2 * Copyright (c) 2004-2006 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $
37 * The journaling protocol is intended to evolve into a two-way stream
38 * whereby transaction IDs can be acknowledged by the journaling target
39 * when the data has been committed to hard storage. Both implicit and
40 * explicit acknowledgement schemes will be supported, depending on the
41 * sophistication of the journaling stream, plus resynchronization and
42 * restart when a journaling stream is interrupted. This information will
43 * also be made available to journaling-aware filesystems to allow better
44 * management of their own physical storage synchronization mechanisms as
45 * well as to allow such filesystems to take direct advantage of the kernel's
46 * journaling layer so they don't have to roll their own.
48 * In addition, the worker thread will have access to much larger
49 * spooling areas then the memory buffer is able to provide by e.g.
50 * reserving swap space, in order to absorb potentially long interruptions
51 * of off-site journaling streams, and to prevent 'slow' off-site linkages
52 * from radically slowing down local filesystem operations.
54 * Because of the non-trivial algorithms the journaling system will be
55 * required to support, use of a worker thread is mandatory. Efficiencies
56 * are maintained by utilitizing the memory FIFO to batch transactions when
57 * possible, reducing the number of gratuitous thread switches and taking
58 * advantage of cpu caches through the use of shorter batched code paths
59 * rather then trying to do everything in the context of the process
60 * originating the filesystem op. In the future the memory FIFO can be
61 * made per-cpu to remove BGL or other locking requirements.
63 #include <sys/param.h>
64 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/queue.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
75 #include <sys/mountctl.h>
76 #include <sys/journal.h>
79 #include <sys/msfbuf.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
83 #include <machine/limits.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
91 #include <sys/file2.h>
92 #include <sys/thread2.h>
94 static void journal_wthread(void *info
);
95 static void journal_rthread(void *info
);
97 static void *journal_reserve(struct journal
*jo
,
98 struct journal_rawrecbeg
**rawpp
,
99 int16_t streamid
, int bytes
);
100 static void *journal_extend(struct journal
*jo
,
101 struct journal_rawrecbeg
**rawpp
,
102 int truncbytes
, int bytes
, int *newstreamrecp
);
103 static void journal_abort(struct journal
*jo
,
104 struct journal_rawrecbeg
**rawpp
);
105 static void journal_commit(struct journal
*jo
,
106 struct journal_rawrecbeg
**rawpp
,
107 int bytes
, int closeout
);
110 MALLOC_DEFINE(M_JOURNAL
, "journal", "Journaling structures");
111 MALLOC_DEFINE(M_JFIFO
, "journal-fifo", "Journal FIFO");
114 journal_create_threads(struct journal
*jo
)
116 jo
->flags
&= ~(MC_JOURNAL_STOP_REQ
| MC_JOURNAL_STOP_IMM
);
117 jo
->flags
|= MC_JOURNAL_WACTIVE
;
118 lwkt_create(journal_wthread
, jo
, NULL
, &jo
->wthread
,
119 TDF_STOPREQ
, -1, "journal w:%.*s", JIDMAX
, jo
->id
);
120 lwkt_setpri(&jo
->wthread
, TDPRI_KERN_DAEMON
);
121 lwkt_schedule(&jo
->wthread
);
123 if (jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) {
124 jo
->flags
|= MC_JOURNAL_RACTIVE
;
125 lwkt_create(journal_rthread
, jo
, NULL
, &jo
->rthread
,
126 TDF_STOPREQ
, -1, "journal r:%.*s", JIDMAX
, jo
->id
);
127 lwkt_setpri(&jo
->rthread
, TDPRI_KERN_DAEMON
);
128 lwkt_schedule(&jo
->rthread
);
133 journal_destroy_threads(struct journal
*jo
, int flags
)
137 jo
->flags
|= MC_JOURNAL_STOP_REQ
| (flags
& MC_JOURNAL_STOP_IMM
);
140 while (jo
->flags
& (MC_JOURNAL_WACTIVE
| MC_JOURNAL_RACTIVE
)) {
141 tsleep(jo
, 0, "jwait", hz
);
142 if (++wcount
% 10 == 0) {
143 kprintf("Warning: journal %s waiting for descriptors to close\n",
149 * XXX SMP - threads should move to cpu requesting the restart or
150 * termination before finishing up to properly interlock.
152 tsleep(jo
, 0, "jwait", hz
);
153 lwkt_free_thread(&jo
->wthread
);
154 if (jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
)
155 lwkt_free_thread(&jo
->rthread
);
159 * The per-journal worker thread is responsible for writing out the
160 * journal's FIFO to the target stream.
163 journal_wthread(void *info
)
165 struct journal
*jo
= info
;
166 struct journal_rawrecbeg
*rawp
;
174 * Calculate the number of bytes available to write. This buffer
175 * area may contain reserved records so we can't just write it out
176 * without further checks.
178 bytes
= jo
->fifo
.windex
- jo
->fifo
.rindex
;
181 * sleep if no bytes are available or if an incomplete record is
182 * encountered (it needs to be filled in before we can write it
183 * out), and skip any pad records that we encounter.
186 if (jo
->flags
& MC_JOURNAL_STOP_REQ
)
188 tsleep(&jo
->fifo
, 0, "jfifo", hz
);
193 * Sleep if we can not go any further due to hitting an incomplete
194 * record. This case should occur rarely but may have to be better
197 rawp
= (void *)(jo
->fifo
.membase
+ (jo
->fifo
.rindex
& jo
->fifo
.mask
));
198 if (rawp
->begmagic
== JREC_INCOMPLETEMAGIC
) {
199 tsleep(&jo
->fifo
, 0, "jpad", hz
);
204 * Skip any pad records. We do not write out pad records if we can
207 if (rawp
->streamid
== JREC_STREAMID_PAD
) {
208 if ((jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) == 0) {
209 if (jo
->fifo
.rindex
== jo
->fifo
.xindex
) {
210 jo
->fifo
.xindex
+= (rawp
->recsize
+ 15) & ~15;
211 jo
->total_acked
+= (rawp
->recsize
+ 15) & ~15;
214 jo
->fifo
.rindex
+= (rawp
->recsize
+ 15) & ~15;
215 jo
->total_acked
+= bytes
;
216 KKASSERT(jo
->fifo
.windex
- jo
->fifo
.rindex
>= 0);
221 * 'bytes' is the amount of data that can potentially be written out.
222 * Calculate 'res', the amount of data that can actually be written
223 * out. res is bounded either by hitting the end of the physical
224 * memory buffer or by hitting an incomplete record. Incomplete
225 * records often occur due to the way the space reservation model
229 avail
= jo
->fifo
.size
- (jo
->fifo
.rindex
& jo
->fifo
.mask
);
230 while (res
< bytes
&& rawp
->begmagic
== JREC_BEGMAGIC
) {
231 res
+= (rawp
->recsize
+ 15) & ~15;
233 KKASSERT(res
== avail
);
236 rawp
= (void *)((char *)rawp
+ ((rawp
->recsize
+ 15) & ~15));
240 * Issue the write and deal with any errors or other conditions.
241 * For now assume blocking I/O. Since we are record-aware the
242 * code cannot yet handle partial writes.
244 * We bump rindex prior to issuing the write to avoid racing
245 * the acknowledgement coming back (which could prevent the ack
246 * from bumping xindex). Restarts are always based on xindex so
247 * we do not try to undo the rindex if an error occurs.
249 * XXX EWOULDBLOCK/NBIO
250 * XXX notification on failure
251 * XXX permanent verses temporary failures
252 * XXX two-way acknowledgement stream in the return direction / xindex
255 jo
->fifo
.rindex
+= bytes
;
256 error
= fp_write(jo
->fp
,
257 jo
->fifo
.membase
+ ((jo
->fifo
.rindex
- bytes
) & jo
->fifo
.mask
),
258 bytes
, &res
, UIO_SYSSPACE
);
260 kprintf("journal_thread(%s) write, error %d\n", jo
->id
, error
);
263 KKASSERT(res
== bytes
);
267 * Advance rindex. If the journal stream is not full duplex we also
268 * advance xindex, otherwise the rjournal thread is responsible for
271 if ((jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) == 0) {
272 jo
->fifo
.xindex
+= bytes
;
273 jo
->total_acked
+= bytes
;
275 KKASSERT(jo
->fifo
.windex
- jo
->fifo
.rindex
>= 0);
276 if ((jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) == 0) {
277 if (jo
->flags
& MC_JOURNAL_WWAIT
) {
278 jo
->flags
&= ~MC_JOURNAL_WWAIT
; /* XXX hysteresis */
279 wakeup(&jo
->fifo
.windex
);
283 fp_shutdown(jo
->fp
, SHUT_WR
);
284 jo
->flags
&= ~MC_JOURNAL_WACTIVE
;
286 wakeup(&jo
->fifo
.windex
);
290 * A second per-journal worker thread is created for two-way journaling
291 * streams to deal with the return acknowledgement stream.
294 journal_rthread(void *info
)
296 struct journal_rawrecbeg
*rawp
;
297 struct journal_ackrecord ack
;
298 struct journal
*jo
= info
;
309 * We have been asked to stop
311 if (jo
->flags
& MC_JOURNAL_STOP_REQ
)
315 * If we have no active transaction id, get one from the return
319 error
= fp_read(jo
->fp
, &ack
, sizeof(ack
), &count
,
322 kprintf("fp_read ack error %d count %d\n", error
, count
);
324 if (error
|| count
!= sizeof(ack
))
327 kprintf("read error %d on receive stream\n", error
);
330 if (ack
.rbeg
.begmagic
!= JREC_BEGMAGIC
||
331 ack
.rend
.endmagic
!= JREC_ENDMAGIC
333 kprintf("bad begmagic or endmagic on receive stream\n");
336 transid
= ack
.rbeg
.transid
;
340 * Calculate the number of unacknowledged bytes. If there are no
341 * unacknowledged bytes then unsent data was acknowledged, report,
342 * sleep a bit, and loop in that case. This should not happen
343 * normally. The ack record is thrown away.
345 bytes
= jo
->fifo
.rindex
- jo
->fifo
.xindex
;
348 kprintf("warning: unsent data acknowledged transid %08llx\n", transid
);
349 tsleep(&jo
->fifo
.xindex
, 0, "jrseq", hz
);
355 * Since rindex has advanced, the record pointed to by xindex
356 * must be a valid record.
358 rawp
= (void *)(jo
->fifo
.membase
+ (jo
->fifo
.xindex
& jo
->fifo
.mask
));
359 KKASSERT(rawp
->begmagic
== JREC_BEGMAGIC
);
360 KKASSERT(rawp
->recsize
<= bytes
);
363 * The target can acknowledge several records at once.
365 if (rawp
->transid
< transid
) {
367 kprintf("ackskip %08llx/%08llx\n", rawp
->transid
, transid
);
369 jo
->fifo
.xindex
+= (rawp
->recsize
+ 15) & ~15;
370 jo
->total_acked
+= (rawp
->recsize
+ 15) & ~15;
371 if (jo
->flags
& MC_JOURNAL_WWAIT
) {
372 jo
->flags
&= ~MC_JOURNAL_WWAIT
; /* XXX hysteresis */
373 wakeup(&jo
->fifo
.windex
);
377 if (rawp
->transid
== transid
) {
379 kprintf("ackskip %08llx/%08llx\n", rawp
->transid
, transid
);
381 jo
->fifo
.xindex
+= (rawp
->recsize
+ 15) & ~15;
382 jo
->total_acked
+= (rawp
->recsize
+ 15) & ~15;
383 if (jo
->flags
& MC_JOURNAL_WWAIT
) {
384 jo
->flags
&= ~MC_JOURNAL_WWAIT
; /* XXX hysteresis */
385 wakeup(&jo
->fifo
.windex
);
390 kprintf("warning: unsent data(2) acknowledged transid %08llx\n", transid
);
393 jo
->flags
&= ~MC_JOURNAL_RACTIVE
;
395 wakeup(&jo
->fifo
.windex
);
399 * This builds a pad record which the journaling thread will skip over. Pad
400 * records are required when we are unable to reserve sufficient stream space
401 * due to insufficient space at the end of the physical memory fifo.
403 * Even though the record is not transmitted, a normal transid must be
404 * assigned to it so link recovery operations after a failure work properly.
408 journal_build_pad(struct journal_rawrecbeg
*rawp
, int recsize
, int64_t transid
)
410 struct journal_rawrecend
*rendp
;
412 KKASSERT((recsize
& 15) == 0 && recsize
>= 16);
414 rawp
->streamid
= JREC_STREAMID_PAD
;
415 rawp
->recsize
= recsize
; /* must be 16-byte aligned */
416 rawp
->transid
= transid
;
418 * WARNING, rendp may overlap rawp->transid. This is necessary to
419 * allow PAD records to fit in 16 bytes. Use cpu_ccfence() to
420 * hopefully cause the compiler to not make any assumptions.
422 rendp
= (void *)((char *)rawp
+ rawp
->recsize
- sizeof(*rendp
));
423 rendp
->endmagic
= JREC_ENDMAGIC
;
425 rendp
->recsize
= rawp
->recsize
;
428 * Set the begin magic last. This is what will allow the journal
429 * thread to write the record out. Use a store fence to prevent
430 * compiler and cpu reordering of the writes.
433 rawp
->begmagic
= JREC_BEGMAGIC
;
437 * Wake up the worker thread if the FIFO is more then half full or if
438 * someone is waiting for space to be freed up. Otherwise let the
439 * heartbeat deal with it. Being able to avoid waking up the worker
440 * is the key to the journal's cpu performance.
444 journal_commit_wakeup(struct journal
*jo
)
448 avail
= jo
->fifo
.size
- (jo
->fifo
.windex
- jo
->fifo
.xindex
);
449 KKASSERT(avail
>= 0);
450 if ((avail
< (jo
->fifo
.size
>> 1)) || (jo
->flags
& MC_JOURNAL_WWAIT
))
455 * Create a new BEGIN stream record with the specified streamid and the
456 * specified amount of payload space. *rawpp will be set to point to the
457 * base of the new stream record and a pointer to the base of the payload
458 * space will be returned. *rawpp does not need to be pre-NULLd prior to
459 * making this call. The raw record header will be partially initialized.
461 * A stream can be extended, aborted, or committed by other API calls
462 * below. This may result in a sequence of potentially disconnected
463 * stream records to be output to the journaling target. The first record
464 * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
465 * while the last record on commit or abort will be marked JREC_STREAMCTL_END
466 * (and possibly also JREC_STREAMCTL_ABORTED). The last record could wind
467 * up being the same as the first, in which case the bits are all set in
470 * The stream record is created in an incomplete state by setting the begin
471 * magic to JREC_INCOMPLETEMAGIC. This prevents the worker thread from
472 * flushing the fifo past our record until we have finished populating it.
473 * Other threads can reserve and operate on their own space without stalling
474 * but the stream output will stall until we have completed operations. The
475 * memory FIFO is intended to be large enough to absorb such situations
476 * without stalling out other threads.
480 journal_reserve(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
,
481 int16_t streamid
, int bytes
)
483 struct journal_rawrecbeg
*rawp
;
489 * Add header and trailer overheads to the passed payload. Note that
490 * the passed payload size need not be aligned in any way.
492 bytes
+= sizeof(struct journal_rawrecbeg
);
493 bytes
+= sizeof(struct journal_rawrecend
);
497 * First, check boundary conditions. If the request would wrap around
498 * we have to skip past the ending block and return to the beginning
499 * of the FIFO's buffer. Calculate 'req' which is the actual number
500 * of bytes being reserved, including wrap-around dead space.
502 * Neither 'bytes' or 'req' are aligned.
504 * Note that availtoend is not truncated to avail and so cannot be
505 * used to determine whether the reservation is possible by itself.
506 * Also, since all fifo ops are 16-byte aligned, we can check
507 * the size before calculating the aligned size.
509 availtoend
= jo
->fifo
.size
- (jo
->fifo
.windex
& jo
->fifo
.mask
);
510 KKASSERT((availtoend
& 15) == 0);
511 if (bytes
> availtoend
)
512 req
= bytes
+ availtoend
; /* add pad to end */
517 * Next calculate the total available space and see if it is
518 * sufficient. We cannot overwrite previously buffered data
519 * past xindex because otherwise we would not be able to restart
520 * a broken link at the target's last point of commit.
522 avail
= jo
->fifo
.size
- (jo
->fifo
.windex
- jo
->fifo
.xindex
);
523 KKASSERT(avail
>= 0 && (avail
& 15) == 0);
526 /* XXX MC_JOURNAL_STOP_IMM */
527 jo
->flags
|= MC_JOURNAL_WWAIT
;
529 tsleep(&jo
->fifo
.windex
, 0, "jwrite", 0);
534 * Create a pad record for any dead space and create an incomplete
535 * record for the live space, then return a pointer to the
536 * contiguous buffer space that was requested.
538 * NOTE: The worker thread will not flush past an incomplete
539 * record, so the reserved space can be filled in at-will. The
540 * journaling code must also be aware the reserved sections occuring
541 * after this one will also not be written out even if completed
542 * until this one is completed.
544 * The transaction id must accomodate real and potential pad creation.
546 rawp
= (void *)(jo
->fifo
.membase
+ (jo
->fifo
.windex
& jo
->fifo
.mask
));
548 journal_build_pad(rawp
, availtoend
, jo
->transid
);
550 rawp
= (void *)jo
->fifo
.membase
;
552 rawp
->begmagic
= JREC_INCOMPLETEMAGIC
; /* updated by abort/commit */
553 rawp
->recsize
= bytes
; /* (unaligned size) */
554 rawp
->streamid
= streamid
| JREC_STREAMCTL_BEGIN
;
555 rawp
->transid
= jo
->transid
;
559 * Issue a memory barrier to guarentee that the record data has been
560 * properly initialized before we advance the write index and return
561 * a pointer to the reserved record. Otherwise the worker thread
562 * could accidently run past us.
564 * Note that stream records are always 16-byte aligned.
567 jo
->fifo
.windex
+= (req
+ 15) & ~15;
577 * Attempt to extend the stream record by <bytes> worth of payload space.
579 * If it is possible to extend the existing stream record no truncation
580 * occurs and the record is extended as specified. A pointer to the
581 * truncation offset within the payload space is returned.
583 * If it is not possible to do this the existing stream record is truncated
584 * and committed, and a new stream record of size <bytes> is created. A
585 * pointer to the base of the new stream record's payload space is returned.
587 * *rawpp is set to the new reservation in the case of a new record but
588 * the caller cannot depend on a comparison with the old rawp to determine if
589 * this case occurs because we could end up using the same memory FIFO
590 * offset for the new stream record. Use *newstreamrecp instead.
593 journal_extend(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
,
594 int truncbytes
, int bytes
, int *newstreamrecp
)
596 struct journal_rawrecbeg
*rawp
;
607 osize
= (rawp
->recsize
+ 15) & ~15;
608 nsize
= (rawp
->recsize
+ bytes
+ 15) & ~15;
609 wbase
= (char *)rawp
- jo
->fifo
.membase
;
612 * If the aligned record size does not change we can trivially adjust
615 if (nsize
== osize
) {
616 rawp
->recsize
+= bytes
;
617 return((char *)(rawp
+ 1) + truncbytes
);
621 * If the fifo's write index hasn't been modified since we made the
622 * reservation and we do not hit any boundary conditions, we can
623 * trivially make the record smaller or larger.
625 if ((jo
->fifo
.windex
& jo
->fifo
.mask
) == wbase
+ osize
) {
626 availtoend
= jo
->fifo
.size
- wbase
;
627 avail
= jo
->fifo
.size
- (jo
->fifo
.windex
- jo
->fifo
.xindex
) + osize
;
628 KKASSERT((availtoend
& 15) == 0);
629 KKASSERT((avail
& 15) == 0);
630 if (nsize
<= avail
&& nsize
<= availtoend
) {
631 jo
->fifo
.windex
+= nsize
- osize
;
632 rawp
->recsize
+= bytes
;
633 return((char *)(rawp
+ 1) + truncbytes
);
638 * It was not possible to extend the buffer. Commit the current
639 * buffer and create a new one. We manually clear the BEGIN mark that
640 * journal_reserve() creates (because this is a continuing record, not
641 * the start of a new stream).
643 streamid
= rawp
->streamid
& JREC_STREAMID_MASK
;
644 journal_commit(jo
, rawpp
, truncbytes
, 0);
645 rptr
= journal_reserve(jo
, rawpp
, streamid
, bytes
);
647 rawp
->streamid
&= ~JREC_STREAMCTL_BEGIN
;
653 * Abort a journal record. If the transaction record represents a stream
654 * BEGIN and we can reverse the fifo's write index we can simply reverse
655 * index the entire record, as if it were never reserved in the first place.
657 * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
658 * with the payload truncated to 0 bytes.
661 journal_abort(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
)
663 struct journal_rawrecbeg
*rawp
;
667 osize
= (rawp
->recsize
+ 15) & ~15;
669 if ((rawp
->streamid
& JREC_STREAMCTL_BEGIN
) &&
670 (jo
->fifo
.windex
& jo
->fifo
.mask
) ==
671 (char *)rawp
- jo
->fifo
.membase
+ osize
)
673 jo
->fifo
.windex
-= osize
;
676 rawp
->streamid
|= JREC_STREAMCTL_ABORTED
;
677 journal_commit(jo
, rawpp
, 0, 1);
682 * Commit a journal record and potentially truncate it to the specified
683 * number of payload bytes. If you do not want to truncate the record,
684 * simply pass -1 for the bytes parameter. Do not pass rawp->recsize, that
685 * field includes header and trailer and will not be correct. Note that
686 * passing 0 will truncate the entire data payload of the record.
688 * The logical stream is terminated by this function.
690 * If truncation occurs, and it is not possible to physically optimize the
691 * memory FIFO due to other threads having reserved space after ours,
692 * the remaining reserved space will be covered by a pad record.
695 journal_commit(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
,
696 int bytes
, int closeout
)
698 struct journal_rawrecbeg
*rawp
;
699 struct journal_rawrecend
*rendp
;
706 KKASSERT((char *)rawp
>= jo
->fifo
.membase
&&
707 (char *)rawp
+ rawp
->recsize
<= jo
->fifo
.membase
+ jo
->fifo
.size
);
708 KKASSERT(((intptr_t)rawp
& 15) == 0);
711 * Truncate the record if necessary. If the FIFO write index as still
712 * at the end of our record we can optimally backindex it. Otherwise
713 * we have to insert a pad record to cover the dead space.
715 * We calculate osize which is the 16-byte-aligned original recsize.
716 * We calculate nsize which is the 16-byte-aligned new recsize.
718 * Due to alignment issues or in case the passed truncation bytes is
719 * the same as the original payload, nsize may be equal to osize even
720 * if the committed bytes is less then the originally reserved bytes.
723 KKASSERT(bytes
>= 0 && bytes
<= rawp
->recsize
- sizeof(struct journal_rawrecbeg
) - sizeof(struct journal_rawrecend
));
724 osize
= (rawp
->recsize
+ 15) & ~15;
725 rawp
->recsize
= bytes
+ sizeof(struct journal_rawrecbeg
) +
726 sizeof(struct journal_rawrecend
);
727 nsize
= (rawp
->recsize
+ 15) & ~15;
728 KKASSERT(nsize
<= osize
);
729 if (osize
== nsize
) {
731 } else if ((jo
->fifo
.windex
& jo
->fifo
.mask
) == (char *)rawp
- jo
->fifo
.membase
+ osize
) {
732 /* we are able to backindex the fifo */
733 jo
->fifo
.windex
-= osize
- nsize
;
735 /* we cannot backindex the fifo, emplace a pad in the dead space */
736 journal_build_pad((void *)((char *)rawp
+ nsize
), osize
- nsize
,
742 * Fill in the trailer. Note that unlike pad records, the trailer will
743 * never overlap the header.
745 rendp
= (void *)((char *)rawp
+
746 ((rawp
->recsize
+ 15) & ~15) - sizeof(*rendp
));
747 rendp
->endmagic
= JREC_ENDMAGIC
;
748 rendp
->recsize
= rawp
->recsize
;
749 rendp
->check
= 0; /* XXX check word, disabled for now */
752 * Fill in begmagic last. This will allow the worker thread to proceed.
753 * Use a memory barrier to guarentee write ordering. Mark the stream
754 * as terminated if closeout is set. This is the typical case.
757 rawp
->streamid
|= JREC_STREAMCTL_END
;
758 cpu_sfence(); /* memory and compiler barrier */
759 rawp
->begmagic
= JREC_BEGMAGIC
;
761 journal_commit_wakeup(jo
);
764 /************************************************************************
765 * TRANSACTION SUPPORT ROUTINES *
766 ************************************************************************
768 * JRECORD_*() - routines to create subrecord transactions and embed them
769 * in the logical streams managed by the journal_*() routines.
773 * Initialize the passed jrecord structure and start a new stream transaction
774 * by reserving an initial build space in the journal's memory FIFO.
777 jrecord_init(struct journal
*jo
, struct jrecord
*jrec
, int16_t streamid
)
779 bzero(jrec
, sizeof(*jrec
));
781 jrec
->streamid
= streamid
;
782 jrec
->stream_residual
= JREC_DEFAULTSIZE
;
783 jrec
->stream_reserved
= jrec
->stream_residual
;
785 journal_reserve(jo
, &jrec
->rawp
, streamid
, jrec
->stream_reserved
);
789 * Push a recursive record type. All pushes should have matching pops.
790 * The old parent is returned and the newly pushed record becomes the
791 * new parent. Note that the old parent's pointer may already be invalid
792 * or may become invalid if jrecord_write() had to build a new stream
793 * record, so the caller should not mess with the returned pointer in
794 * any way other then to save it.
796 struct journal_subrecord
*
797 jrecord_push(struct jrecord
*jrec
, int16_t rectype
)
799 struct journal_subrecord
*save
;
802 jrec
->parent
= jrecord_write(jrec
, rectype
|JMASK_NESTED
, 0);
804 KKASSERT(jrec
->parent
!= NULL
);
806 ++jrec
->pushptrgood
; /* cleared on flush */
811 * Pop a previously pushed sub-transaction. We must set JMASK_LAST
812 * on the last record written within the subtransaction. If the last
813 * record written is not accessible or if the subtransaction is empty,
814 * we must write out a pad record with JMASK_LAST set before popping.
816 * When popping a subtransaction the parent record's recsize field
817 * will be properly set. If the parent pointer is no longer valid
818 * (which can occur if the data has already been flushed out to the
819 * stream), the protocol spec allows us to leave it 0.
821 * The saved parent pointer which we restore may or may not be valid,
822 * and if not valid may or may not be NULL, depending on the value
826 jrecord_pop(struct jrecord
*jrec
, struct journal_subrecord
*save
)
828 struct journal_subrecord
*last
;
830 KKASSERT(jrec
->pushcount
> 0);
831 KKASSERT(jrec
->residual
== 0);
834 * Set JMASK_LAST on the last record we wrote at the current
835 * level. If last is NULL we either no longer have access to the
836 * record or the subtransaction was empty and we must write out a pad
839 if ((last
= jrec
->last
) == NULL
) {
840 jrecord_write(jrec
, JLEAF_PAD
|JMASK_LAST
, 0);
841 last
= jrec
->last
; /* reload after possible flush */
843 last
->rectype
|= JMASK_LAST
;
847 * pushptrgood tells us how many levels of parent record pointers
848 * are valid. The jrec only stores the current parent record pointer
849 * (and it is only valid if pushptrgood != 0). The higher level parent
850 * record pointers are saved by the routines calling jrecord_push() and
851 * jrecord_pop(). These pointers may become stale and we determine
852 * that fact by tracking the count of valid parent pointers with
853 * pushptrgood. Pointers become invalid when their related stream
854 * record gets pushed out.
856 * If no pointer is available (the data has already been pushed out),
857 * then no fixup of e.g. the length field is possible for non-leaf
858 * nodes. The protocol allows for this situation by placing a larger
859 * burden on the program scanning the stream on the other end.
869 * NOTE B: This pop sets LAST in node Z if the node is still accessible,
870 * else a PAD record is appended and LAST is set in that.
872 * This pop sets the record size in parentB if parentB is still
873 * accessible, else the record size is left 0 (the scanner must
876 * This pop sets the new 'last' record to parentB, the pointer
877 * to which may or may not still be accessible.
879 * NOTE A: This pop sets LAST in parentB if the node is still accessible,
880 * else a PAD record is appended and LAST is set in that.
882 * This pop sets the record size in parentA if parentA is still
883 * accessible, else the record size is left 0 (the scanner must
886 * This pop sets the new 'last' record to parentA, the pointer
887 * to which may or may not still be accessible.
889 * Also note that the last record in the stream transaction, which in
890 * the above example is parentA, does not currently have the LAST bit
893 * The current parent becomes the last record relative to the
894 * saved parent passed into us. It's validity is based on
895 * whether pushptrgood is non-zero prior to decrementing. The saved
896 * parent becomes the new parent, and its validity is based on whether
897 * pushptrgood is non-zero after decrementing.
899 * The old jrec->parent may be NULL if it is no longer accessible.
900 * If pushptrgood is non-zero, however, it is guarenteed to not
901 * be NULL (since no flush occured).
903 jrec
->last
= jrec
->parent
;
905 if (jrec
->pushptrgood
) {
906 KKASSERT(jrec
->last
!= NULL
&& last
!= NULL
);
907 if (--jrec
->pushptrgood
== 0) {
908 jrec
->parent
= NULL
; /* 'save' contains garbage or NULL */
910 KKASSERT(save
!= NULL
);
911 jrec
->parent
= save
; /* 'save' must not be NULL */
915 * Set the record size in the old parent. 'last' still points to
916 * the original last record in the subtransaction being popped,
917 * jrec->last points to the old parent (which became the last
918 * record relative to the new parent being popped into).
920 jrec
->last
->recsize
= (char *)last
+ last
->recsize
- (char *)jrec
->last
;
923 KKASSERT(jrec
->last
== NULL
);
928 * Write out a leaf record, including associated data.
931 jrecord_leaf(struct jrecord
*jrec
, int16_t rectype
, void *ptr
, int bytes
)
933 jrecord_write(jrec
, rectype
, bytes
);
934 jrecord_data(jrec
, ptr
, bytes
);
938 * Write a leaf record out and return a pointer to its base. The leaf
939 * record may contain potentially megabytes of data which is supplied
940 * in jrecord_data() calls. The exact amount must be specified in this
943 * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
944 * CALL AND MAY BECOME INVALID AT ANY TIME. ONLY THE PUSH/POP CODE SHOULD
945 * USE THE RETURN VALUE.
947 struct journal_subrecord
*
948 jrecord_write(struct jrecord
*jrec
, int16_t rectype
, int bytes
)
950 struct journal_subrecord
*last
;
954 * Try to catch some obvious errors. Nesting records must specify a
955 * size of 0, and there should be no left-overs from previous operations
956 * (such as incomplete data writeouts).
958 KKASSERT(bytes
== 0 || (rectype
& JMASK_NESTED
) == 0);
959 KKASSERT(jrec
->residual
== 0);
962 * Check to see if the current stream record has enough room for
963 * the new subrecord header. If it doesn't we extend the current
966 * This may have the side effect of pushing out the current stream record
967 * and creating a new one. We must adjust our stream tracking fields
970 if (jrec
->stream_residual
< sizeof(struct journal_subrecord
)) {
971 jrec
->stream_ptr
= journal_extend(jrec
->jo
, &jrec
->rawp
,
972 jrec
->stream_reserved
- jrec
->stream_residual
,
973 JREC_DEFAULTSIZE
, &pusheditout
);
976 * If a pushout occured, the pushed out stream record was
977 * truncated as specified and the new record is exactly the
978 * extension size specified.
980 jrec
->stream_reserved
= JREC_DEFAULTSIZE
;
981 jrec
->stream_residual
= JREC_DEFAULTSIZE
;
982 jrec
->parent
= NULL
; /* no longer accessible */
983 jrec
->pushptrgood
= 0; /* restored parents in pops no good */
986 * If no pushout occured the stream record is NOT truncated and
989 jrec
->stream_reserved
+= JREC_DEFAULTSIZE
;
990 jrec
->stream_residual
+= JREC_DEFAULTSIZE
;
993 last
= (void *)jrec
->stream_ptr
;
994 last
->rectype
= rectype
;
998 * We may not know the record size for recursive records and the
999 * header may become unavailable due to limited FIFO space. Write
1000 * -1 to indicate this special case.
1002 if ((rectype
& JMASK_NESTED
) && bytes
== 0)
1005 last
->recsize
= sizeof(struct journal_subrecord
) + bytes
;
1007 jrec
->residual
= bytes
; /* remaining data to be posted */
1008 jrec
->residual_align
= -bytes
& 7; /* post-data alignment required */
1009 jrec
->stream_ptr
+= sizeof(*last
); /* current write pointer */
1010 jrec
->stream_residual
-= sizeof(*last
); /* space remaining in stream */
1015 * Write out the data associated with a leaf record. Any number of calls
1016 * to this routine may be made as long as the byte count adds up to the
1017 * amount originally specified in jrecord_write().
1019 * The act of writing out the leaf data may result in numerous stream records
1020 * being pushed out. Callers should be aware that even the associated
1021 * subrecord header may become inaccessible due to stream record pushouts.
1024 jrecord_data(struct jrecord
*jrec
, const void *buf
, int bytes
)
1029 KKASSERT(bytes
>= 0 && bytes
<= jrec
->residual
);
1032 * Push out stream records as long as there is insufficient room to hold
1033 * the remaining data.
1035 while (jrec
->stream_residual
< bytes
) {
1037 * Fill in any remaining space in the current stream record.
1039 bcopy(buf
, jrec
->stream_ptr
, jrec
->stream_residual
);
1040 buf
= (const char *)buf
+ jrec
->stream_residual
;
1041 bytes
-= jrec
->stream_residual
;
1042 /*jrec->stream_ptr += jrec->stream_residual;*/
1043 jrec
->residual
-= jrec
->stream_residual
;
1044 jrec
->stream_residual
= 0;
1047 * Try to extend the current stream record, but no more then 1/4
1048 * the size of the FIFO.
1050 extsize
= jrec
->jo
->fifo
.size
>> 2;
1051 if (extsize
> bytes
)
1052 extsize
= (bytes
+ 15) & ~15;
1054 jrec
->stream_ptr
= journal_extend(jrec
->jo
, &jrec
->rawp
,
1055 jrec
->stream_reserved
- jrec
->stream_residual
,
1056 extsize
, &pusheditout
);
1058 jrec
->stream_reserved
= extsize
;
1059 jrec
->stream_residual
= extsize
;
1060 jrec
->parent
= NULL
; /* no longer accessible */
1061 jrec
->last
= NULL
; /* no longer accessible */
1062 jrec
->pushptrgood
= 0; /* restored parents in pops no good */
1064 jrec
->stream_reserved
+= extsize
;
1065 jrec
->stream_residual
+= extsize
;
1070 * Push out any remaining bytes into the current stream record.
1073 bcopy(buf
, jrec
->stream_ptr
, bytes
);
1074 jrec
->stream_ptr
+= bytes
;
1075 jrec
->stream_residual
-= bytes
;
1076 jrec
->residual
-= bytes
;
1080 * Handle data alignment requirements for the subrecord. Because the
1081 * stream record's data space is more strictly aligned, it must already
1082 * have sufficient space to hold any subrecord alignment slop.
1084 if (jrec
->residual
== 0 && jrec
->residual_align
) {
1085 KKASSERT(jrec
->residual_align
<= jrec
->stream_residual
);
1086 bzero(jrec
->stream_ptr
, jrec
->residual_align
);
1087 jrec
->stream_ptr
+= jrec
->residual_align
;
1088 jrec
->stream_residual
-= jrec
->residual_align
;
1089 jrec
->residual_align
= 0;
1094 * We are finished with the transaction. This closes the transaction created
1095 * by jrecord_init().
1097 * NOTE: If abortit is not set then we must be at the top level with no
1098 * residual subrecord data left to output.
1100 * If abortit is set then we can be in any state, all pushes will be
1101 * popped and it is ok for there to be residual data. This works
1102 * because the virtual stream itself is truncated. Scanners must deal
1103 * with this situation.
1105 * The stream record will be committed or aborted as specified and jrecord
1106 * resources will be cleaned up.
1109 jrecord_done(struct jrecord
*jrec
, int abortit
)
1111 KKASSERT(jrec
->rawp
!= NULL
);
1114 journal_abort(jrec
->jo
, &jrec
->rawp
);
1116 KKASSERT(jrec
->pushcount
== 0 && jrec
->residual
== 0);
1117 journal_commit(jrec
->jo
, &jrec
->rawp
,
1118 jrec
->stream_reserved
- jrec
->stream_residual
, 1);
1122 * jrec should not be used beyond this point without another init,
1123 * but clean up some fields to ensure that we panic if it is.
1125 * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1128 jrec
->stream_ptr
= NULL
;
1131 /************************************************************************
1132 * LOW LEVEL RECORD SUPPORT ROUTINES *
1133 ************************************************************************
1135 * These routine create low level recursive and leaf subrecords representing
1136 * common filesystem structures.
1140 * Write out a filename path relative to the base of the mount point.
1141 * rectype is typically JLEAF_PATH{1,2,3,4}.
1144 jrecord_write_path(struct jrecord
*jrec
, int16_t rectype
, struct namecache
*ncp
)
1146 char buf
[64]; /* local buffer if it fits, else malloced */
1150 struct namecache
*scan
;
1153 * Pass 1 - figure out the number of bytes required. Include terminating
1154 * \0 on last element and '/' separator on other elements.
1156 * The namecache topology terminates at the root of the filesystem
1157 * (the normal lookup code would then continue by using the mount
1158 * structure to figure out what it was mounted on).
1162 for (scan
= ncp
; scan
; scan
= scan
->nc_parent
) {
1163 if (scan
->nc_nlen
> 0)
1164 pathlen
+= scan
->nc_nlen
+ 1;
1167 if (pathlen
<= sizeof(buf
))
1170 base
= kmalloc(pathlen
, M_TEMP
, M_INTWAIT
);
1173 * Pass 2 - generate the path buffer
1176 for (scan
= ncp
; scan
; scan
= scan
->nc_parent
) {
1177 if (scan
->nc_nlen
== 0)
1179 if (scan
->nc_nlen
>= index
) {
1181 kfree(base
, M_TEMP
);
1184 if (index
== pathlen
)
1187 base
[--index
] = '/';
1188 index
-= scan
->nc_nlen
;
1189 bcopy(scan
->nc_name
, base
+ index
, scan
->nc_nlen
);
1191 jrecord_leaf(jrec
, rectype
, base
+ index
, pathlen
- index
);
1193 kfree(base
, M_TEMP
);
1197 * Write out a file attribute structure. While somewhat inefficient, using
1198 * a recursive data structure is the most portable and extensible way.
1201 jrecord_write_vattr(struct jrecord
*jrec
, struct vattr
*vat
)
1205 save
= jrecord_push(jrec
, JTYPE_VATTR
);
1206 if (vat
->va_type
!= VNON
)
1207 jrecord_leaf(jrec
, JLEAF_VTYPE
, &vat
->va_type
, sizeof(vat
->va_type
));
1208 if (vat
->va_mode
!= (mode_t
)VNOVAL
)
1209 jrecord_leaf(jrec
, JLEAF_MODES
, &vat
->va_mode
, sizeof(vat
->va_mode
));
1210 if (vat
->va_nlink
!= VNOVAL
)
1211 jrecord_leaf(jrec
, JLEAF_NLINK
, &vat
->va_nlink
, sizeof(vat
->va_nlink
));
1212 if (vat
->va_uid
!= VNOVAL
)
1213 jrecord_leaf(jrec
, JLEAF_UID
, &vat
->va_uid
, sizeof(vat
->va_uid
));
1214 if (vat
->va_gid
!= VNOVAL
)
1215 jrecord_leaf(jrec
, JLEAF_GID
, &vat
->va_gid
, sizeof(vat
->va_gid
));
1216 if (vat
->va_fsid
!= VNOVAL
)
1217 jrecord_leaf(jrec
, JLEAF_FSID
, &vat
->va_fsid
, sizeof(vat
->va_fsid
));
1218 if (vat
->va_fileid
!= VNOVAL
)
1219 jrecord_leaf(jrec
, JLEAF_INUM
, &vat
->va_fileid
, sizeof(vat
->va_fileid
));
1220 if (vat
->va_size
!= VNOVAL
)
1221 jrecord_leaf(jrec
, JLEAF_SIZE
, &vat
->va_size
, sizeof(vat
->va_size
));
1222 if (vat
->va_atime
.tv_sec
!= VNOVAL
)
1223 jrecord_leaf(jrec
, JLEAF_ATIME
, &vat
->va_atime
, sizeof(vat
->va_atime
));
1224 if (vat
->va_mtime
.tv_sec
!= VNOVAL
)
1225 jrecord_leaf(jrec
, JLEAF_MTIME
, &vat
->va_mtime
, sizeof(vat
->va_mtime
));
1226 if (vat
->va_ctime
.tv_sec
!= VNOVAL
)
1227 jrecord_leaf(jrec
, JLEAF_CTIME
, &vat
->va_ctime
, sizeof(vat
->va_ctime
));
1228 if (vat
->va_gen
!= VNOVAL
)
1229 jrecord_leaf(jrec
, JLEAF_GEN
, &vat
->va_gen
, sizeof(vat
->va_gen
));
1230 if (vat
->va_flags
!= VNOVAL
)
1231 jrecord_leaf(jrec
, JLEAF_FLAGS
, &vat
->va_flags
, sizeof(vat
->va_flags
));
1232 if (vat
->va_rmajor
!= VNOVAL
) {
1233 udev_t rdev
= makeudev(vat
->va_rmajor
, vat
->va_rminor
);
1234 jrecord_leaf(jrec
, JLEAF_UDEV
, &rdev
, sizeof(rdev
));
1235 jrecord_leaf(jrec
, JLEAF_UMAJOR
, &vat
->va_rmajor
, sizeof(vat
->va_rmajor
));
1236 jrecord_leaf(jrec
, JLEAF_UMINOR
, &vat
->va_rminor
, sizeof(vat
->va_rminor
));
1239 if (vat
->va_filerev
!= VNOVAL
)
1240 jrecord_leaf(jrec
, JLEAF_FILEREV
, &vat
->va_filerev
, sizeof(vat
->va_filerev
));
1242 jrecord_pop(jrec
, save
);
1246 * Write out the creds used to issue a file operation. If a process is
1247 * available write out additional tracking information related to the
1250 * XXX additional tracking info
1254 jrecord_write_cred(struct jrecord
*jrec
, struct thread
*td
, struct ucred
*cred
)
1259 save
= jrecord_push(jrec
, JTYPE_CRED
);
1260 jrecord_leaf(jrec
, JLEAF_UID
, &cred
->cr_uid
, sizeof(cred
->cr_uid
));
1261 jrecord_leaf(jrec
, JLEAF_GID
, &cred
->cr_gid
, sizeof(cred
->cr_gid
));
1262 if (td
&& (p
= td
->td_proc
) != NULL
) {
1263 jrecord_leaf(jrec
, JLEAF_PID
, &p
->p_pid
, sizeof(p
->p_pid
));
1264 jrecord_leaf(jrec
, JLEAF_COMM
, p
->p_comm
, sizeof(p
->p_comm
));
1266 jrecord_pop(jrec
, save
);
1270 * Write out information required to identify a vnode
1272 * XXX this needs work. We should write out the inode number as well,
1273 * and in fact avoid writing out the file path for seqential writes
1274 * occuring within e.g. a certain period of time.
1277 jrecord_write_vnode_ref(struct jrecord
*jrec
, struct vnode
*vp
)
1279 struct namecache
*ncp
;
1281 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1282 if ((ncp
->nc_flag
& (NCF_UNRESOLVED
|NCF_DESTROYED
)) == 0)
1286 jrecord_write_path(jrec
, JLEAF_PATH_REF
, ncp
);
1290 jrecord_write_vnode_link(struct jrecord
*jrec
, struct vnode
*vp
,
1291 struct namecache
*notncp
)
1293 struct namecache
*ncp
;
1295 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1298 if ((ncp
->nc_flag
& (NCF_UNRESOLVED
|NCF_DESTROYED
)) == 0)
1302 jrecord_write_path(jrec
, JLEAF_PATH_REF
, ncp
);
1306 * Write out the data represented by a pagelist
1309 jrecord_write_pagelist(struct jrecord
*jrec
, int16_t rectype
,
1310 struct vm_page
**pglist
, int *rtvals
, int pgcount
,
1313 struct msf_buf
*msf
;
1319 while (i
< pgcount
) {
1321 * Find the next valid section. Skip any invalid elements
1323 if (rtvals
[i
] != VM_PAGER_OK
) {
1325 offset
+= PAGE_SIZE
;
1330 * Figure out how big the valid section is, capping I/O at what the
1331 * MSFBUF can represent.
1334 while (i
< pgcount
&& i
- b
!= XIO_INTERNAL_PAGES
&&
1335 rtvals
[i
] == VM_PAGER_OK
1344 error
= msf_map_pagelist(&msf
, pglist
+ b
, i
- b
, 0);
1346 kprintf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf
));
1347 jrecord_leaf(jrec
, JLEAF_SEEKPOS
, &offset
, sizeof(offset
));
1348 jrecord_leaf(jrec
, rectype
,
1349 msf_buf_kva(msf
), msf_buf_bytes(msf
));
1352 kprintf("jrecord_write_pagelist: mapping failure\n");
1354 offset
+= (off_t
)(i
- b
) << PAGE_SHIFT
;
1360 * Write out the data represented by a UIO.
1363 struct jrecord
*jrec
;
1367 static int jrecord_write_uio_callback(void *info
, char *buf
, int bytes
);
1370 jrecord_write_uio(struct jrecord
*jrec
, int16_t rectype
, struct uio
*uio
)
1372 struct jwuio_info info
= { jrec
, rectype
};
1375 if (uio
->uio_segflg
!= UIO_NOCOPY
) {
1376 jrecord_leaf(jrec
, JLEAF_SEEKPOS
, &uio
->uio_offset
,
1377 sizeof(uio
->uio_offset
));
1378 error
= msf_uio_iterate(uio
, jrecord_write_uio_callback
, &info
);
1380 kprintf("XXX warning uio iterate failed %d\n", error
);
1385 jrecord_write_uio_callback(void *info_arg
, char *buf
, int bytes
)
1387 struct jwuio_info
*info
= info_arg
;
1389 jrecord_leaf(info
->jrec
, info
->rectype
, buf
, bytes
);
1394 jrecord_file_data(struct jrecord
*jrec
, struct vnode
*vp
,
1395 off_t off
, off_t bytes
)
1397 const int bufsize
= 8192;
1402 buf
= kmalloc(bufsize
, M_JOURNAL
, M_WAITOK
);
1403 jrecord_leaf(jrec
, JLEAF_SEEKPOS
, &off
, sizeof(off
));
1405 n
= (bytes
> bufsize
) ? bufsize
: (int)bytes
;
1406 error
= vn_rdwr(UIO_READ
, vp
, buf
, n
, off
, UIO_SYSSPACE
, IO_NODELOCKED
,
1407 proc0
.p_ucred
, NULL
);
1409 jrecord_leaf(jrec
, JLEAF_ERROR
, &error
, sizeof(error
));
1412 jrecord_leaf(jrec
, JLEAF_FILEDATA
, buf
, n
);
1416 kfree(buf
, M_JOURNAL
);