2 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * $DragonFly: src/sys/kern/vfs_mount.c,v 1.31 2008/02/10 13:45:21 corecode Exp $
74 * External virtual filesystem routines
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
84 #include <sys/vnode.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
90 #include <machine/limits.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
97 #include <vm/vm_object.h>
99 struct mountscan_info
{
100 TAILQ_ENTRY(mountscan_info
) msi_entry
;
102 struct mount
*msi_node
;
105 struct vmntvnodescan_info
{
106 TAILQ_ENTRY(vmntvnodescan_info
) entry
;
110 static int vnlru_nowhere
= 0;
111 SYSCTL_INT(_debug
, OID_AUTO
, vnlru_nowhere
, CTLFLAG_RD
,
113 "Number of times the vnlru process ran without success");
116 static struct lwkt_token mntid_token
;
118 /* note: mountlist exported to pstat */
119 struct mntlist mountlist
= TAILQ_HEAD_INITIALIZER(mountlist
);
120 static TAILQ_HEAD(,mountscan_info
) mountscan_list
;
121 static struct lwkt_token mountlist_token
;
122 static TAILQ_HEAD(,vmntvnodescan_info
) mntvnodescan_list
;
123 struct lwkt_token mntvnode_token
;
125 static TAILQ_HEAD(,bio_ops
) bio_ops_list
= TAILQ_HEAD_INITIALIZER(bio_ops_list
);
128 * Called from vfsinit()
133 lwkt_token_init(&mountlist_token
);
134 lwkt_token_init(&mntvnode_token
);
135 lwkt_token_init(&mntid_token
);
136 TAILQ_INIT(&mountscan_list
);
137 TAILQ_INIT(&mntvnodescan_list
);
141 * Support function called with mntvnode_token held to remove a vnode
142 * from the mountlist. We must update any list scans which are in progress.
145 vremovevnodemnt(struct vnode
*vp
)
147 struct vmntvnodescan_info
*info
;
149 TAILQ_FOREACH(info
, &mntvnodescan_list
, entry
) {
151 info
->vp
= TAILQ_NEXT(vp
, v_nmntvnodes
);
153 TAILQ_REMOVE(&vp
->v_mount
->mnt_nvnodelist
, vp
, v_nmntvnodes
);
157 * Support function called with mntvnode_token held to move a vnode to
158 * the end of the list.
161 vmovevnodetoend(struct mount
*mp
, struct vnode
*vp
)
164 TAILQ_INSERT_TAIL(&mp
->mnt_nvnodelist
, vp
, v_nmntvnodes
);
169 * Allocate a new vnode and associate it with a tag, mount point, and
172 * A VX locked and refd vnode is returned. The caller should setup the
173 * remaining fields and vx_put() or, if he wishes to leave a vref,
174 * vx_unlock() the vnode.
177 getnewvnode(enum vtagtype tag
, struct mount
*mp
,
178 struct vnode
**vpp
, int lktimeout
, int lkflags
)
182 KKASSERT(mp
!= NULL
);
184 vp
= allocvnode(lktimeout
, lkflags
);
189 * By default the vnode is assigned the mount point's normal
192 vp
->v_ops
= &mp
->mnt_vn_use_ops
;
195 * Placing the vnode on the mount point's queue makes it visible.
196 * VNON prevents it from being messed with, however.
201 * A VX locked & refd vnode is returned.
208 * This function creates vnodes with special operations vectors. The
209 * mount point is optional.
211 * This routine is being phased out.
214 getspecialvnode(enum vtagtype tag
, struct mount
*mp
,
215 struct vop_ops
**ops
,
216 struct vnode
**vpp
, int lktimeout
, int lkflags
)
220 vp
= allocvnode(lktimeout
, lkflags
);
226 * Placing the vnode on the mount point's queue makes it visible.
227 * VNON prevents it from being messed with, however.
232 * A VX locked & refd vnode is returned.
239 * Interlock against an unmount, return 0 on success, non-zero on failure.
241 * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
244 * If no unmount is in-progress LK_NOWAIT is ignored. No other flag bits
245 * are used. A shared locked will be obtained and the filesystem will not
246 * be unmountable until the lock is released.
249 vfs_busy(struct mount
*mp
, int flags
)
253 if (mp
->mnt_kern_flag
& MNTK_UNMOUNT
) {
254 if (flags
& LK_NOWAIT
)
256 /* XXX not MP safe */
257 mp
->mnt_kern_flag
|= MNTK_MWAIT
;
259 * Since all busy locks are shared except the exclusive
260 * lock granted when unmounting, the only place that a
261 * wakeup needs to be done is at the release of the
262 * exclusive lock at the end of dounmount.
264 tsleep((caddr_t
)mp
, 0, "vfs_busy", 0);
268 if (lockmgr(&mp
->mnt_lock
, lkflags
))
269 panic("vfs_busy: unexpected lock failure");
274 * Free a busy filesystem.
277 vfs_unbusy(struct mount
*mp
)
279 lockmgr(&mp
->mnt_lock
, LK_RELEASE
);
283 * Lookup a filesystem type, and if found allocate and initialize
284 * a mount structure for it.
286 * Devname is usually updated by mount(8) after booting.
289 vfs_rootmountalloc(char *fstypename
, char *devname
, struct mount
**mpp
)
291 struct vfsconf
*vfsp
;
294 if (fstypename
== NULL
)
296 for (vfsp
= vfsconf
; vfsp
; vfsp
= vfsp
->vfc_next
) {
297 if (!strcmp(vfsp
->vfc_name
, fstypename
))
302 mp
= kmalloc(sizeof(struct mount
), M_MOUNT
, M_WAITOK
| M_ZERO
);
303 lockinit(&mp
->mnt_lock
, "vfslock", VLKTIMEOUT
, 0);
304 vfs_busy(mp
, LK_NOWAIT
);
305 TAILQ_INIT(&mp
->mnt_nvnodelist
);
306 TAILQ_INIT(&mp
->mnt_reservedvnlist
);
307 TAILQ_INIT(&mp
->mnt_jlist
);
308 mp
->mnt_nvnodelistsize
= 0;
310 mp
->mnt_op
= vfsp
->vfc_vfsops
;
311 mp
->mnt_flag
= MNT_RDONLY
;
312 vfsp
->vfc_refcount
++;
313 mp
->mnt_iosize_max
= DFLTPHYS
;
314 mp
->mnt_stat
.f_type
= vfsp
->vfc_typenum
;
315 mp
->mnt_flag
|= vfsp
->vfc_flags
& MNT_VISFLAGMASK
;
316 strncpy(mp
->mnt_stat
.f_fstypename
, vfsp
->vfc_name
, MFSNAMELEN
);
317 copystr(devname
, mp
->mnt_stat
.f_mntfromname
, MNAMELEN
- 1, 0);
323 * Lookup a mount point by filesystem identifier.
326 vfs_getvfs(fsid_t
*fsid
)
331 lwkt_gettoken(&ilock
, &mountlist_token
);
332 TAILQ_FOREACH(mp
, &mountlist
, mnt_list
) {
333 if (mp
->mnt_stat
.f_fsid
.val
[0] == fsid
->val
[0] &&
334 mp
->mnt_stat
.f_fsid
.val
[1] == fsid
->val
[1]) {
338 lwkt_reltoken(&ilock
);
343 * Get a new unique fsid. Try to make its val[0] unique, since this value
344 * will be used to create fake device numbers for stat(). Also try (but
345 * not so hard) make its val[0] unique mod 2^16, since some emulators only
346 * support 16-bit device numbers. We end up with unique val[0]'s for the
347 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
349 * Keep in mind that several mounts may be running in parallel. Starting
350 * the search one past where the previous search terminated is both a
351 * micro-optimization and a defense against returning the same fsid to
355 vfs_getnewfsid(struct mount
*mp
)
357 static u_int16_t mntid_base
;
362 lwkt_gettoken(&ilock
, &mntid_token
);
363 mtype
= mp
->mnt_vfc
->vfc_typenum
;
364 tfsid
.val
[1] = mtype
;
365 mtype
= (mtype
& 0xFF) << 24;
367 tfsid
.val
[0] = makeudev(255,
368 mtype
| ((mntid_base
& 0xFF00) << 8) | (mntid_base
& 0xFF));
370 if (vfs_getvfs(&tfsid
) == NULL
)
373 mp
->mnt_stat
.f_fsid
.val
[0] = tfsid
.val
[0];
374 mp
->mnt_stat
.f_fsid
.val
[1] = tfsid
.val
[1];
375 lwkt_reltoken(&ilock
);
379 * This routine is called when we have too many vnodes. It attempts
380 * to free <count> vnodes and will potentially free vnodes that still
381 * have VM backing store (VM backing store is typically the cause
382 * of a vnode blowout so we want to do this). Therefore, this operation
383 * is not considered cheap.
385 * A number of conditions may prevent a vnode from being reclaimed.
386 * the buffer cache may have references on the vnode, a directory
387 * vnode may still have references due to the namei cache representing
388 * underlying files, or the vnode may be in active use. It is not
389 * desireable to reuse such vnodes. These conditions may cause the
390 * number of vnodes to reach some minimum value regardless of what
391 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
395 * This is a quick non-blocking check to determine if the vnode is a good
396 * candidate for being (eventually) vgone()'d. Returns 0 if the vnode is
397 * not a good candidate, 1 if it is.
400 vmightfree(struct vnode
*vp
, int page_count
)
402 if (vp
->v_flag
& VRECLAIMED
)
405 if ((vp
->v_flag
& VFREE
) && TAILQ_EMPTY(&vp
->v_namecache
))
408 if (sysref_isactive(&vp
->v_sysref
))
410 if (vp
->v_object
&& vp
->v_object
->resident_page_count
>= page_count
)
416 * The vnode was found to be possibly vgone()able and the caller has locked it
417 * (thus the usecount should be 1 now). Determine if the vnode is actually
418 * vgone()able, doing some cleanups in the process. Returns 1 if the vnode
419 * can be vgone()'d, 0 otherwise.
421 * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
422 * in the namecache topology and (B) this vnode has buffer cache bufs.
423 * We cannot remove vnodes with non-leaf namecache associations. We do a
424 * tentitive leaf check prior to attempting to flush out any buffers but the
425 * 'real' test when all is said in done is that v_auxrefs must become 0 for
426 * the vnode to be freeable.
428 * We could theoretically just unconditionally flush when v_auxrefs != 0,
429 * but flushing data associated with non-leaf nodes (which are always
430 * directories), just throws it away for no benefit. It is the buffer
431 * cache's responsibility to choose buffers to recycle from the cached
432 * data point of view.
435 visleaf(struct vnode
*vp
)
437 struct namecache
*ncp
;
439 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
440 if (!TAILQ_EMPTY(&ncp
->nc_list
))
447 * Try to clean up the vnode to the point where it can be vgone()'d, returning
448 * 0 if it cannot be vgone()'d (or already has been), 1 if it can. Unlike
449 * vmightfree() this routine may flush the vnode and block. Vnodes marked
450 * VFREE are still candidates for vgone()ing because they may hold namecache
451 * resources and could be blocking the namecache directory hierarchy (and
452 * related vnodes) from being freed.
455 vtrytomakegoneable(struct vnode
*vp
, int page_count
)
457 if (vp
->v_flag
& VRECLAIMED
)
459 if (vp
->v_sysref
.refcnt
> 1)
461 if (vp
->v_object
&& vp
->v_object
->resident_page_count
>= page_count
)
463 if (vp
->v_auxrefs
&& visleaf(vp
)) {
464 vinvalbuf(vp
, V_SAVE
, 0, 0);
466 kprintf((vp
->v_auxrefs
? "vrecycle: vp %p failed: %s\n" :
467 "vrecycle: vp %p succeeded: %s\n"), vp
,
468 (TAILQ_FIRST(&vp
->v_namecache
) ?
469 TAILQ_FIRST(&vp
->v_namecache
)->nc_name
: "?"));
474 * This sequence may seem a little strange, but we need to optimize
475 * the critical path a bit. We can't recycle vnodes with other
476 * references and because we are trying to recycle an otherwise
477 * perfectly fine vnode we have to invalidate the namecache in a
478 * way that avoids possible deadlocks (since the vnode lock is being
479 * held here). Finally, we have to check for other references one
480 * last time in case something snuck in during the inval.
482 if (vp
->v_sysref
.refcnt
> 1 || vp
->v_auxrefs
!= 0)
484 if (cache_inval_vp_nonblock(vp
))
486 return (vp
->v_sysref
.refcnt
<= 1 && vp
->v_auxrefs
== 0);
490 * Reclaim up to 1/10 of the vnodes associated with a mount point. Try
491 * to avoid vnodes which have lots of resident pages (we are trying to free
492 * vnodes, not memory).
494 * This routine is a callback from the mountlist scan. The mount point
495 * in question will be busied.
498 vlrureclaim(struct mount
*mp
, void *data
)
506 int trigger_mult
= vnlru_nowhere
;
509 * Calculate the trigger point for the resident pages check. The
510 * minimum trigger value is approximately the number of pages in
511 * the system divded by the number of vnodes. However, due to
512 * various other system memory overheads unrelated to data caching
513 * it is a good idea to double the trigger (at least).
515 * trigger_mult starts at 0. If the recycler is having problems
516 * finding enough freeable vnodes it will increase trigger_mult.
517 * This should not happen in normal operation, even on machines with
518 * low amounts of memory, but extraordinary memory use by the system
519 * verses the amount of cached data can trigger it.
521 usevnodes
= desiredvnodes
;
524 trigger
= vmstats
.v_page_count
* (trigger_mult
+ 2) / usevnodes
;
527 lwkt_gettoken(&ilock
, &mntvnode_token
);
528 count
= mp
->mnt_nvnodelistsize
/ 10 + 1;
529 while (count
&& (vp
= TAILQ_FIRST(&mp
->mnt_nvnodelist
)) != NULL
) {
533 * The VP will stick around while we hold mntvnode_token,
534 * at least until we block, so we can safely do an initial
535 * check, and then must check again after we lock the vnode.
537 if (vp
->v_type
== VNON
|| /* syncer or indeterminant */
538 !vmightfree(vp
, trigger
) /* critical path opt */
540 vmovevnodetoend(mp
, vp
);
546 * VX get the candidate vnode. If the VX get fails the
547 * vnode might still be on the mountlist. Our loop depends
548 * on us at least cycling the vnode to the end of the
551 if (vx_get_nonblock(vp
) != 0) {
552 if (vp
->v_mount
== mp
)
553 vmovevnodetoend(mp
, vp
);
559 * Since we blocked locking the vp, make sure it is still
560 * a candidate for reclamation. That is, it has not already
561 * been reclaimed and only has our VX reference associated
564 if (vp
->v_type
== VNON
|| /* syncer or indeterminant */
565 (vp
->v_flag
& VRECLAIMED
) ||
567 !vtrytomakegoneable(vp
, trigger
) /* critical path opt */
569 if (vp
->v_mount
== mp
)
570 vmovevnodetoend(mp
, vp
);
577 * All right, we are good, move the vp to the end of the
578 * mountlist and clean it out. The vget will have returned
579 * an error if the vnode was destroyed (VRECLAIMED set), so we
580 * do not have to check again. The vput() will move the
581 * vnode to the free list if the vgone() was successful.
583 KKASSERT(vp
->v_mount
== mp
);
584 vmovevnodetoend(mp
, vp
);
590 lwkt_reltoken(&ilock
);
595 * Attempt to recycle vnodes in a context that is always safe to block.
596 * Calling vlrurecycle() from the bowels of file system code has some
597 * interesting deadlock problems.
599 static struct thread
*vnlruthread
;
600 static int vnlruproc_sig
;
603 vnlru_proc_wait(void)
605 if (vnlruproc_sig
== 0) {
606 vnlruproc_sig
= 1; /* avoid unnecessary wakeups */
609 tsleep(&vnlruproc_sig
, 0, "vlruwk", hz
);
615 struct thread
*td
= curthread
;
618 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
, td
,
623 kproc_suspend_loop();
626 * Try to free some vnodes if we have too many
628 if (numvnodes
> desiredvnodes
&&
629 freevnodes
> desiredvnodes
* 2 / 10) {
630 int count
= numvnodes
- desiredvnodes
;
632 if (count
> freevnodes
/ 100)
633 count
= freevnodes
/ 100;
636 freesomevnodes(count
);
640 * Nothing to do if most of our vnodes are already on
643 if (numvnodes
- freevnodes
<= desiredvnodes
* 9 / 10) {
645 wakeup(&vnlruproc_sig
);
646 tsleep(td
, 0, "vlruwt", hz
);
650 done
= mountlist_scan(vlrureclaim
, NULL
, MNTSCAN_FORWARD
);
653 * The vlrureclaim() call only processes 1/10 of the vnodes
654 * on each mount. If we couldn't find any repeat the loop
655 * at least enough times to cover all available vnodes before
656 * we start sleeping. Complain if the failure extends past
657 * 30 second, every 30 seconds.
661 if (vnlru_nowhere
% 10 == 0)
662 tsleep(td
, 0, "vlrup", hz
* 3);
663 if (vnlru_nowhere
% 100 == 0)
664 kprintf("vnlru_proc: vnode recycler stopped working!\n");
665 if (vnlru_nowhere
== 1000)
675 * MOUNTLIST FUNCTIONS
679 * mountlist_insert (MP SAFE)
681 * Add a new mount point to the mount list.
684 mountlist_insert(struct mount
*mp
, int how
)
688 lwkt_gettoken(&ilock
, &mountlist_token
);
689 if (how
== MNTINS_FIRST
)
690 TAILQ_INSERT_HEAD(&mountlist
, mp
, mnt_list
);
692 TAILQ_INSERT_TAIL(&mountlist
, mp
, mnt_list
);
693 lwkt_reltoken(&ilock
);
697 * mountlist_interlock (MP SAFE)
699 * Execute the specified interlock function with the mountlist token
700 * held. The function will be called in a serialized fashion verses
701 * other functions called through this mechanism.
704 mountlist_interlock(int (*callback
)(struct mount
*), struct mount
*mp
)
709 lwkt_gettoken(&ilock
, &mountlist_token
);
710 error
= callback(mp
);
711 lwkt_reltoken(&ilock
);
716 * mountlist_boot_getfirst (DURING BOOT ONLY)
718 * This function returns the first mount on the mountlist, which is
719 * expected to be the root mount. Since no interlocks are obtained
720 * this function is only safe to use during booting.
724 mountlist_boot_getfirst(void)
726 return(TAILQ_FIRST(&mountlist
));
730 * mountlist_remove (MP SAFE)
732 * Remove a node from the mountlist. If this node is the next scan node
733 * for any active mountlist scans, the active mountlist scan will be
734 * adjusted to skip the node, thus allowing removals during mountlist
738 mountlist_remove(struct mount
*mp
)
740 struct mountscan_info
*msi
;
743 lwkt_gettoken(&ilock
, &mountlist_token
);
744 TAILQ_FOREACH(msi
, &mountscan_list
, msi_entry
) {
745 if (msi
->msi_node
== mp
) {
746 if (msi
->msi_how
& MNTSCAN_FORWARD
)
747 msi
->msi_node
= TAILQ_NEXT(mp
, mnt_list
);
749 msi
->msi_node
= TAILQ_PREV(mp
, mntlist
, mnt_list
);
752 TAILQ_REMOVE(&mountlist
, mp
, mnt_list
);
753 lwkt_reltoken(&ilock
);
757 * mountlist_scan (MP SAFE)
759 * Safely scan the mount points on the mount list. Unless otherwise
760 * specified each mount point will be busied prior to the callback and
761 * unbusied afterwords. The callback may safely remove any mount point
762 * without interfering with the scan. If the current callback
763 * mount is removed the scanner will not attempt to unbusy it.
765 * If a mount node cannot be busied it is silently skipped.
767 * The callback return value is aggregated and a total is returned. A return
768 * value of < 0 is not aggregated and will terminate the scan.
770 * MNTSCAN_FORWARD - the mountlist is scanned in the forward direction
771 * MNTSCAN_REVERSE - the mountlist is scanned in reverse
772 * MNTSCAN_NOBUSY - the scanner will make the callback without busying
776 mountlist_scan(int (*callback
)(struct mount
*, void *), void *data
, int how
)
778 struct mountscan_info info
;
785 lwkt_gettoken(&ilock
, &mountlist_token
);
788 info
.msi_node
= NULL
; /* paranoia */
789 TAILQ_INSERT_TAIL(&mountscan_list
, &info
, msi_entry
);
794 if (how
& MNTSCAN_FORWARD
) {
795 info
.msi_node
= TAILQ_FIRST(&mountlist
);
796 while ((mp
= info
.msi_node
) != NULL
) {
797 if (how
& MNTSCAN_NOBUSY
) {
798 count
= callback(mp
, data
);
799 } else if (vfs_busy(mp
, LK_NOWAIT
) == 0) {
800 count
= callback(mp
, data
);
801 if (mp
== info
.msi_node
)
809 if (mp
== info
.msi_node
)
810 info
.msi_node
= TAILQ_NEXT(mp
, mnt_list
);
812 } else if (how
& MNTSCAN_REVERSE
) {
813 info
.msi_node
= TAILQ_LAST(&mountlist
, mntlist
);
814 while ((mp
= info
.msi_node
) != NULL
) {
815 if (how
& MNTSCAN_NOBUSY
) {
816 count
= callback(mp
, data
);
817 } else if (vfs_busy(mp
, LK_NOWAIT
) == 0) {
818 count
= callback(mp
, data
);
819 if (mp
== info
.msi_node
)
827 if (mp
== info
.msi_node
)
828 info
.msi_node
= TAILQ_PREV(mp
, mntlist
, mnt_list
);
831 TAILQ_REMOVE(&mountscan_list
, &info
, msi_entry
);
832 lwkt_reltoken(&ilock
);
837 * MOUNT RELATED VNODE FUNCTIONS
840 static struct kproc_desc vnlru_kp
= {
845 SYSINIT(vnlru
, SI_SUB_KTHREAD_UPDATE
, SI_ORDER_FIRST
, kproc_start
, &vnlru_kp
)
848 * Move a vnode from one mount queue to another.
851 insmntque(struct vnode
*vp
, struct mount
*mp
)
855 lwkt_gettoken(&ilock
, &mntvnode_token
);
857 * Delete from old mount point vnode list, if on one.
859 if (vp
->v_mount
!= NULL
) {
860 KASSERT(vp
->v_mount
->mnt_nvnodelistsize
> 0,
861 ("bad mount point vnode list size"));
863 vp
->v_mount
->mnt_nvnodelistsize
--;
866 * Insert into list of vnodes for the new mount point, if available.
868 if ((vp
->v_mount
= mp
) == NULL
) {
869 lwkt_reltoken(&ilock
);
872 TAILQ_INSERT_TAIL(&mp
->mnt_nvnodelist
, vp
, v_nmntvnodes
);
873 mp
->mnt_nvnodelistsize
++;
874 lwkt_reltoken(&ilock
);
879 * Scan the vnodes under a mount point and issue appropriate callbacks.
881 * The fastfunc() callback is called with just the mountlist token held
882 * (no vnode lock). It may not block and the vnode may be undergoing
883 * modifications while the caller is processing it. The vnode will
884 * not be entirely destroyed, however, due to the fact that the mountlist
885 * token is held. A return value < 0 skips to the next vnode without calling
886 * the slowfunc(), a return value > 0 terminates the loop.
888 * The slowfunc() callback is called after the vnode has been successfully
889 * locked based on passed flags. The vnode is skipped if it gets rearranged
890 * or destroyed while blocking on the lock. A non-zero return value from
891 * the slow function terminates the loop. The slow function is allowed to
892 * arbitrarily block. The scanning code guarentees consistency of operation
893 * even if the slow function deletes or moves the node, or blocks and some
894 * other thread deletes or moves the node.
900 int (*fastfunc
)(struct mount
*mp
, struct vnode
*vp
, void *data
),
901 int (*slowfunc
)(struct mount
*mp
, struct vnode
*vp
, void *data
),
904 struct vmntvnodescan_info info
;
908 int maxcount
= 1000000;
911 lwkt_gettoken(&ilock
, &mntvnode_token
);
913 info
.vp
= TAILQ_FIRST(&mp
->mnt_nvnodelist
);
914 TAILQ_INSERT_TAIL(&mntvnodescan_list
, &info
, entry
);
915 while ((vp
= info
.vp
) != NULL
) {
917 panic("maxcount reached during vmntvnodescan");
919 if (vp
->v_type
== VNON
) /* visible but not ready */
921 KKASSERT(vp
->v_mount
== mp
);
924 * Quick test. A negative return continues the loop without
925 * calling the slow test. 0 continues onto the slow test.
926 * A positive number aborts the loop.
929 if ((r
= fastfunc(mp
, vp
, data
)) < 0)
936 * Get a vxlock on the vnode, retry if it has moved or isn't
937 * in the mountlist where we expect it.
944 error
= vget(vp
, LK_EXCLUSIVE
);
946 case VMSC_GETVP
|VMSC_NOWAIT
:
947 error
= vget(vp
, LK_EXCLUSIVE
|LK_NOWAIT
);
960 * Do not call the slow function if the vnode is
961 * invalid or if it was ripped out from under us
962 * while we (potentially) blocked.
964 if (info
.vp
== vp
&& vp
->v_type
!= VNON
)
965 r
= slowfunc(mp
, vp
, data
);
972 case VMSC_GETVP
|VMSC_NOWAIT
:
987 * Yield after some processing. Depending on the number
988 * of vnodes, we might wind up running for a long time.
989 * Because threads are not preemptable, time critical
990 * userland processes might starve. Give them a chance
993 if (++count
== 10000) {
999 * Iterate. If the vnode was ripped out from under us
1000 * info.vp will already point to the next vnode, otherwise
1001 * we have to obtain the next valid vnode ourselves.
1004 info
.vp
= TAILQ_NEXT(vp
, v_nmntvnodes
);
1006 TAILQ_REMOVE(&mntvnodescan_list
, &info
, entry
);
1007 lwkt_reltoken(&ilock
);
1012 * Remove any vnodes in the vnode table belonging to mount point mp.
1014 * If FORCECLOSE is not specified, there should not be any active ones,
1015 * return error if any are found (nb: this is a user error, not a
1016 * system error). If FORCECLOSE is specified, detach any active vnodes
1019 * If WRITECLOSE is set, only flush out regular file vnodes open for
1022 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1024 * `rootrefs' specifies the base reference count for the root vnode
1025 * of this filesystem. The root vnode is considered busy if its
1026 * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1027 * will call vrele() on the root vnode exactly rootrefs times.
1028 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1032 static int busyprt
= 0; /* print out busy vnodes */
1033 SYSCTL_INT(_debug
, OID_AUTO
, busyprt
, CTLFLAG_RW
, &busyprt
, 0, "");
1036 static int vflush_scan(struct mount
*mp
, struct vnode
*vp
, void *data
);
1038 struct vflush_info
{
1045 vflush(struct mount
*mp
, int rootrefs
, int flags
)
1047 struct thread
*td
= curthread
; /* XXX */
1048 struct vnode
*rootvp
= NULL
;
1050 struct vflush_info vflush_info
;
1053 KASSERT((flags
& (SKIPSYSTEM
| WRITECLOSE
)) == 0,
1054 ("vflush: bad args"));
1056 * Get the filesystem root vnode. We can vput() it
1057 * immediately, since with rootrefs > 0, it won't go away.
1059 if ((error
= VFS_ROOT(mp
, &rootvp
)) != 0)
1064 vflush_info
.busy
= 0;
1065 vflush_info
.flags
= flags
;
1066 vflush_info
.td
= td
;
1067 vmntvnodescan(mp
, VMSC_GETVX
, NULL
, vflush_scan
, &vflush_info
);
1069 if (rootrefs
> 0 && (flags
& FORCECLOSE
) == 0) {
1071 * If just the root vnode is busy, and if its refcount
1072 * is equal to `rootrefs', then go ahead and kill it.
1074 KASSERT(vflush_info
.busy
> 0, ("vflush: not busy"));
1075 KASSERT(rootvp
->v_sysref
.refcnt
>= rootrefs
, ("vflush: rootrefs"));
1076 if (vflush_info
.busy
== 1 && rootvp
->v_sysref
.refcnt
== rootrefs
) {
1078 vgone_vxlocked(rootvp
);
1080 vflush_info
.busy
= 0;
1083 if (vflush_info
.busy
)
1085 for (; rootrefs
> 0; rootrefs
--)
1091 * The scan callback is made with an VX locked vnode.
1094 vflush_scan(struct mount
*mp
, struct vnode
*vp
, void *data
)
1096 struct vflush_info
*info
= data
;
1100 * Skip over a vnodes marked VSYSTEM.
1102 if ((info
->flags
& SKIPSYSTEM
) && (vp
->v_flag
& VSYSTEM
)) {
1107 * If WRITECLOSE is set, flush out unlinked but still open
1108 * files (even if open only for reading) and regular file
1109 * vnodes open for writing.
1111 if ((info
->flags
& WRITECLOSE
) &&
1112 (vp
->v_type
== VNON
||
1113 (VOP_GETATTR(vp
, &vattr
) == 0 &&
1114 vattr
.va_nlink
> 0)) &&
1115 (vp
->v_writecount
== 0 || vp
->v_type
!= VREG
)) {
1120 * If we are the only holder (refcnt of 1) or the vnode is in
1121 * termination (refcnt < 0), we can vgone the vnode.
1123 if (vp
->v_sysref
.refcnt
<= 1) {
1129 * If FORCECLOSE is set, forcibly close the vnode. For block
1130 * or character devices, revert to an anonymous device. For
1131 * all other files, just kill them.
1133 if (info
->flags
& FORCECLOSE
) {
1134 if (vp
->v_type
!= VBLK
&& vp
->v_type
!= VCHR
) {
1137 vclean_vxlocked(vp
, 0);
1138 vp
->v_ops
= &spec_vnode_vops_p
;
1139 insmntque(vp
, NULL
);
1145 vprint("vflush: busy vnode", vp
);
1152 add_bio_ops(struct bio_ops
*ops
)
1154 TAILQ_INSERT_TAIL(&bio_ops_list
, ops
, entry
);
1158 rem_bio_ops(struct bio_ops
*ops
)
1160 TAILQ_REMOVE(&bio_ops_list
, ops
, entry
);
1164 * This calls the bio_ops io_sync function either for a mount point
1167 * WARNING: softdeps is weirdly coded and just isn't happy unless
1168 * io_sync is called with a NULL mount from the general syncing code.
1171 bio_ops_sync(struct mount
*mp
)
1173 struct bio_ops
*ops
;
1176 if ((ops
= mp
->mnt_bioops
) != NULL
)
1179 TAILQ_FOREACH(ops
, &bio_ops_list
, entry
) {