = a->regno;
6978 sappend(a->s, s);
6980 return a;
6983 struct arth *
6984 gen_arth(code, a0, a1)
6985 int code;
6986 struct arth *a0, *a1;
6988 struct slist *s0, *s1, *s2;
6990 s0 = xfer_to_x(a1);
6991 s1 = xfer_to_a(a0);
6992 s2 = new_stmt(BPF_ALU|BPF_X|code);
6994 sappend(s1, s2);
6995 sappend(s0, s1);
6996 sappend(a1->s, s0);
6997 sappend(a0->s, a1->s);
6999 free_reg(a0->regno);
7000 free_reg(a1->regno);
7002 s0 = new_stmt(BPF_ST);
7003 a0->regno = s0->s.k = alloc_reg();
7004 sappend(a0->s, s0);
7006 return a0;
7010 * Here we handle simple allocation of the scratch registers.
7011 * If too many registers are alloc'd, the allocator punts.
7013 static int regused[BPF_MEMWORDS];
7014 static int curreg;
7017 * Initialize the table of used registers and the current register.
7019 static void
7020 init_regs()
7022 curreg = 0;
7023 memset(regused, 0, sizeof regused);
7027 * Return the next free register.
7029 static int
7030 alloc_reg()
7032 int n = BPF_MEMWORDS;
7034 while (--n >= 0) {
7035 if (regused[curreg])
7036 curreg = (curreg + 1) % BPF_MEMWORDS;
7037 else {
7038 regused[curreg] = 1;
7039 return curreg;
7042 bpf_error("too many registers needed to evaluate expression");
7043 /* NOTREACHED */
7044 return 0;
7048 * Return a register to the table so it can
7049 * be used later.
7051 static void
7052 free_reg(n)
7053 int n;
7055 regused[n] = 0;
7058 static struct block *
7059 gen_len(jmp, n)
7060 int jmp, n;
7062 struct slist *s;
7063 struct block *b;
7065 s = new_stmt(BPF_LD|BPF_LEN);
7066 b = new_block(JMP(jmp));
7067 b->stmts = s;
7068 b->s.k = n;
7070 return b;
7073 struct block *
7074 gen_greater(n)
7075 int n;
7077 return gen_len(BPF_JGE, n);
7081 * Actually, this is less than or equal.
7083 struct block *
7084 gen_less(n)
7085 int n;
7087 struct block *b;
7089 b = gen_len(BPF_JGT, n);
7090 gen_not(b);
7092 return b;
7096 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7097 * the beginning of the link-layer header.
7098 * XXX - that means you can't test values in the radiotap header, but
7099 * as that header is difficult if not impossible to parse generally
7100 * without a loop, that might not be a severe problem. A new keyword
7101 * "radio" could be added for that, although what you'd really want
7102 * would be a way of testing particular radio header values, which
7103 * would generate code appropriate to the radio header in question.
7105 struct block *
7106 gen_byteop(op, idx, val)
7107 int op, idx, val;
7109 struct block *b;
7110 struct slist *s;
7112 switch (op) {
7113 default:
7114 abort();
7116 case '=':
7117 return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7119 case '<':
7120 b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7121 return b;
7123 case '>':
7124 b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7125 return b;
7127 case '|':
7128 s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7129 break;
7131 case '&':
7132 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7133 break;
7135 s->s.k = val;
7136 b = new_block(JMP(BPF_JEQ));
7137 b->stmts = s;
7138 gen_not(b);
7140 return b;
7143 static u_char abroadcast[] = { 0x0 };
7145 struct block *
7146 gen_broadcast(proto)
7147 int proto;
7149 bpf_u_int32 hostmask;
7150 struct block *b0, *b1, *b2;
7151 static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7153 switch (proto) {
7155 case Q_DEFAULT:
7156 case Q_LINK:
7157 switch (linktype) {
7158 case DLT_ARCNET:
7159 case DLT_ARCNET_LINUX:
7160 return gen_ahostop(abroadcast, Q_DST);
7161 case DLT_EN10MB:
7162 case DLT_NETANALYZER:
7163 case DLT_NETANALYZER_TRANSPARENT:
7164 return gen_ehostop(ebroadcast, Q_DST);
7165 case DLT_FDDI:
7166 return gen_fhostop(ebroadcast, Q_DST);
7167 case DLT_IEEE802:
7168 return gen_thostop(ebroadcast, Q_DST);
7169 case DLT_IEEE802_11:
7170 case DLT_PRISM_HEADER:
7171 case DLT_IEEE802_11_RADIO_AVS:
7172 case DLT_IEEE802_11_RADIO:
7173 case DLT_PPI:
7174 return gen_wlanhostop(ebroadcast, Q_DST);
7175 case DLT_IP_OVER_FC:
7176 return gen_ipfchostop(ebroadcast, Q_DST);
7177 case DLT_SUNATM:
7178 if (is_lane) {
7180 * Check that the packet doesn't begin with an
7181 * LE Control marker. (We've already generated
7182 * a test for LANE.)
7184 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7185 BPF_H, 0xFF00);
7186 gen_not(b1);
7189 * Now check the MAC address.
7191 b0 = gen_ehostop(ebroadcast, Q_DST);
7192 gen_and(b1, b0);
7193 return b0;
7195 break;
7196 default:
7197 bpf_error("not a broadcast link");
7199 break;
7201 case Q_IP:
7203 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7204 * as an indication that we don't know the netmask, and fail
7205 * in that case.
7207 if (netmask == PCAP_NETMASK_UNKNOWN)
7208 bpf_error("netmask not known, so 'ip broadcast' not supported");
7209 b0 = gen_linktype(ETHERTYPE_IP);
7210 hostmask = ~netmask;
7211 b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7212 b2 = gen_mcmp(OR_NET, 16, BPF_W,
7213 (bpf_int32)(~0 & hostmask), hostmask);
7214 gen_or(b1, b2);
7215 gen_and(b0, b2);
7216 return b2;
7218 bpf_error("only link-layer/IP broadcast filters supported");
7219 /* NOTREACHED */
7220 return NULL;
7224 * Generate code to test the low-order bit of a MAC address (that's
7225 * the bottom bit of the *first* byte).
7227 static struct block *
7228 gen_mac_multicast(offset)
7229 int offset;
7231 register struct block *b0;
7232 register struct slist *s;
7234 /* link[offset] & 1 != 0 */
7235 s = gen_load_a(OR_LINK, offset, BPF_B);
7236 b0 = new_block(JMP(BPF_JSET));
7237 b0->s.k = 1;
7238 b0->stmts = s;
7239 return b0;
7242 struct block *
7243 gen_multicast(proto)
7244 int proto;
7246 register struct block *b0, *b1, *b2;
7247 register struct slist *s;
7249 switch (proto) {
7251 case Q_DEFAULT:
7252 case Q_LINK:
7253 switch (linktype) {
7254 case DLT_ARCNET:
7255 case DLT_ARCNET_LINUX:
7256 /* all ARCnet multicasts use the same address */
7257 return gen_ahostop(abroadcast, Q_DST);
7258 case DLT_EN10MB:
7259 case DLT_NETANALYZER:
7260 case DLT_NETANALYZER_TRANSPARENT:
7261 /* ether[0] & 1 != 0 */
7262 return gen_mac_multicast(0);
7263 case DLT_FDDI:
7265 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7267 * XXX - was that referring to bit-order issues?
7269 /* fddi[1] & 1 != 0 */
7270 return gen_mac_multicast(1);
7271 case DLT_IEEE802:
7272 /* tr[2] & 1 != 0 */
7273 return gen_mac_multicast(2);
7274 case DLT_IEEE802_11:
7275 case DLT_PRISM_HEADER:
7276 case DLT_IEEE802_11_RADIO_AVS:
7277 case DLT_IEEE802_11_RADIO:
7278 case DLT_PPI:
7280 * Oh, yuk.
7282 * For control frames, there is no DA.
7284 * For management frames, DA is at an
7285 * offset of 4 from the beginning of
7286 * the packet.
7288 * For data frames, DA is at an offset
7289 * of 4 from the beginning of the packet
7290 * if To DS is clear and at an offset of
7291 * 16 from the beginning of the packet
7292 * if To DS is set.
7296 * Generate the tests to be done for data frames.
7298 * First, check for To DS set, i.e. "link[1] & 0x01".
7300 s = gen_load_a(OR_LINK, 1, BPF_B);
7301 b1 = new_block(JMP(BPF_JSET));
7302 b1->s.k = 0x01; /* To DS */
7303 b1->stmts = s;
7306 * If To DS is set, the DA is at 16.
7308 b0 = gen_mac_multicast(16);
7309 gen_and(b1, b0);
7312 * Now, check for To DS not set, i.e. check
7313 * "!(link[1] & 0x01)".
7315 s = gen_load_a(OR_LINK, 1, BPF_B);
7316 b2 = new_block(JMP(BPF_JSET));
7317 b2->s.k = 0x01; /* To DS */
7318 b2->stmts = s;
7319 gen_not(b2);
7322 * If To DS is not set, the DA is at 4.
7324 b1 = gen_mac_multicast(4);
7325 gen_and(b2, b1);
7328 * Now OR together the last two checks. That gives
7329 * the complete set of checks for data frames.
7331 gen_or(b1, b0);
7334 * Now check for a data frame.
7335 * I.e, check "link[0] & 0x08".
7337 s = gen_load_a(OR_LINK, 0, BPF_B);
7338 b1 = new_block(JMP(BPF_JSET));
7339 b1->s.k = 0x08;
7340 b1->stmts = s;
7343 * AND that with the checks done for data frames.
7345 gen_and(b1, b0);
7348 * If the high-order bit of the type value is 0, this
7349 * is a management frame.
7350 * I.e, check "!(link[0] & 0x08)".
7352 s = gen_load_a(OR_LINK, 0, BPF_B);
7353 b2 = new_block(JMP(BPF_JSET));
7354 b2->s.k = 0x08;
7355 b2->stmts = s;
7356 gen_not(b2);
7359 * For management frames, the DA is at 4.
7361 b1 = gen_mac_multicast(4);
7362 gen_and(b2, b1);
7365 * OR that with the checks done for data frames.
7366 * That gives the checks done for management and
7367 * data frames.
7369 gen_or(b1, b0);
7372 * If the low-order bit of the type value is 1,
7373 * this is either a control frame or a frame
7374 * with a reserved type, and thus not a
7375 * frame with an SA.
7377 * I.e., check "!(link[0] & 0x04)".
7379 s = gen_load_a(OR_LINK, 0, BPF_B);
7380 b1 = new_block(JMP(BPF_JSET));
7381 b1->s.k = 0x04;
7382 b1->stmts = s;
7383 gen_not(b1);
7386 * AND that with the checks for data and management
7387 * frames.
7389 gen_and(b1, b0);
7390 return b0;
7391 case DLT_IP_OVER_FC:
7392 b0 = gen_mac_multicast(2);
7393 return b0;
7394 case DLT_SUNATM:
7395 if (is_lane) {
7397 * Check that the packet doesn't begin with an
7398 * LE Control marker. (We've already generated
7399 * a test for LANE.)
7401 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7402 BPF_H, 0xFF00);
7403 gen_not(b1);
7405 /* ether[off_mac] & 1 != 0 */
7406 b0 = gen_mac_multicast(off_mac);
7407 gen_and(b1, b0);
7408 return b0;
7410 break;
7411 default:
7412 break;
7414 /* Link not known to support multicasts */
7415 break;
7417 case Q_IP:
7418 b0 = gen_linktype(ETHERTYPE_IP);
7419 b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7420 gen_and(b0, b1);
7421 return b1;
7423 case Q_IPV6:
7424 b0 = gen_linktype(ETHERTYPE_IPV6);
7425 b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7426 gen_and(b0, b1);
7427 return b1;
7429 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7430 /* NOTREACHED */
7431 return NULL;
7435 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7436 * Outbound traffic is sent by this machine, while inbound traffic is
7437 * sent by a remote machine (and may include packets destined for a
7438 * unicast or multicast link-layer address we are not subscribing to).
7439 * These are the same definitions implemented by pcap_setdirection().
7440 * Capturing only unicast traffic destined for this host is probably
7441 * better accomplished using a higher-layer filter.
7443 struct block *
7444 gen_inbound(dir)
7445 int dir;
7447 register struct block *b0;
7450 * Only some data link types support inbound/outbound qualifiers.
7452 switch (linktype) {
7453 case DLT_SLIP:
7454 b0 = gen_relation(BPF_JEQ,
7455 gen_load(Q_LINK, gen_loadi(0), 1),
7456 gen_loadi(0),
7457 dir);
7458 break;
7460 case DLT_IPNET:
7461 if (dir) {
7462 /* match outgoing packets */
7463 b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7464 } else {
7465 /* match incoming packets */
7466 b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7468 break;
7470 case DLT_LINUX_SLL:
7471 /* match outgoing packets */
7472 b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7473 if (!dir) {
7474 /* to filter on inbound traffic, invert the match */
7475 gen_not(b0);
7477 break;
7479 #ifdef HAVE_NET_PFVAR_H
7480 case DLT_PFLOG:
7481 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7482 (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7483 break;
7484 #endif
7486 case DLT_PPP_PPPD:
7487 if (dir) {
7488 /* match outgoing packets */
7489 b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7490 } else {
7491 /* match incoming packets */
7492 b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7494 break;
7496 case DLT_JUNIPER_MFR:
7497 case DLT_JUNIPER_MLFR:
7498 case DLT_JUNIPER_MLPPP:
7499 case DLT_JUNIPER_ATM1:
7500 case DLT_JUNIPER_ATM2:
7501 case DLT_JUNIPER_PPPOE:
7502 case DLT_JUNIPER_PPPOE_ATM:
7503 case DLT_JUNIPER_GGSN:
7504 case DLT_JUNIPER_ES:
7505 case DLT_JUNIPER_MONITOR:
7506 case DLT_JUNIPER_SERVICES:
7507 case DLT_JUNIPER_ETHER:
7508 case DLT_JUNIPER_PPP:
7509 case DLT_JUNIPER_FRELAY:
7510 case DLT_JUNIPER_CHDLC:
7511 case DLT_JUNIPER_VP:
7512 case DLT_JUNIPER_ST:
7513 case DLT_JUNIPER_ISM:
7514 case DLT_JUNIPER_VS:
7515 case DLT_JUNIPER_SRX_E2E:
7516 case DLT_JUNIPER_FIBRECHANNEL:
7517 case DLT_JUNIPER_ATM_CEMIC:
7519 /* juniper flags (including direction) are stored
7520 * the byte after the 3-byte magic number */
7521 if (dir) {
7522 /* match outgoing packets */
7523 b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7524 } else {
7525 /* match incoming packets */
7526 b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7528 break;
7530 default:
7532 * If we have packet meta-data indicating a direction,
7533 * check it, otherwise give up as this link-layer type
7534 * has nothing in the packet data.
7536 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7538 * We infer that this is Linux with PF_PACKET support.
7539 * If this is a *live* capture, we can look at
7540 * special meta-data in the filter expression;
7541 * if it's a savefile, we can't.
7543 if (bpf_pcap->sf.rfile != NULL) {
7544 /* We have a FILE *, so this is a savefile */
7545 bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7546 linktype);
7547 b0 = NULL;
7548 /* NOTREACHED */
7550 /* match outgoing packets */
7551 b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7552 PACKET_OUTGOING);
7553 if (!dir) {
7554 /* to filter on inbound traffic, invert the match */
7555 gen_not(b0);
7557 #else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7558 bpf_error("inbound/outbound not supported on linktype %d",
7559 linktype);
7560 b0 = NULL;
7561 /* NOTREACHED */
7562 #endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7564 return (b0);
7567 #ifdef HAVE_NET_PFVAR_H
7568 /* PF firewall log matched interface */
7569 struct block *
7570 gen_pf_ifname(const char *ifname)
7572 struct block *b0;
7573 u_int len, off;
7575 if (linktype != DLT_PFLOG) {
7576 bpf_error("ifname supported only on PF linktype");
7577 /* NOTREACHED */
7579 len = sizeof(((struct pfloghdr *)0)->ifname);
7580 off = offsetof(struct pfloghdr, ifname);
7581 if (strlen(ifname) >= len) {
7582 bpf_error("ifname interface names can only be %d characters",
7583 len-1);
7584 /* NOTREACHED */
7586 b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7587 return (b0);
7590 /* PF firewall log ruleset name */
7591 struct block *
7592 gen_pf_ruleset(char *ruleset)
7594 struct block *b0;
7596 if (linktype != DLT_PFLOG) {
7597 bpf_error("ruleset supported only on PF linktype");
7598 /* NOTREACHED */
7601 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7602 bpf_error("ruleset names can only be %ld characters",
7603 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7604 /* NOTREACHED */
7607 b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7608 strlen(ruleset), (const u_char *)ruleset);
7609 return (b0);
7612 /* PF firewall log rule number */
7613 struct block *
7614 gen_pf_rnr(int rnr)
7616 struct block *b0;
7618 if (linktype != DLT_PFLOG) {
7619 bpf_error("rnr supported only on PF linktype");
7620 /* NOTREACHED */
7623 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7624 (bpf_int32)rnr);
7625 return (b0);
7628 /* PF firewall log sub-rule number */
7629 struct block *
7630 gen_pf_srnr(int srnr)
7632 struct block *b0;
7634 if (linktype != DLT_PFLOG) {
7635 bpf_error("srnr supported only on PF linktype");
7636 /* NOTREACHED */
7639 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7640 (bpf_int32)srnr);
7641 return (b0);
7644 /* PF firewall log reason code */
7645 struct block *
7646 gen_pf_reason(int reason)
7648 struct block *b0;
7650 if (linktype != DLT_PFLOG) {
7651 bpf_error("reason supported only on PF linktype");
7652 /* NOTREACHED */
7655 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7656 (bpf_int32)reason);
7657 return (b0);
7660 /* PF firewall log action */
7661 struct block *
7662 gen_pf_action(int action)
7664 struct block *b0;
7666 if (linktype != DLT_PFLOG) {
7667 bpf_error("action supported only on PF linktype");
7668 /* NOTREACHED */
7671 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7672 (bpf_int32)action);
7673 return (b0);
7675 #else /* !HAVE_NET_PFVAR_H */
7676 struct block *
7677 gen_pf_ifname(const char *ifname)
7679 bpf_error("libpcap was compiled without pf support");
7680 /* NOTREACHED */
7681 return (NULL);
7684 struct block *
7685 gen_pf_ruleset(char *ruleset)
7687 bpf_error("libpcap was compiled on a machine without pf support");
7688 /* NOTREACHED */
7689 return (NULL);
7692 struct block *
7693 gen_pf_rnr(int rnr)
7695 bpf_error("libpcap was compiled on a machine without pf support");
7696 /* NOTREACHED */
7697 return (NULL);
7700 struct block *
7701 gen_pf_srnr(int srnr)
7703 bpf_error("libpcap was compiled on a machine without pf support");
7704 /* NOTREACHED */
7705 return (NULL);
7708 struct block *
7709 gen_pf_reason(int reason)
7711 bpf_error("libpcap was compiled on a machine without pf support");
7712 /* NOTREACHED */
7713 return (NULL);
7716 struct block *
7717 gen_pf_action(int action)
7719 bpf_error("libpcap was compiled on a machine without pf support");
7720 /* NOTREACHED */
7721 return (NULL);
7723 #endif /* HAVE_NET_PFVAR_H */
7725 /* IEEE 802.11 wireless header */
7726 struct block *
7727 gen_p80211_type(int type, int mask)
7729 struct block *b0;
7731 switch (linktype) {
7733 case DLT_IEEE802_11:
7734 case DLT_PRISM_HEADER:
7735 case DLT_IEEE802_11_RADIO_AVS:
7736 case DLT_IEEE802_11_RADIO:
7737 b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7738 (bpf_int32)mask);
7739 break;
7741 default:
7742 bpf_error("802.11 link-layer types supported only on 802.11");
7743 /* NOTREACHED */
7746 return (b0);
7749 struct block *
7750 gen_p80211_fcdir(int fcdir)
7752 struct block *b0;
7754 switch (linktype) {
7756 case DLT_IEEE802_11:
7757 case DLT_PRISM_HEADER:
7758 case DLT_IEEE802_11_RADIO_AVS:
7759 case DLT_IEEE802_11_RADIO:
7760 break;
7762 default:
7763 bpf_error("frame direction supported only with 802.11 headers");
7764 /* NOTREACHED */
7767 b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7768 (bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7770 return (b0);
7773 struct block *
7774 gen_acode(eaddr, q)
7775 register const u_char *eaddr;
7776 struct qual q;
7778 switch (linktype) {
7780 case DLT_ARCNET:
7781 case DLT_ARCNET_LINUX:
7782 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7783 q.proto == Q_LINK)
7784 return (gen_ahostop(eaddr, (int)q.dir));
7785 else {
7786 bpf_error("ARCnet address used in non-arc expression");
7787 /* NOTREACHED */
7789 break;
7791 default:
7792 bpf_error("aid supported only on ARCnet");
7793 /* NOTREACHED */
7795 bpf_error("ARCnet address used in non-arc expression");
7796 /* NOTREACHED */
7797 return NULL;
7800 static struct block *
7801 gen_ahostop(eaddr, dir)
7802 register const u_char *eaddr;
7803 register int dir;
7805 register struct block *b0, *b1;
7807 switch (dir) {
7808 /* src comes first, different from Ethernet */
7809 case Q_SRC:
7810 return gen_bcmp(OR_LINK, 0, 1, eaddr);
7812 case Q_DST:
7813 return gen_bcmp(OR_LINK, 1, 1, eaddr);
7815 case Q_AND:
7816 b0 = gen_ahostop(eaddr, Q_SRC);
7817 b1 = gen_ahostop(eaddr, Q_DST);
7818 gen_and(b0, b1);
7819 return b1;
7821 case Q_DEFAULT:
7822 case Q_OR:
7823 b0 = gen_ahostop(eaddr, Q_SRC);
7824 b1 = gen_ahostop(eaddr, Q_DST);
7825 gen_or(b0, b1);
7826 return b1;
7828 case Q_ADDR1:
7829 bpf_error("'addr1' is only supported on 802.11");
7830 break;
7832 case Q_ADDR2:
7833 bpf_error("'addr2' is only supported on 802.11");
7834 break;
7836 case Q_ADDR3:
7837 bpf_error("'addr3' is only supported on 802.11");
7838 break;
7840 case Q_ADDR4:
7841 bpf_error("'addr4' is only supported on 802.11");
7842 break;
7844 case Q_RA:
7845 bpf_error("'ra' is only supported on 802.11");
7846 break;
7848 case Q_TA:
7849 bpf_error("'ta' is only supported on 802.11");
7850 break;
7852 abort();
7853 /* NOTREACHED */
7857 * support IEEE 802.1Q VLAN trunk over ethernet
7859 struct block *
7860 gen_vlan(vlan_num)
7861 int vlan_num;
7863 struct block *b0, *b1;
7865 /* can't check for VLAN-encapsulated packets inside MPLS */
7866 if (label_stack_depth > 0)
7867 bpf_error("no VLAN match after MPLS");
7870 * Check for a VLAN packet, and then change the offsets to point
7871 * to the type and data fields within the VLAN packet. Just
7872 * increment the offsets, so that we can support a hierarchy, e.g.
7873 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7874 * VLAN 100.
7876 * XXX - this is a bit of a kludge. If we were to split the
7877 * compiler into a parser that parses an expression and
7878 * generates an expression tree, and a code generator that
7879 * takes an expression tree (which could come from our
7880 * parser or from some other parser) and generates BPF code,
7881 * we could perhaps make the offsets parameters of routines
7882 * and, in the handler for an "AND" node, pass to subnodes
7883 * other than the VLAN node the adjusted offsets.
7885 * This would mean that "vlan" would, instead of changing the
7886 * behavior of *all* tests after it, change only the behavior
7887 * of tests ANDed with it. That would change the documented
7888 * semantics of "vlan", which might break some expressions.
7889 * However, it would mean that "(vlan and ip) or ip" would check
7890 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7891 * checking only for VLAN-encapsulated IP, so that could still
7892 * be considered worth doing; it wouldn't break expressions
7893 * that are of the form "vlan and ..." or "vlan N and ...",
7894 * which I suspect are the most common expressions involving
7895 * "vlan". "vlan or ..." doesn't necessarily do what the user
7896 * would really want, now, as all the "or ..." tests would
7897 * be done assuming a VLAN, even though the "or" could be viewed
7898 * as meaning "or, if this isn't a VLAN packet...".
7900 orig_nl = off_nl;
7902 switch (linktype) {
7904 case DLT_EN10MB:
7905 case DLT_NETANALYZER:
7906 case DLT_NETANALYZER_TRANSPARENT:
7907 /* check for VLAN, including QinQ */
7908 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7909 (bpf_int32)ETHERTYPE_8021Q);
7910 b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7911 (bpf_int32)ETHERTYPE_8021QINQ);
7912 gen_or(b0,b1);
7913 b0 = b1;
7915 /* If a specific VLAN is requested, check VLAN id */
7916 if (vlan_num >= 0) {
7917 b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7918 (bpf_int32)vlan_num, 0x0fff);
7919 gen_and(b0, b1);
7920 b0 = b1;
7923 off_macpl += 4;
7924 off_linktype += 4;
7925 #if 0
7926 off_nl_nosnap += 4;
7927 off_nl += 4;
7928 #endif
7929 break;
7931 default:
7932 bpf_error("no VLAN support for data link type %d",
7933 linktype);
7934 /*NOTREACHED*/
7937 return (b0);
7941 * support for MPLS
7943 struct block *
7944 gen_mpls(label_num)
7945 int label_num;
7947 struct block *b0,*b1;
7950 * Change the offsets to point to the type and data fields within
7951 * the MPLS packet. Just increment the offsets, so that we
7952 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7953 * capture packets with an outer label of 100000 and an inner
7954 * label of 1024.
7956 * XXX - this is a bit of a kludge. See comments in gen_vlan().
7958 orig_nl = off_nl;
7960 if (label_stack_depth > 0) {
7961 /* just match the bottom-of-stack bit clear */
7962 b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7963 } else {
7965 * Indicate that we're checking MPLS-encapsulated headers,
7966 * to make sure higher level code generators don't try to
7967 * match against IP-related protocols such as Q_ARP, Q_RARP
7968 * etc.
7970 switch (linktype) {
7972 case DLT_C_HDLC: /* fall through */
7973 case DLT_EN10MB:
7974 case DLT_NETANALYZER:
7975 case DLT_NETANALYZER_TRANSPARENT:
7976 b0 = gen_linktype(ETHERTYPE_MPLS);
7977 break;
7979 case DLT_PPP:
7980 b0 = gen_linktype(PPP_MPLS_UCAST);
7981 break;
7983 /* FIXME add other DLT_s ...
7984 * for Frame-Relay/and ATM this may get messy due to SNAP headers
7985 * leave it for now */
7987 default:
7988 bpf_error("no MPLS support for data link type %d",
7989 linktype);
7990 b0 = NULL;
7991 /*NOTREACHED*/
7992 break;
7996 /* If a specific MPLS label is requested, check it */
7997 if (label_num >= 0) {
7998 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7999 b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8000 0xfffff000); /* only compare the first 20 bits */
8001 gen_and(b0, b1);
8002 b0 = b1;
8005 off_nl_nosnap += 4;
8006 off_nl += 4;
8007 label_stack_depth++;
8008 return (b0);
8012 * Support PPPOE discovery and session.
8014 struct block *
8015 gen_pppoed()
8017 /* check for PPPoE discovery */
8018 return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8021 struct block *
8022 gen_pppoes()
8024 struct block *b0;
8027 * Test against the PPPoE session link-layer type.
8029 b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8032 * Change the offsets to point to the type and data fields within
8033 * the PPP packet, and note that this is PPPoE rather than
8034 * raw PPP.
8036 * XXX - this is a bit of a kludge. If we were to split the
8037 * compiler into a parser that parses an expression and
8038 * generates an expression tree, and a code generator that
8039 * takes an expression tree (which could come from our
8040 * parser or from some other parser) and generates BPF code,
8041 * we could perhaps make the offsets parameters of routines
8042 * and, in the handler for an "AND" node, pass to subnodes
8043 * other than the PPPoE node the adjusted offsets.
8045 * This would mean that "pppoes" would, instead of changing the
8046 * behavior of *all* tests after it, change only the behavior
8047 * of tests ANDed with it. That would change the documented
8048 * semantics of "pppoes", which might break some expressions.
8049 * However, it would mean that "(pppoes and ip) or ip" would check
8050 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8051 * checking only for VLAN-encapsulated IP, so that could still
8052 * be considered worth doing; it wouldn't break expressions
8053 * that are of the form "pppoes and ..." which I suspect are the
8054 * most common expressions involving "pppoes". "pppoes or ..."
8055 * doesn't necessarily do what the user would really want, now,
8056 * as all the "or ..." tests would be done assuming PPPoE, even
8057 * though the "or" could be viewed as meaning "or, if this isn't
8058 * a PPPoE packet...".
8060 orig_linktype = off_linktype; /* save original values */
8061 orig_nl = off_nl;
8062 is_pppoes = 1;
8065 * The "network-layer" protocol is PPPoE, which has a 6-byte
8066 * PPPoE header, followed by a PPP packet.
8068 * There is no HDLC encapsulation for the PPP packet (it's
8069 * encapsulated in PPPoES instead), so the link-layer type
8070 * starts at the first byte of the PPP packet. For PPPoE,
8071 * that offset is relative to the beginning of the total
8072 * link-layer payload, including any 802.2 LLC header, so
8073 * it's 6 bytes past off_nl.
8075 off_linktype = off_nl + 6;
8078 * The network-layer offsets are relative to the beginning
8079 * of the MAC-layer payload; that's past the 6-byte
8080 * PPPoE header and the 2-byte PPP header.
8082 off_nl = 6+2;
8083 off_nl_nosnap = 6+2;
8085 return b0;
8088 struct block *
8089 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8090 int atmfield;
8091 bpf_int32 jvalue;
8092 bpf_u_int32 jtype;
8093 int reverse;
8095 struct block *b0;
8097 switch (atmfield) {
8099 case A_VPI:
8100 if (!is_atm)
8101 bpf_error("'vpi' supported only on raw ATM");
8102 if (off_vpi == (u_int)-1)
8103 abort();
8104 b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8105 reverse, jvalue);
8106 break;
8108 case A_VCI:
8109 if (!is_atm)
8110 bpf_error("'vci' supported only on raw ATM");
8111 if (off_vci == (u_int)-1)
8112 abort();
8113 b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8114 reverse, jvalue);
8115 break;
8117 case A_PROTOTYPE:
8118 if (off_proto == (u_int)-1)
8119 abort(); /* XXX - this isn't on FreeBSD */
8120 b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8121 reverse, jvalue);
8122 break;
8124 case A_MSGTYPE:
8125 if (off_payload == (u_int)-1)
8126 abort();
8127 b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8128 0xffffffff, jtype, reverse, jvalue);
8129 break;
8131 case A_CALLREFTYPE:
8132 if (!is_atm)
8133 bpf_error("'callref' supported only on raw ATM");
8134 if (off_proto == (u_int)-1)
8135 abort();
8136 b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8137 jtype, reverse, jvalue);
8138 break;
8140 default:
8141 abort();
8143 return b0;
8146 struct block *
8147 gen_atmtype_abbrev(type)
8148 int type;
8150 struct block *b0, *b1;
8152 switch (type) {
8154 case A_METAC:
8155 /* Get all packets in Meta signalling Circuit */
8156 if (!is_atm)
8157 bpf_error("'metac' supported only on raw ATM");
8158 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8159 b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8160 gen_and(b0, b1);
8161 break;
8163 case A_BCC:
8164 /* Get all packets in Broadcast Circuit*/
8165 if (!is_atm)
8166 bpf_error("'bcc' supported only on raw ATM");
8167 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8168 b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8169 gen_and(b0, b1);
8170 break;
8172 case A_OAMF4SC:
8173 /* Get all cells in Segment OAM F4 circuit*/
8174 if (!is_atm)
8175 bpf_error("'oam4sc' supported only on raw ATM");
8176 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8177 b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8178 gen_and(b0, b1);
8179 break;
8181 case A_OAMF4EC:
8182 /* Get all cells in End-to-End OAM F4 Circuit*/
8183 if (!is_atm)
8184 bpf_error("'oam4ec' supported only on raw ATM");
8185 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8186 b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8187 gen_and(b0, b1);
8188 break;
8190 case A_SC:
8191 /* Get all packets in connection Signalling Circuit */
8192 if (!is_atm)
8193 bpf_error("'sc' supported only on raw ATM");
8194 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8195 b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8196 gen_and(b0, b1);
8197 break;
8199 case A_ILMIC:
8200 /* Get all packets in ILMI Circuit */
8201 if (!is_atm)
8202 bpf_error("'ilmic' supported only on raw ATM");
8203 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8204 b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8205 gen_and(b0, b1);
8206 break;
8208 case A_LANE:
8209 /* Get all LANE packets */
8210 if (!is_atm)
8211 bpf_error("'lane' supported only on raw ATM");
8212 b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8215 * Arrange that all subsequent tests assume LANE
8216 * rather than LLC-encapsulated packets, and set
8217 * the offsets appropriately for LANE-encapsulated
8218 * Ethernet.
8220 * "off_mac" is the offset of the Ethernet header,
8221 * which is 2 bytes past the ATM pseudo-header
8222 * (skipping the pseudo-header and 2-byte LE Client
8223 * field). The other offsets are Ethernet offsets
8224 * relative to "off_mac".
8226 is_lane = 1;
8227 off_mac = off_payload + 2; /* MAC header */
8228 off_linktype = off_mac + 12;
8229 off_macpl = off_mac + 14; /* Ethernet */
8230 off_nl = 0; /* Ethernet II */
8231 off_nl_nosnap = 3; /* 802.3+802.2 */
8232 break;
8234 case A_LLC:
8235 /* Get all LLC-encapsulated packets */
8236 if (!is_atm)
8237 bpf_error("'llc' supported only on raw ATM");
8238 b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8239 is_lane = 0;
8240 break;
8242 default:
8243 abort();
8245 return b1;
8249 * Filtering for MTP2 messages based on li value
8250 * FISU, length is null
8251 * LSSU, length is 1 or 2
8252 * MSU, length is 3 or more
8254 struct block *
8255 gen_mtp2type_abbrev(type)
8256 int type;
8258 struct block *b0, *b1;
8260 switch (type) {
8262 case M_FISU:
8263 if ( (linktype != DLT_MTP2) &&
8264 (linktype != DLT_ERF) &&
8265 (linktype != DLT_MTP2_WITH_PHDR) )
8266 bpf_error("'fisu' supported only on MTP2");
8267 /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8268 b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8269 break;
8271 case M_LSSU:
8272 if ( (linktype != DLT_MTP2) &&
8273 (linktype != DLT_ERF) &&
8274 (linktype != DLT_MTP2_WITH_PHDR) )
8275 bpf_error("'lssu' supported only on MTP2");
8276 b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8277 b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8278 gen_and(b1, b0);
8279 break;
8281 case M_MSU:
8282 if ( (linktype != DLT_MTP2) &&
8283 (linktype != DLT_ERF) &&
8284 (linktype != DLT_MTP2_WITH_PHDR) )
8285 bpf_error("'msu' supported only on MTP2");
8286 b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8287 break;
8289 default:
8290 abort();
8292 return b0;
8295 struct block *
8296 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8297 int mtp3field;
8298 bpf_u_int32 jvalue;
8299 bpf_u_int32 jtype;
8300 int reverse;
8302 struct block *b0;
8303 bpf_u_int32 val1 , val2 , val3;
8305 switch (mtp3field) {
8307 case M_SIO:
8308 if (off_sio == (u_int)-1)
8309 bpf_error("'sio' supported only on SS7");
8310 /* sio coded on 1 byte so max value 255 */
8311 if(jvalue > 255)
8312 bpf_error("sio value %u too big; max value = 255",
8313 jvalue);
8314 b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8315 (u_int)jtype, reverse, (u_int)jvalue);
8316 break;
8318 case M_OPC:
8319 if (off_opc == (u_int)-1)
8320 bpf_error("'opc' supported only on SS7");
8321 /* opc coded on 14 bits so max value 16383 */
8322 if (jvalue > 16383)
8323 bpf_error("opc value %u too big; max value = 16383",
8324 jvalue);
8325 /* the following instructions are made to convert jvalue
8326 * to the form used to write opc in an ss7 message*/
8327 val1 = jvalue & 0x00003c00;
8328 val1 = val1 >>10;
8329 val2 = jvalue & 0x000003fc;
8330 val2 = val2 <<6;
8331 val3 = jvalue & 0x00000003;
8332 val3 = val3 <<22;
8333 jvalue = val1 + val2 + val3;
8334 b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8335 (u_int)jtype, reverse, (u_int)jvalue);
8336 break;
8338 case M_DPC:
8339 if (off_dpc == (u_int)-1)
8340 bpf_error("'dpc' supported only on SS7");
8341 /* dpc coded on 14 bits so max value 16383 */
8342 if (jvalue > 16383)
8343 bpf_error("dpc value %u too big; max value = 16383",
8344 jvalue);
8345 /* the following instructions are made to convert jvalue
8346 * to the forme used to write dpc in an ss7 message*/
8347 val1 = jvalue & 0x000000ff;
8348 val1 = val1 << 24;
8349 val2 = jvalue & 0x00003f00;
8350 val2 = val2 << 8;
8351 jvalue = val1 + val2;
8352 b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8353 (u_int)jtype, reverse, (u_int)jvalue);
8354 break;
8356 case M_SLS:
8357 if (off_sls == (u_int)-1)
8358 bpf_error("'sls' supported only on SS7");
8359 /* sls coded on 4 bits so max value 15 */
8360 if (jvalue > 15)
8361 bpf_error("sls value %u too big; max value = 15",
8362 jvalue);
8363 /* the following instruction is made to convert jvalue
8364 * to the forme used to write sls in an ss7 message*/
8365 jvalue = jvalue << 4;
8366 b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8367 (u_int)jtype,reverse, (u_int)jvalue);
8368 break;
8370 default:
8371 abort();
8373 return b0;
8376 static struct block *
8377 gen_msg_abbrev(type)
8378 int type;
8380 struct block *b1;
8383 * Q.2931 signalling protocol messages for handling virtual circuits
8384 * establishment and teardown
8386 switch (type) {
8388 case A_SETUP:
8389 b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8390 break;
8392 case A_CALLPROCEED:
8393 b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8394 break;
8396 case A_CONNECT:
8397 b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8398 break;
8400 case A_CONNECTACK:
8401 b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8402 break;
8404 case A_RELEASE:
8405 b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8406 break;
8408 case A_RELEASE_DONE:
8409 b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8410 break;
8412 default:
8413 abort();
8415 return b1;
8418 struct block *
8419 gen_atmmulti_abbrev(type)
8420 int type;
8422 struct block *b0, *b1;
8424 switch (type) {
8426 case A_OAM:
8427 if (!is_atm)
8428 bpf_error("'oam' supported only on raw ATM");
8429 b1 = gen_atmmulti_abbrev(A_OAMF4);
8430 break;
8432 case A_OAMF4:
8433 if (!is_atm)
8434 bpf_error("'oamf4' supported only on raw ATM");
8435 /* OAM F4 type */
8436 b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8437 b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8438 gen_or(b0, b1);
8439 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8440 gen_and(b0, b1);
8441 break;
8443 case A_CONNECTMSG:
8445 * Get Q.2931 signalling messages for switched
8446 * virtual connection
8448 if (!is_atm)
8449 bpf_error("'connectmsg' supported only on raw ATM");
8450 b0 = gen_msg_abbrev(A_SETUP);
8451 b1 = gen_msg_abbrev(A_CALLPROCEED);
8452 gen_or(b0, b1);
8453 b0 = gen_msg_abbrev(A_CONNECT);
8454 gen_or(b0, b1);
8455 b0 = gen_msg_abbrev(A_CONNECTACK);
8456 gen_or(b0, b1);
8457 b0 = gen_msg_abbrev(A_RELEASE);
8458 gen_or(b0, b1);
8459 b0 = gen_msg_abbrev(A_RELEASE_DONE);
8460 gen_or(b0, b1);
8461 b0 = gen_atmtype_abbrev(A_SC);
8462 gen_and(b0, b1);
8463 break;
8465 case A_METACONNECT:
8466 if (!is_atm)
8467 bpf_error("'metaconnect' supported only on raw ATM");
8468 b0 = gen_msg_abbrev(A_SETUP);
8469 b1 = gen_msg_abbrev(A_CALLPROCEED);
8470 gen_or(b0, b1);
8471 b0 = gen_msg_abbrev(A_CONNECT);
8472 gen_or(b0, b1);
8473 b0 = gen_msg_abbrev(A_RELEASE);
8474 gen_or(b0, b1);
8475 b0 = gen_msg_abbrev(A_RELEASE_DONE);
8476 gen_or(b0, b1);
8477 b0 = gen_atmtype_abbrev(A_METAC);
8478 gen_and(b0, b1);
8479 break;
8481 default:
8482 abort();
8484 return b1;