Bump DragonFly_version and create a subvers-DEVELOPMENT file for HEAD for
[dfdiff.git] / sys / kern / kern_clock.c
blob8cff182dba2f1a410b3b9050b26a94f6123ebd96
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.59 2007/06/30 21:52:19 swildner Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_pctrack.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/kinfo.h>
85 #include <sys/proc.h>
86 #include <sys/malloc.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/timex.h>
90 #include <sys/timepps.h>
91 #include <vm/vm.h>
92 #include <sys/lock.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/thread2.h>
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
103 #ifdef GPROF
104 #include <sys/gmon.h>
105 #endif
107 #ifdef DEVICE_POLLING
108 extern void init_device_poll(void);
109 #endif
111 #ifdef DEBUG_PCTRACK
112 static void do_pctrack(struct intrframe *frame, int which);
113 #endif
115 static void initclocks (void *dummy);
116 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
119 * Some of these don't belong here, but it's easiest to concentrate them.
120 * Note that cpu_time counts in microseconds, but most userland programs
121 * just compare relative times against the total by delta.
123 struct kinfo_cputime cputime_percpu[MAXCPU];
124 #ifdef DEBUG_PCTRACK
125 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
126 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
127 #endif
129 #ifdef SMP
130 static int
131 sysctl_cputime(SYSCTL_HANDLER_ARGS)
133 int cpu, error = 0;
134 size_t size = sizeof(struct kinfo_cputime);
136 for (cpu = 0; cpu < ncpus; ++cpu) {
137 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
138 break;
141 return (error);
143 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
144 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
145 #else
146 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
147 "CPU time statistics");
148 #endif
151 * boottime is used to calculate the 'real' uptime. Do not confuse this with
152 * microuptime(). microtime() is not drift compensated. The real uptime
153 * with compensation is nanotime() - bootime. boottime is recalculated
154 * whenever the real time is set based on the compensated elapsed time
155 * in seconds (gd->gd_time_seconds).
157 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
158 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
159 * the real time.
161 struct timespec boottime; /* boot time (realtime) for reference only */
162 time_t time_second; /* read-only 'passive' uptime in seconds */
165 * basetime is used to calculate the compensated real time of day. The
166 * basetime can be modified on a per-tick basis by the adjtime(),
167 * ntp_adjtime(), and sysctl-based time correction APIs.
169 * Note that frequency corrections can also be made by adjusting
170 * gd_cpuclock_base.
172 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
173 * used on both SMP and UP systems to avoid MP races between cpu's and
174 * interrupt races on UP systems.
176 #define BASETIME_ARYSIZE 16
177 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
178 static struct timespec basetime[BASETIME_ARYSIZE];
179 static volatile int basetime_index;
181 static int
182 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
184 struct timespec *bt;
185 int error;
186 int index;
189 * Because basetime data and index may be updated by another cpu,
190 * a load fence is required to ensure that the data we read has
191 * not been speculatively read relative to a possibly updated index.
193 index = basetime_index;
194 cpu_lfence();
195 bt = &basetime[index];
196 error = SYSCTL_OUT(req, bt, sizeof(*bt));
197 return (error);
200 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
201 &boottime, timespec, "System boottime");
202 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
203 sysctl_get_basetime, "S,timespec", "System basetime");
205 static void hardclock(systimer_t info, struct intrframe *frame);
206 static void statclock(systimer_t info, struct intrframe *frame);
207 static void schedclock(systimer_t info, struct intrframe *frame);
208 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
210 int ticks; /* system master ticks at hz */
211 int clocks_running; /* tsleep/timeout clocks operational */
212 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
213 int64_t nsec_acc; /* accumulator */
215 /* NTPD time correction fields */
216 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
217 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
218 int64_t ntp_delta; /* one-time correction in nsec */
219 int64_t ntp_big_delta = 1000000000;
220 int32_t ntp_tick_delta; /* current adjustment rate */
221 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
222 time_t ntp_leap_second; /* time of next leap second */
223 int ntp_leap_insert; /* whether to insert or remove a second */
226 * Finish initializing clock frequencies and start all clocks running.
228 /* ARGSUSED*/
229 static void
230 initclocks(void *dummy)
232 #ifdef DEVICE_POLLING
233 init_device_poll();
234 #endif
235 /*psratio = profhz / stathz;*/
236 initclocks_pcpu();
237 clocks_running = 1;
241 * Called on a per-cpu basis
243 void
244 initclocks_pcpu(void)
246 struct globaldata *gd = mycpu;
248 crit_enter();
249 if (gd->gd_cpuid == 0) {
250 gd->gd_time_seconds = 1;
251 gd->gd_cpuclock_base = sys_cputimer->count();
252 } else {
253 /* XXX */
254 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
255 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
259 * Use a non-queued periodic systimer to prevent multiple ticks from
260 * building up if the sysclock jumps forward (8254 gets reset). The
261 * sysclock will never jump backwards. Our time sync is based on
262 * the actual sysclock, not the ticks count.
264 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
265 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
266 /* XXX correct the frequency for scheduler / estcpu tests */
267 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
268 NULL, ESTCPUFREQ);
269 crit_exit();
273 * This sets the current real time of day. Timespecs are in seconds and
274 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
275 * instead we adjust basetime so basetime + gd_* results in the current
276 * time of day. This way the gd_* fields are guarenteed to represent
277 * a monotonically increasing 'uptime' value.
279 * When set_timeofday() is called from userland, the system call forces it
280 * onto cpu #0 since only cpu #0 can update basetime_index.
282 void
283 set_timeofday(struct timespec *ts)
285 struct timespec *nbt;
286 int ni;
289 * XXX SMP / non-atomic basetime updates
291 crit_enter();
292 ni = (basetime_index + 1) & BASETIME_ARYMASK;
293 nbt = &basetime[ni];
294 nanouptime(nbt);
295 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
296 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
297 if (nbt->tv_nsec < 0) {
298 nbt->tv_nsec += 1000000000;
299 --nbt->tv_sec;
303 * Note that basetime diverges from boottime as the clock drift is
304 * compensated for, so we cannot do away with boottime. When setting
305 * the absolute time of day the drift is 0 (for an instant) and we
306 * can simply assign boottime to basetime.
308 * Note that nanouptime() is based on gd_time_seconds which is drift
309 * compensated up to a point (it is guarenteed to remain monotonically
310 * increasing). gd_time_seconds is thus our best uptime guess and
311 * suitable for use in the boottime calculation. It is already taken
312 * into account in the basetime calculation above.
314 boottime.tv_sec = nbt->tv_sec;
315 ntp_delta = 0;
318 * We now have a new basetime, make sure all other cpus have it,
319 * then update the index.
321 cpu_sfence();
322 basetime_index = ni;
324 crit_exit();
328 * Each cpu has its own hardclock, but we only increments ticks and softticks
329 * on cpu #0.
331 * NOTE! systimer! the MP lock might not be held here. We can only safely
332 * manipulate objects owned by the current cpu.
334 static void
335 hardclock(systimer_t info, struct intrframe *frame)
337 sysclock_t cputicks;
338 struct proc *p;
339 struct globaldata *gd = mycpu;
342 * Realtime updates are per-cpu. Note that timer corrections as
343 * returned by microtime() and friends make an additional adjustment
344 * using a system-wise 'basetime', but the running time is always
345 * taken from the per-cpu globaldata area. Since the same clock
346 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
347 * stay in synch.
349 * Note that we never allow info->time (aka gd->gd_hardclock.time)
350 * to reverse index gd_cpuclock_base, but that it is possible for
351 * it to temporarily get behind in the seconds if something in the
352 * system locks interrupts for a long period of time. Since periodic
353 * timers count events, though everything should resynch again
354 * immediately.
356 cputicks = info->time - gd->gd_cpuclock_base;
357 if (cputicks >= sys_cputimer->freq) {
358 ++gd->gd_time_seconds;
359 gd->gd_cpuclock_base += sys_cputimer->freq;
363 * The system-wide ticks counter and NTP related timedelta/tickdelta
364 * adjustments only occur on cpu #0. NTP adjustments are accomplished
365 * by updating basetime.
367 if (gd->gd_cpuid == 0) {
368 struct timespec *nbt;
369 struct timespec nts;
370 int leap;
371 int ni;
373 ++ticks;
375 #if 0
376 if (tco->tc_poll_pps)
377 tco->tc_poll_pps(tco);
378 #endif
381 * Calculate the new basetime index. We are in a critical section
382 * on cpu #0 and can safely play with basetime_index. Start
383 * with the current basetime and then make adjustments.
385 ni = (basetime_index + 1) & BASETIME_ARYMASK;
386 nbt = &basetime[ni];
387 *nbt = basetime[basetime_index];
390 * Apply adjtime corrections. (adjtime() API)
392 * adjtime() only runs on cpu #0 so our critical section is
393 * sufficient to access these variables.
395 if (ntp_delta != 0) {
396 nbt->tv_nsec += ntp_tick_delta;
397 ntp_delta -= ntp_tick_delta;
398 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
399 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
400 ntp_tick_delta = ntp_delta;
405 * Apply permanent frequency corrections. (sysctl API)
407 if (ntp_tick_permanent != 0) {
408 ntp_tick_acc += ntp_tick_permanent;
409 if (ntp_tick_acc >= (1LL << 32)) {
410 nbt->tv_nsec += ntp_tick_acc >> 32;
411 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
412 } else if (ntp_tick_acc <= -(1LL << 32)) {
413 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
414 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
415 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
419 if (nbt->tv_nsec >= 1000000000) {
420 nbt->tv_sec++;
421 nbt->tv_nsec -= 1000000000;
422 } else if (nbt->tv_nsec < 0) {
423 nbt->tv_sec--;
424 nbt->tv_nsec += 1000000000;
428 * Another per-tick compensation. (for ntp_adjtime() API)
430 if (nsec_adj != 0) {
431 nsec_acc += nsec_adj;
432 if (nsec_acc >= 0x100000000LL) {
433 nbt->tv_nsec += nsec_acc >> 32;
434 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
435 } else if (nsec_acc <= -0x100000000LL) {
436 nbt->tv_nsec -= -nsec_acc >> 32;
437 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
439 if (nbt->tv_nsec >= 1000000000) {
440 nbt->tv_nsec -= 1000000000;
441 ++nbt->tv_sec;
442 } else if (nbt->tv_nsec < 0) {
443 nbt->tv_nsec += 1000000000;
444 --nbt->tv_sec;
448 /************************************************************
449 * LEAP SECOND CORRECTION *
450 ************************************************************
452 * Taking into account all the corrections made above, figure
453 * out the new real time. If the seconds field has changed
454 * then apply any pending leap-second corrections.
456 getnanotime_nbt(nbt, &nts);
458 if (time_second != nts.tv_sec) {
460 * Apply leap second (sysctl API). Adjust nts for changes
461 * so we do not have to call getnanotime_nbt again.
463 if (ntp_leap_second) {
464 if (ntp_leap_second == nts.tv_sec) {
465 if (ntp_leap_insert) {
466 nbt->tv_sec++;
467 nts.tv_sec++;
468 } else {
469 nbt->tv_sec--;
470 nts.tv_sec--;
472 ntp_leap_second--;
477 * Apply leap second (ntp_adjtime() API), calculate a new
478 * nsec_adj field. ntp_update_second() returns nsec_adj
479 * as a per-second value but we need it as a per-tick value.
481 leap = ntp_update_second(time_second, &nsec_adj);
482 nsec_adj /= hz;
483 nbt->tv_sec += leap;
484 nts.tv_sec += leap;
487 * Update the time_second 'approximate time' global.
489 time_second = nts.tv_sec;
493 * Finally, our new basetime is ready to go live!
495 cpu_sfence();
496 basetime_index = ni;
499 * Figure out how badly the system is starved for memory
501 vm_fault_ratecheck();
505 * softticks are handled for all cpus
507 hardclock_softtick(gd);
510 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
511 * is mpsafe on curproc, so XXX get the mplock.
513 if ((p = curproc) != NULL && try_mplock()) {
514 if (frame && CLKF_USERMODE(frame) &&
515 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
516 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
517 ksignal(p, SIGVTALRM);
518 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
519 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
520 ksignal(p, SIGPROF);
521 rel_mplock();
523 setdelayed();
527 * The statistics clock typically runs at a 125Hz rate, and is intended
528 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
530 * NOTE! systimer! the MP lock might not be held here. We can only safely
531 * manipulate objects owned by the current cpu.
533 * The stats clock is responsible for grabbing a profiling sample.
534 * Most of the statistics are only used by user-level statistics programs.
535 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
536 * p->p_estcpu.
538 * Like the other clocks, the stat clock is called from what is effectively
539 * a fast interrupt, so the context should be the thread/process that got
540 * interrupted.
542 static void
543 statclock(systimer_t info, struct intrframe *frame)
545 #ifdef GPROF
546 struct gmonparam *g;
547 int i;
548 #endif
549 thread_t td;
550 struct proc *p;
551 int bump;
552 struct timeval tv;
553 struct timeval *stv;
556 * How big was our timeslice relative to the last time?
558 microuptime(&tv); /* mpsafe */
559 stv = &mycpu->gd_stattv;
560 if (stv->tv_sec == 0) {
561 bump = 1;
562 } else {
563 bump = tv.tv_usec - stv->tv_usec +
564 (tv.tv_sec - stv->tv_sec) * 1000000;
565 if (bump < 0)
566 bump = 0;
567 if (bump > 1000000)
568 bump = 1000000;
570 *stv = tv;
572 td = curthread;
573 p = td->td_proc;
575 if (frame && CLKF_USERMODE(frame)) {
577 * Came from userland, handle user time and deal with
578 * possible process.
580 if (p && (p->p_flag & P_PROFIL))
581 addupc_intr(p, CLKF_PC(frame), 1);
582 td->td_uticks += bump;
585 * Charge the time as appropriate
587 if (p && p->p_nice > NZERO)
588 cpu_time.cp_nice += bump;
589 else
590 cpu_time.cp_user += bump;
591 } else {
592 #ifdef GPROF
594 * Kernel statistics are just like addupc_intr, only easier.
596 g = &_gmonparam;
597 if (g->state == GMON_PROF_ON && frame) {
598 i = CLKF_PC(frame) - g->lowpc;
599 if (i < g->textsize) {
600 i /= HISTFRACTION * sizeof(*g->kcount);
601 g->kcount[i]++;
604 #endif
606 * Came from kernel mode, so we were:
607 * - handling an interrupt,
608 * - doing syscall or trap work on behalf of the current
609 * user process, or
610 * - spinning in the idle loop.
611 * Whichever it is, charge the time as appropriate.
612 * Note that we charge interrupts to the current process,
613 * regardless of whether they are ``for'' that process,
614 * so that we know how much of its real time was spent
615 * in ``non-process'' (i.e., interrupt) work.
617 * XXX assume system if frame is NULL. A NULL frame
618 * can occur if ipi processing is done from a crit_exit().
620 if (frame && CLKF_INTR(frame))
621 td->td_iticks += bump;
622 else
623 td->td_sticks += bump;
625 if (frame && CLKF_INTR(frame)) {
626 #ifdef DEBUG_PCTRACK
627 do_pctrack(frame, PCTRACK_INT);
628 #endif
629 cpu_time.cp_intr += bump;
630 } else {
631 if (td == &mycpu->gd_idlethread) {
632 cpu_time.cp_idle += bump;
633 } else {
634 #ifdef DEBUG_PCTRACK
635 if (frame)
636 do_pctrack(frame, PCTRACK_SYS);
637 #endif
638 cpu_time.cp_sys += bump;
644 #ifdef DEBUG_PCTRACK
646 * Sample the PC when in the kernel or in an interrupt. User code can
647 * retrieve the information and generate a histogram or other output.
650 static void
651 do_pctrack(struct intrframe *frame, int which)
653 struct kinfo_pctrack *pctrack;
655 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
656 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
657 (void *)CLKF_PC(frame);
658 ++pctrack->pc_index;
661 static int
662 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
664 struct kinfo_pcheader head;
665 int error;
666 int cpu;
667 int ntrack;
669 head.pc_ntrack = PCTRACK_SIZE;
670 head.pc_arysize = PCTRACK_ARYSIZE;
672 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
673 return (error);
675 for (cpu = 0; cpu < ncpus; ++cpu) {
676 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
677 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
678 sizeof(struct kinfo_pctrack));
679 if (error)
680 break;
682 if (error)
683 break;
685 return (error);
687 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
688 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
690 #endif
693 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
694 * the MP lock might not be held. We can safely manipulate parts of curproc
695 * but that's about it.
697 * Each cpu has its own scheduler clock.
699 static void
700 schedclock(systimer_t info, struct intrframe *frame)
702 struct lwp *lp;
703 struct rusage *ru;
704 struct vmspace *vm;
705 long rss;
707 if ((lp = lwkt_preempted_proc()) != NULL) {
709 * Account for cpu time used and hit the scheduler. Note
710 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
711 * HERE.
713 ++lp->lwp_cpticks;
714 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
715 info->time);
717 if ((lp = curthread->td_lwp) != NULL) {
719 * Update resource usage integrals and maximums.
721 if ((ru = &lp->lwp_proc->p_ru) &&
722 (vm = lp->lwp_proc->p_vmspace) != NULL) {
723 ru->ru_ixrss += pgtok(vm->vm_tsize);
724 ru->ru_idrss += pgtok(vm->vm_dsize);
725 ru->ru_isrss += pgtok(vm->vm_ssize);
726 rss = pgtok(vmspace_resident_count(vm));
727 if (ru->ru_maxrss < rss)
728 ru->ru_maxrss = rss;
734 * Compute number of ticks for the specified amount of time. The
735 * return value is intended to be used in a clock interrupt timed
736 * operation and guarenteed to meet or exceed the requested time.
737 * If the representation overflows, return INT_MAX. The minimum return
738 * value is 1 ticks and the function will average the calculation up.
739 * If any value greater then 0 microseconds is supplied, a value
740 * of at least 2 will be returned to ensure that a near-term clock
741 * interrupt does not cause the timeout to occur (degenerately) early.
743 * Note that limit checks must take into account microseconds, which is
744 * done simply by using the smaller signed long maximum instead of
745 * the unsigned long maximum.
747 * If ints have 32 bits, then the maximum value for any timeout in
748 * 10ms ticks is 248 days.
751 tvtohz_high(struct timeval *tv)
753 int ticks;
754 long sec, usec;
756 sec = tv->tv_sec;
757 usec = tv->tv_usec;
758 if (usec < 0) {
759 sec--;
760 usec += 1000000;
762 if (sec < 0) {
763 #ifdef DIAGNOSTIC
764 if (usec > 0) {
765 sec++;
766 usec -= 1000000;
768 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
769 sec, usec);
770 #endif
771 ticks = 1;
772 } else if (sec <= INT_MAX / hz) {
773 ticks = (int)(sec * hz +
774 ((u_long)usec + (tick - 1)) / tick) + 1;
775 } else {
776 ticks = INT_MAX;
778 return (ticks);
782 * Compute number of ticks for the specified amount of time, erroring on
783 * the side of it being too low to ensure that sleeping the returned number
784 * of ticks will not result in a late return.
786 * The supplied timeval may not be negative and should be normalized. A
787 * return value of 0 is possible if the timeval converts to less then
788 * 1 tick.
790 * If ints have 32 bits, then the maximum value for any timeout in
791 * 10ms ticks is 248 days.
794 tvtohz_low(struct timeval *tv)
796 int ticks;
797 long sec;
799 sec = tv->tv_sec;
800 if (sec <= INT_MAX / hz)
801 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
802 else
803 ticks = INT_MAX;
804 return (ticks);
809 * Start profiling on a process.
811 * Kernel profiling passes proc0 which never exits and hence
812 * keeps the profile clock running constantly.
814 void
815 startprofclock(struct proc *p)
817 if ((p->p_flag & P_PROFIL) == 0) {
818 p->p_flag |= P_PROFIL;
819 #if 0 /* XXX */
820 if (++profprocs == 1 && stathz != 0) {
821 crit_enter();
822 psdiv = psratio;
823 setstatclockrate(profhz);
824 crit_exit();
826 #endif
831 * Stop profiling on a process.
833 void
834 stopprofclock(struct proc *p)
836 if (p->p_flag & P_PROFIL) {
837 p->p_flag &= ~P_PROFIL;
838 #if 0 /* XXX */
839 if (--profprocs == 0 && stathz != 0) {
840 crit_enter();
841 psdiv = 1;
842 setstatclockrate(stathz);
843 crit_exit();
845 #endif
850 * Return information about system clocks.
852 static int
853 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
855 struct kinfo_clockinfo clkinfo;
857 * Construct clockinfo structure.
859 clkinfo.ci_hz = hz;
860 clkinfo.ci_tick = tick;
861 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
862 clkinfo.ci_profhz = profhz;
863 clkinfo.ci_stathz = stathz ? stathz : hz;
864 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
867 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
868 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
871 * We have eight functions for looking at the clock, four for
872 * microseconds and four for nanoseconds. For each there is fast
873 * but less precise version "get{nano|micro}[up]time" which will
874 * return a time which is up to 1/HZ previous to the call, whereas
875 * the raw version "{nano|micro}[up]time" will return a timestamp
876 * which is as precise as possible. The "up" variants return the
877 * time relative to system boot, these are well suited for time
878 * interval measurements.
880 * Each cpu independantly maintains the current time of day, so all
881 * we need to do to protect ourselves from changes is to do a loop
882 * check on the seconds field changing out from under us.
884 * The system timer maintains a 32 bit count and due to various issues
885 * it is possible for the calculated delta to occassionally exceed
886 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
887 * multiplication can easily overflow, so we deal with the case. For
888 * uniformity we deal with the case in the usec case too.
890 void
891 getmicrouptime(struct timeval *tvp)
893 struct globaldata *gd = mycpu;
894 sysclock_t delta;
896 do {
897 tvp->tv_sec = gd->gd_time_seconds;
898 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
899 } while (tvp->tv_sec != gd->gd_time_seconds);
901 if (delta >= sys_cputimer->freq) {
902 tvp->tv_sec += delta / sys_cputimer->freq;
903 delta %= sys_cputimer->freq;
905 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
906 if (tvp->tv_usec >= 1000000) {
907 tvp->tv_usec -= 1000000;
908 ++tvp->tv_sec;
912 void
913 getnanouptime(struct timespec *tsp)
915 struct globaldata *gd = mycpu;
916 sysclock_t delta;
918 do {
919 tsp->tv_sec = gd->gd_time_seconds;
920 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
921 } while (tsp->tv_sec != gd->gd_time_seconds);
923 if (delta >= sys_cputimer->freq) {
924 tsp->tv_sec += delta / sys_cputimer->freq;
925 delta %= sys_cputimer->freq;
927 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
930 void
931 microuptime(struct timeval *tvp)
933 struct globaldata *gd = mycpu;
934 sysclock_t delta;
936 do {
937 tvp->tv_sec = gd->gd_time_seconds;
938 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
939 } while (tvp->tv_sec != gd->gd_time_seconds);
941 if (delta >= sys_cputimer->freq) {
942 tvp->tv_sec += delta / sys_cputimer->freq;
943 delta %= sys_cputimer->freq;
945 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
948 void
949 nanouptime(struct timespec *tsp)
951 struct globaldata *gd = mycpu;
952 sysclock_t delta;
954 do {
955 tsp->tv_sec = gd->gd_time_seconds;
956 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
957 } while (tsp->tv_sec != gd->gd_time_seconds);
959 if (delta >= sys_cputimer->freq) {
960 tsp->tv_sec += delta / sys_cputimer->freq;
961 delta %= sys_cputimer->freq;
963 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
967 * realtime routines
970 void
971 getmicrotime(struct timeval *tvp)
973 struct globaldata *gd = mycpu;
974 struct timespec *bt;
975 sysclock_t delta;
977 do {
978 tvp->tv_sec = gd->gd_time_seconds;
979 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
980 } while (tvp->tv_sec != gd->gd_time_seconds);
982 if (delta >= sys_cputimer->freq) {
983 tvp->tv_sec += delta / sys_cputimer->freq;
984 delta %= sys_cputimer->freq;
986 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
988 bt = &basetime[basetime_index];
989 tvp->tv_sec += bt->tv_sec;
990 tvp->tv_usec += bt->tv_nsec / 1000;
991 while (tvp->tv_usec >= 1000000) {
992 tvp->tv_usec -= 1000000;
993 ++tvp->tv_sec;
997 void
998 getnanotime(struct timespec *tsp)
1000 struct globaldata *gd = mycpu;
1001 struct timespec *bt;
1002 sysclock_t delta;
1004 do {
1005 tsp->tv_sec = gd->gd_time_seconds;
1006 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1007 } while (tsp->tv_sec != gd->gd_time_seconds);
1009 if (delta >= sys_cputimer->freq) {
1010 tsp->tv_sec += delta / sys_cputimer->freq;
1011 delta %= sys_cputimer->freq;
1013 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1015 bt = &basetime[basetime_index];
1016 tsp->tv_sec += bt->tv_sec;
1017 tsp->tv_nsec += bt->tv_nsec;
1018 while (tsp->tv_nsec >= 1000000000) {
1019 tsp->tv_nsec -= 1000000000;
1020 ++tsp->tv_sec;
1024 static void
1025 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1027 struct globaldata *gd = mycpu;
1028 sysclock_t delta;
1030 do {
1031 tsp->tv_sec = gd->gd_time_seconds;
1032 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1033 } while (tsp->tv_sec != gd->gd_time_seconds);
1035 if (delta >= sys_cputimer->freq) {
1036 tsp->tv_sec += delta / sys_cputimer->freq;
1037 delta %= sys_cputimer->freq;
1039 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1041 tsp->tv_sec += nbt->tv_sec;
1042 tsp->tv_nsec += nbt->tv_nsec;
1043 while (tsp->tv_nsec >= 1000000000) {
1044 tsp->tv_nsec -= 1000000000;
1045 ++tsp->tv_sec;
1050 void
1051 microtime(struct timeval *tvp)
1053 struct globaldata *gd = mycpu;
1054 struct timespec *bt;
1055 sysclock_t delta;
1057 do {
1058 tvp->tv_sec = gd->gd_time_seconds;
1059 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1060 } while (tvp->tv_sec != gd->gd_time_seconds);
1062 if (delta >= sys_cputimer->freq) {
1063 tvp->tv_sec += delta / sys_cputimer->freq;
1064 delta %= sys_cputimer->freq;
1066 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1068 bt = &basetime[basetime_index];
1069 tvp->tv_sec += bt->tv_sec;
1070 tvp->tv_usec += bt->tv_nsec / 1000;
1071 while (tvp->tv_usec >= 1000000) {
1072 tvp->tv_usec -= 1000000;
1073 ++tvp->tv_sec;
1077 void
1078 nanotime(struct timespec *tsp)
1080 struct globaldata *gd = mycpu;
1081 struct timespec *bt;
1082 sysclock_t delta;
1084 do {
1085 tsp->tv_sec = gd->gd_time_seconds;
1086 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1087 } while (tsp->tv_sec != gd->gd_time_seconds);
1089 if (delta >= sys_cputimer->freq) {
1090 tsp->tv_sec += delta / sys_cputimer->freq;
1091 delta %= sys_cputimer->freq;
1093 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1095 bt = &basetime[basetime_index];
1096 tsp->tv_sec += bt->tv_sec;
1097 tsp->tv_nsec += bt->tv_nsec;
1098 while (tsp->tv_nsec >= 1000000000) {
1099 tsp->tv_nsec -= 1000000000;
1100 ++tsp->tv_sec;
1105 * note: this is not exactly synchronized with real time. To do that we
1106 * would have to do what microtime does and check for a nanoseconds overflow.
1108 time_t
1109 get_approximate_time_t(void)
1111 struct globaldata *gd = mycpu;
1112 struct timespec *bt;
1114 bt = &basetime[basetime_index];
1115 return(gd->gd_time_seconds + bt->tv_sec);
1119 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1121 pps_params_t *app;
1122 struct pps_fetch_args *fapi;
1123 #ifdef PPS_SYNC
1124 struct pps_kcbind_args *kapi;
1125 #endif
1127 switch (cmd) {
1128 case PPS_IOC_CREATE:
1129 return (0);
1130 case PPS_IOC_DESTROY:
1131 return (0);
1132 case PPS_IOC_SETPARAMS:
1133 app = (pps_params_t *)data;
1134 if (app->mode & ~pps->ppscap)
1135 return (EINVAL);
1136 pps->ppsparam = *app;
1137 return (0);
1138 case PPS_IOC_GETPARAMS:
1139 app = (pps_params_t *)data;
1140 *app = pps->ppsparam;
1141 app->api_version = PPS_API_VERS_1;
1142 return (0);
1143 case PPS_IOC_GETCAP:
1144 *(int*)data = pps->ppscap;
1145 return (0);
1146 case PPS_IOC_FETCH:
1147 fapi = (struct pps_fetch_args *)data;
1148 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1149 return (EINVAL);
1150 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1151 return (EOPNOTSUPP);
1152 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1153 fapi->pps_info_buf = pps->ppsinfo;
1154 return (0);
1155 case PPS_IOC_KCBIND:
1156 #ifdef PPS_SYNC
1157 kapi = (struct pps_kcbind_args *)data;
1158 /* XXX Only root should be able to do this */
1159 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1160 return (EINVAL);
1161 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1162 return (EINVAL);
1163 if (kapi->edge & ~pps->ppscap)
1164 return (EINVAL);
1165 pps->kcmode = kapi->edge;
1166 return (0);
1167 #else
1168 return (EOPNOTSUPP);
1169 #endif
1170 default:
1171 return (ENOTTY);
1175 void
1176 pps_init(struct pps_state *pps)
1178 pps->ppscap |= PPS_TSFMT_TSPEC;
1179 if (pps->ppscap & PPS_CAPTUREASSERT)
1180 pps->ppscap |= PPS_OFFSETASSERT;
1181 if (pps->ppscap & PPS_CAPTURECLEAR)
1182 pps->ppscap |= PPS_OFFSETCLEAR;
1185 void
1186 pps_event(struct pps_state *pps, sysclock_t count, int event)
1188 struct globaldata *gd;
1189 struct timespec *tsp;
1190 struct timespec *osp;
1191 struct timespec *bt;
1192 struct timespec ts;
1193 sysclock_t *pcount;
1194 #ifdef PPS_SYNC
1195 sysclock_t tcount;
1196 #endif
1197 sysclock_t delta;
1198 pps_seq_t *pseq;
1199 int foff;
1200 int fhard;
1202 gd = mycpu;
1204 /* Things would be easier with arrays... */
1205 if (event == PPS_CAPTUREASSERT) {
1206 tsp = &pps->ppsinfo.assert_timestamp;
1207 osp = &pps->ppsparam.assert_offset;
1208 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1209 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1210 pcount = &pps->ppscount[0];
1211 pseq = &pps->ppsinfo.assert_sequence;
1212 } else {
1213 tsp = &pps->ppsinfo.clear_timestamp;
1214 osp = &pps->ppsparam.clear_offset;
1215 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1216 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1217 pcount = &pps->ppscount[1];
1218 pseq = &pps->ppsinfo.clear_sequence;
1221 /* Nothing really happened */
1222 if (*pcount == count)
1223 return;
1225 *pcount = count;
1227 do {
1228 ts.tv_sec = gd->gd_time_seconds;
1229 delta = count - gd->gd_cpuclock_base;
1230 } while (ts.tv_sec != gd->gd_time_seconds);
1232 if (delta >= sys_cputimer->freq) {
1233 ts.tv_sec += delta / sys_cputimer->freq;
1234 delta %= sys_cputimer->freq;
1236 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1237 bt = &basetime[basetime_index];
1238 ts.tv_sec += bt->tv_sec;
1239 ts.tv_nsec += bt->tv_nsec;
1240 while (ts.tv_nsec >= 1000000000) {
1241 ts.tv_nsec -= 1000000000;
1242 ++ts.tv_sec;
1245 (*pseq)++;
1246 *tsp = ts;
1248 if (foff) {
1249 timespecadd(tsp, osp);
1250 if (tsp->tv_nsec < 0) {
1251 tsp->tv_nsec += 1000000000;
1252 tsp->tv_sec -= 1;
1255 #ifdef PPS_SYNC
1256 if (fhard) {
1257 /* magic, at its best... */
1258 tcount = count - pps->ppscount[2];
1259 pps->ppscount[2] = count;
1260 if (tcount >= sys_cputimer->freq) {
1261 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1262 sys_cputimer->freq64_nsec *
1263 (tcount % sys_cputimer->freq)) >> 32;
1264 } else {
1265 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1267 hardpps(tsp, delta);
1269 #endif