Remove tm.h and xm.h handling, as it wasn't used. Use nm.h only when needed.
[dragonfly.git] / contrib / gcc-4.1 / gcc / final.c
blobc5cbd5a4f5889cb0e9ff1d71ce31144f7e03af8f
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83 #endif
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
87 #endif
89 #ifdef DBX_DEBUGGING_INFO
90 #include "dbxout.h"
91 #endif
93 #ifdef SDB_DEBUGGING_INFO
94 #include "sdbout.h"
95 #endif
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
101 #endif
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
106 #endif
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111 #endif
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
115 #endif
117 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
118 #define HAVE_READONLY_DATA_SECTION 1
119 #else
120 #define HAVE_READONLY_DATA_SECTION 0
121 #endif
123 /* Bitflags used by final_scan_insn. */
124 #define SEEN_BB 1
125 #define SEEN_NOTE 2
126 #define SEEN_EMITTED 4
128 /* Last insn processed by final_scan_insn. */
129 static rtx debug_insn;
130 rtx current_output_insn;
132 /* Line number of last NOTE. */
133 static int last_linenum;
135 /* Highest line number in current block. */
136 static int high_block_linenum;
138 /* Likewise for function. */
139 static int high_function_linenum;
141 /* Filename of last NOTE. */
142 static const char *last_filename;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line = false;
147 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 rtx this_is_asm_operands;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare = 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter = 0;
166 #ifdef HAVE_cc0
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
171 CC_STATUS cc_status;
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status;
177 #endif
179 /* Indexed by hardware reg number, is 1 if that register is ever
180 used in the current function.
182 In life_analysis, or in stupid_life_analysis, this is set
183 up to record the hard regs used explicitly. Reload adds
184 in the hard regs used for holding pseudo regs. Final uses
185 it to generate the code in the function prologue and epilogue
186 to save and restore registers as needed. */
188 char regs_ever_live[FIRST_PSEUDO_REGISTER];
190 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
191 Unlike regs_ever_live, elements of this array corresponding to
192 eliminable regs like the frame pointer are set if an asm sets them. */
194 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
196 /* Nonzero means current function must be given a frame pointer.
197 Initialized in function.c to 0. Set only in reload1.c as per
198 the needs of the function. */
200 int frame_pointer_needed;
202 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
204 static int block_depth;
206 /* Nonzero if have enabled APP processing of our assembler output. */
208 static int app_on;
210 /* If we are outputting an insn sequence, this contains the sequence rtx.
211 Zero otherwise. */
213 rtx final_sequence;
215 #ifdef ASSEMBLER_DIALECT
217 /* Number of the assembler dialect to use, starting at 0. */
218 static int dialect_number;
219 #endif
221 #ifdef HAVE_conditional_execution
222 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
223 rtx current_insn_predicate;
224 #endif
226 #ifdef HAVE_ATTR_length
227 static int asm_insn_count (rtx);
228 #endif
229 static void profile_function (FILE *);
230 static void profile_after_prologue (FILE *);
231 static bool notice_source_line (rtx);
232 static rtx walk_alter_subreg (rtx *);
233 static void output_asm_name (void);
234 static void output_alternate_entry_point (FILE *, rtx);
235 static tree get_mem_expr_from_op (rtx, int *);
236 static void output_asm_operand_names (rtx *, int *, int);
237 static void output_operand (rtx, int);
238 #ifdef LEAF_REGISTERS
239 static void leaf_renumber_regs (rtx);
240 #endif
241 #ifdef HAVE_cc0
242 static int alter_cond (rtx);
243 #endif
244 #ifndef ADDR_VEC_ALIGN
245 static int final_addr_vec_align (rtx);
246 #endif
247 #ifdef HAVE_ATTR_length
248 static int align_fuzz (rtx, rtx, int, unsigned);
249 #endif
251 /* Initialize data in final at the beginning of a compilation. */
253 void
254 init_final (const char *filename ATTRIBUTE_UNUSED)
256 app_on = 0;
257 final_sequence = 0;
259 #ifdef ASSEMBLER_DIALECT
260 dialect_number = ASSEMBLER_DIALECT;
261 #endif
264 /* Default target function prologue and epilogue assembler output.
266 If not overridden for epilogue code, then the function body itself
267 contains return instructions wherever needed. */
268 void
269 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
270 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
274 /* Default target hook that outputs nothing to a stream. */
275 void
276 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
280 /* Enable APP processing of subsequent output.
281 Used before the output from an `asm' statement. */
283 void
284 app_enable (void)
286 if (! app_on)
288 fputs (ASM_APP_ON, asm_out_file);
289 app_on = 1;
293 /* Disable APP processing of subsequent output.
294 Called from varasm.c before most kinds of output. */
296 void
297 app_disable (void)
299 if (app_on)
301 fputs (ASM_APP_OFF, asm_out_file);
302 app_on = 0;
306 /* Return the number of slots filled in the current
307 delayed branch sequence (we don't count the insn needing the
308 delay slot). Zero if not in a delayed branch sequence. */
310 #ifdef DELAY_SLOTS
312 dbr_sequence_length (void)
314 if (final_sequence != 0)
315 return XVECLEN (final_sequence, 0) - 1;
316 else
317 return 0;
319 #endif
321 /* The next two pages contain routines used to compute the length of an insn
322 and to shorten branches. */
324 /* Arrays for insn lengths, and addresses. The latter is referenced by
325 `insn_current_length'. */
327 static int *insn_lengths;
329 varray_type insn_addresses_;
331 /* Max uid for which the above arrays are valid. */
332 static int insn_lengths_max_uid;
334 /* Address of insn being processed. Used by `insn_current_length'. */
335 int insn_current_address;
337 /* Address of insn being processed in previous iteration. */
338 int insn_last_address;
340 /* known invariant alignment of insn being processed. */
341 int insn_current_align;
343 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
344 gives the next following alignment insn that increases the known
345 alignment, or NULL_RTX if there is no such insn.
346 For any alignment obtained this way, we can again index uid_align with
347 its uid to obtain the next following align that in turn increases the
348 alignment, till we reach NULL_RTX; the sequence obtained this way
349 for each insn we'll call the alignment chain of this insn in the following
350 comments. */
352 struct label_alignment
354 short alignment;
355 short max_skip;
358 static rtx *uid_align;
359 static int *uid_shuid;
360 static struct label_alignment *label_align;
362 /* Indicate that branch shortening hasn't yet been done. */
364 void
365 init_insn_lengths (void)
367 if (uid_shuid)
369 free (uid_shuid);
370 uid_shuid = 0;
372 if (insn_lengths)
374 free (insn_lengths);
375 insn_lengths = 0;
376 insn_lengths_max_uid = 0;
378 #ifdef HAVE_ATTR_length
379 INSN_ADDRESSES_FREE ();
380 #endif
381 if (uid_align)
383 free (uid_align);
384 uid_align = 0;
388 /* Obtain the current length of an insn. If branch shortening has been done,
389 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
390 length. */
391 static inline int
392 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
393 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
395 #ifdef HAVE_ATTR_length
396 rtx body;
397 int i;
398 int length = 0;
400 if (insn_lengths_max_uid > INSN_UID (insn))
401 return insn_lengths[INSN_UID (insn)];
402 else
403 switch (GET_CODE (insn))
405 case NOTE:
406 case BARRIER:
407 case CODE_LABEL:
408 return 0;
410 case CALL_INSN:
411 length = fallback_fn (insn);
412 break;
414 case JUMP_INSN:
415 body = PATTERN (insn);
416 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
418 /* Alignment is machine-dependent and should be handled by
419 ADDR_VEC_ALIGN. */
421 else
422 length = fallback_fn (insn);
423 break;
425 case INSN:
426 body = PATTERN (insn);
427 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
428 return 0;
430 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
431 length = asm_insn_count (body) * fallback_fn (insn);
432 else if (GET_CODE (body) == SEQUENCE)
433 for (i = 0; i < XVECLEN (body, 0); i++)
434 length += get_attr_length (XVECEXP (body, 0, i));
435 else
436 length = fallback_fn (insn);
437 break;
439 default:
440 break;
443 #ifdef ADJUST_INSN_LENGTH
444 ADJUST_INSN_LENGTH (insn, length);
445 #endif
446 return length;
447 #else /* not HAVE_ATTR_length */
448 return 0;
449 #define insn_default_length 0
450 #define insn_min_length 0
451 #endif /* not HAVE_ATTR_length */
454 /* Obtain the current length of an insn. If branch shortening has been done,
455 get its actual length. Otherwise, get its maximum length. */
457 get_attr_length (rtx insn)
459 return get_attr_length_1 (insn, insn_default_length);
462 /* Obtain the current length of an insn. If branch shortening has been done,
463 get its actual length. Otherwise, get its minimum length. */
465 get_attr_min_length (rtx insn)
467 return get_attr_length_1 (insn, insn_min_length);
470 /* Code to handle alignment inside shorten_branches. */
472 /* Here is an explanation how the algorithm in align_fuzz can give
473 proper results:
475 Call a sequence of instructions beginning with alignment point X
476 and continuing until the next alignment point `block X'. When `X'
477 is used in an expression, it means the alignment value of the
478 alignment point.
480 Call the distance between the start of the first insn of block X, and
481 the end of the last insn of block X `IX', for the `inner size of X'.
482 This is clearly the sum of the instruction lengths.
484 Likewise with the next alignment-delimited block following X, which we
485 shall call block Y.
487 Call the distance between the start of the first insn of block X, and
488 the start of the first insn of block Y `OX', for the `outer size of X'.
490 The estimated padding is then OX - IX.
492 OX can be safely estimated as
494 if (X >= Y)
495 OX = round_up(IX, Y)
496 else
497 OX = round_up(IX, X) + Y - X
499 Clearly est(IX) >= real(IX), because that only depends on the
500 instruction lengths, and those being overestimated is a given.
502 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
503 we needn't worry about that when thinking about OX.
505 When X >= Y, the alignment provided by Y adds no uncertainty factor
506 for branch ranges starting before X, so we can just round what we have.
507 But when X < Y, we don't know anything about the, so to speak,
508 `middle bits', so we have to assume the worst when aligning up from an
509 address mod X to one mod Y, which is Y - X. */
511 #ifndef LABEL_ALIGN
512 #define LABEL_ALIGN(LABEL) align_labels_log
513 #endif
515 #ifndef LABEL_ALIGN_MAX_SKIP
516 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
517 #endif
519 #ifndef LOOP_ALIGN
520 #define LOOP_ALIGN(LABEL) align_loops_log
521 #endif
523 #ifndef LOOP_ALIGN_MAX_SKIP
524 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
525 #endif
527 #ifndef LABEL_ALIGN_AFTER_BARRIER
528 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
529 #endif
531 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
532 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
533 #endif
535 #ifndef JUMP_ALIGN
536 #define JUMP_ALIGN(LABEL) align_jumps_log
537 #endif
539 #ifndef JUMP_ALIGN_MAX_SKIP
540 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
541 #endif
543 #ifndef ADDR_VEC_ALIGN
544 static int
545 final_addr_vec_align (rtx addr_vec)
547 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
549 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
550 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
551 return exact_log2 (align);
555 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
556 #endif
558 #ifndef INSN_LENGTH_ALIGNMENT
559 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
560 #endif
562 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
564 static int min_labelno, max_labelno;
566 #define LABEL_TO_ALIGNMENT(LABEL) \
567 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
569 #define LABEL_TO_MAX_SKIP(LABEL) \
570 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
572 /* For the benefit of port specific code do this also as a function. */
575 label_to_alignment (rtx label)
577 return LABEL_TO_ALIGNMENT (label);
580 #ifdef HAVE_ATTR_length
581 /* The differences in addresses
582 between a branch and its target might grow or shrink depending on
583 the alignment the start insn of the range (the branch for a forward
584 branch or the label for a backward branch) starts out on; if these
585 differences are used naively, they can even oscillate infinitely.
586 We therefore want to compute a 'worst case' address difference that
587 is independent of the alignment the start insn of the range end
588 up on, and that is at least as large as the actual difference.
589 The function align_fuzz calculates the amount we have to add to the
590 naively computed difference, by traversing the part of the alignment
591 chain of the start insn of the range that is in front of the end insn
592 of the range, and considering for each alignment the maximum amount
593 that it might contribute to a size increase.
595 For casesi tables, we also want to know worst case minimum amounts of
596 address difference, in case a machine description wants to introduce
597 some common offset that is added to all offsets in a table.
598 For this purpose, align_fuzz with a growth argument of 0 computes the
599 appropriate adjustment. */
601 /* Compute the maximum delta by which the difference of the addresses of
602 START and END might grow / shrink due to a different address for start
603 which changes the size of alignment insns between START and END.
604 KNOWN_ALIGN_LOG is the alignment known for START.
605 GROWTH should be ~0 if the objective is to compute potential code size
606 increase, and 0 if the objective is to compute potential shrink.
607 The return value is undefined for any other value of GROWTH. */
609 static int
610 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
612 int uid = INSN_UID (start);
613 rtx align_label;
614 int known_align = 1 << known_align_log;
615 int end_shuid = INSN_SHUID (end);
616 int fuzz = 0;
618 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
620 int align_addr, new_align;
622 uid = INSN_UID (align_label);
623 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
624 if (uid_shuid[uid] > end_shuid)
625 break;
626 known_align_log = LABEL_TO_ALIGNMENT (align_label);
627 new_align = 1 << known_align_log;
628 if (new_align < known_align)
629 continue;
630 fuzz += (-align_addr ^ growth) & (new_align - known_align);
631 known_align = new_align;
633 return fuzz;
636 /* Compute a worst-case reference address of a branch so that it
637 can be safely used in the presence of aligned labels. Since the
638 size of the branch itself is unknown, the size of the branch is
639 not included in the range. I.e. for a forward branch, the reference
640 address is the end address of the branch as known from the previous
641 branch shortening pass, minus a value to account for possible size
642 increase due to alignment. For a backward branch, it is the start
643 address of the branch as known from the current pass, plus a value
644 to account for possible size increase due to alignment.
645 NB.: Therefore, the maximum offset allowed for backward branches needs
646 to exclude the branch size. */
649 insn_current_reference_address (rtx branch)
651 rtx dest, seq;
652 int seq_uid;
654 if (! INSN_ADDRESSES_SET_P ())
655 return 0;
657 seq = NEXT_INSN (PREV_INSN (branch));
658 seq_uid = INSN_UID (seq);
659 if (!JUMP_P (branch))
660 /* This can happen for example on the PA; the objective is to know the
661 offset to address something in front of the start of the function.
662 Thus, we can treat it like a backward branch.
663 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
664 any alignment we'd encounter, so we skip the call to align_fuzz. */
665 return insn_current_address;
666 dest = JUMP_LABEL (branch);
668 /* BRANCH has no proper alignment chain set, so use SEQ.
669 BRANCH also has no INSN_SHUID. */
670 if (INSN_SHUID (seq) < INSN_SHUID (dest))
672 /* Forward branch. */
673 return (insn_last_address + insn_lengths[seq_uid]
674 - align_fuzz (seq, dest, length_unit_log, ~0));
676 else
678 /* Backward branch. */
679 return (insn_current_address
680 + align_fuzz (dest, seq, length_unit_log, ~0));
683 #endif /* HAVE_ATTR_length */
685 void
686 compute_alignments (void)
688 int log, max_skip, max_log;
689 basic_block bb;
691 if (label_align)
693 free (label_align);
694 label_align = 0;
697 max_labelno = max_label_num ();
698 min_labelno = get_first_label_num ();
699 label_align = xcalloc (max_labelno - min_labelno + 1,
700 sizeof (struct label_alignment));
702 /* If not optimizing or optimizing for size, don't assign any alignments. */
703 if (! optimize || optimize_size)
704 return;
706 FOR_EACH_BB (bb)
708 rtx label = BB_HEAD (bb);
709 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
710 edge e;
711 edge_iterator ei;
713 if (!LABEL_P (label)
714 || probably_never_executed_bb_p (bb))
715 continue;
716 max_log = LABEL_ALIGN (label);
717 max_skip = LABEL_ALIGN_MAX_SKIP;
719 FOR_EACH_EDGE (e, ei, bb->preds)
721 if (e->flags & EDGE_FALLTHRU)
722 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
723 else
724 branch_frequency += EDGE_FREQUENCY (e);
727 /* There are two purposes to align block with no fallthru incoming edge:
728 1) to avoid fetch stalls when branch destination is near cache boundary
729 2) to improve cache efficiency in case the previous block is not executed
730 (so it does not need to be in the cache).
732 We to catch first case, we align frequently executed blocks.
733 To catch the second, we align blocks that are executed more frequently
734 than the predecessor and the predecessor is likely to not be executed
735 when function is called. */
737 if (!has_fallthru
738 && (branch_frequency > BB_FREQ_MAX / 10
739 || (bb->frequency > bb->prev_bb->frequency * 10
740 && (bb->prev_bb->frequency
741 <= ENTRY_BLOCK_PTR->frequency / 2))))
743 log = JUMP_ALIGN (label);
744 if (max_log < log)
746 max_log = log;
747 max_skip = JUMP_ALIGN_MAX_SKIP;
750 /* In case block is frequent and reached mostly by non-fallthru edge,
751 align it. It is most likely a first block of loop. */
752 if (has_fallthru
753 && maybe_hot_bb_p (bb)
754 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
755 && branch_frequency > fallthru_frequency * 2)
757 log = LOOP_ALIGN (label);
758 if (max_log < log)
760 max_log = log;
761 max_skip = LOOP_ALIGN_MAX_SKIP;
764 LABEL_TO_ALIGNMENT (label) = max_log;
765 LABEL_TO_MAX_SKIP (label) = max_skip;
769 struct tree_opt_pass pass_compute_alignments =
771 NULL, /* name */
772 NULL, /* gate */
773 compute_alignments, /* execute */
774 NULL, /* sub */
775 NULL, /* next */
776 0, /* static_pass_number */
777 0, /* tv_id */
778 0, /* properties_required */
779 0, /* properties_provided */
780 0, /* properties_destroyed */
781 0, /* todo_flags_start */
782 0, /* todo_flags_finish */
783 0 /* letter */
787 /* Make a pass over all insns and compute their actual lengths by shortening
788 any branches of variable length if possible. */
790 /* shorten_branches might be called multiple times: for example, the SH
791 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
792 In order to do this, it needs proper length information, which it obtains
793 by calling shorten_branches. This cannot be collapsed with
794 shorten_branches itself into a single pass unless we also want to integrate
795 reorg.c, since the branch splitting exposes new instructions with delay
796 slots. */
798 void
799 shorten_branches (rtx first ATTRIBUTE_UNUSED)
801 rtx insn;
802 int max_uid;
803 int i;
804 int max_log;
805 int max_skip;
806 #ifdef HAVE_ATTR_length
807 #define MAX_CODE_ALIGN 16
808 rtx seq;
809 int something_changed = 1;
810 char *varying_length;
811 rtx body;
812 int uid;
813 rtx align_tab[MAX_CODE_ALIGN];
815 #endif
817 /* Compute maximum UID and allocate label_align / uid_shuid. */
818 max_uid = get_max_uid ();
820 /* Free uid_shuid before reallocating it. */
821 free (uid_shuid);
823 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
825 if (max_labelno != max_label_num ())
827 int old = max_labelno;
828 int n_labels;
829 int n_old_labels;
831 max_labelno = max_label_num ();
833 n_labels = max_labelno - min_labelno + 1;
834 n_old_labels = old - min_labelno + 1;
836 label_align = xrealloc (label_align,
837 n_labels * sizeof (struct label_alignment));
839 /* Range of labels grows monotonically in the function. Failing here
840 means that the initialization of array got lost. */
841 gcc_assert (n_old_labels <= n_labels);
843 memset (label_align + n_old_labels, 0,
844 (n_labels - n_old_labels) * sizeof (struct label_alignment));
847 /* Initialize label_align and set up uid_shuid to be strictly
848 monotonically rising with insn order. */
849 /* We use max_log here to keep track of the maximum alignment we want to
850 impose on the next CODE_LABEL (or the current one if we are processing
851 the CODE_LABEL itself). */
853 max_log = 0;
854 max_skip = 0;
856 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
858 int log;
860 INSN_SHUID (insn) = i++;
861 if (INSN_P (insn))
863 /* reorg might make the first insn of a loop being run once only,
864 and delete the label in front of it. Then we want to apply
865 the loop alignment to the new label created by reorg, which
866 is separated by the former loop start insn from the
867 NOTE_INSN_LOOP_BEG. */
869 else if (LABEL_P (insn))
871 rtx next;
873 /* Merge in alignments computed by compute_alignments. */
874 log = LABEL_TO_ALIGNMENT (insn);
875 if (max_log < log)
877 max_log = log;
878 max_skip = LABEL_TO_MAX_SKIP (insn);
881 log = LABEL_ALIGN (insn);
882 if (max_log < log)
884 max_log = log;
885 max_skip = LABEL_ALIGN_MAX_SKIP;
887 next = next_nonnote_insn (insn);
888 /* ADDR_VECs only take room if read-only data goes into the text
889 section. */
890 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
891 if (next && JUMP_P (next))
893 rtx nextbody = PATTERN (next);
894 if (GET_CODE (nextbody) == ADDR_VEC
895 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
897 log = ADDR_VEC_ALIGN (next);
898 if (max_log < log)
900 max_log = log;
901 max_skip = LABEL_ALIGN_MAX_SKIP;
905 LABEL_TO_ALIGNMENT (insn) = max_log;
906 LABEL_TO_MAX_SKIP (insn) = max_skip;
907 max_log = 0;
908 max_skip = 0;
910 else if (BARRIER_P (insn))
912 rtx label;
914 for (label = insn; label && ! INSN_P (label);
915 label = NEXT_INSN (label))
916 if (LABEL_P (label))
918 log = LABEL_ALIGN_AFTER_BARRIER (insn);
919 if (max_log < log)
921 max_log = log;
922 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
924 break;
928 #ifdef HAVE_ATTR_length
930 /* Allocate the rest of the arrays. */
931 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
932 insn_lengths_max_uid = max_uid;
933 /* Syntax errors can lead to labels being outside of the main insn stream.
934 Initialize insn_addresses, so that we get reproducible results. */
935 INSN_ADDRESSES_ALLOC (max_uid);
937 varying_length = xcalloc (max_uid, sizeof (char));
939 /* Initialize uid_align. We scan instructions
940 from end to start, and keep in align_tab[n] the last seen insn
941 that does an alignment of at least n+1, i.e. the successor
942 in the alignment chain for an insn that does / has a known
943 alignment of n. */
944 uid_align = xcalloc (max_uid, sizeof *uid_align);
946 for (i = MAX_CODE_ALIGN; --i >= 0;)
947 align_tab[i] = NULL_RTX;
948 seq = get_last_insn ();
949 for (; seq; seq = PREV_INSN (seq))
951 int uid = INSN_UID (seq);
952 int log;
953 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
954 uid_align[uid] = align_tab[0];
955 if (log)
957 /* Found an alignment label. */
958 uid_align[uid] = align_tab[log];
959 for (i = log - 1; i >= 0; i--)
960 align_tab[i] = seq;
963 #ifdef CASE_VECTOR_SHORTEN_MODE
964 if (optimize)
966 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
967 label fields. */
969 int min_shuid = INSN_SHUID (get_insns ()) - 1;
970 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
971 int rel;
973 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
975 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
976 int len, i, min, max, insn_shuid;
977 int min_align;
978 addr_diff_vec_flags flags;
980 if (!JUMP_P (insn)
981 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
982 continue;
983 pat = PATTERN (insn);
984 len = XVECLEN (pat, 1);
985 gcc_assert (len > 0);
986 min_align = MAX_CODE_ALIGN;
987 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
989 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
990 int shuid = INSN_SHUID (lab);
991 if (shuid < min)
993 min = shuid;
994 min_lab = lab;
996 if (shuid > max)
998 max = shuid;
999 max_lab = lab;
1001 if (min_align > LABEL_TO_ALIGNMENT (lab))
1002 min_align = LABEL_TO_ALIGNMENT (lab);
1004 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1005 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1006 insn_shuid = INSN_SHUID (insn);
1007 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1008 memset (&flags, 0, sizeof (flags));
1009 flags.min_align = min_align;
1010 flags.base_after_vec = rel > insn_shuid;
1011 flags.min_after_vec = min > insn_shuid;
1012 flags.max_after_vec = max > insn_shuid;
1013 flags.min_after_base = min > rel;
1014 flags.max_after_base = max > rel;
1015 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1018 #endif /* CASE_VECTOR_SHORTEN_MODE */
1020 /* Compute initial lengths, addresses, and varying flags for each insn. */
1021 for (insn_current_address = 0, insn = first;
1022 insn != 0;
1023 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1025 uid = INSN_UID (insn);
1027 insn_lengths[uid] = 0;
1029 if (LABEL_P (insn))
1031 int log = LABEL_TO_ALIGNMENT (insn);
1032 if (log)
1034 int align = 1 << log;
1035 int new_address = (insn_current_address + align - 1) & -align;
1036 insn_lengths[uid] = new_address - insn_current_address;
1040 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1042 if (NOTE_P (insn) || BARRIER_P (insn)
1043 || LABEL_P (insn))
1044 continue;
1045 if (INSN_DELETED_P (insn))
1046 continue;
1048 body = PATTERN (insn);
1049 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1051 /* This only takes room if read-only data goes into the text
1052 section. */
1053 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1054 insn_lengths[uid] = (XVECLEN (body,
1055 GET_CODE (body) == ADDR_DIFF_VEC)
1056 * GET_MODE_SIZE (GET_MODE (body)));
1057 /* Alignment is handled by ADDR_VEC_ALIGN. */
1059 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1060 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1061 else if (GET_CODE (body) == SEQUENCE)
1063 int i;
1064 int const_delay_slots;
1065 #ifdef DELAY_SLOTS
1066 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1067 #else
1068 const_delay_slots = 0;
1069 #endif
1070 /* Inside a delay slot sequence, we do not do any branch shortening
1071 if the shortening could change the number of delay slots
1072 of the branch. */
1073 for (i = 0; i < XVECLEN (body, 0); i++)
1075 rtx inner_insn = XVECEXP (body, 0, i);
1076 int inner_uid = INSN_UID (inner_insn);
1077 int inner_length;
1079 if (GET_CODE (body) == ASM_INPUT
1080 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1081 inner_length = (asm_insn_count (PATTERN (inner_insn))
1082 * insn_default_length (inner_insn));
1083 else
1084 inner_length = insn_default_length (inner_insn);
1086 insn_lengths[inner_uid] = inner_length;
1087 if (const_delay_slots)
1089 if ((varying_length[inner_uid]
1090 = insn_variable_length_p (inner_insn)) != 0)
1091 varying_length[uid] = 1;
1092 INSN_ADDRESSES (inner_uid) = (insn_current_address
1093 + insn_lengths[uid]);
1095 else
1096 varying_length[inner_uid] = 0;
1097 insn_lengths[uid] += inner_length;
1100 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1102 insn_lengths[uid] = insn_default_length (insn);
1103 varying_length[uid] = insn_variable_length_p (insn);
1106 /* If needed, do any adjustment. */
1107 #ifdef ADJUST_INSN_LENGTH
1108 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1109 if (insn_lengths[uid] < 0)
1110 fatal_insn ("negative insn length", insn);
1111 #endif
1114 /* Now loop over all the insns finding varying length insns. For each,
1115 get the current insn length. If it has changed, reflect the change.
1116 When nothing changes for a full pass, we are done. */
1118 while (something_changed)
1120 something_changed = 0;
1121 insn_current_align = MAX_CODE_ALIGN - 1;
1122 for (insn_current_address = 0, insn = first;
1123 insn != 0;
1124 insn = NEXT_INSN (insn))
1126 int new_length;
1127 #ifdef ADJUST_INSN_LENGTH
1128 int tmp_length;
1129 #endif
1130 int length_align;
1132 uid = INSN_UID (insn);
1134 if (LABEL_P (insn))
1136 int log = LABEL_TO_ALIGNMENT (insn);
1137 if (log > insn_current_align)
1139 int align = 1 << log;
1140 int new_address= (insn_current_address + align - 1) & -align;
1141 insn_lengths[uid] = new_address - insn_current_address;
1142 insn_current_align = log;
1143 insn_current_address = new_address;
1145 else
1146 insn_lengths[uid] = 0;
1147 INSN_ADDRESSES (uid) = insn_current_address;
1148 continue;
1151 length_align = INSN_LENGTH_ALIGNMENT (insn);
1152 if (length_align < insn_current_align)
1153 insn_current_align = length_align;
1155 insn_last_address = INSN_ADDRESSES (uid);
1156 INSN_ADDRESSES (uid) = insn_current_address;
1158 #ifdef CASE_VECTOR_SHORTEN_MODE
1159 if (optimize && JUMP_P (insn)
1160 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1162 rtx body = PATTERN (insn);
1163 int old_length = insn_lengths[uid];
1164 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1165 rtx min_lab = XEXP (XEXP (body, 2), 0);
1166 rtx max_lab = XEXP (XEXP (body, 3), 0);
1167 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1168 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1169 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1170 rtx prev;
1171 int rel_align = 0;
1172 addr_diff_vec_flags flags;
1174 /* Avoid automatic aggregate initialization. */
1175 flags = ADDR_DIFF_VEC_FLAGS (body);
1177 /* Try to find a known alignment for rel_lab. */
1178 for (prev = rel_lab;
1179 prev
1180 && ! insn_lengths[INSN_UID (prev)]
1181 && ! (varying_length[INSN_UID (prev)] & 1);
1182 prev = PREV_INSN (prev))
1183 if (varying_length[INSN_UID (prev)] & 2)
1185 rel_align = LABEL_TO_ALIGNMENT (prev);
1186 break;
1189 /* See the comment on addr_diff_vec_flags in rtl.h for the
1190 meaning of the flags values. base: REL_LAB vec: INSN */
1191 /* Anything after INSN has still addresses from the last
1192 pass; adjust these so that they reflect our current
1193 estimate for this pass. */
1194 if (flags.base_after_vec)
1195 rel_addr += insn_current_address - insn_last_address;
1196 if (flags.min_after_vec)
1197 min_addr += insn_current_address - insn_last_address;
1198 if (flags.max_after_vec)
1199 max_addr += insn_current_address - insn_last_address;
1200 /* We want to know the worst case, i.e. lowest possible value
1201 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1202 its offset is positive, and we have to be wary of code shrink;
1203 otherwise, it is negative, and we have to be vary of code
1204 size increase. */
1205 if (flags.min_after_base)
1207 /* If INSN is between REL_LAB and MIN_LAB, the size
1208 changes we are about to make can change the alignment
1209 within the observed offset, therefore we have to break
1210 it up into two parts that are independent. */
1211 if (! flags.base_after_vec && flags.min_after_vec)
1213 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1214 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1216 else
1217 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1219 else
1221 if (flags.base_after_vec && ! flags.min_after_vec)
1223 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1224 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1226 else
1227 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1229 /* Likewise, determine the highest lowest possible value
1230 for the offset of MAX_LAB. */
1231 if (flags.max_after_base)
1233 if (! flags.base_after_vec && flags.max_after_vec)
1235 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1236 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1238 else
1239 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1241 else
1243 if (flags.base_after_vec && ! flags.max_after_vec)
1245 max_addr += align_fuzz (max_lab, insn, 0, 0);
1246 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1248 else
1249 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1251 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1252 max_addr - rel_addr,
1253 body));
1254 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1256 insn_lengths[uid]
1257 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1258 insn_current_address += insn_lengths[uid];
1259 if (insn_lengths[uid] != old_length)
1260 something_changed = 1;
1263 continue;
1265 #endif /* CASE_VECTOR_SHORTEN_MODE */
1267 if (! (varying_length[uid]))
1269 if (NONJUMP_INSN_P (insn)
1270 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1272 int i;
1274 body = PATTERN (insn);
1275 for (i = 0; i < XVECLEN (body, 0); i++)
1277 rtx inner_insn = XVECEXP (body, 0, i);
1278 int inner_uid = INSN_UID (inner_insn);
1280 INSN_ADDRESSES (inner_uid) = insn_current_address;
1282 insn_current_address += insn_lengths[inner_uid];
1285 else
1286 insn_current_address += insn_lengths[uid];
1288 continue;
1291 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1293 int i;
1295 body = PATTERN (insn);
1296 new_length = 0;
1297 for (i = 0; i < XVECLEN (body, 0); i++)
1299 rtx inner_insn = XVECEXP (body, 0, i);
1300 int inner_uid = INSN_UID (inner_insn);
1301 int inner_length;
1303 INSN_ADDRESSES (inner_uid) = insn_current_address;
1305 /* insn_current_length returns 0 for insns with a
1306 non-varying length. */
1307 if (! varying_length[inner_uid])
1308 inner_length = insn_lengths[inner_uid];
1309 else
1310 inner_length = insn_current_length (inner_insn);
1312 if (inner_length != insn_lengths[inner_uid])
1314 insn_lengths[inner_uid] = inner_length;
1315 something_changed = 1;
1317 insn_current_address += insn_lengths[inner_uid];
1318 new_length += inner_length;
1321 else
1323 new_length = insn_current_length (insn);
1324 insn_current_address += new_length;
1327 #ifdef ADJUST_INSN_LENGTH
1328 /* If needed, do any adjustment. */
1329 tmp_length = new_length;
1330 ADJUST_INSN_LENGTH (insn, new_length);
1331 insn_current_address += (new_length - tmp_length);
1332 #endif
1334 if (new_length != insn_lengths[uid])
1336 insn_lengths[uid] = new_length;
1337 something_changed = 1;
1340 /* For a non-optimizing compile, do only a single pass. */
1341 if (!optimize)
1342 break;
1345 free (varying_length);
1347 #endif /* HAVE_ATTR_length */
1350 #ifdef HAVE_ATTR_length
1351 /* Given the body of an INSN known to be generated by an ASM statement, return
1352 the number of machine instructions likely to be generated for this insn.
1353 This is used to compute its length. */
1355 static int
1356 asm_insn_count (rtx body)
1358 const char *template;
1359 int count = 1;
1361 if (GET_CODE (body) == ASM_INPUT)
1362 template = XSTR (body, 0);
1363 else
1364 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1366 for (; *template; template++)
1367 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1368 count++;
1370 return count;
1372 #endif
1374 /* Output assembler code for the start of a function,
1375 and initialize some of the variables in this file
1376 for the new function. The label for the function and associated
1377 assembler pseudo-ops have already been output in `assemble_start_function'.
1379 FIRST is the first insn of the rtl for the function being compiled.
1380 FILE is the file to write assembler code to.
1381 OPTIMIZE is nonzero if we should eliminate redundant
1382 test and compare insns. */
1384 void
1385 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1386 int optimize ATTRIBUTE_UNUSED)
1388 block_depth = 0;
1390 this_is_asm_operands = 0;
1392 last_filename = locator_file (prologue_locator);
1393 last_linenum = locator_line (prologue_locator);
1395 high_block_linenum = high_function_linenum = last_linenum;
1397 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1399 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1400 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1401 dwarf2out_begin_prologue (0, NULL);
1402 #endif
1404 #ifdef LEAF_REG_REMAP
1405 if (current_function_uses_only_leaf_regs)
1406 leaf_renumber_regs (first);
1407 #endif
1409 /* The Sun386i and perhaps other machines don't work right
1410 if the profiling code comes after the prologue. */
1411 #ifdef PROFILE_BEFORE_PROLOGUE
1412 if (current_function_profile)
1413 profile_function (file);
1414 #endif /* PROFILE_BEFORE_PROLOGUE */
1416 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1417 if (dwarf2out_do_frame ())
1418 dwarf2out_frame_debug (NULL_RTX, false);
1419 #endif
1421 /* If debugging, assign block numbers to all of the blocks in this
1422 function. */
1423 if (write_symbols)
1425 remove_unnecessary_notes ();
1426 reemit_insn_block_notes ();
1427 number_blocks (current_function_decl);
1428 /* We never actually put out begin/end notes for the top-level
1429 block in the function. But, conceptually, that block is
1430 always needed. */
1431 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1434 /* First output the function prologue: code to set up the stack frame. */
1435 targetm.asm_out.function_prologue (file, get_frame_size ());
1437 /* If the machine represents the prologue as RTL, the profiling code must
1438 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1439 #ifdef HAVE_prologue
1440 if (! HAVE_prologue)
1441 #endif
1442 profile_after_prologue (file);
1445 static void
1446 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1448 #ifndef PROFILE_BEFORE_PROLOGUE
1449 if (current_function_profile)
1450 profile_function (file);
1451 #endif /* not PROFILE_BEFORE_PROLOGUE */
1454 static void
1455 profile_function (FILE *file ATTRIBUTE_UNUSED)
1457 #ifndef NO_PROFILE_COUNTERS
1458 # define NO_PROFILE_COUNTERS 0
1459 #endif
1460 #if defined(ASM_OUTPUT_REG_PUSH)
1461 int sval = current_function_returns_struct;
1462 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1463 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1464 int cxt = cfun->static_chain_decl != NULL;
1465 #endif
1466 #endif /* ASM_OUTPUT_REG_PUSH */
1468 if (! NO_PROFILE_COUNTERS)
1470 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1471 data_section ();
1472 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1473 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1474 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1477 current_function_section (current_function_decl);
1479 #if defined(ASM_OUTPUT_REG_PUSH)
1480 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1481 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1482 #endif
1484 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1485 if (cxt)
1486 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1487 #else
1488 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1489 if (cxt)
1491 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1493 #endif
1494 #endif
1496 FUNCTION_PROFILER (file, current_function_funcdef_no);
1498 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1499 if (cxt)
1500 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1501 #else
1502 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1503 if (cxt)
1505 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1507 #endif
1508 #endif
1510 #if defined(ASM_OUTPUT_REG_PUSH)
1511 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1512 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1513 #endif
1516 /* Output assembler code for the end of a function.
1517 For clarity, args are same as those of `final_start_function'
1518 even though not all of them are needed. */
1520 void
1521 final_end_function (void)
1523 app_disable ();
1525 (*debug_hooks->end_function) (high_function_linenum);
1527 /* Finally, output the function epilogue:
1528 code to restore the stack frame and return to the caller. */
1529 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1531 /* And debug output. */
1532 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1534 #if defined (DWARF2_UNWIND_INFO)
1535 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1536 && dwarf2out_do_frame ())
1537 dwarf2out_end_epilogue (last_linenum, last_filename);
1538 #endif
1541 /* Output assembler code for some insns: all or part of a function.
1542 For description of args, see `final_start_function', above. */
1544 void
1545 final (rtx first, FILE *file, int optimize)
1547 rtx insn;
1548 int max_uid = 0;
1549 int seen = 0;
1551 last_ignored_compare = 0;
1553 #ifdef SDB_DEBUGGING_INFO
1554 /* When producing SDB debugging info, delete troublesome line number
1555 notes from inlined functions in other files as well as duplicate
1556 line number notes. */
1557 if (write_symbols == SDB_DEBUG)
1559 rtx last = 0;
1560 for (insn = first; insn; insn = NEXT_INSN (insn))
1561 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1563 if (last != 0
1564 #ifdef USE_MAPPED_LOCATION
1565 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1566 #else
1567 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1568 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1569 #endif
1572 delete_insn (insn); /* Use delete_note. */
1573 continue;
1575 last = insn;
1578 #endif
1580 for (insn = first; insn; insn = NEXT_INSN (insn))
1582 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1583 max_uid = INSN_UID (insn);
1584 #ifdef HAVE_cc0
1585 /* If CC tracking across branches is enabled, record the insn which
1586 jumps to each branch only reached from one place. */
1587 if (optimize && JUMP_P (insn))
1589 rtx lab = JUMP_LABEL (insn);
1590 if (lab && LABEL_NUSES (lab) == 1)
1592 LABEL_REFS (lab) = insn;
1595 #endif
1598 init_recog ();
1600 CC_STATUS_INIT;
1602 /* Output the insns. */
1603 for (insn = NEXT_INSN (first); insn;)
1605 #ifdef HAVE_ATTR_length
1606 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1608 /* This can be triggered by bugs elsewhere in the compiler if
1609 new insns are created after init_insn_lengths is called. */
1610 gcc_assert (NOTE_P (insn));
1611 insn_current_address = -1;
1613 else
1614 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1615 #endif /* HAVE_ATTR_length */
1617 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1621 const char *
1622 get_insn_template (int code, rtx insn)
1624 switch (insn_data[code].output_format)
1626 case INSN_OUTPUT_FORMAT_SINGLE:
1627 return insn_data[code].output.single;
1628 case INSN_OUTPUT_FORMAT_MULTI:
1629 return insn_data[code].output.multi[which_alternative];
1630 case INSN_OUTPUT_FORMAT_FUNCTION:
1631 gcc_assert (insn);
1632 return (*insn_data[code].output.function) (recog_data.operand, insn);
1634 default:
1635 gcc_unreachable ();
1639 /* Emit the appropriate declaration for an alternate-entry-point
1640 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1641 LABEL_KIND != LABEL_NORMAL.
1643 The case fall-through in this function is intentional. */
1644 static void
1645 output_alternate_entry_point (FILE *file, rtx insn)
1647 const char *name = LABEL_NAME (insn);
1649 switch (LABEL_KIND (insn))
1651 case LABEL_WEAK_ENTRY:
1652 #ifdef ASM_WEAKEN_LABEL
1653 ASM_WEAKEN_LABEL (file, name);
1654 #endif
1655 case LABEL_GLOBAL_ENTRY:
1656 targetm.asm_out.globalize_label (file, name);
1657 case LABEL_STATIC_ENTRY:
1658 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1659 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1660 #endif
1661 ASM_OUTPUT_LABEL (file, name);
1662 break;
1664 case LABEL_NORMAL:
1665 default:
1666 gcc_unreachable ();
1670 /* The final scan for one insn, INSN.
1671 Args are same as in `final', except that INSN
1672 is the insn being scanned.
1673 Value returned is the next insn to be scanned.
1675 NOPEEPHOLES is the flag to disallow peephole processing (currently
1676 used for within delayed branch sequence output).
1678 SEEN is used to track the end of the prologue, for emitting
1679 debug information. We force the emission of a line note after
1680 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1681 at the beginning of the second basic block, whichever comes
1682 first. */
1685 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1686 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1688 #ifdef HAVE_cc0
1689 rtx set;
1690 #endif
1691 rtx next;
1693 insn_counter++;
1695 /* Ignore deleted insns. These can occur when we split insns (due to a
1696 template of "#") while not optimizing. */
1697 if (INSN_DELETED_P (insn))
1698 return NEXT_INSN (insn);
1700 switch (GET_CODE (insn))
1702 case NOTE:
1703 switch (NOTE_LINE_NUMBER (insn))
1705 case NOTE_INSN_DELETED:
1706 case NOTE_INSN_LOOP_BEG:
1707 case NOTE_INSN_LOOP_END:
1708 case NOTE_INSN_FUNCTION_END:
1709 case NOTE_INSN_REPEATED_LINE_NUMBER:
1710 case NOTE_INSN_EXPECTED_VALUE:
1711 break;
1713 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1715 /* The presence of this note indicates that this basic block
1716 belongs in the "cold" section of the .o file. If we are
1717 not already writing to the cold section we need to change
1718 to it. */
1720 if (last_text_section == in_text)
1722 (*debug_hooks->switch_text_section) ();
1723 #if defined (DWARF2_UNWIND_INFO)
1724 if (write_symbols != DWARF2_DEBUG
1725 && write_symbols != VMS_AND_DWARF2_DEBUG
1726 && dwarf2out_do_frame ())
1727 dwarf2out_switch_text_section ();
1728 #endif
1729 unlikely_text_section ();
1731 else
1733 (*debug_hooks->switch_text_section) ();
1734 #if defined (DWARF2_UNWIND_INFO)
1735 if (write_symbols != DWARF2_DEBUG
1736 && write_symbols != VMS_AND_DWARF2_DEBUG
1737 && dwarf2out_do_frame ())
1738 dwarf2out_switch_text_section ();
1739 #endif
1740 text_section ();
1742 break;
1744 case NOTE_INSN_BASIC_BLOCK:
1746 #ifdef TARGET_UNWIND_INFO
1747 targetm.asm_out.unwind_emit (asm_out_file, insn);
1748 #endif
1750 if (flag_debug_asm)
1751 fprintf (asm_out_file, "\t%s basic block %d\n",
1752 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1754 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1756 *seen |= SEEN_EMITTED;
1757 force_source_line = true;
1759 else
1760 *seen |= SEEN_BB;
1762 break;
1764 case NOTE_INSN_EH_REGION_BEG:
1765 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1766 NOTE_EH_HANDLER (insn));
1767 break;
1769 case NOTE_INSN_EH_REGION_END:
1770 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1771 NOTE_EH_HANDLER (insn));
1772 break;
1774 case NOTE_INSN_PROLOGUE_END:
1775 targetm.asm_out.function_end_prologue (file);
1776 profile_after_prologue (file);
1778 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1780 *seen |= SEEN_EMITTED;
1781 force_source_line = true;
1783 else
1784 *seen |= SEEN_NOTE;
1786 break;
1788 case NOTE_INSN_EPILOGUE_BEG:
1789 targetm.asm_out.function_begin_epilogue (file);
1790 break;
1792 case NOTE_INSN_FUNCTION_BEG:
1793 app_disable ();
1794 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1796 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1798 *seen |= SEEN_EMITTED;
1799 force_source_line = true;
1801 else
1802 *seen |= SEEN_NOTE;
1804 break;
1806 case NOTE_INSN_BLOCK_BEG:
1807 if (debug_info_level == DINFO_LEVEL_NORMAL
1808 || debug_info_level == DINFO_LEVEL_VERBOSE
1809 || write_symbols == DWARF2_DEBUG
1810 || write_symbols == VMS_AND_DWARF2_DEBUG
1811 || write_symbols == VMS_DEBUG)
1813 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1815 app_disable ();
1816 ++block_depth;
1817 high_block_linenum = last_linenum;
1819 /* Output debugging info about the symbol-block beginning. */
1820 (*debug_hooks->begin_block) (last_linenum, n);
1822 /* Mark this block as output. */
1823 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1825 break;
1827 case NOTE_INSN_BLOCK_END:
1828 if (debug_info_level == DINFO_LEVEL_NORMAL
1829 || debug_info_level == DINFO_LEVEL_VERBOSE
1830 || write_symbols == DWARF2_DEBUG
1831 || write_symbols == VMS_AND_DWARF2_DEBUG
1832 || write_symbols == VMS_DEBUG)
1834 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1836 app_disable ();
1838 /* End of a symbol-block. */
1839 --block_depth;
1840 gcc_assert (block_depth >= 0);
1842 (*debug_hooks->end_block) (high_block_linenum, n);
1844 break;
1846 case NOTE_INSN_DELETED_LABEL:
1847 /* Emit the label. We may have deleted the CODE_LABEL because
1848 the label could be proved to be unreachable, though still
1849 referenced (in the form of having its address taken. */
1850 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1851 break;
1853 case NOTE_INSN_VAR_LOCATION:
1854 (*debug_hooks->var_location) (insn);
1855 break;
1857 case 0:
1858 break;
1860 default:
1861 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1862 break;
1864 break;
1866 case BARRIER:
1867 #if defined (DWARF2_UNWIND_INFO)
1868 if (dwarf2out_do_frame ())
1869 dwarf2out_frame_debug (insn, false);
1870 #endif
1871 break;
1873 case CODE_LABEL:
1874 /* The target port might emit labels in the output function for
1875 some insn, e.g. sh.c output_branchy_insn. */
1876 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1878 int align = LABEL_TO_ALIGNMENT (insn);
1879 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1880 int max_skip = LABEL_TO_MAX_SKIP (insn);
1881 #endif
1883 if (align && NEXT_INSN (insn))
1885 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1886 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1887 #else
1888 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1889 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1890 #else
1891 ASM_OUTPUT_ALIGN (file, align);
1892 #endif
1893 #endif
1896 #ifdef HAVE_cc0
1897 CC_STATUS_INIT;
1898 /* If this label is reached from only one place, set the condition
1899 codes from the instruction just before the branch. */
1901 /* Disabled because some insns set cc_status in the C output code
1902 and NOTICE_UPDATE_CC alone can set incorrect status. */
1903 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1905 rtx jump = LABEL_REFS (insn);
1906 rtx barrier = prev_nonnote_insn (insn);
1907 rtx prev;
1908 /* If the LABEL_REFS field of this label has been set to point
1909 at a branch, the predecessor of the branch is a regular
1910 insn, and that branch is the only way to reach this label,
1911 set the condition codes based on the branch and its
1912 predecessor. */
1913 if (barrier && BARRIER_P (barrier)
1914 && jump && JUMP_P (jump)
1915 && (prev = prev_nonnote_insn (jump))
1916 && NONJUMP_INSN_P (prev))
1918 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1919 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1922 #endif
1924 if (LABEL_NAME (insn))
1925 (*debug_hooks->label) (insn);
1927 if (app_on)
1929 fputs (ASM_APP_OFF, file);
1930 app_on = 0;
1933 next = next_nonnote_insn (insn);
1934 if (next != 0 && JUMP_P (next))
1936 rtx nextbody = PATTERN (next);
1938 /* If this label is followed by a jump-table,
1939 make sure we put the label in the read-only section. Also
1940 possibly write the label and jump table together. */
1942 if (GET_CODE (nextbody) == ADDR_VEC
1943 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1945 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1946 /* In this case, the case vector is being moved by the
1947 target, so don't output the label at all. Leave that
1948 to the back end macros. */
1949 #else
1950 if (! JUMP_TABLES_IN_TEXT_SECTION)
1952 int log_align;
1954 targetm.asm_out.function_rodata_section (current_function_decl);
1956 #ifdef ADDR_VEC_ALIGN
1957 log_align = ADDR_VEC_ALIGN (next);
1958 #else
1959 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1960 #endif
1961 ASM_OUTPUT_ALIGN (file, log_align);
1963 else
1964 current_function_section (current_function_decl);
1966 #ifdef ASM_OUTPUT_CASE_LABEL
1967 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1968 next);
1969 #else
1970 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1971 #endif
1972 #endif
1973 break;
1976 if (LABEL_ALT_ENTRY_P (insn))
1977 output_alternate_entry_point (file, insn);
1978 else
1979 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1980 break;
1982 default:
1984 rtx body = PATTERN (insn);
1985 int insn_code_number;
1986 const char *template;
1988 /* An INSN, JUMP_INSN or CALL_INSN.
1989 First check for special kinds that recog doesn't recognize. */
1991 if (GET_CODE (body) == USE /* These are just declarations. */
1992 || GET_CODE (body) == CLOBBER)
1993 break;
1995 #ifdef HAVE_cc0
1997 /* If there is a REG_CC_SETTER note on this insn, it means that
1998 the setting of the condition code was done in the delay slot
1999 of the insn that branched here. So recover the cc status
2000 from the insn that set it. */
2002 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2003 if (note)
2005 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2006 cc_prev_status = cc_status;
2009 #endif
2011 /* Detect insns that are really jump-tables
2012 and output them as such. */
2014 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2016 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2017 int vlen, idx;
2018 #endif
2020 if (! JUMP_TABLES_IN_TEXT_SECTION)
2021 targetm.asm_out.function_rodata_section (current_function_decl);
2022 else
2023 current_function_section (current_function_decl);
2025 if (app_on)
2027 fputs (ASM_APP_OFF, file);
2028 app_on = 0;
2031 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2032 if (GET_CODE (body) == ADDR_VEC)
2034 #ifdef ASM_OUTPUT_ADDR_VEC
2035 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2036 #else
2037 gcc_unreachable ();
2038 #endif
2040 else
2042 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2043 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2044 #else
2045 gcc_unreachable ();
2046 #endif
2048 #else
2049 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2050 for (idx = 0; idx < vlen; idx++)
2052 if (GET_CODE (body) == ADDR_VEC)
2054 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2055 ASM_OUTPUT_ADDR_VEC_ELT
2056 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2057 #else
2058 gcc_unreachable ();
2059 #endif
2061 else
2063 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2064 ASM_OUTPUT_ADDR_DIFF_ELT
2065 (file,
2066 body,
2067 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2068 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2069 #else
2070 gcc_unreachable ();
2071 #endif
2074 #ifdef ASM_OUTPUT_CASE_END
2075 ASM_OUTPUT_CASE_END (file,
2076 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2077 insn);
2078 #endif
2079 #endif
2081 current_function_section (current_function_decl);
2083 break;
2085 /* Output this line note if it is the first or the last line
2086 note in a row. */
2087 if (notice_source_line (insn))
2089 (*debug_hooks->source_line) (last_linenum, last_filename);
2092 if (GET_CODE (body) == ASM_INPUT)
2094 const char *string = XSTR (body, 0);
2096 /* There's no telling what that did to the condition codes. */
2097 CC_STATUS_INIT;
2099 if (string[0])
2101 if (! app_on)
2103 fputs (ASM_APP_ON, file);
2104 app_on = 1;
2106 fprintf (asm_out_file, "\t%s\n", string);
2108 break;
2111 /* Detect `asm' construct with operands. */
2112 if (asm_noperands (body) >= 0)
2114 unsigned int noperands = asm_noperands (body);
2115 rtx *ops = alloca (noperands * sizeof (rtx));
2116 const char *string;
2118 /* There's no telling what that did to the condition codes. */
2119 CC_STATUS_INIT;
2121 /* Get out the operand values. */
2122 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2123 /* Inhibit dieing on what would otherwise be compiler bugs. */
2124 insn_noperands = noperands;
2125 this_is_asm_operands = insn;
2127 #ifdef FINAL_PRESCAN_INSN
2128 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2129 #endif
2131 /* Output the insn using them. */
2132 if (string[0])
2134 if (! app_on)
2136 fputs (ASM_APP_ON, file);
2137 app_on = 1;
2139 output_asm_insn (string, ops);
2142 this_is_asm_operands = 0;
2143 break;
2146 if (app_on)
2148 fputs (ASM_APP_OFF, file);
2149 app_on = 0;
2152 if (GET_CODE (body) == SEQUENCE)
2154 /* A delayed-branch sequence */
2155 int i;
2157 final_sequence = body;
2159 /* Record the delay slots' frame information before the branch.
2160 This is needed for delayed calls: see execute_cfa_program(). */
2161 #if defined (DWARF2_UNWIND_INFO)
2162 if (dwarf2out_do_frame ())
2163 for (i = 1; i < XVECLEN (body, 0); i++)
2164 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2165 #endif
2167 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2168 force the restoration of a comparison that was previously
2169 thought unnecessary. If that happens, cancel this sequence
2170 and cause that insn to be restored. */
2172 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2173 if (next != XVECEXP (body, 0, 1))
2175 final_sequence = 0;
2176 return next;
2179 for (i = 1; i < XVECLEN (body, 0); i++)
2181 rtx insn = XVECEXP (body, 0, i);
2182 rtx next = NEXT_INSN (insn);
2183 /* We loop in case any instruction in a delay slot gets
2184 split. */
2186 insn = final_scan_insn (insn, file, 0, 1, seen);
2187 while (insn != next);
2189 #ifdef DBR_OUTPUT_SEQEND
2190 DBR_OUTPUT_SEQEND (file);
2191 #endif
2192 final_sequence = 0;
2194 /* If the insn requiring the delay slot was a CALL_INSN, the
2195 insns in the delay slot are actually executed before the
2196 called function. Hence we don't preserve any CC-setting
2197 actions in these insns and the CC must be marked as being
2198 clobbered by the function. */
2199 if (CALL_P (XVECEXP (body, 0, 0)))
2201 CC_STATUS_INIT;
2203 break;
2206 /* We have a real machine instruction as rtl. */
2208 body = PATTERN (insn);
2210 #ifdef HAVE_cc0
2211 set = single_set (insn);
2213 /* Check for redundant test and compare instructions
2214 (when the condition codes are already set up as desired).
2215 This is done only when optimizing; if not optimizing,
2216 it should be possible for the user to alter a variable
2217 with the debugger in between statements
2218 and the next statement should reexamine the variable
2219 to compute the condition codes. */
2221 if (optimize)
2223 if (set
2224 && GET_CODE (SET_DEST (set)) == CC0
2225 && insn != last_ignored_compare)
2227 if (GET_CODE (SET_SRC (set)) == SUBREG)
2228 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2229 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2231 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2232 XEXP (SET_SRC (set), 0)
2233 = alter_subreg (&XEXP (SET_SRC (set), 0));
2234 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2235 XEXP (SET_SRC (set), 1)
2236 = alter_subreg (&XEXP (SET_SRC (set), 1));
2238 if ((cc_status.value1 != 0
2239 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2240 || (cc_status.value2 != 0
2241 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2243 /* Don't delete insn if it has an addressing side-effect. */
2244 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2245 /* or if anything in it is volatile. */
2246 && ! volatile_refs_p (PATTERN (insn)))
2248 /* We don't really delete the insn; just ignore it. */
2249 last_ignored_compare = insn;
2250 break;
2255 #endif
2257 #ifdef HAVE_cc0
2258 /* If this is a conditional branch, maybe modify it
2259 if the cc's are in a nonstandard state
2260 so that it accomplishes the same thing that it would
2261 do straightforwardly if the cc's were set up normally. */
2263 if (cc_status.flags != 0
2264 && JUMP_P (insn)
2265 && GET_CODE (body) == SET
2266 && SET_DEST (body) == pc_rtx
2267 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2268 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2269 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2271 /* This function may alter the contents of its argument
2272 and clear some of the cc_status.flags bits.
2273 It may also return 1 meaning condition now always true
2274 or -1 meaning condition now always false
2275 or 2 meaning condition nontrivial but altered. */
2276 int result = alter_cond (XEXP (SET_SRC (body), 0));
2277 /* If condition now has fixed value, replace the IF_THEN_ELSE
2278 with its then-operand or its else-operand. */
2279 if (result == 1)
2280 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2281 if (result == -1)
2282 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2284 /* The jump is now either unconditional or a no-op.
2285 If it has become a no-op, don't try to output it.
2286 (It would not be recognized.) */
2287 if (SET_SRC (body) == pc_rtx)
2289 delete_insn (insn);
2290 break;
2292 else if (GET_CODE (SET_SRC (body)) == RETURN)
2293 /* Replace (set (pc) (return)) with (return). */
2294 PATTERN (insn) = body = SET_SRC (body);
2296 /* Rerecognize the instruction if it has changed. */
2297 if (result != 0)
2298 INSN_CODE (insn) = -1;
2301 /* Make same adjustments to instructions that examine the
2302 condition codes without jumping and instructions that
2303 handle conditional moves (if this machine has either one). */
2305 if (cc_status.flags != 0
2306 && set != 0)
2308 rtx cond_rtx, then_rtx, else_rtx;
2310 if (!JUMP_P (insn)
2311 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2313 cond_rtx = XEXP (SET_SRC (set), 0);
2314 then_rtx = XEXP (SET_SRC (set), 1);
2315 else_rtx = XEXP (SET_SRC (set), 2);
2317 else
2319 cond_rtx = SET_SRC (set);
2320 then_rtx = const_true_rtx;
2321 else_rtx = const0_rtx;
2324 switch (GET_CODE (cond_rtx))
2326 case GTU:
2327 case GT:
2328 case LTU:
2329 case LT:
2330 case GEU:
2331 case GE:
2332 case LEU:
2333 case LE:
2334 case EQ:
2335 case NE:
2337 int result;
2338 if (XEXP (cond_rtx, 0) != cc0_rtx)
2339 break;
2340 result = alter_cond (cond_rtx);
2341 if (result == 1)
2342 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2343 else if (result == -1)
2344 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2345 else if (result == 2)
2346 INSN_CODE (insn) = -1;
2347 if (SET_DEST (set) == SET_SRC (set))
2348 delete_insn (insn);
2350 break;
2352 default:
2353 break;
2357 #endif
2359 #ifdef HAVE_peephole
2360 /* Do machine-specific peephole optimizations if desired. */
2362 if (optimize && !flag_no_peephole && !nopeepholes)
2364 rtx next = peephole (insn);
2365 /* When peepholing, if there were notes within the peephole,
2366 emit them before the peephole. */
2367 if (next != 0 && next != NEXT_INSN (insn))
2369 rtx note, prev = PREV_INSN (insn);
2371 for (note = NEXT_INSN (insn); note != next;
2372 note = NEXT_INSN (note))
2373 final_scan_insn (note, file, optimize, nopeepholes, seen);
2375 /* Put the notes in the proper position for a later
2376 rescan. For example, the SH target can do this
2377 when generating a far jump in a delayed branch
2378 sequence. */
2379 note = NEXT_INSN (insn);
2380 PREV_INSN (note) = prev;
2381 NEXT_INSN (prev) = note;
2382 NEXT_INSN (PREV_INSN (next)) = insn;
2383 PREV_INSN (insn) = PREV_INSN (next);
2384 NEXT_INSN (insn) = next;
2385 PREV_INSN (next) = insn;
2388 /* PEEPHOLE might have changed this. */
2389 body = PATTERN (insn);
2391 #endif
2393 /* Try to recognize the instruction.
2394 If successful, verify that the operands satisfy the
2395 constraints for the instruction. Crash if they don't,
2396 since `reload' should have changed them so that they do. */
2398 insn_code_number = recog_memoized (insn);
2399 cleanup_subreg_operands (insn);
2401 /* Dump the insn in the assembly for debugging. */
2402 if (flag_dump_rtl_in_asm)
2404 print_rtx_head = ASM_COMMENT_START;
2405 print_rtl_single (asm_out_file, insn);
2406 print_rtx_head = "";
2409 if (! constrain_operands_cached (1))
2410 fatal_insn_not_found (insn);
2412 /* Some target machines need to prescan each insn before
2413 it is output. */
2415 #ifdef FINAL_PRESCAN_INSN
2416 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2417 #endif
2419 #ifdef HAVE_conditional_execution
2420 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2421 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2422 else
2423 current_insn_predicate = NULL_RTX;
2424 #endif
2426 #ifdef HAVE_cc0
2427 cc_prev_status = cc_status;
2429 /* Update `cc_status' for this instruction.
2430 The instruction's output routine may change it further.
2431 If the output routine for a jump insn needs to depend
2432 on the cc status, it should look at cc_prev_status. */
2434 NOTICE_UPDATE_CC (body, insn);
2435 #endif
2437 current_output_insn = debug_insn = insn;
2439 #if defined (DWARF2_UNWIND_INFO)
2440 if (CALL_P (insn) && dwarf2out_do_frame ())
2441 dwarf2out_frame_debug (insn, false);
2442 #endif
2444 /* Find the proper template for this insn. */
2445 template = get_insn_template (insn_code_number, insn);
2447 /* If the C code returns 0, it means that it is a jump insn
2448 which follows a deleted test insn, and that test insn
2449 needs to be reinserted. */
2450 if (template == 0)
2452 rtx prev;
2454 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2456 /* We have already processed the notes between the setter and
2457 the user. Make sure we don't process them again, this is
2458 particularly important if one of the notes is a block
2459 scope note or an EH note. */
2460 for (prev = insn;
2461 prev != last_ignored_compare;
2462 prev = PREV_INSN (prev))
2464 if (NOTE_P (prev))
2465 delete_insn (prev); /* Use delete_note. */
2468 return prev;
2471 /* If the template is the string "#", it means that this insn must
2472 be split. */
2473 if (template[0] == '#' && template[1] == '\0')
2475 rtx new = try_split (body, insn, 0);
2477 /* If we didn't split the insn, go away. */
2478 if (new == insn && PATTERN (new) == body)
2479 fatal_insn ("could not split insn", insn);
2481 #ifdef HAVE_ATTR_length
2482 /* This instruction should have been split in shorten_branches,
2483 to ensure that we would have valid length info for the
2484 splitees. */
2485 gcc_unreachable ();
2486 #endif
2488 return new;
2491 #ifdef TARGET_UNWIND_INFO
2492 /* ??? This will put the directives in the wrong place if
2493 get_insn_template outputs assembly directly. However calling it
2494 before get_insn_template breaks if the insns is split. */
2495 targetm.asm_out.unwind_emit (asm_out_file, insn);
2496 #endif
2498 /* Output assembler code from the template. */
2499 output_asm_insn (template, recog_data.operand);
2501 /* If necessary, report the effect that the instruction has on
2502 the unwind info. We've already done this for delay slots
2503 and call instructions. */
2504 #if defined (DWARF2_UNWIND_INFO)
2505 if (final_sequence == 0
2506 #if !defined (HAVE_prologue)
2507 && !ACCUMULATE_OUTGOING_ARGS
2508 #endif
2509 && dwarf2out_do_frame ())
2510 dwarf2out_frame_debug (insn, true);
2511 #endif
2513 current_output_insn = debug_insn = 0;
2516 return NEXT_INSN (insn);
2519 /* Return whether a source line note needs to be emitted before INSN. */
2521 static bool
2522 notice_source_line (rtx insn)
2524 const char *filename = insn_file (insn);
2525 int linenum = insn_line (insn);
2527 if (filename
2528 && (force_source_line
2529 || filename != last_filename
2530 || last_linenum != linenum))
2532 force_source_line = false;
2533 last_filename = filename;
2534 last_linenum = linenum;
2535 high_block_linenum = MAX (last_linenum, high_block_linenum);
2536 high_function_linenum = MAX (last_linenum, high_function_linenum);
2537 return true;
2539 return false;
2542 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2543 directly to the desired hard register. */
2545 void
2546 cleanup_subreg_operands (rtx insn)
2548 int i;
2549 extract_insn_cached (insn);
2550 for (i = 0; i < recog_data.n_operands; i++)
2552 /* The following test cannot use recog_data.operand when testing
2553 for a SUBREG: the underlying object might have been changed
2554 already if we are inside a match_operator expression that
2555 matches the else clause. Instead we test the underlying
2556 expression directly. */
2557 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2558 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2559 else if (GET_CODE (recog_data.operand[i]) == PLUS
2560 || GET_CODE (recog_data.operand[i]) == MULT
2561 || MEM_P (recog_data.operand[i]))
2562 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2565 for (i = 0; i < recog_data.n_dups; i++)
2567 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2568 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2569 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2570 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2571 || MEM_P (*recog_data.dup_loc[i]))
2572 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2576 /* If X is a SUBREG, replace it with a REG or a MEM,
2577 based on the thing it is a subreg of. */
2580 alter_subreg (rtx *xp)
2582 rtx x = *xp;
2583 rtx y = SUBREG_REG (x);
2585 /* simplify_subreg does not remove subreg from volatile references.
2586 We are required to. */
2587 if (MEM_P (y))
2589 int offset = SUBREG_BYTE (x);
2591 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2592 contains 0 instead of the proper offset. See simplify_subreg. */
2593 if (offset == 0
2594 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2596 int difference = GET_MODE_SIZE (GET_MODE (y))
2597 - GET_MODE_SIZE (GET_MODE (x));
2598 if (WORDS_BIG_ENDIAN)
2599 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2600 if (BYTES_BIG_ENDIAN)
2601 offset += difference % UNITS_PER_WORD;
2604 *xp = adjust_address (y, GET_MODE (x), offset);
2606 else
2608 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2609 SUBREG_BYTE (x));
2611 if (new != 0)
2612 *xp = new;
2613 else if (REG_P (y))
2615 /* Simplify_subreg can't handle some REG cases, but we have to. */
2616 unsigned int regno = subreg_regno (x);
2617 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2621 return *xp;
2624 /* Do alter_subreg on all the SUBREGs contained in X. */
2626 static rtx
2627 walk_alter_subreg (rtx *xp)
2629 rtx x = *xp;
2630 switch (GET_CODE (x))
2632 case PLUS:
2633 case MULT:
2634 case AND:
2635 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2636 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2637 break;
2639 case MEM:
2640 case ZERO_EXTEND:
2641 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2642 break;
2644 case SUBREG:
2645 return alter_subreg (xp);
2647 default:
2648 break;
2651 return *xp;
2654 #ifdef HAVE_cc0
2656 /* Given BODY, the body of a jump instruction, alter the jump condition
2657 as required by the bits that are set in cc_status.flags.
2658 Not all of the bits there can be handled at this level in all cases.
2660 The value is normally 0.
2661 1 means that the condition has become always true.
2662 -1 means that the condition has become always false.
2663 2 means that COND has been altered. */
2665 static int
2666 alter_cond (rtx cond)
2668 int value = 0;
2670 if (cc_status.flags & CC_REVERSED)
2672 value = 2;
2673 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2676 if (cc_status.flags & CC_INVERTED)
2678 value = 2;
2679 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2682 if (cc_status.flags & CC_NOT_POSITIVE)
2683 switch (GET_CODE (cond))
2685 case LE:
2686 case LEU:
2687 case GEU:
2688 /* Jump becomes unconditional. */
2689 return 1;
2691 case GT:
2692 case GTU:
2693 case LTU:
2694 /* Jump becomes no-op. */
2695 return -1;
2697 case GE:
2698 PUT_CODE (cond, EQ);
2699 value = 2;
2700 break;
2702 case LT:
2703 PUT_CODE (cond, NE);
2704 value = 2;
2705 break;
2707 default:
2708 break;
2711 if (cc_status.flags & CC_NOT_NEGATIVE)
2712 switch (GET_CODE (cond))
2714 case GE:
2715 case GEU:
2716 /* Jump becomes unconditional. */
2717 return 1;
2719 case LT:
2720 case LTU:
2721 /* Jump becomes no-op. */
2722 return -1;
2724 case LE:
2725 case LEU:
2726 PUT_CODE (cond, EQ);
2727 value = 2;
2728 break;
2730 case GT:
2731 case GTU:
2732 PUT_CODE (cond, NE);
2733 value = 2;
2734 break;
2736 default:
2737 break;
2740 if (cc_status.flags & CC_NO_OVERFLOW)
2741 switch (GET_CODE (cond))
2743 case GEU:
2744 /* Jump becomes unconditional. */
2745 return 1;
2747 case LEU:
2748 PUT_CODE (cond, EQ);
2749 value = 2;
2750 break;
2752 case GTU:
2753 PUT_CODE (cond, NE);
2754 value = 2;
2755 break;
2757 case LTU:
2758 /* Jump becomes no-op. */
2759 return -1;
2761 default:
2762 break;
2765 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2766 switch (GET_CODE (cond))
2768 default:
2769 gcc_unreachable ();
2771 case NE:
2772 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2773 value = 2;
2774 break;
2776 case EQ:
2777 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2778 value = 2;
2779 break;
2782 if (cc_status.flags & CC_NOT_SIGNED)
2783 /* The flags are valid if signed condition operators are converted
2784 to unsigned. */
2785 switch (GET_CODE (cond))
2787 case LE:
2788 PUT_CODE (cond, LEU);
2789 value = 2;
2790 break;
2792 case LT:
2793 PUT_CODE (cond, LTU);
2794 value = 2;
2795 break;
2797 case GT:
2798 PUT_CODE (cond, GTU);
2799 value = 2;
2800 break;
2802 case GE:
2803 PUT_CODE (cond, GEU);
2804 value = 2;
2805 break;
2807 default:
2808 break;
2811 return value;
2813 #endif
2815 /* Report inconsistency between the assembler template and the operands.
2816 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2818 void
2819 output_operand_lossage (const char *cmsgid, ...)
2821 char *fmt_string;
2822 char *new_message;
2823 const char *pfx_str;
2824 va_list ap;
2826 va_start (ap, cmsgid);
2828 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2829 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2830 vasprintf (&new_message, fmt_string, ap);
2832 if (this_is_asm_operands)
2833 error_for_asm (this_is_asm_operands, "%s", new_message);
2834 else
2835 internal_error ("%s", new_message);
2837 free (fmt_string);
2838 free (new_message);
2839 va_end (ap);
2842 /* Output of assembler code from a template, and its subroutines. */
2844 /* Annotate the assembly with a comment describing the pattern and
2845 alternative used. */
2847 static void
2848 output_asm_name (void)
2850 if (debug_insn)
2852 int num = INSN_CODE (debug_insn);
2853 fprintf (asm_out_file, "\t%s %d\t%s",
2854 ASM_COMMENT_START, INSN_UID (debug_insn),
2855 insn_data[num].name);
2856 if (insn_data[num].n_alternatives > 1)
2857 fprintf (asm_out_file, "/%d", which_alternative + 1);
2858 #ifdef HAVE_ATTR_length
2859 fprintf (asm_out_file, "\t[length = %d]",
2860 get_attr_length (debug_insn));
2861 #endif
2862 /* Clear this so only the first assembler insn
2863 of any rtl insn will get the special comment for -dp. */
2864 debug_insn = 0;
2868 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2869 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2870 corresponds to the address of the object and 0 if to the object. */
2872 static tree
2873 get_mem_expr_from_op (rtx op, int *paddressp)
2875 tree expr;
2876 int inner_addressp;
2878 *paddressp = 0;
2880 if (REG_P (op))
2881 return REG_EXPR (op);
2882 else if (!MEM_P (op))
2883 return 0;
2885 if (MEM_EXPR (op) != 0)
2886 return MEM_EXPR (op);
2888 /* Otherwise we have an address, so indicate it and look at the address. */
2889 *paddressp = 1;
2890 op = XEXP (op, 0);
2892 /* First check if we have a decl for the address, then look at the right side
2893 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2894 But don't allow the address to itself be indirect. */
2895 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2896 return expr;
2897 else if (GET_CODE (op) == PLUS
2898 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2899 return expr;
2901 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2902 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2903 op = XEXP (op, 0);
2905 expr = get_mem_expr_from_op (op, &inner_addressp);
2906 return inner_addressp ? 0 : expr;
2909 /* Output operand names for assembler instructions. OPERANDS is the
2910 operand vector, OPORDER is the order to write the operands, and NOPS
2911 is the number of operands to write. */
2913 static void
2914 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2916 int wrote = 0;
2917 int i;
2919 for (i = 0; i < nops; i++)
2921 int addressp;
2922 rtx op = operands[oporder[i]];
2923 tree expr = get_mem_expr_from_op (op, &addressp);
2925 fprintf (asm_out_file, "%c%s",
2926 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2927 wrote = 1;
2928 if (expr)
2930 fprintf (asm_out_file, "%s",
2931 addressp ? "*" : "");
2932 print_mem_expr (asm_out_file, expr);
2933 wrote = 1;
2935 else if (REG_P (op) && ORIGINAL_REGNO (op)
2936 && ORIGINAL_REGNO (op) != REGNO (op))
2937 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2941 /* Output text from TEMPLATE to the assembler output file,
2942 obeying %-directions to substitute operands taken from
2943 the vector OPERANDS.
2945 %N (for N a digit) means print operand N in usual manner.
2946 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2947 and print the label name with no punctuation.
2948 %cN means require operand N to be a constant
2949 and print the constant expression with no punctuation.
2950 %aN means expect operand N to be a memory address
2951 (not a memory reference!) and print a reference
2952 to that address.
2953 %nN means expect operand N to be a constant
2954 and print a constant expression for minus the value
2955 of the operand, with no other punctuation. */
2957 void
2958 output_asm_insn (const char *template, rtx *operands)
2960 const char *p;
2961 int c;
2962 #ifdef ASSEMBLER_DIALECT
2963 int dialect = 0;
2964 #endif
2965 int oporder[MAX_RECOG_OPERANDS];
2966 char opoutput[MAX_RECOG_OPERANDS];
2967 int ops = 0;
2969 /* An insn may return a null string template
2970 in a case where no assembler code is needed. */
2971 if (*template == 0)
2972 return;
2974 memset (opoutput, 0, sizeof opoutput);
2975 p = template;
2976 putc ('\t', asm_out_file);
2978 #ifdef ASM_OUTPUT_OPCODE
2979 ASM_OUTPUT_OPCODE (asm_out_file, p);
2980 #endif
2982 while ((c = *p++))
2983 switch (c)
2985 case '\n':
2986 if (flag_verbose_asm)
2987 output_asm_operand_names (operands, oporder, ops);
2988 if (flag_print_asm_name)
2989 output_asm_name ();
2991 ops = 0;
2992 memset (opoutput, 0, sizeof opoutput);
2994 putc (c, asm_out_file);
2995 #ifdef ASM_OUTPUT_OPCODE
2996 while ((c = *p) == '\t')
2998 putc (c, asm_out_file);
2999 p++;
3001 ASM_OUTPUT_OPCODE (asm_out_file, p);
3002 #endif
3003 break;
3005 #ifdef ASSEMBLER_DIALECT
3006 case '{':
3008 int i;
3010 if (dialect)
3011 output_operand_lossage ("nested assembly dialect alternatives");
3012 else
3013 dialect = 1;
3015 /* If we want the first dialect, do nothing. Otherwise, skip
3016 DIALECT_NUMBER of strings ending with '|'. */
3017 for (i = 0; i < dialect_number; i++)
3019 while (*p && *p != '}' && *p++ != '|')
3021 if (*p == '}')
3022 break;
3023 if (*p == '|')
3024 p++;
3027 if (*p == '\0')
3028 output_operand_lossage ("unterminated assembly dialect alternative");
3030 break;
3032 case '|':
3033 if (dialect)
3035 /* Skip to close brace. */
3038 if (*p == '\0')
3040 output_operand_lossage ("unterminated assembly dialect alternative");
3041 break;
3044 while (*p++ != '}');
3045 dialect = 0;
3047 else
3048 putc (c, asm_out_file);
3049 break;
3051 case '}':
3052 if (! dialect)
3053 putc (c, asm_out_file);
3054 dialect = 0;
3055 break;
3056 #endif
3058 case '%':
3059 /* %% outputs a single %. */
3060 if (*p == '%')
3062 p++;
3063 putc (c, asm_out_file);
3065 /* %= outputs a number which is unique to each insn in the entire
3066 compilation. This is useful for making local labels that are
3067 referred to more than once in a given insn. */
3068 else if (*p == '=')
3070 p++;
3071 fprintf (asm_out_file, "%d", insn_counter);
3073 /* % followed by a letter and some digits
3074 outputs an operand in a special way depending on the letter.
3075 Letters `acln' are implemented directly.
3076 Other letters are passed to `output_operand' so that
3077 the PRINT_OPERAND macro can define them. */
3078 else if (ISALPHA (*p))
3080 int letter = *p++;
3081 unsigned long opnum;
3082 char *endptr;
3084 opnum = strtoul (p, &endptr, 10);
3086 if (endptr == p)
3087 output_operand_lossage ("operand number missing "
3088 "after %%-letter");
3089 else if (this_is_asm_operands && opnum >= insn_noperands)
3090 output_operand_lossage ("operand number out of range");
3091 else if (letter == 'l')
3092 output_asm_label (operands[opnum]);
3093 else if (letter == 'a')
3094 output_address (operands[opnum]);
3095 else if (letter == 'c')
3097 if (CONSTANT_ADDRESS_P (operands[opnum]))
3098 output_addr_const (asm_out_file, operands[opnum]);
3099 else
3100 output_operand (operands[opnum], 'c');
3102 else if (letter == 'n')
3104 if (GET_CODE (operands[opnum]) == CONST_INT)
3105 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3106 - INTVAL (operands[opnum]));
3107 else
3109 putc ('-', asm_out_file);
3110 output_addr_const (asm_out_file, operands[opnum]);
3113 else
3114 output_operand (operands[opnum], letter);
3116 if (!opoutput[opnum])
3117 oporder[ops++] = opnum;
3118 opoutput[opnum] = 1;
3120 p = endptr;
3121 c = *p;
3123 /* % followed by a digit outputs an operand the default way. */
3124 else if (ISDIGIT (*p))
3126 unsigned long opnum;
3127 char *endptr;
3129 opnum = strtoul (p, &endptr, 10);
3130 if (this_is_asm_operands && opnum >= insn_noperands)
3131 output_operand_lossage ("operand number out of range");
3132 else
3133 output_operand (operands[opnum], 0);
3135 if (!opoutput[opnum])
3136 oporder[ops++] = opnum;
3137 opoutput[opnum] = 1;
3139 p = endptr;
3140 c = *p;
3142 /* % followed by punctuation: output something for that
3143 punctuation character alone, with no operand.
3144 The PRINT_OPERAND macro decides what is actually done. */
3145 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3146 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3147 output_operand (NULL_RTX, *p++);
3148 #endif
3149 else
3150 output_operand_lossage ("invalid %%-code");
3151 break;
3153 default:
3154 putc (c, asm_out_file);
3157 /* Write out the variable names for operands, if we know them. */
3158 if (flag_verbose_asm)
3159 output_asm_operand_names (operands, oporder, ops);
3160 if (flag_print_asm_name)
3161 output_asm_name ();
3163 putc ('\n', asm_out_file);
3166 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3168 void
3169 output_asm_label (rtx x)
3171 char buf[256];
3173 if (GET_CODE (x) == LABEL_REF)
3174 x = XEXP (x, 0);
3175 if (LABEL_P (x)
3176 || (NOTE_P (x)
3177 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3178 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3179 else
3180 output_operand_lossage ("'%%l' operand isn't a label");
3182 assemble_name (asm_out_file, buf);
3185 /* Print operand X using machine-dependent assembler syntax.
3186 The macro PRINT_OPERAND is defined just to control this function.
3187 CODE is a non-digit that preceded the operand-number in the % spec,
3188 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3189 between the % and the digits.
3190 When CODE is a non-letter, X is 0.
3192 The meanings of the letters are machine-dependent and controlled
3193 by PRINT_OPERAND. */
3195 static void
3196 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3198 if (x && GET_CODE (x) == SUBREG)
3199 x = alter_subreg (&x);
3201 /* X must not be a pseudo reg. */
3202 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3204 PRINT_OPERAND (asm_out_file, x, code);
3207 /* Print a memory reference operand for address X
3208 using machine-dependent assembler syntax.
3209 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3211 void
3212 output_address (rtx x)
3214 walk_alter_subreg (&x);
3215 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3218 /* Print an integer constant expression in assembler syntax.
3219 Addition and subtraction are the only arithmetic
3220 that may appear in these expressions. */
3222 void
3223 output_addr_const (FILE *file, rtx x)
3225 char buf[256];
3227 restart:
3228 switch (GET_CODE (x))
3230 case PC:
3231 putc ('.', file);
3232 break;
3234 case SYMBOL_REF:
3235 if (SYMBOL_REF_DECL (x))
3236 mark_decl_referenced (SYMBOL_REF_DECL (x));
3237 #ifdef ASM_OUTPUT_SYMBOL_REF
3238 ASM_OUTPUT_SYMBOL_REF (file, x);
3239 #else
3240 assemble_name (file, XSTR (x, 0));
3241 #endif
3242 break;
3244 case LABEL_REF:
3245 x = XEXP (x, 0);
3246 /* Fall through. */
3247 case CODE_LABEL:
3248 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3249 #ifdef ASM_OUTPUT_LABEL_REF
3250 ASM_OUTPUT_LABEL_REF (file, buf);
3251 #else
3252 assemble_name (file, buf);
3253 #endif
3254 break;
3256 case CONST_INT:
3257 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3258 break;
3260 case CONST:
3261 /* This used to output parentheses around the expression,
3262 but that does not work on the 386 (either ATT or BSD assembler). */
3263 output_addr_const (file, XEXP (x, 0));
3264 break;
3266 case CONST_DOUBLE:
3267 if (GET_MODE (x) == VOIDmode)
3269 /* We can use %d if the number is one word and positive. */
3270 if (CONST_DOUBLE_HIGH (x))
3271 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3272 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3273 else if (CONST_DOUBLE_LOW (x) < 0)
3274 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3275 else
3276 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3278 else
3279 /* We can't handle floating point constants;
3280 PRINT_OPERAND must handle them. */
3281 output_operand_lossage ("floating constant misused");
3282 break;
3284 case PLUS:
3285 /* Some assemblers need integer constants to appear last (eg masm). */
3286 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3288 output_addr_const (file, XEXP (x, 1));
3289 if (INTVAL (XEXP (x, 0)) >= 0)
3290 fprintf (file, "+");
3291 output_addr_const (file, XEXP (x, 0));
3293 else
3295 output_addr_const (file, XEXP (x, 0));
3296 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3297 || INTVAL (XEXP (x, 1)) >= 0)
3298 fprintf (file, "+");
3299 output_addr_const (file, XEXP (x, 1));
3301 break;
3303 case MINUS:
3304 /* Avoid outputting things like x-x or x+5-x,
3305 since some assemblers can't handle that. */
3306 x = simplify_subtraction (x);
3307 if (GET_CODE (x) != MINUS)
3308 goto restart;
3310 output_addr_const (file, XEXP (x, 0));
3311 fprintf (file, "-");
3312 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3313 || GET_CODE (XEXP (x, 1)) == PC
3314 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3315 output_addr_const (file, XEXP (x, 1));
3316 else
3318 fputs (targetm.asm_out.open_paren, file);
3319 output_addr_const (file, XEXP (x, 1));
3320 fputs (targetm.asm_out.close_paren, file);
3322 break;
3324 case ZERO_EXTEND:
3325 case SIGN_EXTEND:
3326 case SUBREG:
3327 output_addr_const (file, XEXP (x, 0));
3328 break;
3330 default:
3331 #ifdef OUTPUT_ADDR_CONST_EXTRA
3332 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3333 break;
3335 fail:
3336 #endif
3337 output_operand_lossage ("invalid expression as operand");
3341 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3342 %R prints the value of REGISTER_PREFIX.
3343 %L prints the value of LOCAL_LABEL_PREFIX.
3344 %U prints the value of USER_LABEL_PREFIX.
3345 %I prints the value of IMMEDIATE_PREFIX.
3346 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3347 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3349 We handle alternate assembler dialects here, just like output_asm_insn. */
3351 void
3352 asm_fprintf (FILE *file, const char *p, ...)
3354 char buf[10];
3355 char *q, c;
3356 va_list argptr;
3358 va_start (argptr, p);
3360 buf[0] = '%';
3362 while ((c = *p++))
3363 switch (c)
3365 #ifdef ASSEMBLER_DIALECT
3366 case '{':
3368 int i;
3370 /* If we want the first dialect, do nothing. Otherwise, skip
3371 DIALECT_NUMBER of strings ending with '|'. */
3372 for (i = 0; i < dialect_number; i++)
3374 while (*p && *p++ != '|')
3377 if (*p == '|')
3378 p++;
3381 break;
3383 case '|':
3384 /* Skip to close brace. */
3385 while (*p && *p++ != '}')
3387 break;
3389 case '}':
3390 break;
3391 #endif
3393 case '%':
3394 c = *p++;
3395 q = &buf[1];
3396 while (strchr ("-+ #0", c))
3398 *q++ = c;
3399 c = *p++;
3401 while (ISDIGIT (c) || c == '.')
3403 *q++ = c;
3404 c = *p++;
3406 switch (c)
3408 case '%':
3409 putc ('%', file);
3410 break;
3412 case 'd': case 'i': case 'u':
3413 case 'x': case 'X': case 'o':
3414 case 'c':
3415 *q++ = c;
3416 *q = 0;
3417 fprintf (file, buf, va_arg (argptr, int));
3418 break;
3420 case 'w':
3421 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3422 'o' cases, but we do not check for those cases. It
3423 means that the value is a HOST_WIDE_INT, which may be
3424 either `long' or `long long'. */
3425 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3426 q += strlen (HOST_WIDE_INT_PRINT);
3427 *q++ = *p++;
3428 *q = 0;
3429 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3430 break;
3432 case 'l':
3433 *q++ = c;
3434 #ifdef HAVE_LONG_LONG
3435 if (*p == 'l')
3437 *q++ = *p++;
3438 *q++ = *p++;
3439 *q = 0;
3440 fprintf (file, buf, va_arg (argptr, long long));
3442 else
3443 #endif
3445 *q++ = *p++;
3446 *q = 0;
3447 fprintf (file, buf, va_arg (argptr, long));
3450 break;
3452 case 's':
3453 *q++ = c;
3454 *q = 0;
3455 fprintf (file, buf, va_arg (argptr, char *));
3456 break;
3458 case 'O':
3459 #ifdef ASM_OUTPUT_OPCODE
3460 ASM_OUTPUT_OPCODE (asm_out_file, p);
3461 #endif
3462 break;
3464 case 'R':
3465 #ifdef REGISTER_PREFIX
3466 fprintf (file, "%s", REGISTER_PREFIX);
3467 #endif
3468 break;
3470 case 'I':
3471 #ifdef IMMEDIATE_PREFIX
3472 fprintf (file, "%s", IMMEDIATE_PREFIX);
3473 #endif
3474 break;
3476 case 'L':
3477 #ifdef LOCAL_LABEL_PREFIX
3478 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3479 #endif
3480 break;
3482 case 'U':
3483 fputs (user_label_prefix, file);
3484 break;
3486 #ifdef ASM_FPRINTF_EXTENSIONS
3487 /* Uppercase letters are reserved for general use by asm_fprintf
3488 and so are not available to target specific code. In order to
3489 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3490 they are defined here. As they get turned into real extensions
3491 to asm_fprintf they should be removed from this list. */
3492 case 'A': case 'B': case 'C': case 'D': case 'E':
3493 case 'F': case 'G': case 'H': case 'J': case 'K':
3494 case 'M': case 'N': case 'P': case 'Q': case 'S':
3495 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3496 break;
3498 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3499 #endif
3500 default:
3501 gcc_unreachable ();
3503 break;
3505 default:
3506 putc (c, file);
3508 va_end (argptr);
3511 /* Split up a CONST_DOUBLE or integer constant rtx
3512 into two rtx's for single words,
3513 storing in *FIRST the word that comes first in memory in the target
3514 and in *SECOND the other. */
3516 void
3517 split_double (rtx value, rtx *first, rtx *second)
3519 if (GET_CODE (value) == CONST_INT)
3521 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3523 /* In this case the CONST_INT holds both target words.
3524 Extract the bits from it into two word-sized pieces.
3525 Sign extend each half to HOST_WIDE_INT. */
3526 unsigned HOST_WIDE_INT low, high;
3527 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3529 /* Set sign_bit to the most significant bit of a word. */
3530 sign_bit = 1;
3531 sign_bit <<= BITS_PER_WORD - 1;
3533 /* Set mask so that all bits of the word are set. We could
3534 have used 1 << BITS_PER_WORD instead of basing the
3535 calculation on sign_bit. However, on machines where
3536 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3537 compiler warning, even though the code would never be
3538 executed. */
3539 mask = sign_bit << 1;
3540 mask--;
3542 /* Set sign_extend as any remaining bits. */
3543 sign_extend = ~mask;
3545 /* Pick the lower word and sign-extend it. */
3546 low = INTVAL (value);
3547 low &= mask;
3548 if (low & sign_bit)
3549 low |= sign_extend;
3551 /* Pick the higher word, shifted to the least significant
3552 bits, and sign-extend it. */
3553 high = INTVAL (value);
3554 high >>= BITS_PER_WORD - 1;
3555 high >>= 1;
3556 high &= mask;
3557 if (high & sign_bit)
3558 high |= sign_extend;
3560 /* Store the words in the target machine order. */
3561 if (WORDS_BIG_ENDIAN)
3563 *first = GEN_INT (high);
3564 *second = GEN_INT (low);
3566 else
3568 *first = GEN_INT (low);
3569 *second = GEN_INT (high);
3572 else
3574 /* The rule for using CONST_INT for a wider mode
3575 is that we regard the value as signed.
3576 So sign-extend it. */
3577 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3578 if (WORDS_BIG_ENDIAN)
3580 *first = high;
3581 *second = value;
3583 else
3585 *first = value;
3586 *second = high;
3590 else if (GET_CODE (value) != CONST_DOUBLE)
3592 if (WORDS_BIG_ENDIAN)
3594 *first = const0_rtx;
3595 *second = value;
3597 else
3599 *first = value;
3600 *second = const0_rtx;
3603 else if (GET_MODE (value) == VOIDmode
3604 /* This is the old way we did CONST_DOUBLE integers. */
3605 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3607 /* In an integer, the words are defined as most and least significant.
3608 So order them by the target's convention. */
3609 if (WORDS_BIG_ENDIAN)
3611 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3612 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3614 else
3616 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3617 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3620 else
3622 REAL_VALUE_TYPE r;
3623 long l[2];
3624 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3626 /* Note, this converts the REAL_VALUE_TYPE to the target's
3627 format, splits up the floating point double and outputs
3628 exactly 32 bits of it into each of l[0] and l[1] --
3629 not necessarily BITS_PER_WORD bits. */
3630 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3632 /* If 32 bits is an entire word for the target, but not for the host,
3633 then sign-extend on the host so that the number will look the same
3634 way on the host that it would on the target. See for instance
3635 simplify_unary_operation. The #if is needed to avoid compiler
3636 warnings. */
3638 #if HOST_BITS_PER_LONG > 32
3639 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3641 if (l[0] & ((long) 1 << 31))
3642 l[0] |= ((long) (-1) << 32);
3643 if (l[1] & ((long) 1 << 31))
3644 l[1] |= ((long) (-1) << 32);
3646 #endif
3648 *first = GEN_INT (l[0]);
3649 *second = GEN_INT (l[1]);
3653 /* Return nonzero if this function has no function calls. */
3656 leaf_function_p (void)
3658 rtx insn;
3659 rtx link;
3661 if (current_function_profile || profile_arc_flag)
3662 return 0;
3664 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3666 if (CALL_P (insn)
3667 && ! SIBLING_CALL_P (insn))
3668 return 0;
3669 if (NONJUMP_INSN_P (insn)
3670 && GET_CODE (PATTERN (insn)) == SEQUENCE
3671 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3672 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3673 return 0;
3675 for (link = current_function_epilogue_delay_list;
3676 link;
3677 link = XEXP (link, 1))
3679 insn = XEXP (link, 0);
3681 if (CALL_P (insn)
3682 && ! SIBLING_CALL_P (insn))
3683 return 0;
3684 if (NONJUMP_INSN_P (insn)
3685 && GET_CODE (PATTERN (insn)) == SEQUENCE
3686 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3687 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3688 return 0;
3691 return 1;
3694 /* Return 1 if branch is a forward branch.
3695 Uses insn_shuid array, so it works only in the final pass. May be used by
3696 output templates to customary add branch prediction hints.
3699 final_forward_branch_p (rtx insn)
3701 int insn_id, label_id;
3703 gcc_assert (uid_shuid);
3704 insn_id = INSN_SHUID (insn);
3705 label_id = INSN_SHUID (JUMP_LABEL (insn));
3706 /* We've hit some insns that does not have id information available. */
3707 gcc_assert (insn_id && label_id);
3708 return insn_id < label_id;
3711 /* On some machines, a function with no call insns
3712 can run faster if it doesn't create its own register window.
3713 When output, the leaf function should use only the "output"
3714 registers. Ordinarily, the function would be compiled to use
3715 the "input" registers to find its arguments; it is a candidate
3716 for leaf treatment if it uses only the "input" registers.
3717 Leaf function treatment means renumbering so the function
3718 uses the "output" registers instead. */
3720 #ifdef LEAF_REGISTERS
3722 /* Return 1 if this function uses only the registers that can be
3723 safely renumbered. */
3726 only_leaf_regs_used (void)
3728 int i;
3729 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3731 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3732 if ((regs_ever_live[i] || global_regs[i])
3733 && ! permitted_reg_in_leaf_functions[i])
3734 return 0;
3736 if (current_function_uses_pic_offset_table
3737 && pic_offset_table_rtx != 0
3738 && REG_P (pic_offset_table_rtx)
3739 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3740 return 0;
3742 return 1;
3745 /* Scan all instructions and renumber all registers into those
3746 available in leaf functions. */
3748 static void
3749 leaf_renumber_regs (rtx first)
3751 rtx insn;
3753 /* Renumber only the actual patterns.
3754 The reg-notes can contain frame pointer refs,
3755 and renumbering them could crash, and should not be needed. */
3756 for (insn = first; insn; insn = NEXT_INSN (insn))
3757 if (INSN_P (insn))
3758 leaf_renumber_regs_insn (PATTERN (insn));
3759 for (insn = current_function_epilogue_delay_list;
3760 insn;
3761 insn = XEXP (insn, 1))
3762 if (INSN_P (XEXP (insn, 0)))
3763 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3766 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3767 available in leaf functions. */
3769 void
3770 leaf_renumber_regs_insn (rtx in_rtx)
3772 int i, j;
3773 const char *format_ptr;
3775 if (in_rtx == 0)
3776 return;
3778 /* Renumber all input-registers into output-registers.
3779 renumbered_regs would be 1 for an output-register;
3780 they */
3782 if (REG_P (in_rtx))
3784 int newreg;
3786 /* Don't renumber the same reg twice. */
3787 if (in_rtx->used)
3788 return;
3790 newreg = REGNO (in_rtx);
3791 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3792 to reach here as part of a REG_NOTE. */
3793 if (newreg >= FIRST_PSEUDO_REGISTER)
3795 in_rtx->used = 1;
3796 return;
3798 newreg = LEAF_REG_REMAP (newreg);
3799 gcc_assert (newreg >= 0);
3800 regs_ever_live[REGNO (in_rtx)] = 0;
3801 regs_ever_live[newreg] = 1;
3802 REGNO (in_rtx) = newreg;
3803 in_rtx->used = 1;
3806 if (INSN_P (in_rtx))
3808 /* Inside a SEQUENCE, we find insns.
3809 Renumber just the patterns of these insns,
3810 just as we do for the top-level insns. */
3811 leaf_renumber_regs_insn (PATTERN (in_rtx));
3812 return;
3815 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3817 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3818 switch (*format_ptr++)
3820 case 'e':
3821 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3822 break;
3824 case 'E':
3825 if (NULL != XVEC (in_rtx, i))
3827 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3828 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3830 break;
3832 case 'S':
3833 case 's':
3834 case '0':
3835 case 'i':
3836 case 'w':
3837 case 'n':
3838 case 'u':
3839 break;
3841 default:
3842 gcc_unreachable ();
3845 #endif
3848 /* When -gused is used, emit debug info for only used symbols. But in
3849 addition to the standard intercepted debug_hooks there are some direct
3850 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3851 Those routines may also be called from a higher level intercepted routine. So
3852 to prevent recording data for an inner call to one of these for an intercept,
3853 we maintain an intercept nesting counter (debug_nesting). We only save the
3854 intercepted arguments if the nesting is 1. */
3855 int debug_nesting = 0;
3857 static tree *symbol_queue;
3858 int symbol_queue_index = 0;
3859 static int symbol_queue_size = 0;
3861 /* Generate the symbols for any queued up type symbols we encountered
3862 while generating the type info for some originally used symbol.
3863 This might generate additional entries in the queue. Only when
3864 the nesting depth goes to 0 is this routine called. */
3866 void
3867 debug_flush_symbol_queue (void)
3869 int i;
3871 /* Make sure that additionally queued items are not flushed
3872 prematurely. */
3874 ++debug_nesting;
3876 for (i = 0; i < symbol_queue_index; ++i)
3878 /* If we pushed queued symbols then such symbols are must be
3879 output no matter what anyone else says. Specifically,
3880 we need to make sure dbxout_symbol() thinks the symbol was
3881 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3882 which may be set for outside reasons. */
3883 int saved_tree_used = TREE_USED (symbol_queue[i]);
3884 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3885 TREE_USED (symbol_queue[i]) = 1;
3886 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3888 #ifdef DBX_DEBUGGING_INFO
3889 dbxout_symbol (symbol_queue[i], 0);
3890 #endif
3892 TREE_USED (symbol_queue[i]) = saved_tree_used;
3893 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3896 symbol_queue_index = 0;
3897 --debug_nesting;
3900 /* Queue a type symbol needed as part of the definition of a decl
3901 symbol. These symbols are generated when debug_flush_symbol_queue()
3902 is called. */
3904 void
3905 debug_queue_symbol (tree decl)
3907 if (symbol_queue_index >= symbol_queue_size)
3909 symbol_queue_size += 10;
3910 symbol_queue = xrealloc (symbol_queue,
3911 symbol_queue_size * sizeof (tree));
3914 symbol_queue[symbol_queue_index++] = decl;
3917 /* Free symbol queue. */
3918 void
3919 debug_free_queue (void)
3921 if (symbol_queue)
3923 free (symbol_queue);
3924 symbol_queue = NULL;
3925 symbol_queue_size = 0;
3929 /* Turn the RTL into assembly. */
3930 static void
3931 rest_of_handle_final (void)
3933 rtx x;
3934 const char *fnname;
3936 /* Get the function's name, as described by its RTL. This may be
3937 different from the DECL_NAME name used in the source file. */
3939 x = DECL_RTL (current_function_decl);
3940 gcc_assert (MEM_P (x));
3941 x = XEXP (x, 0);
3942 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3943 fnname = XSTR (x, 0);
3945 assemble_start_function (current_function_decl, fnname);
3946 final_start_function (get_insns (), asm_out_file, optimize);
3947 final (get_insns (), asm_out_file, optimize);
3948 final_end_function ();
3950 #ifdef TARGET_UNWIND_INFO
3951 /* ??? The IA-64 ".handlerdata" directive must be issued before
3952 the ".endp" directive that closes the procedure descriptor. */
3953 output_function_exception_table ();
3954 #endif
3956 assemble_end_function (current_function_decl, fnname);
3958 #ifndef TARGET_UNWIND_INFO
3959 /* Otherwise, it feels unclean to switch sections in the middle. */
3960 output_function_exception_table ();
3961 #endif
3963 user_defined_section_attribute = false;
3965 if (! quiet_flag)
3966 fflush (asm_out_file);
3968 /* Release all memory allocated by flow. */
3969 free_basic_block_vars ();
3971 /* Write DBX symbols if requested. */
3973 /* Note that for those inline functions where we don't initially
3974 know for certain that we will be generating an out-of-line copy,
3975 the first invocation of this routine (rest_of_compilation) will
3976 skip over this code by doing a `goto exit_rest_of_compilation;'.
3977 Later on, wrapup_global_declarations will (indirectly) call
3978 rest_of_compilation again for those inline functions that need
3979 to have out-of-line copies generated. During that call, we
3980 *will* be routed past here. */
3982 timevar_push (TV_SYMOUT);
3983 (*debug_hooks->function_decl) (current_function_decl);
3984 timevar_pop (TV_SYMOUT);
3987 struct tree_opt_pass pass_final =
3989 NULL, /* name */
3990 NULL, /* gate */
3991 rest_of_handle_final, /* execute */
3992 NULL, /* sub */
3993 NULL, /* next */
3994 0, /* static_pass_number */
3995 TV_FINAL, /* tv_id */
3996 0, /* properties_required */
3997 0, /* properties_provided */
3998 0, /* properties_destroyed */
3999 0, /* todo_flags_start */
4000 TODO_ggc_collect, /* todo_flags_finish */
4001 0 /* letter */
4005 static void
4006 rest_of_handle_shorten_branches (void)
4008 /* Shorten branches. */
4009 shorten_branches (get_insns ());
4012 struct tree_opt_pass pass_shorten_branches =
4014 "shorten", /* name */
4015 NULL, /* gate */
4016 rest_of_handle_shorten_branches, /* execute */
4017 NULL, /* sub */
4018 NULL, /* next */
4019 0, /* static_pass_number */
4020 TV_FINAL, /* tv_id */
4021 0, /* properties_required */
4022 0, /* properties_provided */
4023 0, /* properties_destroyed */
4024 0, /* todo_flags_start */
4025 TODO_dump_func, /* todo_flags_finish */
4026 0 /* letter */
4030 static void
4031 rest_of_clean_state (void)
4033 rtx insn, next;
4035 /* It is very important to decompose the RTL instruction chain here:
4036 debug information keeps pointing into CODE_LABEL insns inside the function
4037 body. If these remain pointing to the other insns, we end up preserving
4038 whole RTL chain and attached detailed debug info in memory. */
4039 for (insn = get_insns (); insn; insn = next)
4041 next = NEXT_INSN (insn);
4042 NEXT_INSN (insn) = NULL;
4043 PREV_INSN (insn) = NULL;
4046 /* In case the function was not output,
4047 don't leave any temporary anonymous types
4048 queued up for sdb output. */
4049 #ifdef SDB_DEBUGGING_INFO
4050 if (write_symbols == SDB_DEBUG)
4051 sdbout_types (NULL_TREE);
4052 #endif
4054 reload_completed = 0;
4055 epilogue_completed = 0;
4056 flow2_completed = 0;
4057 no_new_pseudos = 0;
4059 /* Clear out the insn_length contents now that they are no
4060 longer valid. */
4061 init_insn_lengths ();
4063 /* Show no temporary slots allocated. */
4064 init_temp_slots ();
4066 free_basic_block_vars ();
4067 free_bb_for_insn ();
4070 if (targetm.binds_local_p (current_function_decl))
4072 int pref = cfun->preferred_stack_boundary;
4073 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4074 pref = cfun->stack_alignment_needed;
4075 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4076 = pref;
4079 /* Make sure volatile mem refs aren't considered valid operands for
4080 arithmetic insns. We must call this here if this is a nested inline
4081 function, since the above code leaves us in the init_recog state,
4082 and the function context push/pop code does not save/restore volatile_ok.
4084 ??? Maybe it isn't necessary for expand_start_function to call this
4085 anymore if we do it here? */
4087 init_recog_no_volatile ();
4089 /* We're done with this function. Free up memory if we can. */
4090 free_after_parsing (cfun);
4091 free_after_compilation (cfun);
4094 struct tree_opt_pass pass_clean_state =
4096 NULL, /* name */
4097 NULL, /* gate */
4098 rest_of_clean_state, /* execute */
4099 NULL, /* sub */
4100 NULL, /* next */
4101 0, /* static_pass_number */
4102 TV_FINAL, /* tv_id */
4103 0, /* properties_required */
4104 0, /* properties_provided */
4105 PROP_rtl, /* properties_destroyed */
4106 0, /* todo_flags_start */
4107 0, /* todo_flags_finish */
4108 0 /* letter */