Versioned UUID framework to start
[distributed.git] / src / gnulib / sha1.c
blob0f234d6772f8534789960ce1eddc297412cd5cb2
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
4 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
5 Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU Lesser General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* Written by Scott G. Miller
22 Credits:
23 Robert Klep <robert@ilse.nl> -- Expansion function fix
26 #include <config.h>
28 #include "sha1.h"
30 #include <stddef.h>
31 #include <string.h>
33 #if USE_UNLOCKED_IO
34 # include "unlocked-io.h"
35 #endif
37 #ifdef WORDS_BIGENDIAN
38 # define SWAP(n) (n)
39 #else
40 # define SWAP(n) \
41 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
42 #endif
44 #define BLOCKSIZE 4096
45 #if BLOCKSIZE % 64 != 0
46 # error "invalid BLOCKSIZE"
47 #endif
49 /* This array contains the bytes used to pad the buffer to the next
50 64-byte boundary. (RFC 1321, 3.1: Step 1) */
51 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
54 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
55 initialize it to the start constants of the SHA1 algorithm. This
56 must be called before using hash in the call to sha1_hash. */
57 void
58 sha1_init_ctx (struct sha1_ctx *ctx)
60 ctx->A = 0x67452301;
61 ctx->B = 0xefcdab89;
62 ctx->C = 0x98badcfe;
63 ctx->D = 0x10325476;
64 ctx->E = 0xc3d2e1f0;
66 ctx->total[0] = ctx->total[1] = 0;
67 ctx->buflen = 0;
70 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
71 If your architecture allows unaligned access this is equivalent to
72 * (uint32_t *) cp = v */
73 static inline void
74 set_uint32 (char *cp, uint32_t v)
76 memcpy (cp, &v, sizeof v);
79 /* Put result from CTX in first 20 bytes following RESBUF. The result
80 must be in little endian byte order. */
81 void *
82 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
84 char *r = resbuf;
85 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
86 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
87 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
88 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
89 set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
91 return resbuf;
94 /* Process the remaining bytes in the internal buffer and the usual
95 prolog according to the standard and write the result to RESBUF. */
96 void *
97 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
99 /* Take yet unprocessed bytes into account. */
100 uint32_t bytes = ctx->buflen;
101 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
103 /* Now count remaining bytes. */
104 ctx->total[0] += bytes;
105 if (ctx->total[0] < bytes)
106 ++ctx->total[1];
108 /* Put the 64-bit file length in *bits* at the end of the buffer. */
109 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
110 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
112 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
114 /* Process last bytes. */
115 sha1_process_block (ctx->buffer, size * 4, ctx);
117 return sha1_read_ctx (ctx, resbuf);
120 /* Compute SHA1 message digest for bytes read from STREAM. The
121 resulting message digest number will be written into the 16 bytes
122 beginning at RESBLOCK. */
124 sha1_stream (FILE *stream, void *resblock)
126 struct sha1_ctx ctx;
127 char buffer[BLOCKSIZE + 72];
128 size_t sum;
130 /* Initialize the computation context. */
131 sha1_init_ctx (&ctx);
133 /* Iterate over full file contents. */
134 while (1)
136 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
137 computation function processes the whole buffer so that with the
138 next round of the loop another block can be read. */
139 size_t n;
140 sum = 0;
142 /* Read block. Take care for partial reads. */
143 while (1)
145 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
147 sum += n;
149 if (sum == BLOCKSIZE)
150 break;
152 if (n == 0)
154 /* Check for the error flag IFF N == 0, so that we don't
155 exit the loop after a partial read due to e.g., EAGAIN
156 or EWOULDBLOCK. */
157 if (ferror (stream))
158 return 1;
159 goto process_partial_block;
162 /* We've read at least one byte, so ignore errors. But always
163 check for EOF, since feof may be true even though N > 0.
164 Otherwise, we could end up calling fread after EOF. */
165 if (feof (stream))
166 goto process_partial_block;
169 /* Process buffer with BLOCKSIZE bytes. Note that
170 BLOCKSIZE % 64 == 0
172 sha1_process_block (buffer, BLOCKSIZE, &ctx);
175 process_partial_block:;
177 /* Process any remaining bytes. */
178 if (sum > 0)
179 sha1_process_bytes (buffer, sum, &ctx);
181 /* Construct result in desired memory. */
182 sha1_finish_ctx (&ctx, resblock);
183 return 0;
186 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
187 result is always in little endian byte order, so that a byte-wise
188 output yields to the wanted ASCII representation of the message
189 digest. */
190 void *
191 sha1_buffer (const char *buffer, size_t len, void *resblock)
193 struct sha1_ctx ctx;
195 /* Initialize the computation context. */
196 sha1_init_ctx (&ctx);
198 /* Process whole buffer but last len % 64 bytes. */
199 sha1_process_bytes (buffer, len, &ctx);
201 /* Put result in desired memory area. */
202 return sha1_finish_ctx (&ctx, resblock);
205 void
206 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
208 /* When we already have some bits in our internal buffer concatenate
209 both inputs first. */
210 if (ctx->buflen != 0)
212 size_t left_over = ctx->buflen;
213 size_t add = 128 - left_over > len ? len : 128 - left_over;
215 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
216 ctx->buflen += add;
218 if (ctx->buflen > 64)
220 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
222 ctx->buflen &= 63;
223 /* The regions in the following copy operation cannot overlap. */
224 memcpy (ctx->buffer,
225 &((char *) ctx->buffer)[(left_over + add) & ~63],
226 ctx->buflen);
229 buffer = (const char *) buffer + add;
230 len -= add;
233 /* Process available complete blocks. */
234 if (len >= 64)
236 #if !_STRING_ARCH_unaligned
237 # define alignof(type) offsetof (struct { char c; type x; }, x)
238 # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
239 if (UNALIGNED_P (buffer))
240 while (len > 64)
242 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
243 buffer = (const char *) buffer + 64;
244 len -= 64;
246 else
247 #endif
249 sha1_process_block (buffer, len & ~63, ctx);
250 buffer = (const char *) buffer + (len & ~63);
251 len &= 63;
255 /* Move remaining bytes in internal buffer. */
256 if (len > 0)
258 size_t left_over = ctx->buflen;
260 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
261 left_over += len;
262 if (left_over >= 64)
264 sha1_process_block (ctx->buffer, 64, ctx);
265 left_over -= 64;
266 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
268 ctx->buflen = left_over;
272 /* --- Code below is the primary difference between md5.c and sha1.c --- */
274 /* SHA1 round constants */
275 #define K1 0x5a827999
276 #define K2 0x6ed9eba1
277 #define K3 0x8f1bbcdc
278 #define K4 0xca62c1d6
280 /* Round functions. Note that F2 is the same as F4. */
281 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
282 #define F2(B,C,D) (B ^ C ^ D)
283 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
284 #define F4(B,C,D) (B ^ C ^ D)
286 /* Process LEN bytes of BUFFER, accumulating context into CTX.
287 It is assumed that LEN % 64 == 0.
288 Most of this code comes from GnuPG's cipher/sha1.c. */
290 void
291 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
293 const uint32_t *words = buffer;
294 size_t nwords = len / sizeof (uint32_t);
295 const uint32_t *endp = words + nwords;
296 uint32_t x[16];
297 uint32_t a = ctx->A;
298 uint32_t b = ctx->B;
299 uint32_t c = ctx->C;
300 uint32_t d = ctx->D;
301 uint32_t e = ctx->E;
303 /* First increment the byte count. RFC 1321 specifies the possible
304 length of the file up to 2^64 bits. Here we only compute the
305 number of bytes. Do a double word increment. */
306 ctx->total[0] += len;
307 if (ctx->total[0] < len)
308 ++ctx->total[1];
310 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
312 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
313 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
314 , (x[I&0x0f] = rol(tm, 1)) )
316 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
317 + F( B, C, D ) \
318 + K \
319 + M; \
320 B = rol( B, 30 ); \
321 } while(0)
323 while (words < endp)
325 uint32_t tm;
326 int t;
327 for (t = 0; t < 16; t++)
329 x[t] = SWAP (*words);
330 words++;
333 R( a, b, c, d, e, F1, K1, x[ 0] );
334 R( e, a, b, c, d, F1, K1, x[ 1] );
335 R( d, e, a, b, c, F1, K1, x[ 2] );
336 R( c, d, e, a, b, F1, K1, x[ 3] );
337 R( b, c, d, e, a, F1, K1, x[ 4] );
338 R( a, b, c, d, e, F1, K1, x[ 5] );
339 R( e, a, b, c, d, F1, K1, x[ 6] );
340 R( d, e, a, b, c, F1, K1, x[ 7] );
341 R( c, d, e, a, b, F1, K1, x[ 8] );
342 R( b, c, d, e, a, F1, K1, x[ 9] );
343 R( a, b, c, d, e, F1, K1, x[10] );
344 R( e, a, b, c, d, F1, K1, x[11] );
345 R( d, e, a, b, c, F1, K1, x[12] );
346 R( c, d, e, a, b, F1, K1, x[13] );
347 R( b, c, d, e, a, F1, K1, x[14] );
348 R( a, b, c, d, e, F1, K1, x[15] );
349 R( e, a, b, c, d, F1, K1, M(16) );
350 R( d, e, a, b, c, F1, K1, M(17) );
351 R( c, d, e, a, b, F1, K1, M(18) );
352 R( b, c, d, e, a, F1, K1, M(19) );
353 R( a, b, c, d, e, F2, K2, M(20) );
354 R( e, a, b, c, d, F2, K2, M(21) );
355 R( d, e, a, b, c, F2, K2, M(22) );
356 R( c, d, e, a, b, F2, K2, M(23) );
357 R( b, c, d, e, a, F2, K2, M(24) );
358 R( a, b, c, d, e, F2, K2, M(25) );
359 R( e, a, b, c, d, F2, K2, M(26) );
360 R( d, e, a, b, c, F2, K2, M(27) );
361 R( c, d, e, a, b, F2, K2, M(28) );
362 R( b, c, d, e, a, F2, K2, M(29) );
363 R( a, b, c, d, e, F2, K2, M(30) );
364 R( e, a, b, c, d, F2, K2, M(31) );
365 R( d, e, a, b, c, F2, K2, M(32) );
366 R( c, d, e, a, b, F2, K2, M(33) );
367 R( b, c, d, e, a, F2, K2, M(34) );
368 R( a, b, c, d, e, F2, K2, M(35) );
369 R( e, a, b, c, d, F2, K2, M(36) );
370 R( d, e, a, b, c, F2, K2, M(37) );
371 R( c, d, e, a, b, F2, K2, M(38) );
372 R( b, c, d, e, a, F2, K2, M(39) );
373 R( a, b, c, d, e, F3, K3, M(40) );
374 R( e, a, b, c, d, F3, K3, M(41) );
375 R( d, e, a, b, c, F3, K3, M(42) );
376 R( c, d, e, a, b, F3, K3, M(43) );
377 R( b, c, d, e, a, F3, K3, M(44) );
378 R( a, b, c, d, e, F3, K3, M(45) );
379 R( e, a, b, c, d, F3, K3, M(46) );
380 R( d, e, a, b, c, F3, K3, M(47) );
381 R( c, d, e, a, b, F3, K3, M(48) );
382 R( b, c, d, e, a, F3, K3, M(49) );
383 R( a, b, c, d, e, F3, K3, M(50) );
384 R( e, a, b, c, d, F3, K3, M(51) );
385 R( d, e, a, b, c, F3, K3, M(52) );
386 R( c, d, e, a, b, F3, K3, M(53) );
387 R( b, c, d, e, a, F3, K3, M(54) );
388 R( a, b, c, d, e, F3, K3, M(55) );
389 R( e, a, b, c, d, F3, K3, M(56) );
390 R( d, e, a, b, c, F3, K3, M(57) );
391 R( c, d, e, a, b, F3, K3, M(58) );
392 R( b, c, d, e, a, F3, K3, M(59) );
393 R( a, b, c, d, e, F4, K4, M(60) );
394 R( e, a, b, c, d, F4, K4, M(61) );
395 R( d, e, a, b, c, F4, K4, M(62) );
396 R( c, d, e, a, b, F4, K4, M(63) );
397 R( b, c, d, e, a, F4, K4, M(64) );
398 R( a, b, c, d, e, F4, K4, M(65) );
399 R( e, a, b, c, d, F4, K4, M(66) );
400 R( d, e, a, b, c, F4, K4, M(67) );
401 R( c, d, e, a, b, F4, K4, M(68) );
402 R( b, c, d, e, a, F4, K4, M(69) );
403 R( a, b, c, d, e, F4, K4, M(70) );
404 R( e, a, b, c, d, F4, K4, M(71) );
405 R( d, e, a, b, c, F4, K4, M(72) );
406 R( c, d, e, a, b, F4, K4, M(73) );
407 R( b, c, d, e, a, F4, K4, M(74) );
408 R( a, b, c, d, e, F4, K4, M(75) );
409 R( e, a, b, c, d, F4, K4, M(76) );
410 R( d, e, a, b, c, F4, K4, M(77) );
411 R( c, d, e, a, b, F4, K4, M(78) );
412 R( b, c, d, e, a, F4, K4, M(79) );
414 a = ctx->A += a;
415 b = ctx->B += b;
416 c = ctx->C += c;
417 d = ctx->D += d;
418 e = ctx->E += e;