kernel - Fix ranging test in memory probe, adjust memory test (2)
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blobca6ef03550e7d6ef7e11273bad389f47a6590076
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008-2017 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
93 #include <sys/efi.h>
95 #include <ddb/ddb.h>
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h> /* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
130 #define PHYSMAP_ENTRIES 10
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
134 extern void printcpuinfo(void); /* XXX header file */
135 extern void identify_cpu(void);
136 #if 0 /* JG */
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 static void init_locks(void);
149 extern void pcpu_timer_always(struct intrframe *);
151 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
152 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
153 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
159 struct privatespace CPU_prvspace_bsp __aligned(4096);
160 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
162 vm_paddr_t efi_systbl_phys;
163 int _udatasel, _ucodesel, _ucode32sel;
164 u_long atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 cpumask_t smp_idleinvl_mask;
167 cpumask_t smp_idleinvl_reqs;
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181 "monitor/mwait target state");
183 #define CPU_MWAIT_HAS_CX \
184 ((cpu_feature2 & CPUID2_MON) && \
185 (cpu_mwait_feature & CPUID_MWAIT_EXT))
187 #define CPU_MWAIT_CX_NAMELEN 16
189 #define CPU_MWAIT_C1 1
190 #define CPU_MWAIT_C2 2
191 #define CPU_MWAIT_C3 3
192 #define CPU_MWAIT_CX_MAX 8
194 #define CPU_MWAIT_HINT_AUTO -1 /* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP -2 /* C3+ */
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
200 struct cpu_mwait_cx {
201 int subcnt;
202 char name[4];
203 struct sysctl_ctx_list sysctl_ctx;
204 struct sysctl_oid *sysctl_tree;
206 static struct cpu_mwait_cx cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char cpu_mwait_cx_supported[256];
209 static int cpu_mwait_c1_hints_cnt;
210 static int cpu_mwait_hints_cnt;
211 static int *cpu_mwait_hints;
213 static int cpu_mwait_deep_hints_cnt;
214 static int *cpu_mwait_deep_hints;
216 #define CPU_IDLE_REPEAT_DEFAULT 750
218 static u_int cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int cpu_mwait_repeat_shift = 1;
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB 0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS 0x2
225 static int cpu_mwait_c3_preamble =
226 CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 CPU_MWAIT_C3_PREAMBLE_BM_STS;
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230 cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232 &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
234 static int cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 int *, boolean_t);
236 static int cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241 NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243 NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245 &cpu_mwait_repeat_shift, 0, "");
247 long physmem = 0;
249 u_long ebda_addr = 0;
251 int imcr_present = 0;
253 int naps = 0; /* # of Applications processors */
255 u_int base_memory;
257 static int
258 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
260 u_long pmem = ctob(physmem);
261 int error;
263 error = sysctl_handle_long(oidp, &pmem, 0, req);
265 return (error);
268 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
269 0, 0, sysctl_hw_physmem, "LU",
270 "Total system memory in bytes (number of pages * page size)");
272 static int
273 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
275 u_long usermem = ctob(physmem - vmstats.v_wire_count);
276 int error;
278 error = sysctl_handle_long(oidp, &usermem, 0, req);
280 return (error);
283 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
284 0, 0, sysctl_hw_usermem, "LU", "");
286 static int
287 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
289 int error;
290 u_long availpages;
292 availpages = x86_64_btop(avail_end - avail_start);
293 error = sysctl_handle_long(oidp, &availpages, 0, req);
295 return (error);
298 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG|CTLFLAG_RD,
299 0, 0, sysctl_hw_availpages, "LU", "");
301 vm_paddr_t Maxmem;
302 vm_paddr_t Realmem;
305 * The number of PHYSMAP entries must be one less than the number of
306 * PHYSSEG entries because the PHYSMAP entry that spans the largest
307 * physical address that is accessible by ISA DMA is split into two
308 * PHYSSEG entries.
310 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
311 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
313 /* must be 1 less so 0 0 can signal end of chunks */
314 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
315 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
317 static vm_offset_t buffer_sva, buffer_eva;
318 vm_offset_t clean_sva, clean_eva;
319 static vm_offset_t pager_sva, pager_eva;
320 static struct trapframe proc0_tf;
322 static void
323 cpu_startup(void *dummy)
325 caddr_t v;
326 vm_size_t size = 0;
327 vm_offset_t firstaddr;
330 * Good {morning,afternoon,evening,night}.
332 kprintf("%s", version);
333 startrtclock();
334 printcpuinfo();
335 panicifcpuunsupported();
336 kprintf("real memory = %ju (%ju MB)\n",
337 (intmax_t)Realmem,
338 (intmax_t)Realmem / 1024 / 1024);
340 * Display any holes after the first chunk of extended memory.
342 if (bootverbose) {
343 int indx;
345 kprintf("Physical memory chunk(s):\n");
346 for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
347 vm_paddr_t size1;
349 size1 = phys_avail[indx].phys_end -
350 phys_avail[indx].phys_beg;
352 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
353 (intmax_t)phys_avail[indx].phys_beg,
354 (intmax_t)phys_avail[indx].phys_end - 1,
355 (intmax_t)size1,
356 (intmax_t)(size1 / PAGE_SIZE));
361 * Allocate space for system data structures.
362 * The first available kernel virtual address is in "v".
363 * As pages of kernel virtual memory are allocated, "v" is incremented.
364 * As pages of memory are allocated and cleared,
365 * "firstaddr" is incremented.
366 * An index into the kernel page table corresponding to the
367 * virtual memory address maintained in "v" is kept in "mapaddr".
371 * Make two passes. The first pass calculates how much memory is
372 * needed and allocates it. The second pass assigns virtual
373 * addresses to the various data structures.
375 firstaddr = 0;
376 again:
377 v = (caddr_t)firstaddr;
379 #define valloc(name, type, num) \
380 (name) = (type *)v; v = (caddr_t)((name)+(num))
381 #define valloclim(name, type, num, lim) \
382 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
385 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
386 * For the first 64MB of ram nominally allocate sufficient buffers to
387 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
388 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
389 * the buffer cache we limit the eventual kva reservation to
390 * maxbcache bytes.
392 * factor represents the 1/4 x ram conversion.
394 if (nbuf == 0) {
395 long factor = 4 * NBUFCALCSIZE / 1024;
396 long kbytes = physmem * (PAGE_SIZE / 1024);
398 nbuf = 50;
399 if (kbytes > 4096)
400 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
401 if (kbytes > 65536)
402 nbuf += (kbytes - 65536) * 2 / (factor * 5);
403 if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
404 nbuf = maxbcache / NBUFCALCSIZE;
408 * Do not allow the buffer_map to be more then 1/2 the size of the
409 * kernel_map.
411 if (nbuf > (virtual_end - virtual_start +
412 virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
413 nbuf = (virtual_end - virtual_start +
414 virtual2_end - virtual2_start) / (MAXBSIZE * 2);
415 kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
419 * Do not allow the buffer_map to use more than 50% of available
420 * physical-equivalent memory. Since the VM pages which back
421 * individual buffers are typically wired, having too many bufs
422 * can prevent the system from paging properly.
424 if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
425 nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
426 kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
430 * Do not allow the sizeof(struct buf) * nbuf to exceed 1/4 of
431 * the valloc space which is just the virtual_end - virtual_start
432 * section. This is typically ~2GB regardless of the amount of
433 * memory, so we use 500MB as a metric.
435 * This is because we use valloc() to allocate the buf header array.
437 * NOTE: buffer space in bytes is limited by vfs.*bufspace sysctls.
439 if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 4) {
440 nbuf = (virtual_end - virtual_start) /
441 sizeof(struct buf) / 2;
442 kprintf("Warning: nbufs capped at %ld due to "
443 "valloc considerations\n",
444 nbuf);
447 nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
448 #ifdef NSWBUF_MIN
449 if (nswbuf_mem < NSWBUF_MIN)
450 nswbuf_mem = NSWBUF_MIN;
451 #endif
452 nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
453 #ifdef NSWBUF_MIN
454 if (nswbuf_kva < NSWBUF_MIN)
455 nswbuf_kva = NSWBUF_MIN;
456 #endif
458 valloc(swbuf_mem, struct buf, nswbuf_mem);
459 valloc(swbuf_kva, struct buf, nswbuf_kva);
460 valloc(buf, struct buf, nbuf);
463 * End of first pass, size has been calculated so allocate memory
465 if (firstaddr == 0) {
466 size = (vm_size_t)(v - firstaddr);
467 firstaddr = kmem_alloc(&kernel_map, round_page(size),
468 VM_SUBSYS_BUF);
469 if (firstaddr == 0)
470 panic("startup: no room for tables");
471 goto again;
475 * End of second pass, addresses have been assigned
477 * nbuf is an int, make sure we don't overflow the field.
479 * On 64-bit systems we always reserve maximal allocations for
480 * buffer cache buffers and there are no fragmentation issues,
481 * so the KVA segment does not have to be excessively oversized.
483 if ((vm_size_t)(v - firstaddr) != size)
484 panic("startup: table size inconsistency");
486 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
487 ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
488 ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
489 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
490 ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
491 buffer_map.system_map = 1;
492 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
493 ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
494 pager_map_size);
495 pager_map.system_map = 1;
496 kprintf("avail memory = %ju (%ju MB)\n",
497 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
498 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
499 1024 / 1024);
502 struct cpu_idle_stat {
503 int hint;
504 int reserved;
505 u_long halt;
506 u_long spin;
507 u_long repeat;
508 u_long repeat_last;
509 u_long repeat_delta;
510 u_long mwait_cx[CPU_MWAIT_CX_MAX];
511 } __cachealign;
513 #define CPU_IDLE_STAT_HALT -1
514 #define CPU_IDLE_STAT_SPIN -2
516 static struct cpu_idle_stat cpu_idle_stats[MAXCPU];
518 static int
519 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
521 int idx = arg2, cpu, error;
522 u_long val = 0;
524 if (idx == CPU_IDLE_STAT_HALT) {
525 for (cpu = 0; cpu < ncpus; ++cpu)
526 val += cpu_idle_stats[cpu].halt;
527 } else if (idx == CPU_IDLE_STAT_SPIN) {
528 for (cpu = 0; cpu < ncpus; ++cpu)
529 val += cpu_idle_stats[cpu].spin;
530 } else {
531 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
532 ("invalid index %d", idx));
533 for (cpu = 0; cpu < ncpus; ++cpu)
534 val += cpu_idle_stats[cpu].mwait_cx[idx];
537 error = sysctl_handle_quad(oidp, &val, 0, req);
538 if (error || req->newptr == NULL)
539 return error;
541 if (idx == CPU_IDLE_STAT_HALT) {
542 for (cpu = 0; cpu < ncpus; ++cpu)
543 cpu_idle_stats[cpu].halt = 0;
544 cpu_idle_stats[0].halt = val;
545 } else if (idx == CPU_IDLE_STAT_SPIN) {
546 for (cpu = 0; cpu < ncpus; ++cpu)
547 cpu_idle_stats[cpu].spin = 0;
548 cpu_idle_stats[0].spin = val;
549 } else {
550 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
551 ("invalid index %d", idx));
552 for (cpu = 0; cpu < ncpus; ++cpu)
553 cpu_idle_stats[cpu].mwait_cx[idx] = 0;
554 cpu_idle_stats[0].mwait_cx[idx] = val;
556 return 0;
559 static void
560 cpu_mwait_attach(void)
562 struct sbuf sb;
563 int hint_idx, i;
565 if (!CPU_MWAIT_HAS_CX)
566 return;
568 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
569 (CPUID_TO_FAMILY(cpu_id) > 0xf ||
570 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
571 CPUID_TO_MODEL(cpu_id) >= 0xf))) {
572 int bm_sts = 1;
575 * Pentium dual-core, Core 2 and beyond do not need any
576 * additional activities to enter deep C-state, i.e. C3(+).
578 cpu_mwait_cx_no_bmarb();
580 TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
581 if (!bm_sts)
582 cpu_mwait_cx_no_bmsts();
585 sbuf_new(&sb, cpu_mwait_cx_supported,
586 sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
588 for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
589 struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
590 int sub;
592 ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
594 sysctl_ctx_init(&cx->sysctl_ctx);
595 cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
596 SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
597 cx->name, CTLFLAG_RW, NULL, "Cx control/info");
598 if (cx->sysctl_tree == NULL)
599 continue;
601 cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
602 SYSCTL_ADD_INT(&cx->sysctl_ctx,
603 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
604 "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
605 "sub-state count");
606 SYSCTL_ADD_PROC(&cx->sysctl_ctx,
607 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
608 "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
609 i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
611 for (sub = 0; sub < cx->subcnt; ++sub)
612 sbuf_printf(&sb, "C%d/%d ", i, sub);
614 sbuf_trim(&sb);
615 sbuf_finish(&sb);
618 * Non-deep C-states
620 cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
621 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
622 cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
623 cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
624 M_DEVBUF, M_WAITOK);
626 hint_idx = 0;
627 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
628 int j, subcnt;
630 subcnt = cpu_mwait_cx_info[i].subcnt;
631 for (j = 0; j < subcnt; ++j) {
632 KASSERT(hint_idx < cpu_mwait_hints_cnt,
633 ("invalid mwait hint index %d", hint_idx));
634 cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
635 ++hint_idx;
638 KASSERT(hint_idx == cpu_mwait_hints_cnt,
639 ("mwait hint count %d != index %d",
640 cpu_mwait_hints_cnt, hint_idx));
642 if (bootverbose) {
643 kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
644 for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
645 int hint = cpu_mwait_hints[i];
647 kprintf(" C%d/%d hint 0x%04x\n",
648 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
649 hint);
654 * Deep C-states
656 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
657 cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
658 cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
659 M_DEVBUF, M_WAITOK);
661 hint_idx = 0;
662 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
663 int j, subcnt;
665 subcnt = cpu_mwait_cx_info[i].subcnt;
666 for (j = 0; j < subcnt; ++j) {
667 KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
668 ("invalid mwait deep hint index %d", hint_idx));
669 cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
670 ++hint_idx;
673 KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
674 ("mwait deep hint count %d != index %d",
675 cpu_mwait_deep_hints_cnt, hint_idx));
677 if (bootverbose) {
678 kprintf("MWAIT deep hints:\n");
679 for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
680 int hint = cpu_mwait_deep_hints[i];
682 kprintf(" C%d/%d hint 0x%04x\n",
683 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
684 hint);
687 cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
689 for (i = 0; i < ncpus; ++i) {
690 char name[16];
692 ksnprintf(name, sizeof(name), "idle%d", i);
693 SYSCTL_ADD_PROC(NULL,
694 SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
695 name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
696 0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
700 static void
701 cpu_finish(void *dummy __unused)
703 cpu_setregs();
704 cpu_mwait_attach();
707 static void
708 pic_finish(void *dummy __unused)
710 /* Log ELCR information */
711 elcr_dump();
713 /* Log MPTABLE information */
714 mptable_pci_int_dump();
716 /* Finalize PCI */
717 MachIntrABI.finalize();
721 * Send an interrupt to process.
723 * Stack is set up to allow sigcode stored
724 * at top to call routine, followed by kcall
725 * to sigreturn routine below. After sigreturn
726 * resets the signal mask, the stack, and the
727 * frame pointer, it returns to the user
728 * specified pc, psl.
730 void
731 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
733 struct lwp *lp = curthread->td_lwp;
734 struct proc *p = lp->lwp_proc;
735 struct trapframe *regs;
736 struct sigacts *psp = p->p_sigacts;
737 struct sigframe sf, *sfp;
738 int oonstack;
739 char *sp;
741 regs = lp->lwp_md.md_regs;
742 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
744 /* Save user context */
745 bzero(&sf, sizeof(struct sigframe));
746 sf.sf_uc.uc_sigmask = *mask;
747 sf.sf_uc.uc_stack = lp->lwp_sigstk;
748 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
749 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
750 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
752 /* Make the size of the saved context visible to userland */
753 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
755 /* Allocate and validate space for the signal handler context. */
756 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
757 SIGISMEMBER(psp->ps_sigonstack, sig)) {
758 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
759 sizeof(struct sigframe));
760 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
761 } else {
762 /* We take red zone into account */
763 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
767 * XXX AVX needs 64-byte alignment but sigframe has other fields and
768 * the embedded ucontext is not at the front, so aligning this won't
769 * help us. Fortunately we bcopy in/out of the sigframe, so the
770 * kernel is ok.
772 * The problem though is if userland winds up trying to use the
773 * context directly.
775 sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
777 /* Translate the signal is appropriate */
778 if (p->p_sysent->sv_sigtbl) {
779 if (sig <= p->p_sysent->sv_sigsize)
780 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
784 * Build the argument list for the signal handler.
786 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
788 regs->tf_rdi = sig; /* argument 1 */
789 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
791 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
793 * Signal handler installed with SA_SIGINFO.
795 * action(signo, siginfo, ucontext)
797 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
798 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
799 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
801 /* fill siginfo structure */
802 sf.sf_si.si_signo = sig;
803 sf.sf_si.si_code = code;
804 sf.sf_si.si_addr = (void *)regs->tf_addr;
805 } else {
807 * Old FreeBSD-style arguments.
809 * handler (signo, code, [uc], addr)
811 regs->tf_rsi = (register_t)code; /* argument 2 */
812 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
813 sf.sf_ahu.sf_handler = catcher;
817 * If we're a vm86 process, we want to save the segment registers.
818 * We also change eflags to be our emulated eflags, not the actual
819 * eflags.
821 #if 0 /* JG */
822 if (regs->tf_eflags & PSL_VM) {
823 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
824 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
826 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
827 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
828 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
829 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
831 if (vm86->vm86_has_vme == 0)
832 sf.sf_uc.uc_mcontext.mc_eflags =
833 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
834 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
837 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
838 * syscalls made by the signal handler. This just avoids
839 * wasting time for our lazy fixup of such faults. PSL_NT
840 * does nothing in vm86 mode, but vm86 programs can set it
841 * almost legitimately in probes for old cpu types.
843 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
845 #endif
848 * Save the FPU state and reinit the FP unit
850 npxpush(&sf.sf_uc.uc_mcontext);
853 * Copy the sigframe out to the user's stack.
855 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
857 * Something is wrong with the stack pointer.
858 * ...Kill the process.
860 sigexit(lp, SIGILL);
863 regs->tf_rsp = (register_t)sfp;
864 regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
865 regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
868 * i386 abi specifies that the direction flag must be cleared
869 * on function entry
871 regs->tf_rflags &= ~(PSL_T | PSL_D);
874 * 64 bit mode has a code and stack selector but
875 * no data or extra selector. %fs and %gs are not
876 * stored in-context.
878 regs->tf_cs = _ucodesel;
879 regs->tf_ss = _udatasel;
880 clear_quickret();
884 * Sanitize the trapframe for a virtual kernel passing control to a custom
885 * VM context. Remove any items that would otherwise create a privilage
886 * issue.
888 * XXX at the moment we allow userland to set the resume flag. Is this a
889 * bad idea?
892 cpu_sanitize_frame(struct trapframe *frame)
894 frame->tf_cs = _ucodesel;
895 frame->tf_ss = _udatasel;
896 /* XXX VM (8086) mode not supported? */
897 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
898 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
900 return(0);
904 * Sanitize the tls so loading the descriptor does not blow up
905 * on us. For x86_64 we don't have to do anything.
908 cpu_sanitize_tls(struct savetls *tls)
910 return(0);
914 * sigreturn(ucontext_t *sigcntxp)
916 * System call to cleanup state after a signal
917 * has been taken. Reset signal mask and
918 * stack state from context left by sendsig (above).
919 * Return to previous pc and psl as specified by
920 * context left by sendsig. Check carefully to
921 * make sure that the user has not modified the
922 * state to gain improper privileges.
924 * MPSAFE
926 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
927 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
930 sys_sigreturn(struct sigreturn_args *uap)
932 struct lwp *lp = curthread->td_lwp;
933 struct trapframe *regs;
934 ucontext_t uc;
935 ucontext_t *ucp;
936 register_t rflags;
937 int cs;
938 int error;
941 * We have to copy the information into kernel space so userland
942 * can't modify it while we are sniffing it.
944 regs = lp->lwp_md.md_regs;
945 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
946 if (error)
947 return (error);
948 ucp = &uc;
949 rflags = ucp->uc_mcontext.mc_rflags;
951 /* VM (8086) mode not supported */
952 rflags &= ~PSL_VM_UNSUPP;
954 #if 0 /* JG */
955 if (eflags & PSL_VM) {
956 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
957 struct vm86_kernel *vm86;
960 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
961 * set up the vm86 area, and we can't enter vm86 mode.
963 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
964 return (EINVAL);
965 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
966 if (vm86->vm86_inited == 0)
967 return (EINVAL);
969 /* go back to user mode if both flags are set */
970 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
971 trapsignal(lp, SIGBUS, 0);
973 if (vm86->vm86_has_vme) {
974 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
975 (eflags & VME_USERCHANGE) | PSL_VM;
976 } else {
977 vm86->vm86_eflags = eflags; /* save VIF, VIP */
978 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
979 (eflags & VM_USERCHANGE) | PSL_VM;
981 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
982 tf->tf_eflags = eflags;
983 tf->tf_vm86_ds = tf->tf_ds;
984 tf->tf_vm86_es = tf->tf_es;
985 tf->tf_vm86_fs = tf->tf_fs;
986 tf->tf_vm86_gs = tf->tf_gs;
987 tf->tf_ds = _udatasel;
988 tf->tf_es = _udatasel;
989 tf->tf_fs = _udatasel;
990 tf->tf_gs = _udatasel;
991 } else
992 #endif
995 * Don't allow users to change privileged or reserved flags.
998 * XXX do allow users to change the privileged flag PSL_RF.
999 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
1000 * should sometimes set it there too. tf_eflags is kept in
1001 * the signal context during signal handling and there is no
1002 * other place to remember it, so the PSL_RF bit may be
1003 * corrupted by the signal handler without us knowing.
1004 * Corruption of the PSL_RF bit at worst causes one more or
1005 * one less debugger trap, so allowing it is fairly harmless.
1007 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1008 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1009 return(EINVAL);
1013 * Don't allow users to load a valid privileged %cs. Let the
1014 * hardware check for invalid selectors, excess privilege in
1015 * other selectors, invalid %eip's and invalid %esp's.
1017 cs = ucp->uc_mcontext.mc_cs;
1018 if (!CS_SECURE(cs)) {
1019 kprintf("sigreturn: cs = 0x%x\n", cs);
1020 trapsignal(lp, SIGBUS, T_PROTFLT);
1021 return(EINVAL);
1023 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1027 * Restore the FPU state from the frame
1029 crit_enter();
1030 npxpop(&ucp->uc_mcontext);
1032 if (ucp->uc_mcontext.mc_onstack & 1)
1033 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1034 else
1035 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1037 lp->lwp_sigmask = ucp->uc_sigmask;
1038 SIG_CANTMASK(lp->lwp_sigmask);
1039 clear_quickret();
1040 crit_exit();
1041 return(EJUSTRETURN);
1045 * Machine dependent boot() routine
1047 * I haven't seen anything to put here yet
1048 * Possibly some stuff might be grafted back here from boot()
1050 void
1051 cpu_boot(int howto)
1056 * Shutdown the CPU as much as possible
1058 void
1059 cpu_halt(void)
1061 for (;;)
1062 __asm__ __volatile("hlt");
1066 * cpu_idle() represents the idle LWKT. You cannot return from this function
1067 * (unless you want to blow things up!). Instead we look for runnable threads
1068 * and loop or halt as appropriate. Giant is not held on entry to the thread.
1070 * The main loop is entered with a critical section held, we must release
1071 * the critical section before doing anything else. lwkt_switch() will
1072 * check for pending interrupts due to entering and exiting its own
1073 * critical section.
1075 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1076 * However, there are cases where the idlethread will be entered with
1077 * the possibility that no IPI will occur and in such cases
1078 * lwkt_switch() sets TDF_IDLE_NOHLT.
1080 * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1081 * must occur before it starts using ACPI halt.
1083 * NOTE: Value overridden in hammer_time().
1085 static int cpu_idle_hlt = 2;
1086 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1087 &cpu_idle_hlt, 0, "Idle loop HLT enable");
1088 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1089 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1091 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1092 0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1093 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1094 0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1096 static void
1097 cpu_idle_default_hook(void)
1100 * We must guarentee that hlt is exactly the instruction
1101 * following the sti.
1103 __asm __volatile("sti; hlt");
1106 /* Other subsystems (e.g., ACPI) can hook this later. */
1107 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1109 static __inline int
1110 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1112 int hint, cx_idx;
1113 u_int idx;
1115 hint = stat->hint;
1116 if (hint >= 0)
1117 goto done;
1119 idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1120 cpu_mwait_repeat_shift;
1121 if (idx >= cpu_mwait_c1_hints_cnt) {
1122 /* Step up faster, once we walked through all C1 states */
1123 stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1125 if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1126 if (idx >= cpu_mwait_deep_hints_cnt)
1127 idx = cpu_mwait_deep_hints_cnt - 1;
1128 hint = cpu_mwait_deep_hints[idx];
1129 } else {
1130 if (idx >= cpu_mwait_hints_cnt)
1131 idx = cpu_mwait_hints_cnt - 1;
1132 hint = cpu_mwait_hints[idx];
1134 done:
1135 cx_idx = MWAIT_EAX_TO_CX(hint);
1136 if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1137 stat->mwait_cx[cx_idx]++;
1138 return hint;
1141 void
1142 cpu_idle(void)
1144 globaldata_t gd = mycpu;
1145 struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1146 struct thread *td __debugvar = gd->gd_curthread;
1147 int reqflags;
1148 int quick;
1150 stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1152 crit_exit();
1153 KKASSERT(td->td_critcount == 0);
1155 for (;;) {
1157 * See if there are any LWKTs ready to go.
1159 lwkt_switch();
1162 * When halting inside a cli we must check for reqflags
1163 * races, particularly [re]schedule requests. Running
1164 * splz() does the job.
1166 * cpu_idle_hlt:
1167 * 0 Never halt, just spin
1169 * 1 Always use MONITOR/MWAIT if avail, HLT
1170 * otherwise.
1172 * Better default for modern (Haswell+) Intel
1173 * cpus.
1175 * 2 Use HLT/MONITOR/MWAIT up to a point and then
1176 * use the ACPI halt (default). This is a hybrid
1177 * approach. See machdep.cpu_idle_repeat.
1179 * Better default for modern AMD cpus and older
1180 * Intel cpus.
1182 * 3 Always use the ACPI halt. This typically
1183 * eats the least amount of power but the cpu
1184 * will be slow waking up. Slows down e.g.
1185 * compiles and other pipe/event oriented stuff.
1187 * Usually the best default for AMD cpus.
1189 * 4 Always use HLT.
1191 * 5 Always spin.
1193 * NOTE: Interrupts are enabled and we are not in a critical
1194 * section.
1196 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
1197 * don't bother capping gd_idle_repeat, it is ok if
1198 * it overflows.
1200 * Implement optimized invltlb operations when halted
1201 * in idle. By setting the bit in smp_idleinvl_mask
1202 * we inform other cpus that they can set _reqs to
1203 * request an invltlb. Current the code to do that
1204 * sets the bits in _reqs anyway, but then check _mask
1205 * to determine if they can assume the invltlb will execute.
1207 * A critical section is required to ensure that interrupts
1208 * do not fully run until after we've had a chance to execute
1209 * the request.
1211 if (gd->gd_idle_repeat == 0) {
1212 stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1213 if (stat->repeat > cpu_idle_repeat_max)
1214 stat->repeat = cpu_idle_repeat_max;
1215 stat->repeat_last = 0;
1216 stat->repeat_delta = 0;
1218 ++stat->repeat_last;
1220 ++gd->gd_idle_repeat;
1221 reqflags = gd->gd_reqflags;
1222 quick = (cpu_idle_hlt == 1) ||
1223 (cpu_idle_hlt == 2 &&
1224 gd->gd_idle_repeat < cpu_idle_repeat);
1226 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1227 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1228 splz(); /* XXX */
1229 crit_enter_gd(gd);
1230 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1231 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1232 cpu_mwait_cx_hint(stat), 0);
1233 stat->halt++;
1234 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1235 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1236 gd->gd_cpuid)) {
1237 cpu_invltlb();
1238 cpu_mfence();
1240 crit_exit_gd(gd);
1241 } else if (cpu_idle_hlt) {
1242 __asm __volatile("cli");
1243 splz();
1244 crit_enter_gd(gd);
1245 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1246 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1247 if (cpu_idle_hlt == 5) {
1248 __asm __volatile("sti");
1249 } else if (quick || cpu_idle_hlt == 4) {
1250 cpu_idle_default_hook();
1251 } else {
1252 cpu_idle_hook();
1255 __asm __volatile("sti");
1256 stat->halt++;
1257 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1258 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1259 gd->gd_cpuid)) {
1260 cpu_invltlb();
1261 cpu_mfence();
1263 crit_exit_gd(gd);
1264 } else {
1265 splz();
1266 __asm __volatile("sti");
1267 stat->spin++;
1268 crit_enter_gd(gd);
1269 crit_exit_gd(gd);
1275 * Called in a loop indirectly via Xcpustop
1277 void
1278 cpu_smp_stopped(void)
1280 globaldata_t gd = mycpu;
1281 volatile __uint64_t *ptr;
1282 __uint64_t ovalue;
1284 ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1285 ovalue = *ptr;
1286 if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1287 if (cpu_mi_feature & CPU_MI_MONITOR) {
1288 if (cpu_mwait_hints) {
1289 cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1290 ovalue,
1291 cpu_mwait_hints[CPU_MWAIT_C1], 0);
1292 } else {
1293 cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1294 ovalue, 0, 0);
1296 } else {
1297 cpu_halt(); /* depend on lapic timer */
1303 * This routine is called if a spinlock has been held through the
1304 * exponential backoff period and is seriously contested. On a real cpu
1305 * we let it spin.
1307 void
1308 cpu_spinlock_contested(void)
1310 cpu_pause();
1314 * Clear registers on exec
1316 void
1317 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1319 struct thread *td = curthread;
1320 struct lwp *lp = td->td_lwp;
1321 struct pcb *pcb = td->td_pcb;
1322 struct trapframe *regs = lp->lwp_md.md_regs;
1324 /* was i386_user_cleanup() in NetBSD */
1325 user_ldt_free(pcb);
1327 clear_quickret();
1328 bzero((char *)regs, sizeof(struct trapframe));
1329 regs->tf_rip = entry;
1330 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1331 regs->tf_rdi = stack; /* argv */
1332 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1333 regs->tf_ss = _udatasel;
1334 regs->tf_cs = _ucodesel;
1335 regs->tf_rbx = ps_strings;
1338 * Reset the hardware debug registers if they were in use.
1339 * They won't have any meaning for the newly exec'd process.
1341 if (pcb->pcb_flags & PCB_DBREGS) {
1342 pcb->pcb_dr0 = 0;
1343 pcb->pcb_dr1 = 0;
1344 pcb->pcb_dr2 = 0;
1345 pcb->pcb_dr3 = 0;
1346 pcb->pcb_dr6 = 0;
1347 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1348 if (pcb == td->td_pcb) {
1350 * Clear the debug registers on the running
1351 * CPU, otherwise they will end up affecting
1352 * the next process we switch to.
1354 reset_dbregs();
1356 pcb->pcb_flags &= ~PCB_DBREGS;
1360 * Initialize the math emulator (if any) for the current process.
1361 * Actually, just clear the bit that says that the emulator has
1362 * been initialized. Initialization is delayed until the process
1363 * traps to the emulator (if it is done at all) mainly because
1364 * emulators don't provide an entry point for initialization.
1366 pcb->pcb_flags &= ~FP_SOFTFP;
1369 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1370 * gd_npxthread. Otherwise a preemptive interrupt thread
1371 * may panic in npxdna().
1373 crit_enter();
1374 load_cr0(rcr0() | CR0_MP);
1377 * NOTE: The MSR values must be correct so we can return to
1378 * userland. gd_user_fs/gs must be correct so the switch
1379 * code knows what the current MSR values are.
1381 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1382 pcb->pcb_gsbase = 0;
1383 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1384 mdcpu->gd_user_gs = 0;
1385 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1386 wrmsr(MSR_KGSBASE, 0);
1388 /* Initialize the npx (if any) for the current process. */
1389 npxinit();
1390 crit_exit();
1392 pcb->pcb_ds = _udatasel;
1393 pcb->pcb_es = _udatasel;
1394 pcb->pcb_fs = _udatasel;
1395 pcb->pcb_gs = _udatasel;
1398 void
1399 cpu_setregs(void)
1401 register_t cr0;
1403 cr0 = rcr0();
1404 cr0 |= CR0_NE; /* Done by npxinit() */
1405 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1406 cr0 |= CR0_WP | CR0_AM;
1407 load_cr0(cr0);
1408 load_gs(_udatasel);
1411 static int
1412 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1414 int error;
1415 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1416 req);
1417 if (!error && req->newptr)
1418 resettodr();
1419 return (error);
1422 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1423 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1425 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1426 CTLFLAG_RW, &disable_rtc_set, 0, "");
1428 #if 0 /* JG */
1429 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1430 CTLFLAG_RD, &bootinfo, bootinfo, "");
1431 #endif
1433 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1434 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1436 static int
1437 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1439 struct efi_map_header *efihdr;
1440 caddr_t kmdp;
1441 uint32_t efisize;
1443 kmdp = preload_search_by_type("elf kernel");
1444 if (kmdp == NULL)
1445 kmdp = preload_search_by_type("elf64 kernel");
1446 efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1447 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1448 if (efihdr == NULL)
1449 return (0);
1450 efisize = *((uint32_t *)efihdr - 1);
1451 return (SYSCTL_OUT(req, efihdr, efisize));
1453 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1454 efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1457 * Initialize 386 and configure to run kernel
1461 * Initialize segments & interrupt table
1464 int _default_ldt;
1465 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1466 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1467 #if 0 /* JG */
1468 union descriptor ldt[NLDT]; /* local descriptor table */
1469 #endif
1471 /* table descriptors - used to load tables by cpu */
1472 struct region_descriptor r_gdt;
1473 struct region_descriptor r_idt_arr[MAXCPU];
1475 /* JG proc0paddr is a virtual address */
1476 void *proc0paddr;
1477 /* JG alignment? */
1478 char proc0paddr_buff[LWKT_THREAD_STACK];
1481 /* software prototypes -- in more palatable form */
1482 struct soft_segment_descriptor gdt_segs[] = {
1483 /* GNULL_SEL 0 Null Descriptor */
1484 { 0x0, /* segment base address */
1485 0x0, /* length */
1486 0, /* segment type */
1487 0, /* segment descriptor priority level */
1488 0, /* segment descriptor present */
1489 0, /* long */
1490 0, /* default 32 vs 16 bit size */
1491 0 /* limit granularity (byte/page units)*/ },
1492 /* GCODE_SEL 1 Code Descriptor for kernel */
1493 { 0x0, /* segment base address */
1494 0xfffff, /* length - all address space */
1495 SDT_MEMERA, /* segment type */
1496 SEL_KPL, /* segment descriptor priority level */
1497 1, /* segment descriptor present */
1498 1, /* long */
1499 0, /* default 32 vs 16 bit size */
1500 1 /* limit granularity (byte/page units)*/ },
1501 /* GDATA_SEL 2 Data Descriptor for kernel */
1502 { 0x0, /* segment base address */
1503 0xfffff, /* length - all address space */
1504 SDT_MEMRWA, /* segment type */
1505 SEL_KPL, /* segment descriptor priority level */
1506 1, /* segment descriptor present */
1507 1, /* long */
1508 0, /* default 32 vs 16 bit size */
1509 1 /* limit granularity (byte/page units)*/ },
1510 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1511 { 0x0, /* segment base address */
1512 0xfffff, /* length - all address space */
1513 SDT_MEMERA, /* segment type */
1514 SEL_UPL, /* segment descriptor priority level */
1515 1, /* segment descriptor present */
1516 0, /* long */
1517 1, /* default 32 vs 16 bit size */
1518 1 /* limit granularity (byte/page units)*/ },
1519 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1520 { 0x0, /* segment base address */
1521 0xfffff, /* length - all address space */
1522 SDT_MEMRWA, /* segment type */
1523 SEL_UPL, /* segment descriptor priority level */
1524 1, /* segment descriptor present */
1525 0, /* long */
1526 1, /* default 32 vs 16 bit size */
1527 1 /* limit granularity (byte/page units)*/ },
1528 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1529 { 0x0, /* segment base address */
1530 0xfffff, /* length - all address space */
1531 SDT_MEMERA, /* segment type */
1532 SEL_UPL, /* segment descriptor priority level */
1533 1, /* segment descriptor present */
1534 1, /* long */
1535 0, /* default 32 vs 16 bit size */
1536 1 /* limit granularity (byte/page units)*/ },
1537 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1539 0x0, /* segment base address */
1540 sizeof(struct x86_64tss)-1,/* length - all address space */
1541 SDT_SYSTSS, /* segment type */
1542 SEL_KPL, /* segment descriptor priority level */
1543 1, /* segment descriptor present */
1544 0, /* long */
1545 0, /* unused - default 32 vs 16 bit size */
1546 0 /* limit granularity (byte/page units)*/ },
1547 /* Actually, the TSS is a system descriptor which is double size */
1548 { 0x0, /* segment base address */
1549 0x0, /* length */
1550 0, /* segment type */
1551 0, /* segment descriptor priority level */
1552 0, /* segment descriptor present */
1553 0, /* long */
1554 0, /* default 32 vs 16 bit size */
1555 0 /* limit granularity (byte/page units)*/ },
1556 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1557 { 0x0, /* segment base address */
1558 0xfffff, /* length - all address space */
1559 SDT_MEMRWA, /* segment type */
1560 SEL_UPL, /* segment descriptor priority level */
1561 1, /* segment descriptor present */
1562 0, /* long */
1563 1, /* default 32 vs 16 bit size */
1564 1 /* limit granularity (byte/page units)*/ },
1567 void
1568 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1570 int cpu;
1572 for (cpu = 0; cpu < MAXCPU; ++cpu) {
1573 struct gate_descriptor *ip = &idt_arr[cpu][idx];
1575 ip->gd_looffset = (uintptr_t)func;
1576 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1577 ip->gd_ist = ist;
1578 ip->gd_xx = 0;
1579 ip->gd_type = typ;
1580 ip->gd_dpl = dpl;
1581 ip->gd_p = 1;
1582 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1586 void
1587 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1589 struct gate_descriptor *ip;
1591 KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1593 ip = &idt_arr[cpu][idx];
1594 ip->gd_looffset = (uintptr_t)func;
1595 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1596 ip->gd_ist = ist;
1597 ip->gd_xx = 0;
1598 ip->gd_type = typ;
1599 ip->gd_dpl = dpl;
1600 ip->gd_p = 1;
1601 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1604 #define IDTVEC(name) __CONCAT(X,name)
1606 extern inthand_t
1607 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1608 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1609 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1610 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1611 IDTVEC(xmm), IDTVEC(dblfault),
1612 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1614 void
1615 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1617 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1618 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1619 ssd->ssd_type = sd->sd_type;
1620 ssd->ssd_dpl = sd->sd_dpl;
1621 ssd->ssd_p = sd->sd_p;
1622 ssd->ssd_def32 = sd->sd_def32;
1623 ssd->ssd_gran = sd->sd_gran;
1626 void
1627 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1630 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1631 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1632 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1633 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1634 sd->sd_type = ssd->ssd_type;
1635 sd->sd_dpl = ssd->ssd_dpl;
1636 sd->sd_p = ssd->ssd_p;
1637 sd->sd_long = ssd->ssd_long;
1638 sd->sd_def32 = ssd->ssd_def32;
1639 sd->sd_gran = ssd->ssd_gran;
1642 void
1643 ssdtosyssd(struct soft_segment_descriptor *ssd,
1644 struct system_segment_descriptor *sd)
1647 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1648 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1649 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1650 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1651 sd->sd_type = ssd->ssd_type;
1652 sd->sd_dpl = ssd->ssd_dpl;
1653 sd->sd_p = ssd->ssd_p;
1654 sd->sd_gran = ssd->ssd_gran;
1658 * Populate the (physmap) array with base/bound pairs describing the
1659 * available physical memory in the system, then test this memory and
1660 * build the phys_avail array describing the actually-available memory.
1662 * If we cannot accurately determine the physical memory map, then use
1663 * value from the 0xE801 call, and failing that, the RTC.
1665 * Total memory size may be set by the kernel environment variable
1666 * hw.physmem or the compile-time define MAXMEM.
1668 * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1669 * of PAGE_SIZE. This also greatly reduces the memory test time
1670 * which would otherwise be excessive on machines with > 8G of ram.
1672 * XXX first should be vm_paddr_t.
1675 #define PHYSMAP_ALIGN (vm_paddr_t)(128 * 1024)
1676 #define PHYSMAP_ALIGN_MASK (vm_paddr_t)(PHYSMAP_ALIGN - 1)
1677 #define PHYSMAP_SIZE VM_PHYSSEG_MAX
1679 vm_paddr_t physmap[PHYSMAP_SIZE];
1680 struct bios_smap *smapbase, *smap, *smapend;
1681 struct efi_map_header *efihdrbase;
1682 u_int32_t smapsize;
1684 #define PHYSMAP_HANDWAVE (vm_paddr_t)(2 * 1024 * 1024)
1685 #define PHYSMAP_HANDWAVE_MASK (PHYSMAP_HANDWAVE - 1)
1687 static void
1688 add_smap_entries(int *physmap_idx)
1690 int i;
1692 smapsize = *((u_int32_t *)smapbase - 1);
1693 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1695 for (smap = smapbase; smap < smapend; smap++) {
1696 if (boothowto & RB_VERBOSE)
1697 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1698 smap->type, smap->base, smap->length);
1700 if (smap->type != SMAP_TYPE_MEMORY)
1701 continue;
1703 if (smap->length == 0)
1704 continue;
1706 for (i = 0; i <= *physmap_idx; i += 2) {
1707 if (smap->base < physmap[i + 1]) {
1708 if (boothowto & RB_VERBOSE) {
1709 kprintf("Overlapping or non-monotonic "
1710 "memory region, ignoring "
1711 "second region\n");
1713 break;
1716 if (i <= *physmap_idx)
1717 continue;
1719 Realmem += smap->length;
1721 if (smap->base == physmap[*physmap_idx + 1]) {
1722 physmap[*physmap_idx + 1] += smap->length;
1723 continue;
1726 *physmap_idx += 2;
1727 if (*physmap_idx == PHYSMAP_SIZE) {
1728 kprintf("Too many segments in the physical "
1729 "address map, giving up\n");
1730 break;
1732 physmap[*physmap_idx] = smap->base;
1733 physmap[*physmap_idx + 1] = smap->base + smap->length;
1737 static void
1738 add_efi_map_entries(int *physmap_idx)
1740 struct efi_md *map, *p;
1741 const char *type;
1742 size_t efisz;
1743 int i, ndesc;
1745 static const char *types[] = {
1746 "Reserved",
1747 "LoaderCode",
1748 "LoaderData",
1749 "BootServicesCode",
1750 "BootServicesData",
1751 "RuntimeServicesCode",
1752 "RuntimeServicesData",
1753 "ConventionalMemory",
1754 "UnusableMemory",
1755 "ACPIReclaimMemory",
1756 "ACPIMemoryNVS",
1757 "MemoryMappedIO",
1758 "MemoryMappedIOPortSpace",
1759 "PalCode"
1763 * Memory map data provided by UEFI via the GetMemoryMap
1764 * Boot Services API.
1766 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1767 map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1769 if (efihdrbase->descriptor_size == 0)
1770 return;
1771 ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1773 if (boothowto & RB_VERBOSE)
1774 kprintf("%23s %12s %12s %8s %4s\n",
1775 "Type", "Physical", "Virtual", "#Pages", "Attr");
1777 for (i = 0, p = map; i < ndesc; i++,
1778 p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1779 if (boothowto & RB_VERBOSE) {
1780 if (p->md_type <= EFI_MD_TYPE_PALCODE)
1781 type = types[p->md_type];
1782 else
1783 type = "<INVALID>";
1784 kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1785 p->md_virt, p->md_pages);
1786 if (p->md_attr & EFI_MD_ATTR_UC)
1787 kprintf("UC ");
1788 if (p->md_attr & EFI_MD_ATTR_WC)
1789 kprintf("WC ");
1790 if (p->md_attr & EFI_MD_ATTR_WT)
1791 kprintf("WT ");
1792 if (p->md_attr & EFI_MD_ATTR_WB)
1793 kprintf("WB ");
1794 if (p->md_attr & EFI_MD_ATTR_UCE)
1795 kprintf("UCE ");
1796 if (p->md_attr & EFI_MD_ATTR_WP)
1797 kprintf("WP ");
1798 if (p->md_attr & EFI_MD_ATTR_RP)
1799 kprintf("RP ");
1800 if (p->md_attr & EFI_MD_ATTR_XP)
1801 kprintf("XP ");
1802 if (p->md_attr & EFI_MD_ATTR_RT)
1803 kprintf("RUNTIME");
1804 kprintf("\n");
1807 switch (p->md_type) {
1808 case EFI_MD_TYPE_CODE:
1809 case EFI_MD_TYPE_DATA:
1810 case EFI_MD_TYPE_BS_CODE:
1811 case EFI_MD_TYPE_BS_DATA:
1812 case EFI_MD_TYPE_FREE:
1814 * We're allowed to use any entry with these types.
1816 break;
1817 default:
1818 continue;
1821 Realmem += p->md_pages * PAGE_SIZE;
1823 if (p->md_phys == physmap[*physmap_idx + 1]) {
1824 physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1825 continue;
1828 *physmap_idx += 2;
1829 if (*physmap_idx == PHYSMAP_SIZE) {
1830 kprintf("Too many segments in the physical "
1831 "address map, giving up\n");
1832 break;
1834 physmap[*physmap_idx] = p->md_phys;
1835 physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1839 struct fb_info efi_fb_info;
1840 static int have_efi_framebuffer = 0;
1842 static void
1843 efi_fb_init_vaddr(int direct_map)
1845 uint64_t sz;
1846 vm_offset_t addr, v;
1848 v = efi_fb_info.vaddr;
1849 sz = efi_fb_info.stride * efi_fb_info.height;
1851 if (direct_map) {
1852 addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1853 if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1854 efi_fb_info.vaddr = addr;
1855 } else {
1856 efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1857 efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1861 static u_int
1862 efifb_color_depth(struct efi_fb *efifb)
1864 uint32_t mask;
1865 u_int depth;
1867 mask = efifb->fb_mask_red | efifb->fb_mask_green |
1868 efifb->fb_mask_blue | efifb->fb_mask_reserved;
1869 if (mask == 0)
1870 return (0);
1871 for (depth = 1; mask != 1; depth++)
1872 mask >>= 1;
1873 return (depth);
1877 probe_efi_fb(int early)
1879 struct efi_fb *efifb;
1880 caddr_t kmdp;
1881 u_int depth;
1883 if (have_efi_framebuffer) {
1884 if (!early &&
1885 (efi_fb_info.vaddr == 0 ||
1886 efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1887 efi_fb_init_vaddr(0);
1888 return 0;
1891 kmdp = preload_search_by_type("elf kernel");
1892 if (kmdp == NULL)
1893 kmdp = preload_search_by_type("elf64 kernel");
1894 efifb = (struct efi_fb *)preload_search_info(kmdp,
1895 MODINFO_METADATA | MODINFOMD_EFI_FB);
1896 if (efifb == NULL)
1897 return 1;
1899 depth = efifb_color_depth(efifb);
1901 * Our bootloader should already notice, when we won't be able to
1902 * use the UEFI framebuffer.
1904 if (depth != 24 && depth != 32)
1905 return 1;
1907 have_efi_framebuffer = 1;
1909 efi_fb_info.is_vga_boot_display = 1;
1910 efi_fb_info.width = efifb->fb_width;
1911 efi_fb_info.height = efifb->fb_height;
1912 efi_fb_info.depth = depth;
1913 efi_fb_info.stride = efifb->fb_stride * (depth / 8);
1914 efi_fb_info.paddr = efifb->fb_addr;
1915 if (early) {
1916 efi_fb_info.vaddr = 0;
1917 } else {
1918 efi_fb_init_vaddr(0);
1920 efi_fb_info.fbops.fb_set_par = NULL;
1921 efi_fb_info.fbops.fb_blank = NULL;
1922 efi_fb_info.fbops.fb_debug_enter = NULL;
1923 efi_fb_info.device = NULL;
1925 return 0;
1928 static void
1929 efifb_startup(void *arg)
1931 probe_efi_fb(0);
1934 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1936 static void
1937 getmemsize(caddr_t kmdp, u_int64_t first)
1939 int off, physmap_idx, pa_indx, da_indx;
1940 int i, j;
1941 vm_paddr_t pa;
1942 vm_paddr_t msgbuf_size;
1943 u_long physmem_tunable;
1944 pt_entry_t *pte;
1945 quad_t dcons_addr, dcons_size;
1947 bzero(physmap, sizeof(physmap));
1948 physmap_idx = 0;
1951 * get memory map from INT 15:E820, kindly supplied by the loader.
1953 * subr_module.c says:
1954 * "Consumer may safely assume that size value precedes data."
1955 * ie: an int32_t immediately precedes smap.
1957 efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1958 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1959 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1960 MODINFO_METADATA | MODINFOMD_SMAP);
1961 if (smapbase == NULL && efihdrbase == NULL)
1962 panic("No BIOS smap or EFI map info from loader!");
1964 if (efihdrbase == NULL)
1965 add_smap_entries(&physmap_idx);
1966 else
1967 add_efi_map_entries(&physmap_idx);
1969 base_memory = physmap[1] / 1024;
1970 /* make hole for AP bootstrap code */
1971 physmap[1] = mp_bootaddress(base_memory);
1973 /* Save EBDA address, if any */
1974 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1975 ebda_addr <<= 4;
1978 * Maxmem isn't the "maximum memory", it's one larger than the
1979 * highest page of the physical address space. It should be
1980 * called something like "Maxphyspage". We may adjust this
1981 * based on ``hw.physmem'' and the results of the memory test.
1983 Maxmem = atop(physmap[physmap_idx + 1]);
1985 #ifdef MAXMEM
1986 Maxmem = MAXMEM / 4;
1987 #endif
1989 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1990 Maxmem = atop(physmem_tunable);
1993 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1994 * in the system.
1996 if (Maxmem > atop(physmap[physmap_idx + 1]))
1997 Maxmem = atop(physmap[physmap_idx + 1]);
2000 * Blowing out the DMAP will blow up the system.
2002 if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
2003 kprintf("Limiting Maxmem due to DMAP size\n");
2004 Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
2007 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2008 (boothowto & RB_VERBOSE)) {
2009 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
2013 * Call pmap initialization to make new kernel address space
2015 * Mask off page 0.
2017 pmap_bootstrap(&first);
2018 physmap[0] = PAGE_SIZE;
2021 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2022 * exceeding Maxmem.
2024 for (i = j = 0; i <= physmap_idx; i += 2) {
2025 if (physmap[i+1] > ptoa(Maxmem))
2026 physmap[i+1] = ptoa(Maxmem);
2027 physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2028 ~PHYSMAP_ALIGN_MASK;
2029 physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2031 physmap[j] = physmap[i];
2032 physmap[j+1] = physmap[i+1];
2034 if (physmap[i] < physmap[i+1])
2035 j += 2;
2037 physmap_idx = j - 2;
2040 * Align anything else used in the validation loop.
2042 * Also make sure that our 2MB kernel text+data+bss mappings
2043 * do not overlap potentially allocatable space.
2045 first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2048 * Size up each available chunk of physical memory.
2050 pa_indx = 0;
2051 da_indx = 0;
2052 phys_avail[pa_indx].phys_beg = physmap[0];
2053 phys_avail[pa_indx].phys_end = physmap[0];
2054 dump_avail[da_indx].phys_beg = 0;
2055 dump_avail[da_indx].phys_end = physmap[0];
2056 pte = CMAP1;
2059 * Get dcons buffer address
2061 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2062 kgetenv_quad("dcons.size", &dcons_size) == 0)
2063 dcons_addr = 0;
2066 * Validate the physical memory. The physical memory segments
2067 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2068 * of PAGE_SIZE.
2070 * We no longer perform an exhaustive memory test. Instead we
2071 * simply test the first and last word in each physmap[]
2072 * segment.
2074 for (i = 0; i <= physmap_idx; i += 2) {
2075 vm_paddr_t end;
2076 vm_paddr_t incr;
2078 end = physmap[i + 1];
2080 for (pa = physmap[i]; pa < end; pa += incr) {
2081 int page_bad, full;
2082 volatile uint64_t *ptr = (uint64_t *)CADDR1;
2083 uint64_t tmp;
2085 full = FALSE;
2088 * Calculate incr. Just test the first and
2089 * last page in each physmap[] segment.
2091 if (pa == end - PAGE_SIZE)
2092 incr = PAGE_SIZE;
2093 else
2094 incr = end - pa - PAGE_SIZE;
2097 * Make sure we don't skip blacked out areas.
2099 if (pa < 0x200000 && 0x200000 < end) {
2100 incr = 0x200000 - pa;
2102 if (dcons_addr > 0 &&
2103 pa < dcons_addr &&
2104 dcons_addr < end) {
2105 incr = dcons_addr - pa;
2109 * Block out kernel memory as not available.
2111 if (pa >= 0x200000 && pa < first) {
2112 incr = first - pa;
2113 if (pa + incr > end)
2114 incr = end - pa;
2115 goto do_dump_avail;
2119 * Block out the dcons buffer if it exists.
2121 if (dcons_addr > 0 &&
2122 pa >= trunc_page(dcons_addr) &&
2123 pa < dcons_addr + dcons_size) {
2124 incr = dcons_addr + dcons_size - pa;
2125 incr = (incr + PAGE_MASK) &
2126 ~(vm_paddr_t)PAGE_MASK;
2127 if (pa + incr > end)
2128 incr = end - pa;
2129 goto do_dump_avail;
2132 page_bad = FALSE;
2135 * Map the page non-cacheable for the memory
2136 * test.
2138 *pte = pa |
2139 kernel_pmap.pmap_bits[PG_V_IDX] |
2140 kernel_pmap.pmap_bits[PG_RW_IDX] |
2141 kernel_pmap.pmap_bits[PG_N_IDX];
2142 cpu_invlpg(__DEVOLATILE(void *, ptr));
2143 cpu_mfence();
2146 * Save original value for restoration later.
2148 tmp = *ptr;
2151 * Test for alternating 1's and 0's
2153 *ptr = 0xaaaaaaaaaaaaaaaaLLU;
2154 cpu_mfence();
2155 if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2156 page_bad = TRUE;
2158 * Test for alternating 0's and 1's
2160 *ptr = 0x5555555555555555LLU;
2161 cpu_mfence();
2162 if (*ptr != 0x5555555555555555LLU)
2163 page_bad = TRUE;
2165 * Test for all 1's
2167 *ptr = 0xffffffffffffffffLLU;
2168 cpu_mfence();
2169 if (*ptr != 0xffffffffffffffffLLU)
2170 page_bad = TRUE;
2172 * Test for all 0's
2174 *ptr = 0x0;
2175 cpu_mfence();
2176 if (*ptr != 0x0)
2177 page_bad = TRUE;
2180 * Restore original value.
2182 *ptr = tmp;
2185 * Adjust array of valid/good pages.
2187 if (page_bad == TRUE) {
2188 incr = PAGE_SIZE;
2189 continue;
2193 * Collapse page address into phys_avail[]. Do a
2194 * continuation of the current phys_avail[] index
2195 * when possible.
2197 if (phys_avail[pa_indx].phys_end == pa) {
2199 * Continuation
2201 phys_avail[pa_indx].phys_end += incr;
2202 } else if (phys_avail[pa_indx].phys_beg ==
2203 phys_avail[pa_indx].phys_end) {
2205 * Current phys_avail is completely empty,
2206 * reuse the index.
2208 phys_avail[pa_indx].phys_beg = pa;
2209 phys_avail[pa_indx].phys_end = pa + incr;
2210 } else {
2212 * Allocate next phys_avail index.
2214 ++pa_indx;
2215 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2216 kprintf(
2217 "Too many holes in the physical address space, giving up\n");
2218 --pa_indx;
2219 full = TRUE;
2220 goto do_dump_avail;
2222 phys_avail[pa_indx].phys_beg = pa;
2223 phys_avail[pa_indx].phys_end = pa + incr;
2225 physmem += incr / PAGE_SIZE;
2228 * pa available for dumping
2230 do_dump_avail:
2231 if (dump_avail[da_indx].phys_end == pa) {
2232 dump_avail[da_indx].phys_end += incr;
2233 } else {
2234 ++da_indx;
2235 if (da_indx == DUMP_AVAIL_ARRAY_END) {
2236 --da_indx;
2237 goto do_next;
2239 dump_avail[da_indx].phys_beg = pa;
2240 dump_avail[da_indx].phys_end = pa + incr;
2242 do_next:
2243 if (full)
2244 break;
2247 *pte = 0;
2248 cpu_invltlb();
2249 cpu_mfence();
2252 * The last chunk must contain at least one page plus the message
2253 * buffer to avoid complicating other code (message buffer address
2254 * calculation, etc.).
2256 msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2258 while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2259 phys_avail[pa_indx].phys_end) {
2260 physmem -= atop(phys_avail[pa_indx].phys_end -
2261 phys_avail[pa_indx].phys_beg);
2262 phys_avail[pa_indx].phys_beg = 0;
2263 phys_avail[pa_indx].phys_end = 0;
2264 --pa_indx;
2267 Maxmem = atop(phys_avail[pa_indx].phys_end);
2269 /* Trim off space for the message buffer. */
2270 phys_avail[pa_indx].phys_end -= msgbuf_size;
2272 avail_end = phys_avail[pa_indx].phys_end;
2274 /* Map the message buffer. */
2275 for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2276 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2278 /* Try to get EFI framebuffer working as early as possible */
2279 if (have_efi_framebuffer)
2280 efi_fb_init_vaddr(1);
2283 struct machintr_abi MachIntrABI;
2286 * IDT VECTORS:
2287 * 0 Divide by zero
2288 * 1 Debug
2289 * 2 NMI
2290 * 3 BreakPoint
2291 * 4 OverFlow
2292 * 5 Bound-Range
2293 * 6 Invalid OpCode
2294 * 7 Device Not Available (x87)
2295 * 8 Double-Fault
2296 * 9 Coprocessor Segment overrun (unsupported, reserved)
2297 * 10 Invalid-TSS
2298 * 11 Segment not present
2299 * 12 Stack
2300 * 13 General Protection
2301 * 14 Page Fault
2302 * 15 Reserved
2303 * 16 x87 FP Exception pending
2304 * 17 Alignment Check
2305 * 18 Machine Check
2306 * 19 SIMD floating point
2307 * 20-31 reserved
2308 * 32-255 INTn/external sources
2310 u_int64_t
2311 hammer_time(u_int64_t modulep, u_int64_t physfree)
2313 caddr_t kmdp;
2314 int gsel_tss, x, cpu;
2315 #if 0 /* JG */
2316 int metadata_missing, off;
2317 #endif
2318 struct mdglobaldata *gd;
2319 u_int64_t msr;
2322 * Prevent lowering of the ipl if we call tsleep() early.
2324 gd = &CPU_prvspace[0]->mdglobaldata;
2325 bzero(gd, sizeof(*gd));
2328 * Note: on both UP and SMP curthread must be set non-NULL
2329 * early in the boot sequence because the system assumes
2330 * that 'curthread' is never NULL.
2333 gd->mi.gd_curthread = &thread0;
2334 thread0.td_gd = &gd->mi;
2336 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2338 #if 0 /* JG */
2339 metadata_missing = 0;
2340 if (bootinfo.bi_modulep) {
2341 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2342 preload_bootstrap_relocate(KERNBASE);
2343 } else {
2344 metadata_missing = 1;
2346 if (bootinfo.bi_envp)
2347 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2348 #endif
2350 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2351 preload_bootstrap_relocate(PTOV_OFFSET);
2352 kmdp = preload_search_by_type("elf kernel");
2353 if (kmdp == NULL)
2354 kmdp = preload_search_by_type("elf64 kernel");
2355 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2356 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2357 #ifdef DDB
2358 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2359 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2360 #endif
2361 efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2363 if (boothowto & RB_VERBOSE)
2364 bootverbose++;
2367 * Default MachIntrABI to ICU
2369 MachIntrABI = MachIntrABI_ICU;
2372 * start with one cpu. Note: with one cpu, ncpus_fit_mask remain 0.
2374 ncpus = 1;
2375 ncpus_fit = 1;
2376 /* Init basic tunables, hz etc */
2377 init_param1();
2380 * make gdt memory segments
2382 gdt_segs[GPROC0_SEL].ssd_base =
2383 (uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2385 gd->mi.gd_prvspace = CPU_prvspace[0];
2387 for (x = 0; x < NGDT; x++) {
2388 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2389 ssdtosd(&gdt_segs[x], &gdt[x]);
2391 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2392 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2394 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2395 r_gdt.rd_base = (long) gdt;
2396 lgdt(&r_gdt);
2398 wrmsr(MSR_FSBASE, 0); /* User value */
2399 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2400 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
2402 mi_gdinit(&gd->mi, 0);
2403 cpu_gdinit(gd, 0);
2404 proc0paddr = proc0paddr_buff;
2405 mi_proc0init(&gd->mi, proc0paddr);
2406 safepri = TDPRI_MAX;
2408 /* spinlocks and the BGL */
2409 init_locks();
2411 /* exceptions */
2412 for (x = 0; x < NIDT; x++)
2413 setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2414 setidt_global(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
2415 setidt_global(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
2416 setidt_global(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
2417 setidt_global(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
2418 setidt_global(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
2419 setidt_global(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
2420 setidt_global(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
2421 setidt_global(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
2422 setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2423 setidt_global(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
2424 setidt_global(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
2425 setidt_global(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
2426 setidt_global(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
2427 setidt_global(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
2428 setidt_global(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
2429 setidt_global(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
2430 setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2431 setidt_global(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
2432 setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2434 for (cpu = 0; cpu < MAXCPU; ++cpu) {
2435 r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2436 r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2439 lidt(&r_idt_arr[0]);
2442 * Initialize the console before we print anything out.
2444 cninit();
2446 #if 0 /* JG */
2447 if (metadata_missing)
2448 kprintf("WARNING: loader(8) metadata is missing!\n");
2449 #endif
2451 #if NISA >0
2452 elcr_probe();
2453 isa_defaultirq();
2454 #endif
2455 rand_initialize();
2458 * Initialize IRQ mapping
2460 * NOTE:
2461 * SHOULD be after elcr_probe()
2463 MachIntrABI_ICU.initmap();
2464 MachIntrABI_IOAPIC.initmap();
2466 #ifdef DDB
2467 kdb_init();
2468 if (boothowto & RB_KDB)
2469 Debugger("Boot flags requested debugger");
2470 #endif
2472 #if 0 /* JG */
2473 finishidentcpu(); /* Final stage of CPU initialization */
2474 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2475 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2476 #endif
2477 identify_cpu(); /* Final stage of CPU initialization */
2478 initializecpu(0); /* Initialize CPU registers */
2481 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2482 * because the cpu does significant power management in MWAIT
2483 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2485 * On modern AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2486 * significant power management only when using ACPI halt mode.
2488 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2489 * is needed to reduce power consumption, but wakeup times are often
2490 * too long longer.
2492 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2493 CPUID_TO_MODEL(cpu_id) >= 0x3C) { /* Haswell or later */
2494 cpu_idle_hlt = 1;
2496 if (cpu_vendor_id == CPU_VENDOR_AMD) {
2497 if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2498 /* Ryzen or later */
2499 cpu_idle_hlt = 3;
2500 } else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2501 /* Bobcat or later */
2502 cpu_idle_hlt = 3;
2506 TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2507 TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2508 TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2509 TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2512 * Some of the virtual machines do not work w/ I/O APIC
2513 * enabled. If the user does not explicitly enable or
2514 * disable the I/O APIC (ioapic_enable < 0), then we
2515 * disable I/O APIC on all virtual machines.
2517 * NOTE:
2518 * This must be done after identify_cpu(), which sets
2519 * 'cpu_feature2'
2521 if (ioapic_enable < 0) {
2522 if (cpu_feature2 & CPUID2_VMM)
2523 ioapic_enable = 0;
2524 else
2525 ioapic_enable = 1;
2528 /* make an initial tss so cpu can get interrupt stack on syscall! */
2529 gd->gd_common_tss.tss_rsp0 =
2530 (register_t)(thread0.td_kstack +
2531 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2532 /* Ensure the stack is aligned to 16 bytes */
2533 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2535 /* double fault stack */
2536 gd->gd_common_tss.tss_ist1 =
2537 (long)&gd->mi.gd_prvspace->idlestack[
2538 sizeof(gd->mi.gd_prvspace->idlestack)];
2540 /* Set the IO permission bitmap (empty due to tss seg limit) */
2541 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2543 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2544 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2545 gd->gd_common_tssd = *gd->gd_tss_gdt;
2546 ltr(gsel_tss);
2548 /* Set up the fast syscall stuff */
2549 msr = rdmsr(MSR_EFER) | EFER_SCE;
2550 wrmsr(MSR_EFER, msr);
2551 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2552 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2553 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2554 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2555 wrmsr(MSR_STAR, msr);
2556 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2558 getmemsize(kmdp, physfree);
2559 init_param2(physmem);
2561 /* now running on new page tables, configured,and u/iom is accessible */
2563 /* Map the message buffer. */
2564 #if 0 /* JG */
2565 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2566 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2567 #endif
2569 msgbufinit(msgbufp, MSGBUF_SIZE);
2572 /* transfer to user mode */
2574 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2575 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2576 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2578 load_ds(_udatasel);
2579 load_es(_udatasel);
2580 load_fs(_udatasel);
2582 /* setup proc 0's pcb */
2583 thread0.td_pcb->pcb_flags = 0;
2584 thread0.td_pcb->pcb_cr3 = KPML4phys;
2585 thread0.td_pcb->pcb_ext = NULL;
2586 lwp0.lwp_md.md_regs = &proc0_tf; /* XXX needed? */
2588 /* Location of kernel stack for locore */
2589 return ((u_int64_t)thread0.td_pcb);
2593 * Initialize machine-dependant portions of the global data structure.
2594 * Note that the global data area and cpu0's idlestack in the private
2595 * data space were allocated in locore.
2597 * Note: the idlethread's cpl is 0
2599 * WARNING! Called from early boot, 'mycpu' may not work yet.
2601 void
2602 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2604 if (cpu)
2605 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2607 lwkt_init_thread(&gd->mi.gd_idlethread,
2608 gd->mi.gd_prvspace->idlestack,
2609 sizeof(gd->mi.gd_prvspace->idlestack),
2610 0, &gd->mi);
2611 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2612 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2613 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2614 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2618 * We only have to check for DMAP bounds, the globaldata space is
2619 * actually part of the kernel_map so we don't have to waste time
2620 * checking CPU_prvspace[*].
2623 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2625 #if 0
2626 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2627 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2628 return (TRUE);
2630 #endif
2631 if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2632 return (TRUE);
2633 return (FALSE);
2636 struct globaldata *
2637 globaldata_find(int cpu)
2639 KKASSERT(cpu >= 0 && cpu < ncpus);
2640 return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2644 * This path should be safe from the SYSRET issue because only stopped threads
2645 * can have their %rip adjusted this way (and all heavy weight thread switches
2646 * clear QUICKREF and thus do not use SYSRET). However, the code path is
2647 * convoluted so add a safety by forcing %rip to be cannonical.
2650 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2652 if (addr & 0x0000800000000000LLU)
2653 lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2654 else
2655 lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2656 return (0);
2660 ptrace_single_step(struct lwp *lp)
2662 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2663 return (0);
2667 fill_regs(struct lwp *lp, struct reg *regs)
2669 struct trapframe *tp;
2671 if ((tp = lp->lwp_md.md_regs) == NULL)
2672 return EINVAL;
2673 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2674 return (0);
2678 set_regs(struct lwp *lp, struct reg *regs)
2680 struct trapframe *tp;
2682 tp = lp->lwp_md.md_regs;
2683 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2684 !CS_SECURE(regs->r_cs))
2685 return (EINVAL);
2686 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2687 clear_quickret();
2688 return (0);
2691 static void
2692 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2694 struct env87 *penv_87 = &sv_87->sv_env;
2695 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2696 int i;
2698 /* FPU control/status */
2699 penv_87->en_cw = penv_xmm->en_cw;
2700 penv_87->en_sw = penv_xmm->en_sw;
2701 penv_87->en_tw = penv_xmm->en_tw;
2702 penv_87->en_fip = penv_xmm->en_fip;
2703 penv_87->en_fcs = penv_xmm->en_fcs;
2704 penv_87->en_opcode = penv_xmm->en_opcode;
2705 penv_87->en_foo = penv_xmm->en_foo;
2706 penv_87->en_fos = penv_xmm->en_fos;
2708 /* FPU registers */
2709 for (i = 0; i < 8; ++i)
2710 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2713 static void
2714 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2716 struct env87 *penv_87 = &sv_87->sv_env;
2717 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2718 int i;
2720 /* FPU control/status */
2721 penv_xmm->en_cw = penv_87->en_cw;
2722 penv_xmm->en_sw = penv_87->en_sw;
2723 penv_xmm->en_tw = penv_87->en_tw;
2724 penv_xmm->en_fip = penv_87->en_fip;
2725 penv_xmm->en_fcs = penv_87->en_fcs;
2726 penv_xmm->en_opcode = penv_87->en_opcode;
2727 penv_xmm->en_foo = penv_87->en_foo;
2728 penv_xmm->en_fos = penv_87->en_fos;
2730 /* FPU registers */
2731 for (i = 0; i < 8; ++i)
2732 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2736 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2738 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2739 return EINVAL;
2740 if (cpu_fxsr) {
2741 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2742 (struct save87 *)fpregs);
2743 return (0);
2745 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2746 return (0);
2750 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2752 if (cpu_fxsr) {
2753 set_fpregs_xmm((struct save87 *)fpregs,
2754 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2755 return (0);
2757 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2758 return (0);
2762 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2764 struct pcb *pcb;
2766 if (lp == NULL) {
2767 dbregs->dr[0] = rdr0();
2768 dbregs->dr[1] = rdr1();
2769 dbregs->dr[2] = rdr2();
2770 dbregs->dr[3] = rdr3();
2771 dbregs->dr[4] = rdr4();
2772 dbregs->dr[5] = rdr5();
2773 dbregs->dr[6] = rdr6();
2774 dbregs->dr[7] = rdr7();
2775 return (0);
2777 if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2778 return EINVAL;
2779 dbregs->dr[0] = pcb->pcb_dr0;
2780 dbregs->dr[1] = pcb->pcb_dr1;
2781 dbregs->dr[2] = pcb->pcb_dr2;
2782 dbregs->dr[3] = pcb->pcb_dr3;
2783 dbregs->dr[4] = 0;
2784 dbregs->dr[5] = 0;
2785 dbregs->dr[6] = pcb->pcb_dr6;
2786 dbregs->dr[7] = pcb->pcb_dr7;
2787 return (0);
2791 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2793 if (lp == NULL) {
2794 load_dr0(dbregs->dr[0]);
2795 load_dr1(dbregs->dr[1]);
2796 load_dr2(dbregs->dr[2]);
2797 load_dr3(dbregs->dr[3]);
2798 load_dr4(dbregs->dr[4]);
2799 load_dr5(dbregs->dr[5]);
2800 load_dr6(dbregs->dr[6]);
2801 load_dr7(dbregs->dr[7]);
2802 } else {
2803 struct pcb *pcb;
2804 struct ucred *ucred;
2805 int i;
2806 uint64_t mask1, mask2;
2809 * Don't let an illegal value for dr7 get set. Specifically,
2810 * check for undefined settings. Setting these bit patterns
2811 * result in undefined behaviour and can lead to an unexpected
2812 * TRCTRAP.
2814 /* JG this loop looks unreadable */
2815 /* Check 4 2-bit fields for invalid patterns.
2816 * These fields are R/Wi, for i = 0..3
2818 /* Is 10 in LENi allowed when running in compatibility mode? */
2819 /* Pattern 10 in R/Wi might be used to indicate
2820 * breakpoint on I/O. Further analysis should be
2821 * carried to decide if it is safe and useful to
2822 * provide access to that capability
2824 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2825 i++, mask1 <<= 4, mask2 <<= 4)
2826 if ((dbregs->dr[7] & mask1) == mask2)
2827 return (EINVAL);
2829 pcb = lp->lwp_thread->td_pcb;
2830 ucred = lp->lwp_proc->p_ucred;
2833 * Don't let a process set a breakpoint that is not within the
2834 * process's address space. If a process could do this, it
2835 * could halt the system by setting a breakpoint in the kernel
2836 * (if ddb was enabled). Thus, we need to check to make sure
2837 * that no breakpoints are being enabled for addresses outside
2838 * process's address space, unless, perhaps, we were called by
2839 * uid 0.
2841 * XXX - what about when the watched area of the user's
2842 * address space is written into from within the kernel
2843 * ... wouldn't that still cause a breakpoint to be generated
2844 * from within kernel mode?
2847 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2848 if (dbregs->dr[7] & 0x3) {
2849 /* dr0 is enabled */
2850 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2851 return (EINVAL);
2854 if (dbregs->dr[7] & (0x3<<2)) {
2855 /* dr1 is enabled */
2856 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2857 return (EINVAL);
2860 if (dbregs->dr[7] & (0x3<<4)) {
2861 /* dr2 is enabled */
2862 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2863 return (EINVAL);
2866 if (dbregs->dr[7] & (0x3<<6)) {
2867 /* dr3 is enabled */
2868 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2869 return (EINVAL);
2873 pcb->pcb_dr0 = dbregs->dr[0];
2874 pcb->pcb_dr1 = dbregs->dr[1];
2875 pcb->pcb_dr2 = dbregs->dr[2];
2876 pcb->pcb_dr3 = dbregs->dr[3];
2877 pcb->pcb_dr6 = dbregs->dr[6];
2878 pcb->pcb_dr7 = dbregs->dr[7];
2880 pcb->pcb_flags |= PCB_DBREGS;
2883 return (0);
2887 * Return > 0 if a hardware breakpoint has been hit, and the
2888 * breakpoint was in user space. Return 0, otherwise.
2891 user_dbreg_trap(void)
2893 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2894 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2895 int nbp; /* number of breakpoints that triggered */
2896 caddr_t addr[4]; /* breakpoint addresses */
2897 int i;
2899 dr7 = rdr7();
2900 if ((dr7 & 0xff) == 0) {
2902 * all GE and LE bits in the dr7 register are zero,
2903 * thus the trap couldn't have been caused by the
2904 * hardware debug registers
2906 return 0;
2909 nbp = 0;
2910 dr6 = rdr6();
2911 bp = dr6 & 0xf;
2913 if (bp == 0) {
2915 * None of the breakpoint bits are set meaning this
2916 * trap was not caused by any of the debug registers
2918 return 0;
2922 * at least one of the breakpoints were hit, check to see
2923 * which ones and if any of them are user space addresses
2926 if (bp & 0x01) {
2927 addr[nbp++] = (caddr_t)rdr0();
2929 if (bp & 0x02) {
2930 addr[nbp++] = (caddr_t)rdr1();
2932 if (bp & 0x04) {
2933 addr[nbp++] = (caddr_t)rdr2();
2935 if (bp & 0x08) {
2936 addr[nbp++] = (caddr_t)rdr3();
2939 for (i=0; i<nbp; i++) {
2940 if (addr[i] <
2941 (caddr_t)VM_MAX_USER_ADDRESS) {
2943 * addr[i] is in user space
2945 return nbp;
2950 * None of the breakpoints are in user space.
2952 return 0;
2956 #ifndef DDB
2957 void
2958 Debugger(const char *msg)
2960 kprintf("Debugger(\"%s\") called.\n", msg);
2962 #endif /* no DDB */
2964 #ifdef DDB
2967 * Provide inb() and outb() as functions. They are normally only
2968 * available as macros calling inlined functions, thus cannot be
2969 * called inside DDB.
2971 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2974 #undef inb
2975 #undef outb
2977 /* silence compiler warnings */
2978 u_char inb(u_int);
2979 void outb(u_int, u_char);
2981 u_char
2982 inb(u_int port)
2984 u_char data;
2986 * We use %%dx and not %1 here because i/o is done at %dx and not at
2987 * %edx, while gcc generates inferior code (movw instead of movl)
2988 * if we tell it to load (u_short) port.
2990 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2991 return (data);
2994 void
2995 outb(u_int port, u_char data)
2997 u_char al;
2999 * Use an unnecessary assignment to help gcc's register allocator.
3000 * This make a large difference for gcc-1.40 and a tiny difference
3001 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
3002 * best results. gcc-2.6.0 can't handle this.
3004 al = data;
3005 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3008 #endif /* DDB */
3013 * initialize all the SMP locks
3016 /* critical region when masking or unmasking interupts */
3017 struct spinlock_deprecated imen_spinlock;
3019 /* lock region used by kernel profiling */
3020 struct spinlock_deprecated mcount_spinlock;
3022 /* locks com (tty) data/hardware accesses: a FASTINTR() */
3023 struct spinlock_deprecated com_spinlock;
3025 /* lock regions around the clock hardware */
3026 struct spinlock_deprecated clock_spinlock;
3028 static void
3029 init_locks(void)
3032 * Get the initial mplock with a count of 1 for the BSP.
3033 * This uses a LOGICAL cpu ID, ie BSP == 0.
3035 cpu_get_initial_mplock();
3036 /* DEPRECATED */
3037 spin_init_deprecated(&mcount_spinlock);
3038 spin_init_deprecated(&imen_spinlock);
3039 spin_init_deprecated(&com_spinlock);
3040 spin_init_deprecated(&clock_spinlock);
3042 /* our token pool needs to work early */
3043 lwkt_token_pool_init();
3046 boolean_t
3047 cpu_mwait_hint_valid(uint32_t hint)
3049 int cx_idx, sub;
3051 cx_idx = MWAIT_EAX_TO_CX(hint);
3052 if (cx_idx >= CPU_MWAIT_CX_MAX)
3053 return FALSE;
3055 sub = MWAIT_EAX_TO_CX_SUB(hint);
3056 if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3057 return FALSE;
3059 return TRUE;
3062 void
3063 cpu_mwait_cx_no_bmsts(void)
3065 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3068 void
3069 cpu_mwait_cx_no_bmarb(void)
3071 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3074 static int
3075 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3077 int old_cx_idx, sub = 0;
3079 if (hint >= 0) {
3080 old_cx_idx = MWAIT_EAX_TO_CX(hint);
3081 sub = MWAIT_EAX_TO_CX_SUB(hint);
3082 } else if (hint == CPU_MWAIT_HINT_AUTO) {
3083 old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3084 } else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3085 old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3086 } else {
3087 old_cx_idx = CPU_MWAIT_CX_MAX;
3090 if (!CPU_MWAIT_HAS_CX)
3091 strlcpy(name, "NONE", namelen);
3092 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3093 strlcpy(name, "AUTO", namelen);
3094 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3095 strlcpy(name, "AUTODEEP", namelen);
3096 else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3097 sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3098 strlcpy(name, "INVALID", namelen);
3099 else
3100 ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3102 return old_cx_idx;
3105 static int
3106 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3108 int cx_idx, sub, hint;
3109 char *ptr, *start;
3111 if (allow_auto && strcmp(name, "AUTO") == 0) {
3112 hint = CPU_MWAIT_HINT_AUTO;
3113 cx_idx = CPU_MWAIT_C2;
3114 goto done;
3116 if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3117 hint = CPU_MWAIT_HINT_AUTODEEP;
3118 cx_idx = CPU_MWAIT_C3;
3119 goto done;
3122 if (strlen(name) < 4 || toupper(name[0]) != 'C')
3123 return -1;
3124 start = &name[1];
3125 ptr = NULL;
3127 cx_idx = strtol(start, &ptr, 10);
3128 if (ptr == start || *ptr != '/')
3129 return -1;
3130 if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3131 return -1;
3133 start = ptr + 1;
3134 ptr = NULL;
3136 sub = strtol(start, &ptr, 10);
3137 if (*ptr != '\0')
3138 return -1;
3139 if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3140 return -1;
3142 hint = MWAIT_EAX_HINT(cx_idx, sub);
3143 done:
3144 *hint0 = hint;
3145 return cx_idx;
3148 static int
3149 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3151 if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3152 return EOPNOTSUPP;
3153 if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3154 int error;
3156 error = cputimer_intr_powersave_addreq();
3157 if (error)
3158 return error;
3159 } else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3160 cputimer_intr_powersave_remreq();
3162 return 0;
3165 static int
3166 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3167 boolean_t allow_auto)
3169 int error, cx_idx, old_cx_idx, hint;
3170 char name[CPU_MWAIT_CX_NAMELEN];
3172 hint = *hint0;
3173 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3174 allow_auto);
3176 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3177 if (error != 0 || req->newptr == NULL)
3178 return error;
3180 if (!CPU_MWAIT_HAS_CX)
3181 return EOPNOTSUPP;
3183 cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3184 if (cx_idx < 0)
3185 return EINVAL;
3187 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3188 if (error)
3189 return error;
3191 *hint0 = hint;
3192 return 0;
3195 static int
3196 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3198 int error, cx_idx, old_cx_idx, hint;
3199 char name[CPU_MWAIT_CX_NAMELEN];
3201 KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3203 hint = stat->hint;
3204 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3206 strlcpy(name, cx_name, sizeof(name));
3207 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3208 if (cx_idx < 0)
3209 return EINVAL;
3211 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3212 if (error)
3213 return error;
3215 stat->hint = hint;
3216 return 0;
3219 static int
3220 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3222 int hint = cpu_mwait_halt_global;
3223 int error, cx_idx, cpu;
3224 char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3226 cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3228 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3229 if (error != 0 || req->newptr == NULL)
3230 return error;
3232 if (!CPU_MWAIT_HAS_CX)
3233 return EOPNOTSUPP;
3235 /* Save name for later per-cpu CX configuration */
3236 strlcpy(cx_name, name, sizeof(cx_name));
3238 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3239 if (cx_idx < 0)
3240 return EINVAL;
3242 /* Change per-cpu CX configuration */
3243 for (cpu = 0; cpu < ncpus; ++cpu) {
3244 error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3245 if (error)
3246 return error;
3249 cpu_mwait_halt_global = hint;
3250 return 0;
3253 static int
3254 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3256 struct cpu_idle_stat *stat = arg1;
3257 int error;
3259 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3260 &stat->hint, TRUE);
3261 return error;
3264 static int
3265 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3267 int error;
3269 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3270 &cpu_mwait_spin, FALSE);
3271 return error;
3275 * This manual debugging code is called unconditionally from Xtimer
3276 * (the per-cpu timer interrupt) whether the current thread is in a
3277 * critical section or not) and can be useful in tracking down lockups.
3279 * NOTE: MANUAL DEBUG CODE
3281 #if 0
3282 static int saveticks[SMP_MAXCPU];
3283 static int savecounts[SMP_MAXCPU];
3284 #endif
3286 void
3287 pcpu_timer_always(struct intrframe *frame)
3289 #if 0
3290 globaldata_t gd = mycpu;
3291 int cpu = gd->gd_cpuid;
3292 char buf[64];
3293 short *gptr;
3294 int i;
3296 if (cpu <= 20) {
3297 gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3298 *gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3299 ++gptr;
3301 ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3302 (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3303 gd->gd_infomsg);
3304 for (i = 0; buf[i]; ++i) {
3305 gptr[i] = 0x0700 | (unsigned char)buf[i];
3308 #if 0
3309 if (saveticks[gd->gd_cpuid] != ticks) {
3310 saveticks[gd->gd_cpuid] = ticks;
3311 savecounts[gd->gd_cpuid] = 0;
3313 ++savecounts[gd->gd_cpuid];
3314 if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3315 panic("cpud %d panicing on ticks failure",
3316 gd->gd_cpuid);
3318 for (i = 0; i < ncpus; ++i) {
3319 int delta;
3320 if (saveticks[i] && panicstr == NULL) {
3321 delta = saveticks[i] - ticks;
3322 if (delta < -10 || delta > 10) {
3323 panic("cpu %d panicing on cpu %d watchdog",
3324 gd->gd_cpuid, i);
3328 #endif
3329 #endif