Fix a crash related to the NPX (floating point) interrupt. The interrupt
[dfdiff.git] / usr.bin / find / operator.c
blob31d881cfefa420469d973e9cdc626176e11a783b
1 /*-
2 * Copyright (c) 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Cimarron D. Taylor of the University of California, Berkeley.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * $FreeBSD: src/usr.bin/find/operator.c,v 1.14 2003/06/14 13:00:21 markm Exp $
37 * $DragonFly: src/usr.bin/find/operator.c,v 1.5 2005/02/13 23:49:53 cpressey Exp $
39 * @(#)operator.c 8.1 (Berkeley) 6/6/93
42 #include <sys/types.h>
44 #include <err.h>
45 #include <fts.h>
46 #include <stdio.h>
48 #include "find.h"
50 static PLAN *yanknode(PLAN **);
51 static PLAN *yankexpr(PLAN **);
54 * yanknode --
55 * destructively removes the top from the plan
57 static PLAN *
58 yanknode(PLAN **planp)
60 PLAN *node; /* top node removed from the plan */
62 if ((node = (*planp)) == NULL)
63 return (NULL);
64 (*planp) = (*planp)->next;
65 node->next = NULL;
66 return (node);
70 * yankexpr --
71 * Removes one expression from the plan. This is used mainly by
72 * paren_squish. In comments below, an expression is either a
73 * simple node or a f_expr node containing a list of simple nodes.
75 static PLAN *
76 yankexpr(PLAN **planp)
78 PLAN *next; /* temp node holding subexpression results */
79 PLAN *node; /* pointer to returned node or expression */
80 PLAN *tail; /* pointer to tail of subplan */
81 PLAN *subplan; /* pointer to head of ( ) expression */
83 /* first pull the top node from the plan */
84 if ((node = yanknode(planp)) == NULL)
85 return (NULL);
88 * If the node is an '(' then we recursively slurp up expressions
89 * until we find its associated ')'. If it's a closing paren we
90 * just return it and unwind our recursion; all other nodes are
91 * complete expressions, so just return them.
93 if (node->execute == f_openparen)
94 for (tail = subplan = NULL;;) {
95 if ((next = yankexpr(planp)) == NULL)
96 errx(1, "(: missing closing ')'");
98 * If we find a closing ')' we store the collected
99 * subplan in our '(' node and convert the node to
100 * a f_expr. The ')' we found is ignored. Otherwise,
101 * we just continue to add whatever we get to our
102 * subplan.
104 if (next->execute == f_closeparen) {
105 if (subplan == NULL)
106 errx(1, "(): empty inner expression");
107 node->p_data[0] = subplan;
108 node->execute = f_expr;
109 break;
110 } else {
111 if (subplan == NULL)
112 tail = subplan = next;
113 else {
114 tail->next = next;
115 tail = next;
117 tail->next = NULL;
120 return (node);
124 * paren_squish --
125 * replaces "parenthesized" plans in our search plan with "expr" nodes.
127 PLAN *
128 paren_squish(PLAN *plan)
130 PLAN *expr; /* pointer to next expression */
131 PLAN *tail; /* pointer to tail of result plan */
132 PLAN *result; /* pointer to head of result plan */
134 result = tail = NULL;
137 * the basic idea is to have yankexpr do all our work and just
138 * collect its results together.
140 while ((expr = yankexpr(&plan)) != NULL) {
142 * if we find an unclaimed ')' it means there is a missing
143 * '(' someplace.
145 if (expr->execute == f_closeparen)
146 errx(1, "): no beginning '('");
148 /* add the expression to our result plan */
149 if (result == NULL)
150 tail = result = expr;
151 else {
152 tail->next = expr;
153 tail = expr;
155 tail->next = NULL;
157 return (result);
161 * not_squish --
162 * compresses "!" expressions in our search plan.
164 PLAN *
165 not_squish(PLAN *plan)
167 PLAN *next; /* next node being processed */
168 PLAN *node; /* temporary node used in f_not processing */
169 PLAN *tail; /* pointer to tail of result plan */
170 PLAN *result; /* pointer to head of result plan */
172 tail = result = NULL;
174 while ((next = yanknode(&plan))) {
176 * if we encounter a ( expression ) then look for nots in
177 * the expr subplan.
179 if (next->execute == f_expr)
180 next->p_data[0] = not_squish(next->p_data[0]);
183 * if we encounter a not, then snag the next node and place
184 * it in the not's subplan. As an optimization we compress
185 * several not's to zero or one not.
187 if (next->execute == f_not) {
188 int notlevel = 1;
190 node = yanknode(&plan);
191 while (node != NULL && node->execute == f_not) {
192 ++notlevel;
193 node = yanknode(&plan);
195 if (node == NULL)
196 errx(1, "!: no following expression");
197 if (node->execute == f_or)
198 errx(1, "!: nothing between ! and -o");
200 * If we encounter ! ( expr ) then look for nots in
201 * the expr subplan.
203 if (node->execute == f_expr)
204 node->p_data[0] = not_squish(node->p_data[0]);
205 if (notlevel % 2 != 1)
206 next = node;
207 else
208 next->p_data[0] = node;
211 /* add the node to our result plan */
212 if (result == NULL)
213 tail = result = next;
214 else {
215 tail->next = next;
216 tail = next;
218 tail->next = NULL;
220 return (result);
224 * or_squish --
225 * compresses -o expressions in our search plan.
227 PLAN *
228 or_squish(PLAN *plan)
230 PLAN *next; /* next node being processed */
231 PLAN *tail; /* pointer to tail of result plan */
232 PLAN *result; /* pointer to head of result plan */
234 tail = result = next = NULL;
236 while ((next = yanknode(&plan)) != NULL) {
238 * if we encounter a ( expression ) then look for or's in
239 * the expr subplan.
241 if (next->execute == f_expr)
242 next->p_data[0] = or_squish(next->p_data[0]);
244 /* if we encounter a not then look for or's in the subplan */
245 if (next->execute == f_not)
246 next->p_data[0] = or_squish(next->p_data[0]);
249 * if we encounter an or, then place our collected plan in the
250 * or's first subplan and then recursively collect the
251 * remaining stuff into the second subplan and return the or.
253 if (next->execute == f_or) {
254 if (result == NULL)
255 errx(1, "-o: no expression before -o");
256 next->p_data[0] = result;
257 next->p_data[1] = or_squish(plan);
258 if (next->p_data[1] == NULL)
259 errx(1, "-o: no expression after -o");
260 return (next);
263 /* add the node to our result plan */
264 if (result == NULL)
265 tail = result = next;
266 else {
267 tail->next = next;
268 tail = next;
270 tail->next = NULL;
272 return (result);