Release 0.3
[delight.git] / gcc-4.1.2 / gcc / reload1.c
blob42f186f7bc89b857a57bfb06881a5c9b78958db1
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is an invariant value to which pseudo reg N is equivalent.
100 eliminate_regs_in_insn uses this to replace pseudos in particular
101 contexts. */
102 rtx *reg_equiv_invariant;
104 /* Element N is a memory location to which pseudo reg N is equivalent,
105 prior to any register elimination (such as frame pointer to stack
106 pointer). Depending on whether or not it is a valid address, this value
107 is transferred to either reg_equiv_address or reg_equiv_mem. */
108 rtx *reg_equiv_memory_loc;
110 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
111 collector can keep track of what is inside. */
112 varray_type reg_equiv_memory_loc_varray;
114 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
115 This is used when the address is not valid as a memory address
116 (because its displacement is too big for the machine.) */
117 rtx *reg_equiv_address;
119 /* Element N is the memory slot to which pseudo reg N is equivalent,
120 or zero if pseudo reg N is not equivalent to a memory slot. */
121 rtx *reg_equiv_mem;
123 /* Widest width in which each pseudo reg is referred to (via subreg). */
124 static unsigned int *reg_max_ref_width;
126 /* Element N is the list of insns that initialized reg N from its equivalent
127 constant or memory slot. */
128 rtx *reg_equiv_init;
129 int reg_equiv_init_size;
131 /* Vector to remember old contents of reg_renumber before spilling. */
132 static short *reg_old_renumber;
134 /* During reload_as_needed, element N contains the last pseudo regno reloaded
135 into hard register N. If that pseudo reg occupied more than one register,
136 reg_reloaded_contents points to that pseudo for each spill register in
137 use; all of these must remain set for an inheritance to occur. */
138 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
140 /* During reload_as_needed, element N contains the insn for which
141 hard register N was last used. Its contents are significant only
142 when reg_reloaded_valid is set for this register. */
143 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
145 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
146 static HARD_REG_SET reg_reloaded_valid;
147 /* Indicate if the register was dead at the end of the reload.
148 This is only valid if reg_reloaded_contents is set and valid. */
149 static HARD_REG_SET reg_reloaded_dead;
151 /* Indicate whether the register's current value is one that is not
152 safe to retain across a call, even for registers that are normally
153 call-saved. */
154 static HARD_REG_SET reg_reloaded_call_part_clobbered;
156 /* Number of spill-regs so far; number of valid elements of spill_regs. */
157 static int n_spills;
159 /* In parallel with spill_regs, contains REG rtx's for those regs.
160 Holds the last rtx used for any given reg, or 0 if it has never
161 been used for spilling yet. This rtx is reused, provided it has
162 the proper mode. */
163 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
165 /* In parallel with spill_regs, contains nonzero for a spill reg
166 that was stored after the last time it was used.
167 The precise value is the insn generated to do the store. */
168 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
170 /* This is the register that was stored with spill_reg_store. This is a
171 copy of reload_out / reload_out_reg when the value was stored; if
172 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
173 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
175 /* This table is the inverse mapping of spill_regs:
176 indexed by hard reg number,
177 it contains the position of that reg in spill_regs,
178 or -1 for something that is not in spill_regs.
180 ?!? This is no longer accurate. */
181 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
183 /* This reg set indicates registers that can't be used as spill registers for
184 the currently processed insn. These are the hard registers which are live
185 during the insn, but not allocated to pseudos, as well as fixed
186 registers. */
187 static HARD_REG_SET bad_spill_regs;
189 /* These are the hard registers that can't be used as spill register for any
190 insn. This includes registers used for user variables and registers that
191 we can't eliminate. A register that appears in this set also can't be used
192 to retry register allocation. */
193 static HARD_REG_SET bad_spill_regs_global;
195 /* Describes order of use of registers for reloading
196 of spilled pseudo-registers. `n_spills' is the number of
197 elements that are actually valid; new ones are added at the end.
199 Both spill_regs and spill_reg_order are used on two occasions:
200 once during find_reload_regs, where they keep track of the spill registers
201 for a single insn, but also during reload_as_needed where they show all
202 the registers ever used by reload. For the latter case, the information
203 is calculated during finish_spills. */
204 static short spill_regs[FIRST_PSEUDO_REGISTER];
206 /* This vector of reg sets indicates, for each pseudo, which hard registers
207 may not be used for retrying global allocation because the register was
208 formerly spilled from one of them. If we allowed reallocating a pseudo to
209 a register that it was already allocated to, reload might not
210 terminate. */
211 static HARD_REG_SET *pseudo_previous_regs;
213 /* This vector of reg sets indicates, for each pseudo, which hard
214 registers may not be used for retrying global allocation because they
215 are used as spill registers during one of the insns in which the
216 pseudo is live. */
217 static HARD_REG_SET *pseudo_forbidden_regs;
219 /* All hard regs that have been used as spill registers for any insn are
220 marked in this set. */
221 static HARD_REG_SET used_spill_regs;
223 /* Index of last register assigned as a spill register. We allocate in
224 a round-robin fashion. */
225 static int last_spill_reg;
227 /* Nonzero if indirect addressing is supported on the machine; this means
228 that spilling (REG n) does not require reloading it into a register in
229 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
230 value indicates the level of indirect addressing supported, e.g., two
231 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
232 a hard register. */
233 static char spill_indirect_levels;
235 /* Nonzero if indirect addressing is supported when the innermost MEM is
236 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
237 which these are valid is the same as spill_indirect_levels, above. */
238 char indirect_symref_ok;
240 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
241 char double_reg_address_ok;
243 /* Record the stack slot for each spilled hard register. */
244 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
246 /* Width allocated so far for that stack slot. */
247 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
249 /* Record which pseudos needed to be spilled. */
250 static regset_head spilled_pseudos;
252 /* Used for communication between order_regs_for_reload and count_pseudo.
253 Used to avoid counting one pseudo twice. */
254 static regset_head pseudos_counted;
256 /* First uid used by insns created by reload in this function.
257 Used in find_equiv_reg. */
258 int reload_first_uid;
260 /* Flag set by local-alloc or global-alloc if anything is live in
261 a call-clobbered reg across calls. */
262 int caller_save_needed;
264 /* Set to 1 while reload_as_needed is operating.
265 Required by some machines to handle any generated moves differently. */
266 int reload_in_progress = 0;
268 /* These arrays record the insn_code of insns that may be needed to
269 perform input and output reloads of special objects. They provide a
270 place to pass a scratch register. */
271 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
272 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
274 /* This obstack is used for allocation of rtl during register elimination.
275 The allocated storage can be freed once find_reloads has processed the
276 insn. */
277 static struct obstack reload_obstack;
279 /* Points to the beginning of the reload_obstack. All insn_chain structures
280 are allocated first. */
281 static char *reload_startobj;
283 /* The point after all insn_chain structures. Used to quickly deallocate
284 memory allocated in copy_reloads during calculate_needs_all_insns. */
285 static char *reload_firstobj;
287 /* This points before all local rtl generated by register elimination.
288 Used to quickly free all memory after processing one insn. */
289 static char *reload_insn_firstobj;
291 /* List of insn_chain instructions, one for every insn that reload needs to
292 examine. */
293 struct insn_chain *reload_insn_chain;
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
303 struct elim_table
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Nonzero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 HOST_WIDE_INT offset; /* Current offset between the two regs. */
312 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
322 static struct elim_table *reg_eliminate = 0;
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static const struct elim_table_1
328 const int from;
329 const int to;
330 } reg_eliminate_1[] =
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If nonzero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the difference of the
358 number of the label and the first label number. We can't offset the
359 pointer itself as this can cause problems on machines with segmented
360 memory. The first table is an array of flags that records whether we
361 have yet encountered a label and the second table is an array of arrays,
362 one entry in the latter array for each elimination. */
364 static int first_label_num;
365 static char *offsets_known_at;
366 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
368 /* Number of labels in the current function. */
370 static int num_labels;
372 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
373 static void maybe_fix_stack_asms (void);
374 static void copy_reloads (struct insn_chain *);
375 static void calculate_needs_all_insns (int);
376 static int find_reg (struct insn_chain *, int);
377 static void find_reload_regs (struct insn_chain *);
378 static void select_reload_regs (void);
379 static void delete_caller_save_insns (void);
381 static void spill_failure (rtx, enum reg_class);
382 static void count_spilled_pseudo (int, int, int);
383 static void delete_dead_insn (rtx);
384 static void alter_reg (int, int);
385 static void set_label_offsets (rtx, rtx, int);
386 static void check_eliminable_occurrences (rtx);
387 static void elimination_effects (rtx, enum machine_mode);
388 static int eliminate_regs_in_insn (rtx, int);
389 static void update_eliminable_offsets (void);
390 static void mark_not_eliminable (rtx, rtx, void *);
391 static void set_initial_elim_offsets (void);
392 static bool verify_initial_elim_offsets (void);
393 static void set_initial_label_offsets (void);
394 static void set_offsets_for_label (rtx);
395 static void init_elim_table (void);
396 static void update_eliminables (HARD_REG_SET *);
397 static void spill_hard_reg (unsigned int, int);
398 static int finish_spills (int);
399 static void scan_paradoxical_subregs (rtx);
400 static void count_pseudo (int);
401 static void order_regs_for_reload (struct insn_chain *);
402 static void reload_as_needed (int);
403 static void forget_old_reloads_1 (rtx, rtx, void *);
404 static int reload_reg_class_lower (const void *, const void *);
405 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
406 enum machine_mode);
407 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
408 enum machine_mode);
409 static int reload_reg_free_p (unsigned int, int, enum reload_type);
410 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
411 rtx, rtx, int, int);
412 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
413 rtx, rtx, int, int);
414 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
415 static int allocate_reload_reg (struct insn_chain *, int, int);
416 static int conflicts_with_override (rtx);
417 static void failed_reload (rtx, int);
418 static int set_reload_reg (int, int);
419 static void choose_reload_regs_init (struct insn_chain *, rtx *);
420 static void choose_reload_regs (struct insn_chain *);
421 static void merge_assigned_reloads (rtx);
422 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
423 rtx, int);
424 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
425 int);
426 static void do_input_reload (struct insn_chain *, struct reload *, int);
427 static void do_output_reload (struct insn_chain *, struct reload *, int);
428 static bool inherit_piecemeal_p (int, int);
429 static void emit_reload_insns (struct insn_chain *);
430 static void delete_output_reload (rtx, int, int);
431 static void delete_address_reloads (rtx, rtx);
432 static void delete_address_reloads_1 (rtx, rtx, rtx);
433 static rtx inc_for_reload (rtx, rtx, rtx, int);
434 #ifdef AUTO_INC_DEC
435 static void add_auto_inc_notes (rtx, rtx);
436 #endif
437 static void copy_eh_notes (rtx, rtx);
438 static int reloads_conflict (int, int);
439 static rtx gen_reload (rtx, rtx, int, enum reload_type);
440 static rtx emit_insn_if_valid_for_reload (rtx);
442 /* Initialize the reload pass once per compilation. */
444 void
445 init_reload (void)
447 int i;
449 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
450 Set spill_indirect_levels to the number of levels such addressing is
451 permitted, zero if it is not permitted at all. */
453 rtx tem
454 = gen_rtx_MEM (Pmode,
455 gen_rtx_PLUS (Pmode,
456 gen_rtx_REG (Pmode,
457 LAST_VIRTUAL_REGISTER + 1),
458 GEN_INT (4)));
459 spill_indirect_levels = 0;
461 while (memory_address_p (QImode, tem))
463 spill_indirect_levels++;
464 tem = gen_rtx_MEM (Pmode, tem);
467 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
469 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
470 indirect_symref_ok = memory_address_p (QImode, tem);
472 /* See if reg+reg is a valid (and offsettable) address. */
474 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
476 tem = gen_rtx_PLUS (Pmode,
477 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
478 gen_rtx_REG (Pmode, i));
480 /* This way, we make sure that reg+reg is an offsettable address. */
481 tem = plus_constant (tem, 4);
483 if (memory_address_p (QImode, tem))
485 double_reg_address_ok = 1;
486 break;
490 /* Initialize obstack for our rtl allocation. */
491 gcc_obstack_init (&reload_obstack);
492 reload_startobj = obstack_alloc (&reload_obstack, 0);
494 INIT_REG_SET (&spilled_pseudos);
495 INIT_REG_SET (&pseudos_counted);
496 VARRAY_RTX_INIT (reg_equiv_memory_loc_varray, 0, "reg_equiv_memory_loc");
499 /* List of insn chains that are currently unused. */
500 static struct insn_chain *unused_insn_chains = 0;
502 /* Allocate an empty insn_chain structure. */
503 struct insn_chain *
504 new_insn_chain (void)
506 struct insn_chain *c;
508 if (unused_insn_chains == 0)
510 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
511 INIT_REG_SET (&c->live_throughout);
512 INIT_REG_SET (&c->dead_or_set);
514 else
516 c = unused_insn_chains;
517 unused_insn_chains = c->next;
519 c->is_caller_save_insn = 0;
520 c->need_operand_change = 0;
521 c->need_reload = 0;
522 c->need_elim = 0;
523 return c;
526 /* Small utility function to set all regs in hard reg set TO which are
527 allocated to pseudos in regset FROM. */
529 void
530 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
532 unsigned int regno;
533 reg_set_iterator rsi;
535 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
537 int r = reg_renumber[regno];
538 int nregs;
540 if (r < 0)
542 /* reload_combine uses the information from
543 BASIC_BLOCK->global_live_at_start, which might still
544 contain registers that have not actually been allocated
545 since they have an equivalence. */
546 gcc_assert (reload_completed);
548 else
550 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
551 while (nregs-- > 0)
552 SET_HARD_REG_BIT (*to, r + nregs);
557 /* Replace all pseudos found in LOC with their corresponding
558 equivalences. */
560 static void
561 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
563 rtx x = *loc;
564 enum rtx_code code;
565 const char *fmt;
566 int i, j;
568 if (! x)
569 return;
571 code = GET_CODE (x);
572 if (code == REG)
574 unsigned int regno = REGNO (x);
576 if (regno < FIRST_PSEUDO_REGISTER)
577 return;
579 x = eliminate_regs (x, mem_mode, usage);
580 if (x != *loc)
582 *loc = x;
583 replace_pseudos_in (loc, mem_mode, usage);
584 return;
587 if (reg_equiv_constant[regno])
588 *loc = reg_equiv_constant[regno];
589 else if (reg_equiv_mem[regno])
590 *loc = reg_equiv_mem[regno];
591 else if (reg_equiv_address[regno])
592 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
593 else
595 gcc_assert (!REG_P (regno_reg_rtx[regno])
596 || REGNO (regno_reg_rtx[regno]) != regno);
597 *loc = regno_reg_rtx[regno];
600 return;
602 else if (code == MEM)
604 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
605 return;
608 /* Process each of our operands recursively. */
609 fmt = GET_RTX_FORMAT (code);
610 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
611 if (*fmt == 'e')
612 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
613 else if (*fmt == 'E')
614 for (j = 0; j < XVECLEN (x, i); j++)
615 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
619 /* Global variables used by reload and its subroutines. */
621 /* Set during calculate_needs if an insn needs register elimination. */
622 static int something_needs_elimination;
623 /* Set during calculate_needs if an insn needs an operand changed. */
624 static int something_needs_operands_changed;
626 /* Nonzero means we couldn't get enough spill regs. */
627 static int failure;
629 /* Main entry point for the reload pass.
631 FIRST is the first insn of the function being compiled.
633 GLOBAL nonzero means we were called from global_alloc
634 and should attempt to reallocate any pseudoregs that we
635 displace from hard regs we will use for reloads.
636 If GLOBAL is zero, we do not have enough information to do that,
637 so any pseudo reg that is spilled must go to the stack.
639 Return value is nonzero if reload failed
640 and we must not do any more for this function. */
643 reload (rtx first, int global)
645 int i;
646 rtx insn;
647 struct elim_table *ep;
648 basic_block bb;
650 /* Make sure even insns with volatile mem refs are recognizable. */
651 init_recog ();
653 failure = 0;
655 reload_firstobj = obstack_alloc (&reload_obstack, 0);
657 /* Make sure that the last insn in the chain
658 is not something that needs reloading. */
659 emit_note (NOTE_INSN_DELETED);
661 /* Enable find_equiv_reg to distinguish insns made by reload. */
662 reload_first_uid = get_max_uid ();
664 #ifdef SECONDARY_MEMORY_NEEDED
665 /* Initialize the secondary memory table. */
666 clear_secondary_mem ();
667 #endif
669 /* We don't have a stack slot for any spill reg yet. */
670 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
671 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
673 /* Initialize the save area information for caller-save, in case some
674 are needed. */
675 init_save_areas ();
677 /* Compute which hard registers are now in use
678 as homes for pseudo registers.
679 This is done here rather than (eg) in global_alloc
680 because this point is reached even if not optimizing. */
681 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
682 mark_home_live (i);
684 /* A function that receives a nonlocal goto must save all call-saved
685 registers. */
686 if (current_function_has_nonlocal_label)
687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
688 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
689 regs_ever_live[i] = 1;
691 /* Find all the pseudo registers that didn't get hard regs
692 but do have known equivalent constants or memory slots.
693 These include parameters (known equivalent to parameter slots)
694 and cse'd or loop-moved constant memory addresses.
696 Record constant equivalents in reg_equiv_constant
697 so they will be substituted by find_reloads.
698 Record memory equivalents in reg_mem_equiv so they can
699 be substituted eventually by altering the REG-rtx's. */
701 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
702 reg_equiv_invariant = xcalloc (max_regno, sizeof (rtx));
703 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
704 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
705 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
706 reg_old_renumber = xcalloc (max_regno, sizeof (short));
707 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
708 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
709 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
711 CLEAR_HARD_REG_SET (bad_spill_regs_global);
713 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
714 to. Also find all paradoxical subregs and find largest such for
715 each pseudo. */
717 num_eliminable_invariants = 0;
718 for (insn = first; insn; insn = NEXT_INSN (insn))
720 rtx set = single_set (insn);
722 /* We may introduce USEs that we want to remove at the end, so
723 we'll mark them with QImode. Make sure there are no
724 previously-marked insns left by say regmove. */
725 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
726 && GET_MODE (insn) != VOIDmode)
727 PUT_MODE (insn, VOIDmode);
729 if (INSN_P (insn))
730 scan_paradoxical_subregs (PATTERN (insn));
732 if (set != 0 && REG_P (SET_DEST (set)))
734 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
735 rtx x;
737 if (! note)
738 continue;
740 i = REGNO (SET_DEST (set));
741 x = XEXP (note, 0);
743 if (i <= LAST_VIRTUAL_REGISTER)
744 continue;
746 if (! function_invariant_p (x)
747 || ! flag_pic
748 /* A function invariant is often CONSTANT_P but may
749 include a register. We promise to only pass
750 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
751 || (CONSTANT_P (x)
752 && LEGITIMATE_PIC_OPERAND_P (x)))
754 /* It can happen that a REG_EQUIV note contains a MEM
755 that is not a legitimate memory operand. As later
756 stages of reload assume that all addresses found
757 in the reg_equiv_* arrays were originally legitimate,
758 we ignore such REG_EQUIV notes. */
759 if (memory_operand (x, VOIDmode))
761 /* Always unshare the equivalence, so we can
762 substitute into this insn without touching the
763 equivalence. */
764 reg_equiv_memory_loc[i] = copy_rtx (x);
766 else if (function_invariant_p (x))
768 if (GET_CODE (x) == PLUS)
770 /* This is PLUS of frame pointer and a constant,
771 and might be shared. Unshare it. */
772 reg_equiv_invariant[i] = copy_rtx (x);
773 num_eliminable_invariants++;
775 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
777 reg_equiv_invariant[i] = x;
778 num_eliminable_invariants++;
780 else if (LEGITIMATE_CONSTANT_P (x))
781 reg_equiv_constant[i] = x;
782 else
784 reg_equiv_memory_loc[i]
785 = force_const_mem (GET_MODE (SET_DEST (set)), x);
786 if (! reg_equiv_memory_loc[i])
787 reg_equiv_init[i] = NULL_RTX;
790 else
792 reg_equiv_init[i] = NULL_RTX;
793 continue;
796 else
797 reg_equiv_init[i] = NULL_RTX;
801 if (dump_file)
802 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
803 if (reg_equiv_init[i])
805 fprintf (dump_file, "init_insns for %u: ", i);
806 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
807 fprintf (dump_file, "\n");
810 init_elim_table ();
812 first_label_num = get_first_label_num ();
813 num_labels = max_label_num () - first_label_num;
815 /* Allocate the tables used to store offset information at labels. */
816 /* We used to use alloca here, but the size of what it would try to
817 allocate would occasionally cause it to exceed the stack limit and
818 cause a core dump. */
819 offsets_known_at = xmalloc (num_labels);
820 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
822 /* Alter each pseudo-reg rtx to contain its hard reg number.
823 Assign stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
826 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
827 alter_reg (i, -1);
829 /* If we have some registers we think can be eliminated, scan all insns to
830 see if there is an insn that sets one of these registers to something
831 other than itself plus a constant. If so, the register cannot be
832 eliminated. Doing this scan here eliminates an extra pass through the
833 main reload loop in the most common case where register elimination
834 cannot be done. */
835 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
836 if (INSN_P (insn))
837 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
839 maybe_fix_stack_asms ();
841 insns_need_reload = 0;
842 something_needs_elimination = 0;
844 /* Initialize to -1, which means take the first spill register. */
845 last_spill_reg = -1;
847 /* Spill any hard regs that we know we can't eliminate. */
848 CLEAR_HARD_REG_SET (used_spill_regs);
849 /* There can be multiple ways to eliminate a register;
850 they should be listed adjacently.
851 Elimination for any register fails only if all possible ways fail. */
852 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
854 int from = ep->from;
855 int can_eliminate = 0;
858 can_eliminate |= ep->can_eliminate;
859 ep++;
861 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
862 if (! can_eliminate)
863 spill_hard_reg (from, 1);
866 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
867 if (frame_pointer_needed)
868 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
869 #endif
870 finish_spills (global);
872 /* From now on, we may need to generate moves differently. We may also
873 allow modifications of insns which cause them to not be recognized.
874 Any such modifications will be cleaned up during reload itself. */
875 reload_in_progress = 1;
877 /* This loop scans the entire function each go-round
878 and repeats until one repetition spills no additional hard regs. */
879 for (;;)
881 int something_changed;
882 int did_spill;
884 HOST_WIDE_INT starting_frame_size;
886 /* Round size of stack frame to stack_alignment_needed. This must be done
887 here because the stack size may be a part of the offset computation
888 for register elimination, and there might have been new stack slots
889 created in the last iteration of this loop. */
890 if (cfun->stack_alignment_needed)
891 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
893 starting_frame_size = get_frame_size ();
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
925 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
927 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
928 XEXP (x, 0)))
929 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
930 else if (CONSTANT_P (XEXP (x, 0))
931 || (REG_P (XEXP (x, 0))
932 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
933 || (GET_CODE (XEXP (x, 0)) == PLUS
934 && REG_P (XEXP (XEXP (x, 0), 0))
935 && (REGNO (XEXP (XEXP (x, 0), 0))
936 < FIRST_PSEUDO_REGISTER)
937 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
938 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
939 else
941 /* Make a new stack slot. Then indicate that something
942 changed so we go back and recompute offsets for
943 eliminable registers because the allocation of memory
944 below might change some offset. reg_equiv_{mem,address}
945 will be set up for this pseudo on the next pass around
946 the loop. */
947 reg_equiv_memory_loc[i] = 0;
948 reg_equiv_init[i] = 0;
949 alter_reg (i, -1);
953 if (caller_save_needed)
954 setup_save_areas ();
956 /* If we allocated another stack slot, redo elimination bookkeeping. */
957 if (starting_frame_size != get_frame_size ())
958 continue;
960 if (caller_save_needed)
962 save_call_clobbered_regs ();
963 /* That might have allocated new insn_chain structures. */
964 reload_firstobj = obstack_alloc (&reload_obstack, 0);
967 calculate_needs_all_insns (global);
969 CLEAR_REG_SET (&spilled_pseudos);
970 did_spill = 0;
972 something_changed = 0;
974 /* If we allocated any new memory locations, make another pass
975 since it might have changed elimination offsets. */
976 if (starting_frame_size != get_frame_size ())
977 something_changed = 1;
979 /* Even if the frame size remained the same, we might still have
980 changed elimination offsets, e.g. if find_reloads called
981 force_const_mem requiring the back end to allocate a constant
982 pool base register that needs to be saved on the stack. */
983 else if (!verify_initial_elim_offsets ())
984 something_changed = 1;
987 HARD_REG_SET to_spill;
988 CLEAR_HARD_REG_SET (to_spill);
989 update_eliminables (&to_spill);
990 AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
993 if (TEST_HARD_REG_BIT (to_spill, i))
995 spill_hard_reg (i, 1);
996 did_spill = 1;
998 /* Regardless of the state of spills, if we previously had
999 a register that we thought we could eliminate, but now can
1000 not eliminate, we must run another pass.
1002 Consider pseudos which have an entry in reg_equiv_* which
1003 reference an eliminable register. We must make another pass
1004 to update reg_equiv_* so that we do not substitute in the
1005 old value from when we thought the elimination could be
1006 performed. */
1007 something_changed = 1;
1011 select_reload_regs ();
1012 if (failure)
1013 goto failed;
1015 if (insns_need_reload != 0 || did_spill)
1016 something_changed |= finish_spills (global);
1018 if (! something_changed)
1019 break;
1021 if (caller_save_needed)
1022 delete_caller_save_insns ();
1024 obstack_free (&reload_obstack, reload_firstobj);
1027 /* If global-alloc was run, notify it of any register eliminations we have
1028 done. */
1029 if (global)
1030 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1031 if (ep->can_eliminate)
1032 mark_elimination (ep->from, ep->to);
1034 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1035 If that insn didn't set the register (i.e., it copied the register to
1036 memory), just delete that insn instead of the equivalencing insn plus
1037 anything now dead. If we call delete_dead_insn on that insn, we may
1038 delete the insn that actually sets the register if the register dies
1039 there and that is incorrect. */
1041 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1043 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1045 rtx list;
1046 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1048 rtx equiv_insn = XEXP (list, 0);
1050 /* If we already deleted the insn or if it may trap, we can't
1051 delete it. The latter case shouldn't happen, but can
1052 if an insn has a variable address, gets a REG_EH_REGION
1053 note added to it, and then gets converted into a load
1054 from a constant address. */
1055 if (NOTE_P (equiv_insn)
1056 || can_throw_internal (equiv_insn))
1058 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1059 delete_dead_insn (equiv_insn);
1060 else
1061 SET_INSN_DELETED (equiv_insn);
1066 /* Use the reload registers where necessary
1067 by generating move instructions to move the must-be-register
1068 values into or out of the reload registers. */
1070 if (insns_need_reload != 0 || something_needs_elimination
1071 || something_needs_operands_changed)
1073 HOST_WIDE_INT old_frame_size = get_frame_size ();
1075 reload_as_needed (global);
1077 gcc_assert (old_frame_size == get_frame_size ());
1079 gcc_assert (verify_initial_elim_offsets ());
1082 /* If we were able to eliminate the frame pointer, show that it is no
1083 longer live at the start of any basic block. If it ls live by
1084 virtue of being in a pseudo, that pseudo will be marked live
1085 and hence the frame pointer will be known to be live via that
1086 pseudo. */
1088 if (! frame_pointer_needed)
1089 FOR_EACH_BB (bb)
1090 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1091 HARD_FRAME_POINTER_REGNUM);
1093 /* Come here (with failure set nonzero) if we can't get enough spill
1094 regs. */
1095 failed:
1097 CLEAR_REG_SET (&spilled_pseudos);
1098 reload_in_progress = 0;
1100 /* Now eliminate all pseudo regs by modifying them into
1101 their equivalent memory references.
1102 The REG-rtx's for the pseudos are modified in place,
1103 so all insns that used to refer to them now refer to memory.
1105 For a reg that has a reg_equiv_address, all those insns
1106 were changed by reloading so that no insns refer to it any longer;
1107 but the DECL_RTL of a variable decl may refer to it,
1108 and if so this causes the debugging info to mention the variable. */
1110 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1112 rtx addr = 0;
1114 if (reg_equiv_mem[i])
1115 addr = XEXP (reg_equiv_mem[i], 0);
1117 if (reg_equiv_address[i])
1118 addr = reg_equiv_address[i];
1120 if (addr)
1122 if (reg_renumber[i] < 0)
1124 rtx reg = regno_reg_rtx[i];
1126 REG_USERVAR_P (reg) = 0;
1127 PUT_CODE (reg, MEM);
1128 XEXP (reg, 0) = addr;
1129 if (reg_equiv_memory_loc[i])
1130 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1131 else
1133 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1134 MEM_ATTRS (reg) = 0;
1136 MEM_NOTRAP_P (reg) = 1;
1138 else if (reg_equiv_mem[i])
1139 XEXP (reg_equiv_mem[i], 0) = addr;
1143 /* We must set reload_completed now since the cleanup_subreg_operands call
1144 below will re-recognize each insn and reload may have generated insns
1145 which are only valid during and after reload. */
1146 reload_completed = 1;
1148 /* Make a pass over all the insns and delete all USEs which we inserted
1149 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1150 notes. Delete all CLOBBER insns, except those that refer to the return
1151 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1152 from misarranging variable-array code, and simplify (subreg (reg))
1153 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1154 are no longer useful or accurate. Strip and regenerate REG_INC notes
1155 that may have been moved around. */
1157 for (insn = first; insn; insn = NEXT_INSN (insn))
1158 if (INSN_P (insn))
1160 rtx *pnote;
1162 if (CALL_P (insn))
1163 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1164 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1166 if ((GET_CODE (PATTERN (insn)) == USE
1167 /* We mark with QImode USEs introduced by reload itself. */
1168 && (GET_MODE (insn) == QImode
1169 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1170 || (GET_CODE (PATTERN (insn)) == CLOBBER
1171 && (!MEM_P (XEXP (PATTERN (insn), 0))
1172 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1173 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1174 && XEXP (XEXP (PATTERN (insn), 0), 0)
1175 != stack_pointer_rtx))
1176 && (!REG_P (XEXP (PATTERN (insn), 0))
1177 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1179 delete_insn (insn);
1180 continue;
1183 /* Some CLOBBERs may survive until here and still reference unassigned
1184 pseudos with const equivalent, which may in turn cause ICE in later
1185 passes if the reference remains in place. */
1186 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1187 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1188 VOIDmode, PATTERN (insn));
1190 /* Discard obvious no-ops, even without -O. This optimization
1191 is fast and doesn't interfere with debugging. */
1192 if (NONJUMP_INSN_P (insn)
1193 && GET_CODE (PATTERN (insn)) == SET
1194 && REG_P (SET_SRC (PATTERN (insn)))
1195 && REG_P (SET_DEST (PATTERN (insn)))
1196 && (REGNO (SET_SRC (PATTERN (insn)))
1197 == REGNO (SET_DEST (PATTERN (insn)))))
1199 delete_insn (insn);
1200 continue;
1203 pnote = &REG_NOTES (insn);
1204 while (*pnote != 0)
1206 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1207 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1208 || REG_NOTE_KIND (*pnote) == REG_INC
1209 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1210 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1211 *pnote = XEXP (*pnote, 1);
1212 else
1213 pnote = &XEXP (*pnote, 1);
1216 #ifdef AUTO_INC_DEC
1217 add_auto_inc_notes (insn, PATTERN (insn));
1218 #endif
1220 /* And simplify (subreg (reg)) if it appears as an operand. */
1221 cleanup_subreg_operands (insn);
1224 /* If we are doing stack checking, give a warning if this function's
1225 frame size is larger than we expect. */
1226 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1228 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1229 static int verbose_warned = 0;
1231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1232 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1233 size += UNITS_PER_WORD;
1235 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1237 warning (0, "frame size too large for reliable stack checking");
1238 if (! verbose_warned)
1240 warning (0, "try reducing the number of local variables");
1241 verbose_warned = 1;
1246 /* Indicate that we no longer have known memory locations or constants. */
1247 if (reg_equiv_constant)
1248 free (reg_equiv_constant);
1249 if (reg_equiv_invariant)
1250 free (reg_equiv_invariant);
1251 reg_equiv_constant = 0;
1252 reg_equiv_invariant = 0;
1253 VARRAY_GROW (reg_equiv_memory_loc_varray, 0);
1254 reg_equiv_memory_loc = 0;
1256 if (offsets_known_at)
1257 free (offsets_known_at);
1258 if (offsets_at)
1259 free (offsets_at);
1261 free (reg_equiv_mem);
1262 reg_equiv_init = 0;
1263 free (reg_equiv_address);
1264 free (reg_max_ref_width);
1265 free (reg_old_renumber);
1266 free (pseudo_previous_regs);
1267 free (pseudo_forbidden_regs);
1269 CLEAR_HARD_REG_SET (used_spill_regs);
1270 for (i = 0; i < n_spills; i++)
1271 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1273 /* Free all the insn_chain structures at once. */
1274 obstack_free (&reload_obstack, reload_startobj);
1275 unused_insn_chains = 0;
1276 fixup_abnormal_edges ();
1278 /* Replacing pseudos with their memory equivalents might have
1279 created shared rtx. Subsequent passes would get confused
1280 by this, so unshare everything here. */
1281 unshare_all_rtl_again (first);
1283 #ifdef STACK_BOUNDARY
1284 /* init_emit has set the alignment of the hard frame pointer
1285 to STACK_BOUNDARY. It is very likely no longer valid if
1286 the hard frame pointer was used for register allocation. */
1287 if (!frame_pointer_needed)
1288 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1289 #endif
1291 return failure;
1294 /* Yet another special case. Unfortunately, reg-stack forces people to
1295 write incorrect clobbers in asm statements. These clobbers must not
1296 cause the register to appear in bad_spill_regs, otherwise we'll call
1297 fatal_insn later. We clear the corresponding regnos in the live
1298 register sets to avoid this.
1299 The whole thing is rather sick, I'm afraid. */
1301 static void
1302 maybe_fix_stack_asms (void)
1304 #ifdef STACK_REGS
1305 const char *constraints[MAX_RECOG_OPERANDS];
1306 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1307 struct insn_chain *chain;
1309 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1311 int i, noperands;
1312 HARD_REG_SET clobbered, allowed;
1313 rtx pat;
1315 if (! INSN_P (chain->insn)
1316 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1317 continue;
1318 pat = PATTERN (chain->insn);
1319 if (GET_CODE (pat) != PARALLEL)
1320 continue;
1322 CLEAR_HARD_REG_SET (clobbered);
1323 CLEAR_HARD_REG_SET (allowed);
1325 /* First, make a mask of all stack regs that are clobbered. */
1326 for (i = 0; i < XVECLEN (pat, 0); i++)
1328 rtx t = XVECEXP (pat, 0, i);
1329 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1330 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1333 /* Get the operand values and constraints out of the insn. */
1334 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1335 constraints, operand_mode);
1337 /* For every operand, see what registers are allowed. */
1338 for (i = 0; i < noperands; i++)
1340 const char *p = constraints[i];
1341 /* For every alternative, we compute the class of registers allowed
1342 for reloading in CLS, and merge its contents into the reg set
1343 ALLOWED. */
1344 int cls = (int) NO_REGS;
1346 for (;;)
1348 char c = *p;
1350 if (c == '\0' || c == ',' || c == '#')
1352 /* End of one alternative - mark the regs in the current
1353 class, and reset the class. */
1354 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1355 cls = NO_REGS;
1356 p++;
1357 if (c == '#')
1358 do {
1359 c = *p++;
1360 } while (c != '\0' && c != ',');
1361 if (c == '\0')
1362 break;
1363 continue;
1366 switch (c)
1368 case '=': case '+': case '*': case '%': case '?': case '!':
1369 case '0': case '1': case '2': case '3': case '4': case 'm':
1370 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1371 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1372 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1373 case 'P':
1374 break;
1376 case 'p':
1377 cls = (int) reg_class_subunion[cls]
1378 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1379 break;
1381 case 'g':
1382 case 'r':
1383 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1384 break;
1386 default:
1387 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1388 cls = (int) reg_class_subunion[cls]
1389 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1390 else
1391 cls = (int) reg_class_subunion[cls]
1392 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = obstack_alloc (&reload_obstack,
1419 n_reloads * sizeof (struct reload));
1420 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1421 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1424 /* Walk the chain of insns, and determine for each whether it needs reloads
1425 and/or eliminations. Build the corresponding insns_need_reload list, and
1426 set something_needs_elimination as appropriate. */
1427 static void
1428 calculate_needs_all_insns (int global)
1430 struct insn_chain **pprev_reload = &insns_need_reload;
1431 struct insn_chain *chain, *next = 0;
1433 something_needs_elimination = 0;
1435 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1436 for (chain = reload_insn_chain; chain != 0; chain = next)
1438 rtx insn = chain->insn;
1440 next = chain->next;
1442 /* Clear out the shortcuts. */
1443 chain->n_reloads = 0;
1444 chain->need_elim = 0;
1445 chain->need_reload = 0;
1446 chain->need_operand_change = 0;
1448 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1449 include REG_LABEL), we need to see what effects this has on the
1450 known offsets at labels. */
1452 if (LABEL_P (insn) || JUMP_P (insn)
1453 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1454 set_label_offsets (insn, insn, 0);
1456 if (INSN_P (insn))
1458 rtx old_body = PATTERN (insn);
1459 int old_code = INSN_CODE (insn);
1460 rtx old_notes = REG_NOTES (insn);
1461 int did_elimination = 0;
1462 int operands_changed = 0;
1463 rtx set = single_set (insn);
1465 /* Skip insns that only set an equivalence. */
1466 if (set && REG_P (SET_DEST (set))
1467 && reg_renumber[REGNO (SET_DEST (set))] < 0
1468 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1469 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1470 && reg_equiv_init[REGNO (SET_DEST (set))])
1471 continue;
1473 /* If needed, eliminate any eliminable registers. */
1474 if (num_eliminable || num_eliminable_invariants)
1475 did_elimination = eliminate_regs_in_insn (insn, 0);
1477 /* Analyze the instruction. */
1478 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1479 global, spill_reg_order);
1481 /* If a no-op set needs more than one reload, this is likely
1482 to be something that needs input address reloads. We
1483 can't get rid of this cleanly later, and it is of no use
1484 anyway, so discard it now.
1485 We only do this when expensive_optimizations is enabled,
1486 since this complements reload inheritance / output
1487 reload deletion, and it can make debugging harder. */
1488 if (flag_expensive_optimizations && n_reloads > 1)
1490 rtx set = single_set (insn);
1491 if (set
1492 && SET_SRC (set) == SET_DEST (set)
1493 && REG_P (SET_SRC (set))
1494 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1496 delete_insn (insn);
1497 /* Delete it from the reload chain. */
1498 if (chain->prev)
1499 chain->prev->next = next;
1500 else
1501 reload_insn_chain = next;
1502 if (next)
1503 next->prev = chain->prev;
1504 chain->next = unused_insn_chains;
1505 unused_insn_chains = chain;
1506 continue;
1509 if (num_eliminable)
1510 update_eliminable_offsets ();
1512 /* Remember for later shortcuts which insns had any reloads or
1513 register eliminations. */
1514 chain->need_elim = did_elimination;
1515 chain->need_reload = n_reloads > 0;
1516 chain->need_operand_change = operands_changed;
1518 /* Discard any register replacements done. */
1519 if (did_elimination)
1521 obstack_free (&reload_obstack, reload_insn_firstobj);
1522 PATTERN (insn) = old_body;
1523 INSN_CODE (insn) = old_code;
1524 REG_NOTES (insn) = old_notes;
1525 something_needs_elimination = 1;
1528 something_needs_operands_changed |= operands_changed;
1530 if (n_reloads != 0)
1532 copy_reloads (chain);
1533 *pprev_reload = chain;
1534 pprev_reload = &chain->next_need_reload;
1538 *pprev_reload = 0;
1541 /* Comparison function for qsort to decide which of two reloads
1542 should be handled first. *P1 and *P2 are the reload numbers. */
1544 static int
1545 reload_reg_class_lower (const void *r1p, const void *r2p)
1547 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1548 int t;
1550 /* Consider required reloads before optional ones. */
1551 t = rld[r1].optional - rld[r2].optional;
1552 if (t != 0)
1553 return t;
1555 /* Count all solitary classes before non-solitary ones. */
1556 t = ((reg_class_size[(int) rld[r2].class] == 1)
1557 - (reg_class_size[(int) rld[r1].class] == 1));
1558 if (t != 0)
1559 return t;
1561 /* Aside from solitaires, consider all multi-reg groups first. */
1562 t = rld[r2].nregs - rld[r1].nregs;
1563 if (t != 0)
1564 return t;
1566 /* Consider reloads in order of increasing reg-class number. */
1567 t = (int) rld[r1].class - (int) rld[r2].class;
1568 if (t != 0)
1569 return t;
1571 /* If reloads are equally urgent, sort by reload number,
1572 so that the results of qsort leave nothing to chance. */
1573 return r1 - r2;
1576 /* The cost of spilling each hard reg. */
1577 static int spill_cost[FIRST_PSEUDO_REGISTER];
1579 /* When spilling multiple hard registers, we use SPILL_COST for the first
1580 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1581 only the first hard reg for a multi-reg pseudo. */
1582 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1584 /* Update the spill cost arrays, considering that pseudo REG is live. */
1586 static void
1587 count_pseudo (int reg)
1589 int freq = REG_FREQ (reg);
1590 int r = reg_renumber[reg];
1591 int nregs;
1593 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1594 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1595 return;
1597 SET_REGNO_REG_SET (&pseudos_counted, reg);
1599 gcc_assert (r >= 0);
1601 spill_add_cost[r] += freq;
1603 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1604 while (nregs-- > 0)
1605 spill_cost[r + nregs] += freq;
1608 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1609 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1611 static void
1612 order_regs_for_reload (struct insn_chain *chain)
1614 unsigned i;
1615 HARD_REG_SET used_by_pseudos;
1616 HARD_REG_SET used_by_pseudos2;
1617 reg_set_iterator rsi;
1619 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1621 memset (spill_cost, 0, sizeof spill_cost);
1622 memset (spill_add_cost, 0, sizeof spill_add_cost);
1624 /* Count number of uses of each hard reg by pseudo regs allocated to it
1625 and then order them by decreasing use. First exclude hard registers
1626 that are live in or across this insn. */
1628 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1629 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1630 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1631 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1633 /* Now find out which pseudos are allocated to it, and update
1634 hard_reg_n_uses. */
1635 CLEAR_REG_SET (&pseudos_counted);
1637 EXECUTE_IF_SET_IN_REG_SET
1638 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1640 count_pseudo (i);
1642 EXECUTE_IF_SET_IN_REG_SET
1643 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1645 count_pseudo (i);
1647 CLEAR_REG_SET (&pseudos_counted);
1650 /* Vector of reload-numbers showing the order in which the reloads should
1651 be processed. */
1652 static short reload_order[MAX_RELOADS];
1654 /* This is used to keep track of the spill regs used in one insn. */
1655 static HARD_REG_SET used_spill_regs_local;
1657 /* We decided to spill hard register SPILLED, which has a size of
1658 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1659 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1660 update SPILL_COST/SPILL_ADD_COST. */
1662 static void
1663 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1665 int r = reg_renumber[reg];
1666 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1668 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1669 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1670 return;
1672 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1674 spill_add_cost[r] -= REG_FREQ (reg);
1675 while (nregs-- > 0)
1676 spill_cost[r + nregs] -= REG_FREQ (reg);
1679 /* Find reload register to use for reload number ORDER. */
1681 static int
1682 find_reg (struct insn_chain *chain, int order)
1684 int rnum = reload_order[order];
1685 struct reload *rl = rld + rnum;
1686 int best_cost = INT_MAX;
1687 int best_reg = -1;
1688 unsigned int i, j;
1689 int k;
1690 HARD_REG_SET not_usable;
1691 HARD_REG_SET used_by_other_reload;
1692 reg_set_iterator rsi;
1694 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1695 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1696 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1698 CLEAR_HARD_REG_SET (used_by_other_reload);
1699 for (k = 0; k < order; k++)
1701 int other = reload_order[k];
1703 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1704 for (j = 0; j < rld[other].nregs; j++)
1705 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1708 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1710 unsigned int regno = i;
1712 if (! TEST_HARD_REG_BIT (not_usable, regno)
1713 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1714 && HARD_REGNO_MODE_OK (regno, rl->mode))
1716 int this_cost = spill_cost[regno];
1717 int ok = 1;
1718 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1720 for (j = 1; j < this_nregs; j++)
1722 this_cost += spill_add_cost[regno + j];
1723 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1724 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1725 ok = 0;
1727 if (! ok)
1728 continue;
1729 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1730 this_cost--;
1731 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1732 this_cost--;
1733 if (this_cost < best_cost
1734 /* Among registers with equal cost, prefer caller-saved ones, or
1735 use REG_ALLOC_ORDER if it is defined. */
1736 || (this_cost == best_cost
1737 #ifdef REG_ALLOC_ORDER
1738 && (inv_reg_alloc_order[regno]
1739 < inv_reg_alloc_order[best_reg])
1740 #else
1741 && call_used_regs[regno]
1742 && ! call_used_regs[best_reg]
1743 #endif
1746 best_reg = regno;
1747 best_cost = this_cost;
1751 if (best_reg == -1)
1752 return 0;
1754 if (dump_file)
1755 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1757 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1758 rl->regno = best_reg;
1760 EXECUTE_IF_SET_IN_REG_SET
1761 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1763 count_spilled_pseudo (best_reg, rl->nregs, j);
1766 EXECUTE_IF_SET_IN_REG_SET
1767 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1769 count_spilled_pseudo (best_reg, rl->nregs, j);
1772 for (i = 0; i < rl->nregs; i++)
1774 gcc_assert (spill_cost[best_reg + i] == 0);
1775 gcc_assert (spill_add_cost[best_reg + i] == 0);
1776 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1778 return 1;
1781 /* Find more reload regs to satisfy the remaining need of an insn, which
1782 is given by CHAIN.
1783 Do it by ascending class number, since otherwise a reg
1784 might be spilled for a big class and might fail to count
1785 for a smaller class even though it belongs to that class. */
1787 static void
1788 find_reload_regs (struct insn_chain *chain)
1790 int i;
1792 /* In order to be certain of getting the registers we need,
1793 we must sort the reloads into order of increasing register class.
1794 Then our grabbing of reload registers will parallel the process
1795 that provided the reload registers. */
1796 for (i = 0; i < chain->n_reloads; i++)
1798 /* Show whether this reload already has a hard reg. */
1799 if (chain->rld[i].reg_rtx)
1801 int regno = REGNO (chain->rld[i].reg_rtx);
1802 chain->rld[i].regno = regno;
1803 chain->rld[i].nregs
1804 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1806 else
1807 chain->rld[i].regno = -1;
1808 reload_order[i] = i;
1811 n_reloads = chain->n_reloads;
1812 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1814 CLEAR_HARD_REG_SET (used_spill_regs_local);
1816 if (dump_file)
1817 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1819 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1821 /* Compute the order of preference for hard registers to spill. */
1823 order_regs_for_reload (chain);
1825 for (i = 0; i < n_reloads; i++)
1827 int r = reload_order[i];
1829 /* Ignore reloads that got marked inoperative. */
1830 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1831 && ! rld[r].optional
1832 && rld[r].regno == -1)
1833 if (! find_reg (chain, i))
1835 spill_failure (chain->insn, rld[r].class);
1836 failure = 1;
1837 return;
1841 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1842 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1844 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1847 static void
1848 select_reload_regs (void)
1850 struct insn_chain *chain;
1852 /* Try to satisfy the needs for each insn. */
1853 for (chain = insns_need_reload; chain != 0;
1854 chain = chain->next_need_reload)
1855 find_reload_regs (chain);
1858 /* Delete all insns that were inserted by emit_caller_save_insns during
1859 this iteration. */
1860 static void
1861 delete_caller_save_insns (void)
1863 struct insn_chain *c = reload_insn_chain;
1865 while (c != 0)
1867 while (c != 0 && c->is_caller_save_insn)
1869 struct insn_chain *next = c->next;
1870 rtx insn = c->insn;
1872 if (c == reload_insn_chain)
1873 reload_insn_chain = next;
1874 delete_insn (insn);
1876 if (next)
1877 next->prev = c->prev;
1878 if (c->prev)
1879 c->prev->next = next;
1880 c->next = unused_insn_chains;
1881 unused_insn_chains = c;
1882 c = next;
1884 if (c != 0)
1885 c = c->next;
1889 /* Handle the failure to find a register to spill.
1890 INSN should be one of the insns which needed this particular spill reg. */
1892 static void
1893 spill_failure (rtx insn, enum reg_class class)
1895 if (asm_noperands (PATTERN (insn)) >= 0)
1896 error_for_asm (insn, "can't find a register in class %qs while "
1897 "reloading %<asm%>",
1898 reg_class_names[class]);
1899 else
1901 error ("unable to find a register to spill in class %qs",
1902 reg_class_names[class]);
1903 fatal_insn ("this is the insn:", insn);
1907 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1908 data that is dead in INSN. */
1910 static void
1911 delete_dead_insn (rtx insn)
1913 rtx prev = prev_real_insn (insn);
1914 rtx prev_dest;
1916 /* If the previous insn sets a register that dies in our insn, delete it
1917 too. */
1918 if (prev && GET_CODE (PATTERN (prev)) == SET
1919 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1920 && reg_mentioned_p (prev_dest, PATTERN (insn))
1921 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1922 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1923 delete_dead_insn (prev);
1925 SET_INSN_DELETED (insn);
1928 /* Modify the home of pseudo-reg I.
1929 The new home is present in reg_renumber[I].
1931 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1932 or it may be -1, meaning there is none or it is not relevant.
1933 This is used so that all pseudos spilled from a given hard reg
1934 can share one stack slot. */
1936 static void
1937 alter_reg (int i, int from_reg)
1939 /* When outputting an inline function, this can happen
1940 for a reg that isn't actually used. */
1941 if (regno_reg_rtx[i] == 0)
1942 return;
1944 /* If the reg got changed to a MEM at rtl-generation time,
1945 ignore it. */
1946 if (!REG_P (regno_reg_rtx[i]))
1947 return;
1949 /* Modify the reg-rtx to contain the new hard reg
1950 number or else to contain its pseudo reg number. */
1951 REGNO (regno_reg_rtx[i])
1952 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1954 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1955 allocate a stack slot for it. */
1957 if (reg_renumber[i] < 0
1958 && REG_N_REFS (i) > 0
1959 && reg_equiv_constant[i] == 0
1960 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1961 && reg_equiv_memory_loc[i] == 0)
1963 rtx x;
1964 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1965 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1966 int adjust = 0;
1968 /* Each pseudo reg has an inherent size which comes from its own mode,
1969 and a total size which provides room for paradoxical subregs
1970 which refer to the pseudo reg in wider modes.
1972 We can use a slot already allocated if it provides both
1973 enough inherent space and enough total space.
1974 Otherwise, we allocate a new slot, making sure that it has no less
1975 inherent space, and no less total space, then the previous slot. */
1976 if (from_reg == -1)
1978 /* No known place to spill from => no slot to reuse. */
1979 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1980 inherent_size == total_size ? 0 : -1);
1981 if (BYTES_BIG_ENDIAN)
1982 /* Cancel the big-endian correction done in assign_stack_local.
1983 Get the address of the beginning of the slot.
1984 This is so we can do a big-endian correction unconditionally
1985 below. */
1986 adjust = inherent_size - total_size;
1988 /* Nothing can alias this slot except this pseudo. */
1989 set_mem_alias_set (x, new_alias_set ());
1992 /* Reuse a stack slot if possible. */
1993 else if (spill_stack_slot[from_reg] != 0
1994 && spill_stack_slot_width[from_reg] >= total_size
1995 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1996 >= inherent_size))
1997 x = spill_stack_slot[from_reg];
1999 /* Allocate a bigger slot. */
2000 else
2002 /* Compute maximum size needed, both for inherent size
2003 and for total size. */
2004 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2005 rtx stack_slot;
2007 if (spill_stack_slot[from_reg])
2009 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2010 > inherent_size)
2011 mode = GET_MODE (spill_stack_slot[from_reg]);
2012 if (spill_stack_slot_width[from_reg] > total_size)
2013 total_size = spill_stack_slot_width[from_reg];
2016 /* Make a slot with that size. */
2017 x = assign_stack_local (mode, total_size,
2018 inherent_size == total_size ? 0 : -1);
2019 stack_slot = x;
2021 /* All pseudos mapped to this slot can alias each other. */
2022 if (spill_stack_slot[from_reg])
2023 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2024 else
2025 set_mem_alias_set (x, new_alias_set ());
2027 if (BYTES_BIG_ENDIAN)
2029 /* Cancel the big-endian correction done in assign_stack_local.
2030 Get the address of the beginning of the slot.
2031 This is so we can do a big-endian correction unconditionally
2032 below. */
2033 adjust = GET_MODE_SIZE (mode) - total_size;
2034 if (adjust)
2035 stack_slot
2036 = adjust_address_nv (x, mode_for_size (total_size
2037 * BITS_PER_UNIT,
2038 MODE_INT, 1),
2039 adjust);
2042 spill_stack_slot[from_reg] = stack_slot;
2043 spill_stack_slot_width[from_reg] = total_size;
2046 /* On a big endian machine, the "address" of the slot
2047 is the address of the low part that fits its inherent mode. */
2048 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2049 adjust += (total_size - inherent_size);
2051 /* If we have any adjustment to make, or if the stack slot is the
2052 wrong mode, make a new stack slot. */
2053 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2055 /* If we have a decl for the original register, set it for the
2056 memory. If this is a shared MEM, make a copy. */
2057 if (REG_EXPR (regno_reg_rtx[i])
2058 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2060 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2062 /* We can do this only for the DECLs home pseudo, not for
2063 any copies of it, since otherwise when the stack slot
2064 is reused, nonoverlapping_memrefs_p might think they
2065 cannot overlap. */
2066 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2068 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2069 x = copy_rtx (x);
2071 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2075 /* Save the stack slot for later. */
2076 reg_equiv_memory_loc[i] = x;
2080 /* Mark the slots in regs_ever_live for the hard regs
2081 used by pseudo-reg number REGNO. */
2083 void
2084 mark_home_live (int regno)
2086 int i, lim;
2088 i = reg_renumber[regno];
2089 if (i < 0)
2090 return;
2091 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2092 while (i < lim)
2093 regs_ever_live[i++] = 1;
2096 /* This function handles the tracking of elimination offsets around branches.
2098 X is a piece of RTL being scanned.
2100 INSN is the insn that it came from, if any.
2102 INITIAL_P is nonzero if we are to set the offset to be the initial
2103 offset and zero if we are setting the offset of the label to be the
2104 current offset. */
2106 static void
2107 set_label_offsets (rtx x, rtx insn, int initial_p)
2109 enum rtx_code code = GET_CODE (x);
2110 rtx tem;
2111 unsigned int i;
2112 struct elim_table *p;
2114 switch (code)
2116 case LABEL_REF:
2117 if (LABEL_REF_NONLOCAL_P (x))
2118 return;
2120 x = XEXP (x, 0);
2122 /* ... fall through ... */
2124 case CODE_LABEL:
2125 /* If we know nothing about this label, set the desired offsets. Note
2126 that this sets the offset at a label to be the offset before a label
2127 if we don't know anything about the label. This is not correct for
2128 the label after a BARRIER, but is the best guess we can make. If
2129 we guessed wrong, we will suppress an elimination that might have
2130 been possible had we been able to guess correctly. */
2132 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2134 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2135 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2136 = (initial_p ? reg_eliminate[i].initial_offset
2137 : reg_eliminate[i].offset);
2138 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2141 /* Otherwise, if this is the definition of a label and it is
2142 preceded by a BARRIER, set our offsets to the known offset of
2143 that label. */
2145 else if (x == insn
2146 && (tem = prev_nonnote_insn (insn)) != 0
2147 && BARRIER_P (tem))
2148 set_offsets_for_label (insn);
2149 else
2150 /* If neither of the above cases is true, compare each offset
2151 with those previously recorded and suppress any eliminations
2152 where the offsets disagree. */
2154 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2155 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2156 != (initial_p ? reg_eliminate[i].initial_offset
2157 : reg_eliminate[i].offset))
2158 reg_eliminate[i].can_eliminate = 0;
2160 return;
2162 case JUMP_INSN:
2163 set_label_offsets (PATTERN (insn), insn, initial_p);
2165 /* ... fall through ... */
2167 case INSN:
2168 case CALL_INSN:
2169 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2170 and hence must have all eliminations at their initial offsets. */
2171 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2172 if (REG_NOTE_KIND (tem) == REG_LABEL)
2173 set_label_offsets (XEXP (tem, 0), insn, 1);
2174 return;
2176 case PARALLEL:
2177 case ADDR_VEC:
2178 case ADDR_DIFF_VEC:
2179 /* Each of the labels in the parallel or address vector must be
2180 at their initial offsets. We want the first field for PARALLEL
2181 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2183 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2184 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2185 insn, initial_p);
2186 return;
2188 case SET:
2189 /* We only care about setting PC. If the source is not RETURN,
2190 IF_THEN_ELSE, or a label, disable any eliminations not at
2191 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2192 isn't one of those possibilities. For branches to a label,
2193 call ourselves recursively.
2195 Note that this can disable elimination unnecessarily when we have
2196 a non-local goto since it will look like a non-constant jump to
2197 someplace in the current function. This isn't a significant
2198 problem since such jumps will normally be when all elimination
2199 pairs are back to their initial offsets. */
2201 if (SET_DEST (x) != pc_rtx)
2202 return;
2204 switch (GET_CODE (SET_SRC (x)))
2206 case PC:
2207 case RETURN:
2208 return;
2210 case LABEL_REF:
2211 set_label_offsets (SET_SRC (x), insn, initial_p);
2212 return;
2214 case IF_THEN_ELSE:
2215 tem = XEXP (SET_SRC (x), 1);
2216 if (GET_CODE (tem) == LABEL_REF)
2217 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2218 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2219 break;
2221 tem = XEXP (SET_SRC (x), 2);
2222 if (GET_CODE (tem) == LABEL_REF)
2223 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2224 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2225 break;
2226 return;
2228 default:
2229 break;
2232 /* If we reach here, all eliminations must be at their initial
2233 offset because we are doing a jump to a variable address. */
2234 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2235 if (p->offset != p->initial_offset)
2236 p->can_eliminate = 0;
2237 break;
2239 default:
2240 break;
2244 /* Scan X and replace any eliminable registers (such as fp) with a
2245 replacement (such as sp), plus an offset.
2247 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2248 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2249 MEM, we are allowed to replace a sum of a register and the constant zero
2250 with the register, which we cannot do outside a MEM. In addition, we need
2251 to record the fact that a register is referenced outside a MEM.
2253 If INSN is an insn, it is the insn containing X. If we replace a REG
2254 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2255 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2256 the REG is being modified.
2258 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2259 That's used when we eliminate in expressions stored in notes.
2260 This means, do not set ref_outside_mem even if the reference
2261 is outside of MEMs.
2263 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2264 replacements done assuming all offsets are at their initial values. If
2265 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2266 encounter, return the actual location so that find_reloads will do
2267 the proper thing. */
2269 static rtx
2270 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2271 bool may_use_invariant)
2273 enum rtx_code code = GET_CODE (x);
2274 struct elim_table *ep;
2275 int regno;
2276 rtx new;
2277 int i, j;
2278 const char *fmt;
2279 int copied = 0;
2281 if (! current_function_decl)
2282 return x;
2284 switch (code)
2286 case CONST_INT:
2287 case CONST_DOUBLE:
2288 case CONST_VECTOR:
2289 case CONST:
2290 case SYMBOL_REF:
2291 case CODE_LABEL:
2292 case PC:
2293 case CC0:
2294 case ASM_INPUT:
2295 case ADDR_VEC:
2296 case ADDR_DIFF_VEC:
2297 case RETURN:
2298 return x;
2300 case REG:
2301 regno = REGNO (x);
2303 /* First handle the case where we encounter a bare register that
2304 is eliminable. Replace it with a PLUS. */
2305 if (regno < FIRST_PSEUDO_REGISTER)
2307 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2308 ep++)
2309 if (ep->from_rtx == x && ep->can_eliminate)
2310 return plus_constant (ep->to_rtx, ep->previous_offset);
2313 else if (reg_renumber && reg_renumber[regno] < 0
2314 && reg_equiv_invariant && reg_equiv_invariant[regno])
2316 if (may_use_invariant)
2317 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2318 mem_mode, insn, true);
2319 /* There exists at least one use of REGNO that cannot be
2320 eliminated. Prevent the defining insn from being deleted. */
2321 reg_equiv_init[regno] = NULL_RTX;
2322 alter_reg (regno, -1);
2324 return x;
2326 /* You might think handling MINUS in a manner similar to PLUS is a
2327 good idea. It is not. It has been tried multiple times and every
2328 time the change has had to have been reverted.
2330 Other parts of reload know a PLUS is special (gen_reload for example)
2331 and require special code to handle code a reloaded PLUS operand.
2333 Also consider backends where the flags register is clobbered by a
2334 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2335 lea instruction comes to mind). If we try to reload a MINUS, we
2336 may kill the flags register that was holding a useful value.
2338 So, please before trying to handle MINUS, consider reload as a
2339 whole instead of this little section as well as the backend issues. */
2340 case PLUS:
2341 /* If this is the sum of an eliminable register and a constant, rework
2342 the sum. */
2343 if (REG_P (XEXP (x, 0))
2344 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2345 && CONSTANT_P (XEXP (x, 1)))
2347 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2348 ep++)
2349 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2351 /* The only time we want to replace a PLUS with a REG (this
2352 occurs when the constant operand of the PLUS is the negative
2353 of the offset) is when we are inside a MEM. We won't want
2354 to do so at other times because that would change the
2355 structure of the insn in a way that reload can't handle.
2356 We special-case the commonest situation in
2357 eliminate_regs_in_insn, so just replace a PLUS with a
2358 PLUS here, unless inside a MEM. */
2359 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2360 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2361 return ep->to_rtx;
2362 else
2363 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2364 plus_constant (XEXP (x, 1),
2365 ep->previous_offset));
2368 /* If the register is not eliminable, we are done since the other
2369 operand is a constant. */
2370 return x;
2373 /* If this is part of an address, we want to bring any constant to the
2374 outermost PLUS. We will do this by doing register replacement in
2375 our operands and seeing if a constant shows up in one of them.
2377 Note that there is no risk of modifying the structure of the insn,
2378 since we only get called for its operands, thus we are either
2379 modifying the address inside a MEM, or something like an address
2380 operand of a load-address insn. */
2383 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2384 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2386 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2388 /* If one side is a PLUS and the other side is a pseudo that
2389 didn't get a hard register but has a reg_equiv_constant,
2390 we must replace the constant here since it may no longer
2391 be in the position of any operand. */
2392 if (GET_CODE (new0) == PLUS && REG_P (new1)
2393 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2394 && reg_renumber[REGNO (new1)] < 0
2395 && reg_equiv_constant != 0
2396 && reg_equiv_constant[REGNO (new1)] != 0)
2397 new1 = reg_equiv_constant[REGNO (new1)];
2398 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2399 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2400 && reg_renumber[REGNO (new0)] < 0
2401 && reg_equiv_constant[REGNO (new0)] != 0)
2402 new0 = reg_equiv_constant[REGNO (new0)];
2404 new = form_sum (new0, new1);
2406 /* As above, if we are not inside a MEM we do not want to
2407 turn a PLUS into something else. We might try to do so here
2408 for an addition of 0 if we aren't optimizing. */
2409 if (! mem_mode && GET_CODE (new) != PLUS)
2410 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2411 else
2412 return new;
2415 return x;
2417 case MULT:
2418 /* If this is the product of an eliminable register and a
2419 constant, apply the distribute law and move the constant out
2420 so that we have (plus (mult ..) ..). This is needed in order
2421 to keep load-address insns valid. This case is pathological.
2422 We ignore the possibility of overflow here. */
2423 if (REG_P (XEXP (x, 0))
2424 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2425 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2426 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2427 ep++)
2428 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2430 if (! mem_mode
2431 /* Refs inside notes don't count for this purpose. */
2432 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2433 || GET_CODE (insn) == INSN_LIST)))
2434 ep->ref_outside_mem = 1;
2436 return
2437 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2438 ep->previous_offset * INTVAL (XEXP (x, 1)));
2441 /* ... fall through ... */
2443 case CALL:
2444 case COMPARE:
2445 /* See comments before PLUS about handling MINUS. */
2446 case MINUS:
2447 case DIV: case UDIV:
2448 case MOD: case UMOD:
2449 case AND: case IOR: case XOR:
2450 case ROTATERT: case ROTATE:
2451 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2452 case NE: case EQ:
2453 case GE: case GT: case GEU: case GTU:
2454 case LE: case LT: case LEU: case LTU:
2456 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2457 rtx new1 = XEXP (x, 1)
2458 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2460 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2461 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2463 return x;
2465 case EXPR_LIST:
2466 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2467 if (XEXP (x, 0))
2469 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2470 if (new != XEXP (x, 0))
2472 /* If this is a REG_DEAD note, it is not valid anymore.
2473 Using the eliminated version could result in creating a
2474 REG_DEAD note for the stack or frame pointer. */
2475 if (GET_MODE (x) == REG_DEAD)
2476 return (XEXP (x, 1)
2477 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2478 : NULL_RTX);
2480 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2484 /* ... fall through ... */
2486 case INSN_LIST:
2487 /* Now do eliminations in the rest of the chain. If this was
2488 an EXPR_LIST, this might result in allocating more memory than is
2489 strictly needed, but it simplifies the code. */
2490 if (XEXP (x, 1))
2492 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2493 if (new != XEXP (x, 1))
2494 return
2495 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2497 return x;
2499 case PRE_INC:
2500 case POST_INC:
2501 case PRE_DEC:
2502 case POST_DEC:
2503 case STRICT_LOW_PART:
2504 case NEG: case NOT:
2505 case SIGN_EXTEND: case ZERO_EXTEND:
2506 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2507 case FLOAT: case FIX:
2508 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2509 case ABS:
2510 case SQRT:
2511 case FFS:
2512 case CLZ:
2513 case CTZ:
2514 case POPCOUNT:
2515 case PARITY:
2516 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2517 if (new != XEXP (x, 0))
2518 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2519 return x;
2521 case SUBREG:
2522 /* Similar to above processing, but preserve SUBREG_BYTE.
2523 Convert (subreg (mem)) to (mem) if not paradoxical.
2524 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2525 pseudo didn't get a hard reg, we must replace this with the
2526 eliminated version of the memory location because push_reload
2527 may do the replacement in certain circumstances. */
2528 if (REG_P (SUBREG_REG (x))
2529 && (GET_MODE_SIZE (GET_MODE (x))
2530 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2531 && reg_equiv_memory_loc != 0
2532 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2534 new = SUBREG_REG (x);
2536 else
2537 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2539 if (new != SUBREG_REG (x))
2541 int x_size = GET_MODE_SIZE (GET_MODE (x));
2542 int new_size = GET_MODE_SIZE (GET_MODE (new));
2544 if (MEM_P (new)
2545 && ((x_size < new_size
2546 #ifdef WORD_REGISTER_OPERATIONS
2547 /* On these machines, combine can create rtl of the form
2548 (set (subreg:m1 (reg:m2 R) 0) ...)
2549 where m1 < m2, and expects something interesting to
2550 happen to the entire word. Moreover, it will use the
2551 (reg:m2 R) later, expecting all bits to be preserved.
2552 So if the number of words is the same, preserve the
2553 subreg so that push_reload can see it. */
2554 && ! ((x_size - 1) / UNITS_PER_WORD
2555 == (new_size -1 ) / UNITS_PER_WORD)
2556 #endif
2558 || x_size == new_size)
2560 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2561 else
2562 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2565 return x;
2567 case MEM:
2568 /* Our only special processing is to pass the mode of the MEM to our
2569 recursive call and copy the flags. While we are here, handle this
2570 case more efficiently. */
2571 return
2572 replace_equiv_address_nv (x,
2573 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2574 insn, true));
2576 case USE:
2577 /* Handle insn_list USE that a call to a pure function may generate. */
2578 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2579 if (new != XEXP (x, 0))
2580 return gen_rtx_USE (GET_MODE (x), new);
2581 return x;
2583 case CLOBBER:
2584 case ASM_OPERANDS:
2585 case SET:
2586 gcc_unreachable ();
2588 default:
2589 break;
2592 /* Process each of our operands recursively. If any have changed, make a
2593 copy of the rtx. */
2594 fmt = GET_RTX_FORMAT (code);
2595 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2597 if (*fmt == 'e')
2599 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2600 if (new != XEXP (x, i) && ! copied)
2602 rtx new_x = rtx_alloc (code);
2603 memcpy (new_x, x, RTX_SIZE (code));
2604 x = new_x;
2605 copied = 1;
2607 XEXP (x, i) = new;
2609 else if (*fmt == 'E')
2611 int copied_vec = 0;
2612 for (j = 0; j < XVECLEN (x, i); j++)
2614 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2615 if (new != XVECEXP (x, i, j) && ! copied_vec)
2617 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2618 XVEC (x, i)->elem);
2619 if (! copied)
2621 rtx new_x = rtx_alloc (code);
2622 memcpy (new_x, x, RTX_SIZE (code));
2623 x = new_x;
2624 copied = 1;
2626 XVEC (x, i) = new_v;
2627 copied_vec = 1;
2629 XVECEXP (x, i, j) = new;
2634 return x;
2638 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2640 return eliminate_regs_1 (x, mem_mode, insn, false);
2643 /* Scan rtx X for modifications of elimination target registers. Update
2644 the table of eliminables to reflect the changed state. MEM_MODE is
2645 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2647 static void
2648 elimination_effects (rtx x, enum machine_mode mem_mode)
2650 enum rtx_code code = GET_CODE (x);
2651 struct elim_table *ep;
2652 int regno;
2653 int i, j;
2654 const char *fmt;
2656 switch (code)
2658 case CONST_INT:
2659 case CONST_DOUBLE:
2660 case CONST_VECTOR:
2661 case CONST:
2662 case SYMBOL_REF:
2663 case CODE_LABEL:
2664 case PC:
2665 case CC0:
2666 case ASM_INPUT:
2667 case ADDR_VEC:
2668 case ADDR_DIFF_VEC:
2669 case RETURN:
2670 return;
2672 case REG:
2673 regno = REGNO (x);
2675 /* First handle the case where we encounter a bare register that
2676 is eliminable. Replace it with a PLUS. */
2677 if (regno < FIRST_PSEUDO_REGISTER)
2679 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2680 ep++)
2681 if (ep->from_rtx == x && ep->can_eliminate)
2683 if (! mem_mode)
2684 ep->ref_outside_mem = 1;
2685 return;
2689 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2690 && reg_equiv_constant[regno]
2691 && ! function_invariant_p (reg_equiv_constant[regno]))
2692 elimination_effects (reg_equiv_constant[regno], mem_mode);
2693 return;
2695 case PRE_INC:
2696 case POST_INC:
2697 case PRE_DEC:
2698 case POST_DEC:
2699 case POST_MODIFY:
2700 case PRE_MODIFY:
2701 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2702 if (ep->to_rtx == XEXP (x, 0))
2704 int size = GET_MODE_SIZE (mem_mode);
2706 /* If more bytes than MEM_MODE are pushed, account for them. */
2707 #ifdef PUSH_ROUNDING
2708 if (ep->to_rtx == stack_pointer_rtx)
2709 size = PUSH_ROUNDING (size);
2710 #endif
2711 if (code == PRE_DEC || code == POST_DEC)
2712 ep->offset += size;
2713 else if (code == PRE_INC || code == POST_INC)
2714 ep->offset -= size;
2715 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2716 && GET_CODE (XEXP (x, 1)) == PLUS
2717 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2718 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2719 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2722 /* These two aren't unary operators. */
2723 if (code == POST_MODIFY || code == PRE_MODIFY)
2724 break;
2726 /* Fall through to generic unary operation case. */
2727 case STRICT_LOW_PART:
2728 case NEG: case NOT:
2729 case SIGN_EXTEND: case ZERO_EXTEND:
2730 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2731 case FLOAT: case FIX:
2732 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2733 case ABS:
2734 case SQRT:
2735 case FFS:
2736 case CLZ:
2737 case CTZ:
2738 case POPCOUNT:
2739 case PARITY:
2740 elimination_effects (XEXP (x, 0), mem_mode);
2741 return;
2743 case SUBREG:
2744 if (REG_P (SUBREG_REG (x))
2745 && (GET_MODE_SIZE (GET_MODE (x))
2746 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2747 && reg_equiv_memory_loc != 0
2748 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2749 return;
2751 elimination_effects (SUBREG_REG (x), mem_mode);
2752 return;
2754 case USE:
2755 /* If using a register that is the source of an eliminate we still
2756 think can be performed, note it cannot be performed since we don't
2757 know how this register is used. */
2758 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2759 if (ep->from_rtx == XEXP (x, 0))
2760 ep->can_eliminate = 0;
2762 elimination_effects (XEXP (x, 0), mem_mode);
2763 return;
2765 case CLOBBER:
2766 /* If clobbering a register that is the replacement register for an
2767 elimination we still think can be performed, note that it cannot
2768 be performed. Otherwise, we need not be concerned about it. */
2769 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2770 if (ep->to_rtx == XEXP (x, 0))
2771 ep->can_eliminate = 0;
2773 elimination_effects (XEXP (x, 0), mem_mode);
2774 return;
2776 case SET:
2777 /* Check for setting a register that we know about. */
2778 if (REG_P (SET_DEST (x)))
2780 /* See if this is setting the replacement register for an
2781 elimination.
2783 If DEST is the hard frame pointer, we do nothing because we
2784 assume that all assignments to the frame pointer are for
2785 non-local gotos and are being done at a time when they are valid
2786 and do not disturb anything else. Some machines want to
2787 eliminate a fake argument pointer (or even a fake frame pointer)
2788 with either the real frame or the stack pointer. Assignments to
2789 the hard frame pointer must not prevent this elimination. */
2791 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2792 ep++)
2793 if (ep->to_rtx == SET_DEST (x)
2794 && SET_DEST (x) != hard_frame_pointer_rtx)
2796 /* If it is being incremented, adjust the offset. Otherwise,
2797 this elimination can't be done. */
2798 rtx src = SET_SRC (x);
2800 if (GET_CODE (src) == PLUS
2801 && XEXP (src, 0) == SET_DEST (x)
2802 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2803 ep->offset -= INTVAL (XEXP (src, 1));
2804 else
2805 ep->can_eliminate = 0;
2809 elimination_effects (SET_DEST (x), 0);
2810 elimination_effects (SET_SRC (x), 0);
2811 return;
2813 case MEM:
2814 /* Our only special processing is to pass the mode of the MEM to our
2815 recursive call. */
2816 elimination_effects (XEXP (x, 0), GET_MODE (x));
2817 return;
2819 default:
2820 break;
2823 fmt = GET_RTX_FORMAT (code);
2824 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2826 if (*fmt == 'e')
2827 elimination_effects (XEXP (x, i), mem_mode);
2828 else if (*fmt == 'E')
2829 for (j = 0; j < XVECLEN (x, i); j++)
2830 elimination_effects (XVECEXP (x, i, j), mem_mode);
2834 /* Descend through rtx X and verify that no references to eliminable registers
2835 remain. If any do remain, mark the involved register as not
2836 eliminable. */
2838 static void
2839 check_eliminable_occurrences (rtx x)
2841 const char *fmt;
2842 int i;
2843 enum rtx_code code;
2845 if (x == 0)
2846 return;
2848 code = GET_CODE (x);
2850 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2852 struct elim_table *ep;
2854 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2855 if (ep->from_rtx == x)
2856 ep->can_eliminate = 0;
2857 return;
2860 fmt = GET_RTX_FORMAT (code);
2861 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2863 if (*fmt == 'e')
2864 check_eliminable_occurrences (XEXP (x, i));
2865 else if (*fmt == 'E')
2867 int j;
2868 for (j = 0; j < XVECLEN (x, i); j++)
2869 check_eliminable_occurrences (XVECEXP (x, i, j));
2874 /* Scan INSN and eliminate all eliminable registers in it.
2876 If REPLACE is nonzero, do the replacement destructively. Also
2877 delete the insn as dead it if it is setting an eliminable register.
2879 If REPLACE is zero, do all our allocations in reload_obstack.
2881 If no eliminations were done and this insn doesn't require any elimination
2882 processing (these are not identical conditions: it might be updating sp,
2883 but not referencing fp; this needs to be seen during reload_as_needed so
2884 that the offset between fp and sp can be taken into consideration), zero
2885 is returned. Otherwise, 1 is returned. */
2887 static int
2888 eliminate_regs_in_insn (rtx insn, int replace)
2890 int icode = recog_memoized (insn);
2891 rtx old_body = PATTERN (insn);
2892 int insn_is_asm = asm_noperands (old_body) >= 0;
2893 rtx old_set = single_set (insn);
2894 rtx new_body;
2895 int val = 0;
2896 int i;
2897 rtx substed_operand[MAX_RECOG_OPERANDS];
2898 rtx orig_operand[MAX_RECOG_OPERANDS];
2899 struct elim_table *ep;
2900 rtx plus_src, plus_cst_src;
2902 if (! insn_is_asm && icode < 0)
2904 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2905 || GET_CODE (PATTERN (insn)) == CLOBBER
2906 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2907 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2908 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2909 return 0;
2912 if (old_set != 0 && REG_P (SET_DEST (old_set))
2913 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2915 /* Check for setting an eliminable register. */
2916 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2917 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2919 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2920 /* If this is setting the frame pointer register to the
2921 hardware frame pointer register and this is an elimination
2922 that will be done (tested above), this insn is really
2923 adjusting the frame pointer downward to compensate for
2924 the adjustment done before a nonlocal goto. */
2925 if (ep->from == FRAME_POINTER_REGNUM
2926 && ep->to == HARD_FRAME_POINTER_REGNUM)
2928 rtx base = SET_SRC (old_set);
2929 rtx base_insn = insn;
2930 HOST_WIDE_INT offset = 0;
2932 while (base != ep->to_rtx)
2934 rtx prev_insn, prev_set;
2936 if (GET_CODE (base) == PLUS
2937 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2939 offset += INTVAL (XEXP (base, 1));
2940 base = XEXP (base, 0);
2942 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2943 && (prev_set = single_set (prev_insn)) != 0
2944 && rtx_equal_p (SET_DEST (prev_set), base))
2946 base = SET_SRC (prev_set);
2947 base_insn = prev_insn;
2949 else
2950 break;
2953 if (base == ep->to_rtx)
2955 rtx src
2956 = plus_constant (ep->to_rtx, offset - ep->offset);
2958 new_body = old_body;
2959 if (! replace)
2961 new_body = copy_insn (old_body);
2962 if (REG_NOTES (insn))
2963 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2965 PATTERN (insn) = new_body;
2966 old_set = single_set (insn);
2968 /* First see if this insn remains valid when we
2969 make the change. If not, keep the INSN_CODE
2970 the same and let reload fit it up. */
2971 validate_change (insn, &SET_SRC (old_set), src, 1);
2972 validate_change (insn, &SET_DEST (old_set),
2973 ep->to_rtx, 1);
2974 if (! apply_change_group ())
2976 SET_SRC (old_set) = src;
2977 SET_DEST (old_set) = ep->to_rtx;
2980 val = 1;
2981 goto done;
2984 #endif
2986 /* In this case this insn isn't serving a useful purpose. We
2987 will delete it in reload_as_needed once we know that this
2988 elimination is, in fact, being done.
2990 If REPLACE isn't set, we can't delete this insn, but needn't
2991 process it since it won't be used unless something changes. */
2992 if (replace)
2994 delete_dead_insn (insn);
2995 return 1;
2997 val = 1;
2998 goto done;
3002 /* We allow one special case which happens to work on all machines we
3003 currently support: a single set with the source or a REG_EQUAL
3004 note being a PLUS of an eliminable register and a constant. */
3005 plus_src = plus_cst_src = 0;
3006 if (old_set && REG_P (SET_DEST (old_set)))
3008 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3009 plus_src = SET_SRC (old_set);
3010 /* First see if the source is of the form (plus (...) CST). */
3011 if (plus_src
3012 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3013 plus_cst_src = plus_src;
3014 else if (REG_P (SET_SRC (old_set))
3015 || plus_src)
3017 /* Otherwise, see if we have a REG_EQUAL note of the form
3018 (plus (...) CST). */
3019 rtx links;
3020 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3022 if (REG_NOTE_KIND (links) == REG_EQUAL
3023 && GET_CODE (XEXP (links, 0)) == PLUS
3024 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3026 plus_cst_src = XEXP (links, 0);
3027 break;
3032 /* Check that the first operand of the PLUS is a hard reg or
3033 the lowpart subreg of one. */
3034 if (plus_cst_src)
3036 rtx reg = XEXP (plus_cst_src, 0);
3037 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3038 reg = SUBREG_REG (reg);
3040 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3041 plus_cst_src = 0;
3044 if (plus_cst_src)
3046 rtx reg = XEXP (plus_cst_src, 0);
3047 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3049 if (GET_CODE (reg) == SUBREG)
3050 reg = SUBREG_REG (reg);
3052 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3053 if (ep->from_rtx == reg && ep->can_eliminate)
3055 rtx to_rtx = ep->to_rtx;
3056 offset += ep->offset;
3058 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3059 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3060 to_rtx);
3061 if (offset == 0)
3063 int num_clobbers;
3064 /* We assume here that if we need a PARALLEL with
3065 CLOBBERs for this assignment, we can do with the
3066 MATCH_SCRATCHes that add_clobbers allocates.
3067 There's not much we can do if that doesn't work. */
3068 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3069 SET_DEST (old_set),
3070 to_rtx);
3071 num_clobbers = 0;
3072 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3073 if (num_clobbers)
3075 rtvec vec = rtvec_alloc (num_clobbers + 1);
3077 vec->elem[0] = PATTERN (insn);
3078 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3079 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3081 gcc_assert (INSN_CODE (insn) >= 0);
3083 /* If we have a nonzero offset, and the source is already
3084 a simple REG, the following transformation would
3085 increase the cost of the insn by replacing a simple REG
3086 with (plus (reg sp) CST). So try only when we already
3087 had a PLUS before. */
3088 else if (plus_src)
3090 new_body = old_body;
3091 if (! replace)
3093 new_body = copy_insn (old_body);
3094 if (REG_NOTES (insn))
3095 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3097 PATTERN (insn) = new_body;
3098 old_set = single_set (insn);
3100 XEXP (SET_SRC (old_set), 0) = to_rtx;
3101 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3103 else
3104 break;
3106 val = 1;
3107 /* This can't have an effect on elimination offsets, so skip right
3108 to the end. */
3109 goto done;
3113 /* Determine the effects of this insn on elimination offsets. */
3114 elimination_effects (old_body, 0);
3116 /* Eliminate all eliminable registers occurring in operands that
3117 can be handled by reload. */
3118 extract_insn (insn);
3119 for (i = 0; i < recog_data.n_operands; i++)
3121 orig_operand[i] = recog_data.operand[i];
3122 substed_operand[i] = recog_data.operand[i];
3124 /* For an asm statement, every operand is eliminable. */
3125 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3127 bool is_set_src, in_plus;
3129 /* Check for setting a register that we know about. */
3130 if (recog_data.operand_type[i] != OP_IN
3131 && REG_P (orig_operand[i]))
3133 /* If we are assigning to a register that can be eliminated, it
3134 must be as part of a PARALLEL, since the code above handles
3135 single SETs. We must indicate that we can no longer
3136 eliminate this reg. */
3137 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3138 ep++)
3139 if (ep->from_rtx == orig_operand[i])
3140 ep->can_eliminate = 0;
3143 /* Companion to the above plus substitution, we can allow
3144 invariants as the source of a plain move. */
3145 is_set_src = false;
3146 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3147 is_set_src = true;
3148 in_plus = false;
3149 if (plus_src
3150 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3151 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3152 in_plus = true;
3154 substed_operand[i]
3155 = eliminate_regs_1 (recog_data.operand[i], 0,
3156 replace ? insn : NULL_RTX,
3157 is_set_src || in_plus);
3158 if (substed_operand[i] != orig_operand[i])
3159 val = 1;
3160 /* Terminate the search in check_eliminable_occurrences at
3161 this point. */
3162 *recog_data.operand_loc[i] = 0;
3164 /* If an output operand changed from a REG to a MEM and INSN is an
3165 insn, write a CLOBBER insn. */
3166 if (recog_data.operand_type[i] != OP_IN
3167 && REG_P (orig_operand[i])
3168 && MEM_P (substed_operand[i])
3169 && replace)
3170 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3171 insn);
3175 for (i = 0; i < recog_data.n_dups; i++)
3176 *recog_data.dup_loc[i]
3177 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3179 /* If any eliminable remain, they aren't eliminable anymore. */
3180 check_eliminable_occurrences (old_body);
3182 /* Substitute the operands; the new values are in the substed_operand
3183 array. */
3184 for (i = 0; i < recog_data.n_operands; i++)
3185 *recog_data.operand_loc[i] = substed_operand[i];
3186 for (i = 0; i < recog_data.n_dups; i++)
3187 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3189 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3190 re-recognize the insn. We do this in case we had a simple addition
3191 but now can do this as a load-address. This saves an insn in this
3192 common case.
3193 If re-recognition fails, the old insn code number will still be used,
3194 and some register operands may have changed into PLUS expressions.
3195 These will be handled by find_reloads by loading them into a register
3196 again. */
3198 if (val)
3200 /* If we aren't replacing things permanently and we changed something,
3201 make another copy to ensure that all the RTL is new. Otherwise
3202 things can go wrong if find_reload swaps commutative operands
3203 and one is inside RTL that has been copied while the other is not. */
3204 new_body = old_body;
3205 if (! replace)
3207 new_body = copy_insn (old_body);
3208 if (REG_NOTES (insn))
3209 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3211 PATTERN (insn) = new_body;
3213 /* If we had a move insn but now we don't, rerecognize it. This will
3214 cause spurious re-recognition if the old move had a PARALLEL since
3215 the new one still will, but we can't call single_set without
3216 having put NEW_BODY into the insn and the re-recognition won't
3217 hurt in this rare case. */
3218 /* ??? Why this huge if statement - why don't we just rerecognize the
3219 thing always? */
3220 if (! insn_is_asm
3221 && old_set != 0
3222 && ((REG_P (SET_SRC (old_set))
3223 && (GET_CODE (new_body) != SET
3224 || !REG_P (SET_SRC (new_body))))
3225 /* If this was a load from or store to memory, compare
3226 the MEM in recog_data.operand to the one in the insn.
3227 If they are not equal, then rerecognize the insn. */
3228 || (old_set != 0
3229 && ((MEM_P (SET_SRC (old_set))
3230 && SET_SRC (old_set) != recog_data.operand[1])
3231 || (MEM_P (SET_DEST (old_set))
3232 && SET_DEST (old_set) != recog_data.operand[0])))
3233 /* If this was an add insn before, rerecognize. */
3234 || GET_CODE (SET_SRC (old_set)) == PLUS))
3236 int new_icode = recog (PATTERN (insn), insn, 0);
3237 if (new_icode >= 0)
3238 INSN_CODE (insn) = new_icode;
3242 /* Restore the old body. If there were any changes to it, we made a copy
3243 of it while the changes were still in place, so we'll correctly return
3244 a modified insn below. */
3245 if (! replace)
3247 /* Restore the old body. */
3248 for (i = 0; i < recog_data.n_operands; i++)
3249 *recog_data.operand_loc[i] = orig_operand[i];
3250 for (i = 0; i < recog_data.n_dups; i++)
3251 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3254 /* Update all elimination pairs to reflect the status after the current
3255 insn. The changes we make were determined by the earlier call to
3256 elimination_effects.
3258 We also detect cases where register elimination cannot be done,
3259 namely, if a register would be both changed and referenced outside a MEM
3260 in the resulting insn since such an insn is often undefined and, even if
3261 not, we cannot know what meaning will be given to it. Note that it is
3262 valid to have a register used in an address in an insn that changes it
3263 (presumably with a pre- or post-increment or decrement).
3265 If anything changes, return nonzero. */
3267 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3269 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3270 ep->can_eliminate = 0;
3272 ep->ref_outside_mem = 0;
3274 if (ep->previous_offset != ep->offset)
3275 val = 1;
3278 done:
3279 /* If we changed something, perform elimination in REG_NOTES. This is
3280 needed even when REPLACE is zero because a REG_DEAD note might refer
3281 to a register that we eliminate and could cause a different number
3282 of spill registers to be needed in the final reload pass than in
3283 the pre-passes. */
3284 if (val && REG_NOTES (insn) != 0)
3285 REG_NOTES (insn)
3286 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3288 return val;
3291 /* Loop through all elimination pairs.
3292 Recalculate the number not at initial offset.
3294 Compute the maximum offset (minimum offset if the stack does not
3295 grow downward) for each elimination pair. */
3297 static void
3298 update_eliminable_offsets (void)
3300 struct elim_table *ep;
3302 num_not_at_initial_offset = 0;
3303 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3305 ep->previous_offset = ep->offset;
3306 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3307 num_not_at_initial_offset++;
3311 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3312 replacement we currently believe is valid, mark it as not eliminable if X
3313 modifies DEST in any way other than by adding a constant integer to it.
3315 If DEST is the frame pointer, we do nothing because we assume that
3316 all assignments to the hard frame pointer are nonlocal gotos and are being
3317 done at a time when they are valid and do not disturb anything else.
3318 Some machines want to eliminate a fake argument pointer with either the
3319 frame or stack pointer. Assignments to the hard frame pointer must not
3320 prevent this elimination.
3322 Called via note_stores from reload before starting its passes to scan
3323 the insns of the function. */
3325 static void
3326 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3328 unsigned int i;
3330 /* A SUBREG of a hard register here is just changing its mode. We should
3331 not see a SUBREG of an eliminable hard register, but check just in
3332 case. */
3333 if (GET_CODE (dest) == SUBREG)
3334 dest = SUBREG_REG (dest);
3336 if (dest == hard_frame_pointer_rtx)
3337 return;
3339 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3340 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3341 && (GET_CODE (x) != SET
3342 || GET_CODE (SET_SRC (x)) != PLUS
3343 || XEXP (SET_SRC (x), 0) != dest
3344 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3346 reg_eliminate[i].can_eliminate_previous
3347 = reg_eliminate[i].can_eliminate = 0;
3348 num_eliminable--;
3352 /* Verify that the initial elimination offsets did not change since the
3353 last call to set_initial_elim_offsets. This is used to catch cases
3354 where something illegal happened during reload_as_needed that could
3355 cause incorrect code to be generated if we did not check for it. */
3357 static bool
3358 verify_initial_elim_offsets (void)
3360 HOST_WIDE_INT t;
3362 if (!num_eliminable)
3363 return true;
3365 #ifdef ELIMINABLE_REGS
3367 struct elim_table *ep;
3369 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3371 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3372 if (t != ep->initial_offset)
3373 return false;
3376 #else
3377 INITIAL_FRAME_POINTER_OFFSET (t);
3378 if (t != reg_eliminate[0].initial_offset)
3379 return false;
3380 #endif
3382 return true;
3385 /* Reset all offsets on eliminable registers to their initial values. */
3387 static void
3388 set_initial_elim_offsets (void)
3390 struct elim_table *ep = reg_eliminate;
3392 #ifdef ELIMINABLE_REGS
3393 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3395 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3396 ep->previous_offset = ep->offset = ep->initial_offset;
3398 #else
3399 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3400 ep->previous_offset = ep->offset = ep->initial_offset;
3401 #endif
3403 num_not_at_initial_offset = 0;
3406 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3408 static void
3409 set_initial_eh_label_offset (rtx label)
3411 set_label_offsets (label, NULL_RTX, 1);
3414 /* Initialize the known label offsets.
3415 Set a known offset for each forced label to be at the initial offset
3416 of each elimination. We do this because we assume that all
3417 computed jumps occur from a location where each elimination is
3418 at its initial offset.
3419 For all other labels, show that we don't know the offsets. */
3421 static void
3422 set_initial_label_offsets (void)
3424 rtx x;
3425 memset (offsets_known_at, 0, num_labels);
3427 for (x = forced_labels; x; x = XEXP (x, 1))
3428 if (XEXP (x, 0))
3429 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3431 for_each_eh_label (set_initial_eh_label_offset);
3434 /* Set all elimination offsets to the known values for the code label given
3435 by INSN. */
3437 static void
3438 set_offsets_for_label (rtx insn)
3440 unsigned int i;
3441 int label_nr = CODE_LABEL_NUMBER (insn);
3442 struct elim_table *ep;
3444 num_not_at_initial_offset = 0;
3445 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3447 ep->offset = ep->previous_offset
3448 = offsets_at[label_nr - first_label_num][i];
3449 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3450 num_not_at_initial_offset++;
3454 /* See if anything that happened changes which eliminations are valid.
3455 For example, on the SPARC, whether or not the frame pointer can
3456 be eliminated can depend on what registers have been used. We need
3457 not check some conditions again (such as flag_omit_frame_pointer)
3458 since they can't have changed. */
3460 static void
3461 update_eliminables (HARD_REG_SET *pset)
3463 int previous_frame_pointer_needed = frame_pointer_needed;
3464 struct elim_table *ep;
3466 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3467 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3468 #ifdef ELIMINABLE_REGS
3469 || ! CAN_ELIMINATE (ep->from, ep->to)
3470 #endif
3472 ep->can_eliminate = 0;
3474 /* Look for the case where we have discovered that we can't replace
3475 register A with register B and that means that we will now be
3476 trying to replace register A with register C. This means we can
3477 no longer replace register C with register B and we need to disable
3478 such an elimination, if it exists. This occurs often with A == ap,
3479 B == sp, and C == fp. */
3481 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3483 struct elim_table *op;
3484 int new_to = -1;
3486 if (! ep->can_eliminate && ep->can_eliminate_previous)
3488 /* Find the current elimination for ep->from, if there is a
3489 new one. */
3490 for (op = reg_eliminate;
3491 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3492 if (op->from == ep->from && op->can_eliminate)
3494 new_to = op->to;
3495 break;
3498 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3499 disable it. */
3500 for (op = reg_eliminate;
3501 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3502 if (op->from == new_to && op->to == ep->to)
3503 op->can_eliminate = 0;
3507 /* See if any registers that we thought we could eliminate the previous
3508 time are no longer eliminable. If so, something has changed and we
3509 must spill the register. Also, recompute the number of eliminable
3510 registers and see if the frame pointer is needed; it is if there is
3511 no elimination of the frame pointer that we can perform. */
3513 frame_pointer_needed = 1;
3514 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3516 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3517 && ep->to != HARD_FRAME_POINTER_REGNUM)
3518 frame_pointer_needed = 0;
3520 if (! ep->can_eliminate && ep->can_eliminate_previous)
3522 ep->can_eliminate_previous = 0;
3523 SET_HARD_REG_BIT (*pset, ep->from);
3524 num_eliminable--;
3528 /* If we didn't need a frame pointer last time, but we do now, spill
3529 the hard frame pointer. */
3530 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3531 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3534 /* Initialize the table of registers to eliminate. */
3536 static void
3537 init_elim_table (void)
3539 struct elim_table *ep;
3540 #ifdef ELIMINABLE_REGS
3541 const struct elim_table_1 *ep1;
3542 #endif
3544 if (!reg_eliminate)
3545 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3547 /* Does this function require a frame pointer? */
3549 frame_pointer_needed = (! flag_omit_frame_pointer
3550 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3551 and restore sp for alloca. So we can't eliminate
3552 the frame pointer in that case. At some point,
3553 we should improve this by emitting the
3554 sp-adjusting insns for this case. */
3555 || (current_function_calls_alloca
3556 && EXIT_IGNORE_STACK)
3557 || current_function_accesses_prior_frames
3558 || FRAME_POINTER_REQUIRED);
3560 num_eliminable = 0;
3562 #ifdef ELIMINABLE_REGS
3563 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3564 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3566 ep->from = ep1->from;
3567 ep->to = ep1->to;
3568 ep->can_eliminate = ep->can_eliminate_previous
3569 = (CAN_ELIMINATE (ep->from, ep->to)
3570 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3572 #else
3573 reg_eliminate[0].from = reg_eliminate_1[0].from;
3574 reg_eliminate[0].to = reg_eliminate_1[0].to;
3575 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3576 = ! frame_pointer_needed;
3577 #endif
3579 /* Count the number of eliminable registers and build the FROM and TO
3580 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3581 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3582 We depend on this. */
3583 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3585 num_eliminable += ep->can_eliminate;
3586 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3587 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3591 /* Kick all pseudos out of hard register REGNO.
3593 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3594 because we found we can't eliminate some register. In the case, no pseudos
3595 are allowed to be in the register, even if they are only in a block that
3596 doesn't require spill registers, unlike the case when we are spilling this
3597 hard reg to produce another spill register.
3599 Return nonzero if any pseudos needed to be kicked out. */
3601 static void
3602 spill_hard_reg (unsigned int regno, int cant_eliminate)
3604 int i;
3606 if (cant_eliminate)
3608 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3609 regs_ever_live[regno] = 1;
3612 /* Spill every pseudo reg that was allocated to this reg
3613 or to something that overlaps this reg. */
3615 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3616 if (reg_renumber[i] >= 0
3617 && (unsigned int) reg_renumber[i] <= regno
3618 && ((unsigned int) reg_renumber[i]
3619 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3620 [PSEUDO_REGNO_MODE (i)]
3621 > regno))
3622 SET_REGNO_REG_SET (&spilled_pseudos, i);
3625 /* After find_reload_regs has been run for all insn that need reloads,
3626 and/or spill_hard_regs was called, this function is used to actually
3627 spill pseudo registers and try to reallocate them. It also sets up the
3628 spill_regs array for use by choose_reload_regs. */
3630 static int
3631 finish_spills (int global)
3633 struct insn_chain *chain;
3634 int something_changed = 0;
3635 unsigned i;
3636 reg_set_iterator rsi;
3638 /* Build the spill_regs array for the function. */
3639 /* If there are some registers still to eliminate and one of the spill regs
3640 wasn't ever used before, additional stack space may have to be
3641 allocated to store this register. Thus, we may have changed the offset
3642 between the stack and frame pointers, so mark that something has changed.
3644 One might think that we need only set VAL to 1 if this is a call-used
3645 register. However, the set of registers that must be saved by the
3646 prologue is not identical to the call-used set. For example, the
3647 register used by the call insn for the return PC is a call-used register,
3648 but must be saved by the prologue. */
3650 n_spills = 0;
3651 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3652 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3654 spill_reg_order[i] = n_spills;
3655 spill_regs[n_spills++] = i;
3656 if (num_eliminable && ! regs_ever_live[i])
3657 something_changed = 1;
3658 regs_ever_live[i] = 1;
3660 else
3661 spill_reg_order[i] = -1;
3663 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3665 /* Record the current hard register the pseudo is allocated to in
3666 pseudo_previous_regs so we avoid reallocating it to the same
3667 hard reg in a later pass. */
3668 gcc_assert (reg_renumber[i] >= 0);
3670 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3671 /* Mark it as no longer having a hard register home. */
3672 reg_renumber[i] = -1;
3673 /* We will need to scan everything again. */
3674 something_changed = 1;
3677 /* Retry global register allocation if possible. */
3678 if (global)
3680 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3681 /* For every insn that needs reloads, set the registers used as spill
3682 regs in pseudo_forbidden_regs for every pseudo live across the
3683 insn. */
3684 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3686 EXECUTE_IF_SET_IN_REG_SET
3687 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3689 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3690 chain->used_spill_regs);
3692 EXECUTE_IF_SET_IN_REG_SET
3693 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3695 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3696 chain->used_spill_regs);
3700 /* Retry allocating the spilled pseudos. For each reg, merge the
3701 various reg sets that indicate which hard regs can't be used,
3702 and call retry_global_alloc.
3703 We change spill_pseudos here to only contain pseudos that did not
3704 get a new hard register. */
3705 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3706 if (reg_old_renumber[i] != reg_renumber[i])
3708 HARD_REG_SET forbidden;
3709 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3710 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3711 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3712 retry_global_alloc (i, forbidden);
3713 if (reg_renumber[i] >= 0)
3714 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3718 /* Fix up the register information in the insn chain.
3719 This involves deleting those of the spilled pseudos which did not get
3720 a new hard register home from the live_{before,after} sets. */
3721 for (chain = reload_insn_chain; chain; chain = chain->next)
3723 HARD_REG_SET used_by_pseudos;
3724 HARD_REG_SET used_by_pseudos2;
3726 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3727 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3729 /* Mark any unallocated hard regs as available for spills. That
3730 makes inheritance work somewhat better. */
3731 if (chain->need_reload)
3733 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3734 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3735 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3737 /* Save the old value for the sanity test below. */
3738 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3740 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3741 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3742 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3743 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3745 /* Make sure we only enlarge the set. */
3746 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3747 gcc_unreachable ();
3748 ok:;
3752 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3753 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3755 int regno = reg_renumber[i];
3756 if (reg_old_renumber[i] == regno)
3757 continue;
3759 alter_reg (i, reg_old_renumber[i]);
3760 reg_old_renumber[i] = regno;
3761 if (dump_file)
3763 if (regno == -1)
3764 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3765 else
3766 fprintf (dump_file, " Register %d now in %d.\n\n",
3767 i, reg_renumber[i]);
3771 return something_changed;
3774 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3776 static void
3777 scan_paradoxical_subregs (rtx x)
3779 int i;
3780 const char *fmt;
3781 enum rtx_code code = GET_CODE (x);
3783 switch (code)
3785 case REG:
3786 case CONST_INT:
3787 case CONST:
3788 case SYMBOL_REF:
3789 case LABEL_REF:
3790 case CONST_DOUBLE:
3791 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3792 case CC0:
3793 case PC:
3794 case USE:
3795 case CLOBBER:
3796 return;
3798 case SUBREG:
3799 if (REG_P (SUBREG_REG (x))
3800 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3801 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3802 = GET_MODE_SIZE (GET_MODE (x));
3803 return;
3805 default:
3806 break;
3809 fmt = GET_RTX_FORMAT (code);
3810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3812 if (fmt[i] == 'e')
3813 scan_paradoxical_subregs (XEXP (x, i));
3814 else if (fmt[i] == 'E')
3816 int j;
3817 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3818 scan_paradoxical_subregs (XVECEXP (x, i, j));
3823 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3824 examine all of the reload insns between PREV and NEXT exclusive, and
3825 annotate all that may trap. */
3827 static void
3828 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3830 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3831 unsigned int trap_count;
3832 rtx i;
3834 if (note == NULL)
3835 return;
3837 if (may_trap_p (PATTERN (insn)))
3838 trap_count = 1;
3839 else
3841 remove_note (insn, note);
3842 trap_count = 0;
3845 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3846 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3848 trap_count++;
3849 REG_NOTES (i)
3850 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3854 /* Reload pseudo-registers into hard regs around each insn as needed.
3855 Additional register load insns are output before the insn that needs it
3856 and perhaps store insns after insns that modify the reloaded pseudo reg.
3858 reg_last_reload_reg and reg_reloaded_contents keep track of
3859 which registers are already available in reload registers.
3860 We update these for the reloads that we perform,
3861 as the insns are scanned. */
3863 static void
3864 reload_as_needed (int live_known)
3866 struct insn_chain *chain;
3867 #if defined (AUTO_INC_DEC)
3868 int i;
3869 #endif
3870 rtx x;
3872 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3873 memset (spill_reg_store, 0, sizeof spill_reg_store);
3874 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3875 reg_has_output_reload = xmalloc (max_regno);
3876 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3877 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3879 set_initial_elim_offsets ();
3881 for (chain = reload_insn_chain; chain; chain = chain->next)
3883 rtx prev = 0;
3884 rtx insn = chain->insn;
3885 rtx old_next = NEXT_INSN (insn);
3887 /* If we pass a label, copy the offsets from the label information
3888 into the current offsets of each elimination. */
3889 if (LABEL_P (insn))
3890 set_offsets_for_label (insn);
3892 else if (INSN_P (insn))
3894 rtx oldpat = copy_rtx (PATTERN (insn));
3896 /* If this is a USE and CLOBBER of a MEM, ensure that any
3897 references to eliminable registers have been removed. */
3899 if ((GET_CODE (PATTERN (insn)) == USE
3900 || GET_CODE (PATTERN (insn)) == CLOBBER)
3901 && MEM_P (XEXP (PATTERN (insn), 0)))
3902 XEXP (XEXP (PATTERN (insn), 0), 0)
3903 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3904 GET_MODE (XEXP (PATTERN (insn), 0)),
3905 NULL_RTX);
3907 /* If we need to do register elimination processing, do so.
3908 This might delete the insn, in which case we are done. */
3909 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3911 eliminate_regs_in_insn (insn, 1);
3912 if (NOTE_P (insn))
3914 update_eliminable_offsets ();
3915 continue;
3919 /* If need_elim is nonzero but need_reload is zero, one might think
3920 that we could simply set n_reloads to 0. However, find_reloads
3921 could have done some manipulation of the insn (such as swapping
3922 commutative operands), and these manipulations are lost during
3923 the first pass for every insn that needs register elimination.
3924 So the actions of find_reloads must be redone here. */
3926 if (! chain->need_elim && ! chain->need_reload
3927 && ! chain->need_operand_change)
3928 n_reloads = 0;
3929 /* First find the pseudo regs that must be reloaded for this insn.
3930 This info is returned in the tables reload_... (see reload.h).
3931 Also modify the body of INSN by substituting RELOAD
3932 rtx's for those pseudo regs. */
3933 else
3935 memset (reg_has_output_reload, 0, max_regno);
3936 CLEAR_HARD_REG_SET (reg_is_output_reload);
3938 find_reloads (insn, 1, spill_indirect_levels, live_known,
3939 spill_reg_order);
3942 if (n_reloads > 0)
3944 rtx next = NEXT_INSN (insn);
3945 rtx p;
3947 prev = PREV_INSN (insn);
3949 /* Now compute which reload regs to reload them into. Perhaps
3950 reusing reload regs from previous insns, or else output
3951 load insns to reload them. Maybe output store insns too.
3952 Record the choices of reload reg in reload_reg_rtx. */
3953 choose_reload_regs (chain);
3955 /* Merge any reloads that we didn't combine for fear of
3956 increasing the number of spill registers needed but now
3957 discover can be safely merged. */
3958 if (SMALL_REGISTER_CLASSES)
3959 merge_assigned_reloads (insn);
3961 /* Generate the insns to reload operands into or out of
3962 their reload regs. */
3963 emit_reload_insns (chain);
3965 /* Substitute the chosen reload regs from reload_reg_rtx
3966 into the insn's body (or perhaps into the bodies of other
3967 load and store insn that we just made for reloading
3968 and that we moved the structure into). */
3969 subst_reloads (insn);
3971 /* Adjust the exception region notes for loads and stores. */
3972 if (flag_non_call_exceptions && !CALL_P (insn))
3973 fixup_eh_region_note (insn, prev, next);
3975 /* If this was an ASM, make sure that all the reload insns
3976 we have generated are valid. If not, give an error
3977 and delete them. */
3978 if (asm_noperands (PATTERN (insn)) >= 0)
3979 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3980 if (p != insn && INSN_P (p)
3981 && GET_CODE (PATTERN (p)) != USE
3982 && (recog_memoized (p) < 0
3983 || (extract_insn (p), ! constrain_operands (1))))
3985 error_for_asm (insn,
3986 "%<asm%> operand requires "
3987 "impossible reload");
3988 delete_insn (p);
3992 if (num_eliminable && chain->need_elim)
3993 update_eliminable_offsets ();
3995 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3996 is no longer validly lying around to save a future reload.
3997 Note that this does not detect pseudos that were reloaded
3998 for this insn in order to be stored in
3999 (obeying register constraints). That is correct; such reload
4000 registers ARE still valid. */
4001 note_stores (oldpat, forget_old_reloads_1, NULL);
4003 /* There may have been CLOBBER insns placed after INSN. So scan
4004 between INSN and NEXT and use them to forget old reloads. */
4005 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4006 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4007 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4009 #ifdef AUTO_INC_DEC
4010 /* Likewise for regs altered by auto-increment in this insn.
4011 REG_INC notes have been changed by reloading:
4012 find_reloads_address_1 records substitutions for them,
4013 which have been performed by subst_reloads above. */
4014 for (i = n_reloads - 1; i >= 0; i--)
4016 rtx in_reg = rld[i].in_reg;
4017 if (in_reg)
4019 enum rtx_code code = GET_CODE (in_reg);
4020 /* PRE_INC / PRE_DEC will have the reload register ending up
4021 with the same value as the stack slot, but that doesn't
4022 hold true for POST_INC / POST_DEC. Either we have to
4023 convert the memory access to a true POST_INC / POST_DEC,
4024 or we can't use the reload register for inheritance. */
4025 if ((code == POST_INC || code == POST_DEC)
4026 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4027 REGNO (rld[i].reg_rtx))
4028 /* Make sure it is the inc/dec pseudo, and not
4029 some other (e.g. output operand) pseudo. */
4030 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4031 == REGNO (XEXP (in_reg, 0))))
4034 rtx reload_reg = rld[i].reg_rtx;
4035 enum machine_mode mode = GET_MODE (reload_reg);
4036 int n = 0;
4037 rtx p;
4039 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4041 /* We really want to ignore REG_INC notes here, so
4042 use PATTERN (p) as argument to reg_set_p . */
4043 if (reg_set_p (reload_reg, PATTERN (p)))
4044 break;
4045 n = count_occurrences (PATTERN (p), reload_reg, 0);
4046 if (! n)
4047 continue;
4048 if (n == 1)
4050 n = validate_replace_rtx (reload_reg,
4051 gen_rtx_fmt_e (code,
4052 mode,
4053 reload_reg),
4056 /* We must also verify that the constraints
4057 are met after the replacement. */
4058 extract_insn (p);
4059 if (n)
4060 n = constrain_operands (1);
4061 else
4062 break;
4064 /* If the constraints were not met, then
4065 undo the replacement. */
4066 if (!n)
4068 validate_replace_rtx (gen_rtx_fmt_e (code,
4069 mode,
4070 reload_reg),
4071 reload_reg, p);
4072 break;
4076 break;
4078 if (n == 1)
4080 REG_NOTES (p)
4081 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4082 REG_NOTES (p));
4083 /* Mark this as having an output reload so that the
4084 REG_INC processing code below won't invalidate
4085 the reload for inheritance. */
4086 SET_HARD_REG_BIT (reg_is_output_reload,
4087 REGNO (reload_reg));
4088 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4090 else
4091 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4092 NULL);
4094 else if ((code == PRE_INC || code == PRE_DEC)
4095 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4096 REGNO (rld[i].reg_rtx))
4097 /* Make sure it is the inc/dec pseudo, and not
4098 some other (e.g. output operand) pseudo. */
4099 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4100 == REGNO (XEXP (in_reg, 0))))
4102 SET_HARD_REG_BIT (reg_is_output_reload,
4103 REGNO (rld[i].reg_rtx));
4104 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4108 /* If a pseudo that got a hard register is auto-incremented,
4109 we must purge records of copying it into pseudos without
4110 hard registers. */
4111 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4112 if (REG_NOTE_KIND (x) == REG_INC)
4114 /* See if this pseudo reg was reloaded in this insn.
4115 If so, its last-reload info is still valid
4116 because it is based on this insn's reload. */
4117 for (i = 0; i < n_reloads; i++)
4118 if (rld[i].out == XEXP (x, 0))
4119 break;
4121 if (i == n_reloads)
4122 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4124 #endif
4126 /* A reload reg's contents are unknown after a label. */
4127 if (LABEL_P (insn))
4128 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4130 /* Don't assume a reload reg is still good after a call insn
4131 if it is a call-used reg, or if it contains a value that will
4132 be partially clobbered by the call. */
4133 else if (CALL_P (insn))
4135 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4136 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4140 /* Clean up. */
4141 free (reg_last_reload_reg);
4142 free (reg_has_output_reload);
4145 /* Discard all record of any value reloaded from X,
4146 or reloaded in X from someplace else;
4147 unless X is an output reload reg of the current insn.
4149 X may be a hard reg (the reload reg)
4150 or it may be a pseudo reg that was reloaded from. */
4152 static void
4153 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4154 void *data ATTRIBUTE_UNUSED)
4156 unsigned int regno;
4157 unsigned int nr;
4159 /* note_stores does give us subregs of hard regs,
4160 subreg_regno_offset requires a hard reg. */
4161 while (GET_CODE (x) == SUBREG)
4163 /* We ignore the subreg offset when calculating the regno,
4164 because we are using the entire underlying hard register
4165 below. */
4166 x = SUBREG_REG (x);
4169 if (!REG_P (x))
4170 return;
4172 regno = REGNO (x);
4174 if (regno >= FIRST_PSEUDO_REGISTER)
4175 nr = 1;
4176 else
4178 unsigned int i;
4180 nr = hard_regno_nregs[regno][GET_MODE (x)];
4181 /* Storing into a spilled-reg invalidates its contents.
4182 This can happen if a block-local pseudo is allocated to that reg
4183 and it wasn't spilled because this block's total need is 0.
4184 Then some insn might have an optional reload and use this reg. */
4185 for (i = 0; i < nr; i++)
4186 /* But don't do this if the reg actually serves as an output
4187 reload reg in the current instruction. */
4188 if (n_reloads == 0
4189 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4191 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4192 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4193 spill_reg_store[regno + i] = 0;
4197 /* Since value of X has changed,
4198 forget any value previously copied from it. */
4200 while (nr-- > 0)
4201 /* But don't forget a copy if this is the output reload
4202 that establishes the copy's validity. */
4203 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4204 reg_last_reload_reg[regno + nr] = 0;
4207 /* The following HARD_REG_SETs indicate when each hard register is
4208 used for a reload of various parts of the current insn. */
4210 /* If reg is unavailable for all reloads. */
4211 static HARD_REG_SET reload_reg_unavailable;
4212 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4213 static HARD_REG_SET reload_reg_used;
4214 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4215 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4216 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4217 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4218 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4219 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4220 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4221 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4222 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4223 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4224 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4225 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4226 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4227 static HARD_REG_SET reload_reg_used_in_op_addr;
4228 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4229 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4230 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4231 static HARD_REG_SET reload_reg_used_in_insn;
4232 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4233 static HARD_REG_SET reload_reg_used_in_other_addr;
4235 /* If reg is in use as a reload reg for any sort of reload. */
4236 static HARD_REG_SET reload_reg_used_at_all;
4238 /* If reg is use as an inherited reload. We just mark the first register
4239 in the group. */
4240 static HARD_REG_SET reload_reg_used_for_inherit;
4242 /* Records which hard regs are used in any way, either as explicit use or
4243 by being allocated to a pseudo during any point of the current insn. */
4244 static HARD_REG_SET reg_used_in_insn;
4246 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4247 TYPE. MODE is used to indicate how many consecutive regs are
4248 actually used. */
4250 static void
4251 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4252 enum machine_mode mode)
4254 unsigned int nregs = hard_regno_nregs[regno][mode];
4255 unsigned int i;
4257 for (i = regno; i < nregs + regno; i++)
4259 switch (type)
4261 case RELOAD_OTHER:
4262 SET_HARD_REG_BIT (reload_reg_used, i);
4263 break;
4265 case RELOAD_FOR_INPUT_ADDRESS:
4266 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4267 break;
4269 case RELOAD_FOR_INPADDR_ADDRESS:
4270 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4271 break;
4273 case RELOAD_FOR_OUTPUT_ADDRESS:
4274 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4275 break;
4277 case RELOAD_FOR_OUTADDR_ADDRESS:
4278 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4279 break;
4281 case RELOAD_FOR_OPERAND_ADDRESS:
4282 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4283 break;
4285 case RELOAD_FOR_OPADDR_ADDR:
4286 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4287 break;
4289 case RELOAD_FOR_OTHER_ADDRESS:
4290 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4291 break;
4293 case RELOAD_FOR_INPUT:
4294 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4295 break;
4297 case RELOAD_FOR_OUTPUT:
4298 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4299 break;
4301 case RELOAD_FOR_INSN:
4302 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4303 break;
4306 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4310 /* Similarly, but show REGNO is no longer in use for a reload. */
4312 static void
4313 clear_reload_reg_in_use (unsigned int regno, int opnum,
4314 enum reload_type type, enum machine_mode mode)
4316 unsigned int nregs = hard_regno_nregs[regno][mode];
4317 unsigned int start_regno, end_regno, r;
4318 int i;
4319 /* A complication is that for some reload types, inheritance might
4320 allow multiple reloads of the same types to share a reload register.
4321 We set check_opnum if we have to check only reloads with the same
4322 operand number, and check_any if we have to check all reloads. */
4323 int check_opnum = 0;
4324 int check_any = 0;
4325 HARD_REG_SET *used_in_set;
4327 switch (type)
4329 case RELOAD_OTHER:
4330 used_in_set = &reload_reg_used;
4331 break;
4333 case RELOAD_FOR_INPUT_ADDRESS:
4334 used_in_set = &reload_reg_used_in_input_addr[opnum];
4335 break;
4337 case RELOAD_FOR_INPADDR_ADDRESS:
4338 check_opnum = 1;
4339 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4340 break;
4342 case RELOAD_FOR_OUTPUT_ADDRESS:
4343 used_in_set = &reload_reg_used_in_output_addr[opnum];
4344 break;
4346 case RELOAD_FOR_OUTADDR_ADDRESS:
4347 check_opnum = 1;
4348 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4349 break;
4351 case RELOAD_FOR_OPERAND_ADDRESS:
4352 used_in_set = &reload_reg_used_in_op_addr;
4353 break;
4355 case RELOAD_FOR_OPADDR_ADDR:
4356 check_any = 1;
4357 used_in_set = &reload_reg_used_in_op_addr_reload;
4358 break;
4360 case RELOAD_FOR_OTHER_ADDRESS:
4361 used_in_set = &reload_reg_used_in_other_addr;
4362 check_any = 1;
4363 break;
4365 case RELOAD_FOR_INPUT:
4366 used_in_set = &reload_reg_used_in_input[opnum];
4367 break;
4369 case RELOAD_FOR_OUTPUT:
4370 used_in_set = &reload_reg_used_in_output[opnum];
4371 break;
4373 case RELOAD_FOR_INSN:
4374 used_in_set = &reload_reg_used_in_insn;
4375 break;
4376 default:
4377 gcc_unreachable ();
4379 /* We resolve conflicts with remaining reloads of the same type by
4380 excluding the intervals of reload registers by them from the
4381 interval of freed reload registers. Since we only keep track of
4382 one set of interval bounds, we might have to exclude somewhat
4383 more than what would be necessary if we used a HARD_REG_SET here.
4384 But this should only happen very infrequently, so there should
4385 be no reason to worry about it. */
4387 start_regno = regno;
4388 end_regno = regno + nregs;
4389 if (check_opnum || check_any)
4391 for (i = n_reloads - 1; i >= 0; i--)
4393 if (rld[i].when_needed == type
4394 && (check_any || rld[i].opnum == opnum)
4395 && rld[i].reg_rtx)
4397 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4398 unsigned int conflict_end
4399 = (conflict_start
4400 + hard_regno_nregs[conflict_start][rld[i].mode]);
4402 /* If there is an overlap with the first to-be-freed register,
4403 adjust the interval start. */
4404 if (conflict_start <= start_regno && conflict_end > start_regno)
4405 start_regno = conflict_end;
4406 /* Otherwise, if there is a conflict with one of the other
4407 to-be-freed registers, adjust the interval end. */
4408 if (conflict_start > start_regno && conflict_start < end_regno)
4409 end_regno = conflict_start;
4414 for (r = start_regno; r < end_regno; r++)
4415 CLEAR_HARD_REG_BIT (*used_in_set, r);
4418 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4419 specified by OPNUM and TYPE. */
4421 static int
4422 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4424 int i;
4426 /* In use for a RELOAD_OTHER means it's not available for anything. */
4427 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4428 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4429 return 0;
4431 switch (type)
4433 case RELOAD_OTHER:
4434 /* In use for anything means we can't use it for RELOAD_OTHER. */
4435 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4436 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4437 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4438 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4439 return 0;
4441 for (i = 0; i < reload_n_operands; i++)
4442 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4443 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4444 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4445 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4446 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4447 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4448 return 0;
4450 return 1;
4452 case RELOAD_FOR_INPUT:
4453 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4454 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4455 return 0;
4457 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4458 return 0;
4460 /* If it is used for some other input, can't use it. */
4461 for (i = 0; i < reload_n_operands; i++)
4462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4463 return 0;
4465 /* If it is used in a later operand's address, can't use it. */
4466 for (i = opnum + 1; i < reload_n_operands; i++)
4467 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4468 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4469 return 0;
4471 return 1;
4473 case RELOAD_FOR_INPUT_ADDRESS:
4474 /* Can't use a register if it is used for an input address for this
4475 operand or used as an input in an earlier one. */
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4477 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4478 return 0;
4480 for (i = 0; i < opnum; i++)
4481 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4482 return 0;
4484 return 1;
4486 case RELOAD_FOR_INPADDR_ADDRESS:
4487 /* Can't use a register if it is used for an input address
4488 for this operand or used as an input in an earlier
4489 one. */
4490 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4491 return 0;
4493 for (i = 0; i < opnum; i++)
4494 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4495 return 0;
4497 return 1;
4499 case RELOAD_FOR_OUTPUT_ADDRESS:
4500 /* Can't use a register if it is used for an output address for this
4501 operand or used as an output in this or a later operand. Note
4502 that multiple output operands are emitted in reverse order, so
4503 the conflicting ones are those with lower indices. */
4504 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4505 return 0;
4507 for (i = 0; i <= opnum; i++)
4508 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4509 return 0;
4511 return 1;
4513 case RELOAD_FOR_OUTADDR_ADDRESS:
4514 /* Can't use a register if it is used for an output address
4515 for this operand or used as an output in this or a
4516 later operand. Note that multiple output operands are
4517 emitted in reverse order, so the conflicting ones are
4518 those with lower indices. */
4519 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4520 return 0;
4522 for (i = 0; i <= opnum; i++)
4523 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4524 return 0;
4526 return 1;
4528 case RELOAD_FOR_OPERAND_ADDRESS:
4529 for (i = 0; i < reload_n_operands; i++)
4530 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4531 return 0;
4533 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4534 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4536 case RELOAD_FOR_OPADDR_ADDR:
4537 for (i = 0; i < reload_n_operands; i++)
4538 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4539 return 0;
4541 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4543 case RELOAD_FOR_OUTPUT:
4544 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4545 outputs, or an operand address for this or an earlier output.
4546 Note that multiple output operands are emitted in reverse order,
4547 so the conflicting ones are those with higher indices. */
4548 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4549 return 0;
4551 for (i = 0; i < reload_n_operands; i++)
4552 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4553 return 0;
4555 for (i = opnum; i < reload_n_operands; i++)
4556 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4557 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4558 return 0;
4560 return 1;
4562 case RELOAD_FOR_INSN:
4563 for (i = 0; i < reload_n_operands; i++)
4564 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4565 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4566 return 0;
4568 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4569 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4571 case RELOAD_FOR_OTHER_ADDRESS:
4572 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4574 default:
4575 gcc_unreachable ();
4579 /* Return 1 if the value in reload reg REGNO, as used by a reload
4580 needed for the part of the insn specified by OPNUM and TYPE,
4581 is still available in REGNO at the end of the insn.
4583 We can assume that the reload reg was already tested for availability
4584 at the time it is needed, and we should not check this again,
4585 in case the reg has already been marked in use. */
4587 static int
4588 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4590 int i;
4592 switch (type)
4594 case RELOAD_OTHER:
4595 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4596 its value must reach the end. */
4597 return 1;
4599 /* If this use is for part of the insn,
4600 its value reaches if no subsequent part uses the same register.
4601 Just like the above function, don't try to do this with lots
4602 of fallthroughs. */
4604 case RELOAD_FOR_OTHER_ADDRESS:
4605 /* Here we check for everything else, since these don't conflict
4606 with anything else and everything comes later. */
4608 for (i = 0; i < reload_n_operands; i++)
4609 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4610 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4612 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4613 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4614 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4615 return 0;
4617 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4618 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4619 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4620 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4622 case RELOAD_FOR_INPUT_ADDRESS:
4623 case RELOAD_FOR_INPADDR_ADDRESS:
4624 /* Similar, except that we check only for this and subsequent inputs
4625 and the address of only subsequent inputs and we do not need
4626 to check for RELOAD_OTHER objects since they are known not to
4627 conflict. */
4629 for (i = opnum; i < reload_n_operands; i++)
4630 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4631 return 0;
4633 for (i = opnum + 1; i < reload_n_operands; i++)
4634 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4635 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4636 return 0;
4638 for (i = 0; i < reload_n_operands; i++)
4639 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4640 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4641 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4642 return 0;
4644 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4645 return 0;
4647 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4648 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4649 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4651 case RELOAD_FOR_INPUT:
4652 /* Similar to input address, except we start at the next operand for
4653 both input and input address and we do not check for
4654 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4655 would conflict. */
4657 for (i = opnum + 1; i < reload_n_operands; i++)
4658 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4659 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4660 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4661 return 0;
4663 /* ... fall through ... */
4665 case RELOAD_FOR_OPERAND_ADDRESS:
4666 /* Check outputs and their addresses. */
4668 for (i = 0; i < reload_n_operands; i++)
4669 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4670 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4671 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4672 return 0;
4674 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4676 case RELOAD_FOR_OPADDR_ADDR:
4677 for (i = 0; i < reload_n_operands; i++)
4678 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4679 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4680 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4681 return 0;
4683 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4684 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4685 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4687 case RELOAD_FOR_INSN:
4688 /* These conflict with other outputs with RELOAD_OTHER. So
4689 we need only check for output addresses. */
4691 opnum = reload_n_operands;
4693 /* ... fall through ... */
4695 case RELOAD_FOR_OUTPUT:
4696 case RELOAD_FOR_OUTPUT_ADDRESS:
4697 case RELOAD_FOR_OUTADDR_ADDRESS:
4698 /* We already know these can't conflict with a later output. So the
4699 only thing to check are later output addresses.
4700 Note that multiple output operands are emitted in reverse order,
4701 so the conflicting ones are those with lower indices. */
4702 for (i = 0; i < opnum; i++)
4703 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4704 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4705 return 0;
4707 return 1;
4709 default:
4710 gcc_unreachable ();
4714 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4715 Return 0 otherwise.
4717 This function uses the same algorithm as reload_reg_free_p above. */
4719 static int
4720 reloads_conflict (int r1, int r2)
4722 enum reload_type r1_type = rld[r1].when_needed;
4723 enum reload_type r2_type = rld[r2].when_needed;
4724 int r1_opnum = rld[r1].opnum;
4725 int r2_opnum = rld[r2].opnum;
4727 /* RELOAD_OTHER conflicts with everything. */
4728 if (r2_type == RELOAD_OTHER)
4729 return 1;
4731 /* Otherwise, check conflicts differently for each type. */
4733 switch (r1_type)
4735 case RELOAD_FOR_INPUT:
4736 return (r2_type == RELOAD_FOR_INSN
4737 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4738 || r2_type == RELOAD_FOR_OPADDR_ADDR
4739 || r2_type == RELOAD_FOR_INPUT
4740 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4741 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4742 && r2_opnum > r1_opnum));
4744 case RELOAD_FOR_INPUT_ADDRESS:
4745 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4746 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4748 case RELOAD_FOR_INPADDR_ADDRESS:
4749 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4750 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4752 case RELOAD_FOR_OUTPUT_ADDRESS:
4753 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4754 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4756 case RELOAD_FOR_OUTADDR_ADDRESS:
4757 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4758 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4760 case RELOAD_FOR_OPERAND_ADDRESS:
4761 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4762 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4764 case RELOAD_FOR_OPADDR_ADDR:
4765 return (r2_type == RELOAD_FOR_INPUT
4766 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4768 case RELOAD_FOR_OUTPUT:
4769 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4770 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4771 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4772 && r2_opnum >= r1_opnum));
4774 case RELOAD_FOR_INSN:
4775 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4776 || r2_type == RELOAD_FOR_INSN
4777 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4779 case RELOAD_FOR_OTHER_ADDRESS:
4780 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4782 case RELOAD_OTHER:
4783 return 1;
4785 default:
4786 gcc_unreachable ();
4790 /* Indexed by reload number, 1 if incoming value
4791 inherited from previous insns. */
4792 static char reload_inherited[MAX_RELOADS];
4794 /* For an inherited reload, this is the insn the reload was inherited from,
4795 if we know it. Otherwise, this is 0. */
4796 static rtx reload_inheritance_insn[MAX_RELOADS];
4798 /* If nonzero, this is a place to get the value of the reload,
4799 rather than using reload_in. */
4800 static rtx reload_override_in[MAX_RELOADS];
4802 /* For each reload, the hard register number of the register used,
4803 or -1 if we did not need a register for this reload. */
4804 static int reload_spill_index[MAX_RELOADS];
4806 /* Subroutine of free_for_value_p, used to check a single register.
4807 START_REGNO is the starting regno of the full reload register
4808 (possibly comprising multiple hard registers) that we are considering. */
4810 static int
4811 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4812 enum reload_type type, rtx value, rtx out,
4813 int reloadnum, int ignore_address_reloads)
4815 int time1;
4816 /* Set if we see an input reload that must not share its reload register
4817 with any new earlyclobber, but might otherwise share the reload
4818 register with an output or input-output reload. */
4819 int check_earlyclobber = 0;
4820 int i;
4821 int copy = 0;
4823 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4824 return 0;
4826 if (out == const0_rtx)
4828 copy = 1;
4829 out = NULL_RTX;
4832 /* We use some pseudo 'time' value to check if the lifetimes of the
4833 new register use would overlap with the one of a previous reload
4834 that is not read-only or uses a different value.
4835 The 'time' used doesn't have to be linear in any shape or form, just
4836 monotonic.
4837 Some reload types use different 'buckets' for each operand.
4838 So there are MAX_RECOG_OPERANDS different time values for each
4839 such reload type.
4840 We compute TIME1 as the time when the register for the prospective
4841 new reload ceases to be live, and TIME2 for each existing
4842 reload as the time when that the reload register of that reload
4843 becomes live.
4844 Where there is little to be gained by exact lifetime calculations,
4845 we just make conservative assumptions, i.e. a longer lifetime;
4846 this is done in the 'default:' cases. */
4847 switch (type)
4849 case RELOAD_FOR_OTHER_ADDRESS:
4850 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4851 time1 = copy ? 0 : 1;
4852 break;
4853 case RELOAD_OTHER:
4854 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4855 break;
4856 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4857 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4858 respectively, to the time values for these, we get distinct time
4859 values. To get distinct time values for each operand, we have to
4860 multiply opnum by at least three. We round that up to four because
4861 multiply by four is often cheaper. */
4862 case RELOAD_FOR_INPADDR_ADDRESS:
4863 time1 = opnum * 4 + 2;
4864 break;
4865 case RELOAD_FOR_INPUT_ADDRESS:
4866 time1 = opnum * 4 + 3;
4867 break;
4868 case RELOAD_FOR_INPUT:
4869 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4870 executes (inclusive). */
4871 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4872 break;
4873 case RELOAD_FOR_OPADDR_ADDR:
4874 /* opnum * 4 + 4
4875 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4876 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4877 break;
4878 case RELOAD_FOR_OPERAND_ADDRESS:
4879 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4880 is executed. */
4881 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4882 break;
4883 case RELOAD_FOR_OUTADDR_ADDRESS:
4884 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4885 break;
4886 case RELOAD_FOR_OUTPUT_ADDRESS:
4887 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4888 break;
4889 default:
4890 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4893 for (i = 0; i < n_reloads; i++)
4895 rtx reg = rld[i].reg_rtx;
4896 if (reg && REG_P (reg)
4897 && ((unsigned) regno - true_regnum (reg)
4898 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4899 && i != reloadnum)
4901 rtx other_input = rld[i].in;
4903 /* If the other reload loads the same input value, that
4904 will not cause a conflict only if it's loading it into
4905 the same register. */
4906 if (true_regnum (reg) != start_regno)
4907 other_input = NULL_RTX;
4908 if (! other_input || ! rtx_equal_p (other_input, value)
4909 || rld[i].out || out)
4911 int time2;
4912 switch (rld[i].when_needed)
4914 case RELOAD_FOR_OTHER_ADDRESS:
4915 time2 = 0;
4916 break;
4917 case RELOAD_FOR_INPADDR_ADDRESS:
4918 /* find_reloads makes sure that a
4919 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4920 by at most one - the first -
4921 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4922 address reload is inherited, the address address reload
4923 goes away, so we can ignore this conflict. */
4924 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4925 && ignore_address_reloads
4926 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4927 Then the address address is still needed to store
4928 back the new address. */
4929 && ! rld[reloadnum].out)
4930 continue;
4931 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4932 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4933 reloads go away. */
4934 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4935 && ignore_address_reloads
4936 /* Unless we are reloading an auto_inc expression. */
4937 && ! rld[reloadnum].out)
4938 continue;
4939 time2 = rld[i].opnum * 4 + 2;
4940 break;
4941 case RELOAD_FOR_INPUT_ADDRESS:
4942 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4943 && ignore_address_reloads
4944 && ! rld[reloadnum].out)
4945 continue;
4946 time2 = rld[i].opnum * 4 + 3;
4947 break;
4948 case RELOAD_FOR_INPUT:
4949 time2 = rld[i].opnum * 4 + 4;
4950 check_earlyclobber = 1;
4951 break;
4952 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4953 == MAX_RECOG_OPERAND * 4 */
4954 case RELOAD_FOR_OPADDR_ADDR:
4955 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4956 && ignore_address_reloads
4957 && ! rld[reloadnum].out)
4958 continue;
4959 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4960 break;
4961 case RELOAD_FOR_OPERAND_ADDRESS:
4962 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4963 check_earlyclobber = 1;
4964 break;
4965 case RELOAD_FOR_INSN:
4966 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4967 break;
4968 case RELOAD_FOR_OUTPUT:
4969 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4970 instruction is executed. */
4971 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4972 break;
4973 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4974 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4975 value. */
4976 case RELOAD_FOR_OUTADDR_ADDRESS:
4977 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4978 && ignore_address_reloads
4979 && ! rld[reloadnum].out)
4980 continue;
4981 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4982 break;
4983 case RELOAD_FOR_OUTPUT_ADDRESS:
4984 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4985 break;
4986 case RELOAD_OTHER:
4987 /* If there is no conflict in the input part, handle this
4988 like an output reload. */
4989 if (! rld[i].in || rtx_equal_p (other_input, value))
4991 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4992 /* Earlyclobbered outputs must conflict with inputs. */
4993 if (earlyclobber_operand_p (rld[i].out))
4994 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4996 break;
4998 time2 = 1;
4999 /* RELOAD_OTHER might be live beyond instruction execution,
5000 but this is not obvious when we set time2 = 1. So check
5001 here if there might be a problem with the new reload
5002 clobbering the register used by the RELOAD_OTHER. */
5003 if (out)
5004 return 0;
5005 break;
5006 default:
5007 return 0;
5009 if ((time1 >= time2
5010 && (! rld[i].in || rld[i].out
5011 || ! rtx_equal_p (other_input, value)))
5012 || (out && rld[reloadnum].out_reg
5013 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5014 return 0;
5019 /* Earlyclobbered outputs must conflict with inputs. */
5020 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5021 return 0;
5023 return 1;
5026 /* Return 1 if the value in reload reg REGNO, as used by a reload
5027 needed for the part of the insn specified by OPNUM and TYPE,
5028 may be used to load VALUE into it.
5030 MODE is the mode in which the register is used, this is needed to
5031 determine how many hard regs to test.
5033 Other read-only reloads with the same value do not conflict
5034 unless OUT is nonzero and these other reloads have to live while
5035 output reloads live.
5036 If OUT is CONST0_RTX, this is a special case: it means that the
5037 test should not be for using register REGNO as reload register, but
5038 for copying from register REGNO into the reload register.
5040 RELOADNUM is the number of the reload we want to load this value for;
5041 a reload does not conflict with itself.
5043 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5044 reloads that load an address for the very reload we are considering.
5046 The caller has to make sure that there is no conflict with the return
5047 register. */
5049 static int
5050 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5051 enum reload_type type, rtx value, rtx out, int reloadnum,
5052 int ignore_address_reloads)
5054 int nregs = hard_regno_nregs[regno][mode];
5055 while (nregs-- > 0)
5056 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5057 value, out, reloadnum,
5058 ignore_address_reloads))
5059 return 0;
5060 return 1;
5063 /* Return nonzero if the rtx X is invariant over the current function. */
5064 /* ??? Actually, the places where we use this expect exactly what is
5065 tested here, and not everything that is function invariant. In
5066 particular, the frame pointer and arg pointer are special cased;
5067 pic_offset_table_rtx is not, and we must not spill these things to
5068 memory. */
5071 function_invariant_p (rtx x)
5073 if (CONSTANT_P (x))
5074 return 1;
5075 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5076 return 1;
5077 if (GET_CODE (x) == PLUS
5078 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5079 && CONSTANT_P (XEXP (x, 1)))
5080 return 1;
5081 return 0;
5084 /* Determine whether the reload reg X overlaps any rtx'es used for
5085 overriding inheritance. Return nonzero if so. */
5087 static int
5088 conflicts_with_override (rtx x)
5090 int i;
5091 for (i = 0; i < n_reloads; i++)
5092 if (reload_override_in[i]
5093 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5094 return 1;
5095 return 0;
5098 /* Give an error message saying we failed to find a reload for INSN,
5099 and clear out reload R. */
5100 static void
5101 failed_reload (rtx insn, int r)
5103 if (asm_noperands (PATTERN (insn)) < 0)
5104 /* It's the compiler's fault. */
5105 fatal_insn ("could not find a spill register", insn);
5107 /* It's the user's fault; the operand's mode and constraint
5108 don't match. Disable this reload so we don't crash in final. */
5109 error_for_asm (insn,
5110 "%<asm%> operand constraint incompatible with operand size");
5111 rld[r].in = 0;
5112 rld[r].out = 0;
5113 rld[r].reg_rtx = 0;
5114 rld[r].optional = 1;
5115 rld[r].secondary_p = 1;
5118 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5119 for reload R. If it's valid, get an rtx for it. Return nonzero if
5120 successful. */
5121 static int
5122 set_reload_reg (int i, int r)
5124 int regno;
5125 rtx reg = spill_reg_rtx[i];
5127 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5128 spill_reg_rtx[i] = reg
5129 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5131 regno = true_regnum (reg);
5133 /* Detect when the reload reg can't hold the reload mode.
5134 This used to be one `if', but Sequent compiler can't handle that. */
5135 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5137 enum machine_mode test_mode = VOIDmode;
5138 if (rld[r].in)
5139 test_mode = GET_MODE (rld[r].in);
5140 /* If rld[r].in has VOIDmode, it means we will load it
5141 in whatever mode the reload reg has: to wit, rld[r].mode.
5142 We have already tested that for validity. */
5143 /* Aside from that, we need to test that the expressions
5144 to reload from or into have modes which are valid for this
5145 reload register. Otherwise the reload insns would be invalid. */
5146 if (! (rld[r].in != 0 && test_mode != VOIDmode
5147 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5148 if (! (rld[r].out != 0
5149 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5151 /* The reg is OK. */
5152 last_spill_reg = i;
5154 /* Mark as in use for this insn the reload regs we use
5155 for this. */
5156 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5157 rld[r].when_needed, rld[r].mode);
5159 rld[r].reg_rtx = reg;
5160 reload_spill_index[r] = spill_regs[i];
5161 return 1;
5164 return 0;
5167 /* Find a spill register to use as a reload register for reload R.
5168 LAST_RELOAD is nonzero if this is the last reload for the insn being
5169 processed.
5171 Set rld[R].reg_rtx to the register allocated.
5173 We return 1 if successful, or 0 if we couldn't find a spill reg and
5174 we didn't change anything. */
5176 static int
5177 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5178 int last_reload)
5180 int i, pass, count;
5182 /* If we put this reload ahead, thinking it is a group,
5183 then insist on finding a group. Otherwise we can grab a
5184 reg that some other reload needs.
5185 (That can happen when we have a 68000 DATA_OR_FP_REG
5186 which is a group of data regs or one fp reg.)
5187 We need not be so restrictive if there are no more reloads
5188 for this insn.
5190 ??? Really it would be nicer to have smarter handling
5191 for that kind of reg class, where a problem like this is normal.
5192 Perhaps those classes should be avoided for reloading
5193 by use of more alternatives. */
5195 int force_group = rld[r].nregs > 1 && ! last_reload;
5197 /* If we want a single register and haven't yet found one,
5198 take any reg in the right class and not in use.
5199 If we want a consecutive group, here is where we look for it.
5201 We use two passes so we can first look for reload regs to
5202 reuse, which are already in use for other reloads in this insn,
5203 and only then use additional registers.
5204 I think that maximizing reuse is needed to make sure we don't
5205 run out of reload regs. Suppose we have three reloads, and
5206 reloads A and B can share regs. These need two regs.
5207 Suppose A and B are given different regs.
5208 That leaves none for C. */
5209 for (pass = 0; pass < 2; pass++)
5211 /* I is the index in spill_regs.
5212 We advance it round-robin between insns to use all spill regs
5213 equally, so that inherited reloads have a chance
5214 of leapfrogging each other. */
5216 i = last_spill_reg;
5218 for (count = 0; count < n_spills; count++)
5220 int class = (int) rld[r].class;
5221 int regnum;
5223 i++;
5224 if (i >= n_spills)
5225 i -= n_spills;
5226 regnum = spill_regs[i];
5228 if ((reload_reg_free_p (regnum, rld[r].opnum,
5229 rld[r].when_needed)
5230 || (rld[r].in
5231 /* We check reload_reg_used to make sure we
5232 don't clobber the return register. */
5233 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5234 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5235 rld[r].when_needed, rld[r].in,
5236 rld[r].out, r, 1)))
5237 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5238 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5239 /* Look first for regs to share, then for unshared. But
5240 don't share regs used for inherited reloads; they are
5241 the ones we want to preserve. */
5242 && (pass
5243 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5244 regnum)
5245 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5246 regnum))))
5248 int nr = hard_regno_nregs[regnum][rld[r].mode];
5249 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5250 (on 68000) got us two FP regs. If NR is 1,
5251 we would reject both of them. */
5252 if (force_group)
5253 nr = rld[r].nregs;
5254 /* If we need only one reg, we have already won. */
5255 if (nr == 1)
5257 /* But reject a single reg if we demand a group. */
5258 if (force_group)
5259 continue;
5260 break;
5262 /* Otherwise check that as many consecutive regs as we need
5263 are available here. */
5264 while (nr > 1)
5266 int regno = regnum + nr - 1;
5267 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5268 && spill_reg_order[regno] >= 0
5269 && reload_reg_free_p (regno, rld[r].opnum,
5270 rld[r].when_needed)))
5271 break;
5272 nr--;
5274 if (nr == 1)
5275 break;
5279 /* If we found something on pass 1, omit pass 2. */
5280 if (count < n_spills)
5281 break;
5284 /* We should have found a spill register by now. */
5285 if (count >= n_spills)
5286 return 0;
5288 /* I is the index in SPILL_REG_RTX of the reload register we are to
5289 allocate. Get an rtx for it and find its register number. */
5291 return set_reload_reg (i, r);
5294 /* Initialize all the tables needed to allocate reload registers.
5295 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5296 is the array we use to restore the reg_rtx field for every reload. */
5298 static void
5299 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5301 int i;
5303 for (i = 0; i < n_reloads; i++)
5304 rld[i].reg_rtx = save_reload_reg_rtx[i];
5306 memset (reload_inherited, 0, MAX_RELOADS);
5307 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5308 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5310 CLEAR_HARD_REG_SET (reload_reg_used);
5311 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5312 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5313 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5314 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5315 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5317 CLEAR_HARD_REG_SET (reg_used_in_insn);
5319 HARD_REG_SET tmp;
5320 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5321 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5322 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5323 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5324 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5325 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5328 for (i = 0; i < reload_n_operands; i++)
5330 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5331 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5332 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5333 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5334 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5335 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5338 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5340 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5342 for (i = 0; i < n_reloads; i++)
5343 /* If we have already decided to use a certain register,
5344 don't use it in another way. */
5345 if (rld[i].reg_rtx)
5346 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5347 rld[i].when_needed, rld[i].mode);
5350 /* Assign hard reg targets for the pseudo-registers we must reload
5351 into hard regs for this insn.
5352 Also output the instructions to copy them in and out of the hard regs.
5354 For machines with register classes, we are responsible for
5355 finding a reload reg in the proper class. */
5357 static void
5358 choose_reload_regs (struct insn_chain *chain)
5360 rtx insn = chain->insn;
5361 int i, j;
5362 unsigned int max_group_size = 1;
5363 enum reg_class group_class = NO_REGS;
5364 int pass, win, inheritance;
5366 rtx save_reload_reg_rtx[MAX_RELOADS];
5368 /* In order to be certain of getting the registers we need,
5369 we must sort the reloads into order of increasing register class.
5370 Then our grabbing of reload registers will parallel the process
5371 that provided the reload registers.
5373 Also note whether any of the reloads wants a consecutive group of regs.
5374 If so, record the maximum size of the group desired and what
5375 register class contains all the groups needed by this insn. */
5377 for (j = 0; j < n_reloads; j++)
5379 reload_order[j] = j;
5380 reload_spill_index[j] = -1;
5382 if (rld[j].nregs > 1)
5384 max_group_size = MAX (rld[j].nregs, max_group_size);
5385 group_class
5386 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5389 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5392 if (n_reloads > 1)
5393 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5395 /* If -O, try first with inheritance, then turning it off.
5396 If not -O, don't do inheritance.
5397 Using inheritance when not optimizing leads to paradoxes
5398 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5399 because one side of the comparison might be inherited. */
5400 win = 0;
5401 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5403 choose_reload_regs_init (chain, save_reload_reg_rtx);
5405 /* Process the reloads in order of preference just found.
5406 Beyond this point, subregs can be found in reload_reg_rtx.
5408 This used to look for an existing reloaded home for all of the
5409 reloads, and only then perform any new reloads. But that could lose
5410 if the reloads were done out of reg-class order because a later
5411 reload with a looser constraint might have an old home in a register
5412 needed by an earlier reload with a tighter constraint.
5414 To solve this, we make two passes over the reloads, in the order
5415 described above. In the first pass we try to inherit a reload
5416 from a previous insn. If there is a later reload that needs a
5417 class that is a proper subset of the class being processed, we must
5418 also allocate a spill register during the first pass.
5420 Then make a second pass over the reloads to allocate any reloads
5421 that haven't been given registers yet. */
5423 for (j = 0; j < n_reloads; j++)
5425 int r = reload_order[j];
5426 rtx search_equiv = NULL_RTX;
5428 /* Ignore reloads that got marked inoperative. */
5429 if (rld[r].out == 0 && rld[r].in == 0
5430 && ! rld[r].secondary_p)
5431 continue;
5433 /* If find_reloads chose to use reload_in or reload_out as a reload
5434 register, we don't need to chose one. Otherwise, try even if it
5435 found one since we might save an insn if we find the value lying
5436 around.
5437 Try also when reload_in is a pseudo without a hard reg. */
5438 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5439 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5440 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5441 && !MEM_P (rld[r].in)
5442 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5443 continue;
5445 #if 0 /* No longer needed for correct operation.
5446 It might give better code, or might not; worth an experiment? */
5447 /* If this is an optional reload, we can't inherit from earlier insns
5448 until we are sure that any non-optional reloads have been allocated.
5449 The following code takes advantage of the fact that optional reloads
5450 are at the end of reload_order. */
5451 if (rld[r].optional != 0)
5452 for (i = 0; i < j; i++)
5453 if ((rld[reload_order[i]].out != 0
5454 || rld[reload_order[i]].in != 0
5455 || rld[reload_order[i]].secondary_p)
5456 && ! rld[reload_order[i]].optional
5457 && rld[reload_order[i]].reg_rtx == 0)
5458 allocate_reload_reg (chain, reload_order[i], 0);
5459 #endif
5461 /* First see if this pseudo is already available as reloaded
5462 for a previous insn. We cannot try to inherit for reloads
5463 that are smaller than the maximum number of registers needed
5464 for groups unless the register we would allocate cannot be used
5465 for the groups.
5467 We could check here to see if this is a secondary reload for
5468 an object that is already in a register of the desired class.
5469 This would avoid the need for the secondary reload register.
5470 But this is complex because we can't easily determine what
5471 objects might want to be loaded via this reload. So let a
5472 register be allocated here. In `emit_reload_insns' we suppress
5473 one of the loads in the case described above. */
5475 if (inheritance)
5477 int byte = 0;
5478 int regno = -1;
5479 enum machine_mode mode = VOIDmode;
5481 if (rld[r].in == 0)
5483 else if (REG_P (rld[r].in))
5485 regno = REGNO (rld[r].in);
5486 mode = GET_MODE (rld[r].in);
5488 else if (REG_P (rld[r].in_reg))
5490 regno = REGNO (rld[r].in_reg);
5491 mode = GET_MODE (rld[r].in_reg);
5493 else if (GET_CODE (rld[r].in_reg) == SUBREG
5494 && REG_P (SUBREG_REG (rld[r].in_reg)))
5496 byte = SUBREG_BYTE (rld[r].in_reg);
5497 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5498 if (regno < FIRST_PSEUDO_REGISTER)
5499 regno = subreg_regno (rld[r].in_reg);
5500 mode = GET_MODE (rld[r].in_reg);
5502 #ifdef AUTO_INC_DEC
5503 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5504 || GET_CODE (rld[r].in_reg) == PRE_DEC
5505 || GET_CODE (rld[r].in_reg) == POST_INC
5506 || GET_CODE (rld[r].in_reg) == POST_DEC)
5507 && REG_P (XEXP (rld[r].in_reg, 0)))
5509 regno = REGNO (XEXP (rld[r].in_reg, 0));
5510 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5511 rld[r].out = rld[r].in;
5513 #endif
5514 #if 0
5515 /* This won't work, since REGNO can be a pseudo reg number.
5516 Also, it takes much more hair to keep track of all the things
5517 that can invalidate an inherited reload of part of a pseudoreg. */
5518 else if (GET_CODE (rld[r].in) == SUBREG
5519 && REG_P (SUBREG_REG (rld[r].in)))
5520 regno = subreg_regno (rld[r].in);
5521 #endif
5523 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5525 enum reg_class class = rld[r].class, last_class;
5526 rtx last_reg = reg_last_reload_reg[regno];
5527 enum machine_mode need_mode;
5529 i = REGNO (last_reg);
5530 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5531 last_class = REGNO_REG_CLASS (i);
5533 if (byte == 0)
5534 need_mode = mode;
5535 else
5536 need_mode
5537 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5538 + byte * BITS_PER_UNIT,
5539 GET_MODE_CLASS (mode));
5541 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5542 >= GET_MODE_SIZE (need_mode))
5543 #ifdef CANNOT_CHANGE_MODE_CLASS
5544 /* Verify that the register in "i" can be obtained
5545 from LAST_REG. */
5546 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5547 GET_MODE (last_reg),
5548 mode)
5549 #endif
5550 && reg_reloaded_contents[i] == regno
5551 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5552 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5553 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5554 /* Even if we can't use this register as a reload
5555 register, we might use it for reload_override_in,
5556 if copying it to the desired class is cheap
5557 enough. */
5558 || ((REGISTER_MOVE_COST (mode, last_class, class)
5559 < MEMORY_MOVE_COST (mode, class, 1))
5560 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5561 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5562 last_reg)
5563 == NO_REGS)
5564 #endif
5565 #ifdef SECONDARY_MEMORY_NEEDED
5566 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5567 mode)
5568 #endif
5571 && (rld[r].nregs == max_group_size
5572 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5574 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5575 rld[r].when_needed, rld[r].in,
5576 const0_rtx, r, 1))
5578 /* If a group is needed, verify that all the subsequent
5579 registers still have their values intact. */
5580 int nr = hard_regno_nregs[i][rld[r].mode];
5581 int k;
5583 for (k = 1; k < nr; k++)
5584 if (reg_reloaded_contents[i + k] != regno
5585 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5586 break;
5588 if (k == nr)
5590 int i1;
5591 int bad_for_class;
5593 last_reg = (GET_MODE (last_reg) == mode
5594 ? last_reg : gen_rtx_REG (mode, i));
5596 bad_for_class = 0;
5597 for (k = 0; k < nr; k++)
5598 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5599 i+k);
5601 /* We found a register that contains the
5602 value we need. If this register is the
5603 same as an `earlyclobber' operand of the
5604 current insn, just mark it as a place to
5605 reload from since we can't use it as the
5606 reload register itself. */
5608 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5609 if (reg_overlap_mentioned_for_reload_p
5610 (reg_last_reload_reg[regno],
5611 reload_earlyclobbers[i1]))
5612 break;
5614 if (i1 != n_earlyclobbers
5615 || ! (free_for_value_p (i, rld[r].mode,
5616 rld[r].opnum,
5617 rld[r].when_needed, rld[r].in,
5618 rld[r].out, r, 1))
5619 /* Don't use it if we'd clobber a pseudo reg. */
5620 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5621 && rld[r].out
5622 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5623 /* Don't clobber the frame pointer. */
5624 || (i == HARD_FRAME_POINTER_REGNUM
5625 && frame_pointer_needed
5626 && rld[r].out)
5627 /* Don't really use the inherited spill reg
5628 if we need it wider than we've got it. */
5629 || (GET_MODE_SIZE (rld[r].mode)
5630 > GET_MODE_SIZE (mode))
5631 || bad_for_class
5633 /* If find_reloads chose reload_out as reload
5634 register, stay with it - that leaves the
5635 inherited register for subsequent reloads. */
5636 || (rld[r].out && rld[r].reg_rtx
5637 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5639 if (! rld[r].optional)
5641 reload_override_in[r] = last_reg;
5642 reload_inheritance_insn[r]
5643 = reg_reloaded_insn[i];
5646 else
5648 int k;
5649 /* We can use this as a reload reg. */
5650 /* Mark the register as in use for this part of
5651 the insn. */
5652 mark_reload_reg_in_use (i,
5653 rld[r].opnum,
5654 rld[r].when_needed,
5655 rld[r].mode);
5656 rld[r].reg_rtx = last_reg;
5657 reload_inherited[r] = 1;
5658 reload_inheritance_insn[r]
5659 = reg_reloaded_insn[i];
5660 reload_spill_index[r] = i;
5661 for (k = 0; k < nr; k++)
5662 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5663 i + k);
5670 /* Here's another way to see if the value is already lying around. */
5671 if (inheritance
5672 && rld[r].in != 0
5673 && ! reload_inherited[r]
5674 && rld[r].out == 0
5675 && (CONSTANT_P (rld[r].in)
5676 || GET_CODE (rld[r].in) == PLUS
5677 || REG_P (rld[r].in)
5678 || MEM_P (rld[r].in))
5679 && (rld[r].nregs == max_group_size
5680 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5681 search_equiv = rld[r].in;
5682 /* If this is an output reload from a simple move insn, look
5683 if an equivalence for the input is available. */
5684 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5686 rtx set = single_set (insn);
5688 if (set
5689 && rtx_equal_p (rld[r].out, SET_DEST (set))
5690 && CONSTANT_P (SET_SRC (set)))
5691 search_equiv = SET_SRC (set);
5694 if (search_equiv)
5696 rtx equiv
5697 = find_equiv_reg (search_equiv, insn, rld[r].class,
5698 -1, NULL, 0, rld[r].mode);
5699 int regno = 0;
5701 if (equiv != 0)
5703 if (REG_P (equiv))
5704 regno = REGNO (equiv);
5705 else
5707 /* This must be a SUBREG of a hard register.
5708 Make a new REG since this might be used in an
5709 address and not all machines support SUBREGs
5710 there. */
5711 gcc_assert (GET_CODE (equiv) == SUBREG);
5712 regno = subreg_regno (equiv);
5713 equiv = gen_rtx_REG (rld[r].mode, regno);
5714 /* If we choose EQUIV as the reload register, but the
5715 loop below decides to cancel the inheritance, we'll
5716 end up reloading EQUIV in rld[r].mode, not the mode
5717 it had originally. That isn't safe when EQUIV isn't
5718 available as a spill register since its value might
5719 still be live at this point. */
5720 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5721 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5722 equiv = 0;
5726 /* If we found a spill reg, reject it unless it is free
5727 and of the desired class. */
5728 if (equiv != 0)
5730 int regs_used = 0;
5731 int bad_for_class = 0;
5732 int max_regno = regno + rld[r].nregs;
5734 for (i = regno; i < max_regno; i++)
5736 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5738 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5742 if ((regs_used
5743 && ! free_for_value_p (regno, rld[r].mode,
5744 rld[r].opnum, rld[r].when_needed,
5745 rld[r].in, rld[r].out, r, 1))
5746 || bad_for_class)
5747 equiv = 0;
5750 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5751 equiv = 0;
5753 /* We found a register that contains the value we need.
5754 If this register is the same as an `earlyclobber' operand
5755 of the current insn, just mark it as a place to reload from
5756 since we can't use it as the reload register itself. */
5758 if (equiv != 0)
5759 for (i = 0; i < n_earlyclobbers; i++)
5760 if (reg_overlap_mentioned_for_reload_p (equiv,
5761 reload_earlyclobbers[i]))
5763 if (! rld[r].optional)
5764 reload_override_in[r] = equiv;
5765 equiv = 0;
5766 break;
5769 /* If the equiv register we have found is explicitly clobbered
5770 in the current insn, it depends on the reload type if we
5771 can use it, use it for reload_override_in, or not at all.
5772 In particular, we then can't use EQUIV for a
5773 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5775 if (equiv != 0)
5777 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5778 switch (rld[r].when_needed)
5780 case RELOAD_FOR_OTHER_ADDRESS:
5781 case RELOAD_FOR_INPADDR_ADDRESS:
5782 case RELOAD_FOR_INPUT_ADDRESS:
5783 case RELOAD_FOR_OPADDR_ADDR:
5784 break;
5785 case RELOAD_OTHER:
5786 case RELOAD_FOR_INPUT:
5787 case RELOAD_FOR_OPERAND_ADDRESS:
5788 if (! rld[r].optional)
5789 reload_override_in[r] = equiv;
5790 /* Fall through. */
5791 default:
5792 equiv = 0;
5793 break;
5795 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5796 switch (rld[r].when_needed)
5798 case RELOAD_FOR_OTHER_ADDRESS:
5799 case RELOAD_FOR_INPADDR_ADDRESS:
5800 case RELOAD_FOR_INPUT_ADDRESS:
5801 case RELOAD_FOR_OPADDR_ADDR:
5802 case RELOAD_FOR_OPERAND_ADDRESS:
5803 case RELOAD_FOR_INPUT:
5804 break;
5805 case RELOAD_OTHER:
5806 if (! rld[r].optional)
5807 reload_override_in[r] = equiv;
5808 /* Fall through. */
5809 default:
5810 equiv = 0;
5811 break;
5815 /* If we found an equivalent reg, say no code need be generated
5816 to load it, and use it as our reload reg. */
5817 if (equiv != 0
5818 && (regno != HARD_FRAME_POINTER_REGNUM
5819 || !frame_pointer_needed))
5821 int nr = hard_regno_nregs[regno][rld[r].mode];
5822 int k;
5823 rld[r].reg_rtx = equiv;
5824 reload_inherited[r] = 1;
5826 /* If reg_reloaded_valid is not set for this register,
5827 there might be a stale spill_reg_store lying around.
5828 We must clear it, since otherwise emit_reload_insns
5829 might delete the store. */
5830 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5831 spill_reg_store[regno] = NULL_RTX;
5832 /* If any of the hard registers in EQUIV are spill
5833 registers, mark them as in use for this insn. */
5834 for (k = 0; k < nr; k++)
5836 i = spill_reg_order[regno + k];
5837 if (i >= 0)
5839 mark_reload_reg_in_use (regno, rld[r].opnum,
5840 rld[r].when_needed,
5841 rld[r].mode);
5842 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5843 regno + k);
5849 /* If we found a register to use already, or if this is an optional
5850 reload, we are done. */
5851 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5852 continue;
5854 #if 0
5855 /* No longer needed for correct operation. Might or might
5856 not give better code on the average. Want to experiment? */
5858 /* See if there is a later reload that has a class different from our
5859 class that intersects our class or that requires less register
5860 than our reload. If so, we must allocate a register to this
5861 reload now, since that reload might inherit a previous reload
5862 and take the only available register in our class. Don't do this
5863 for optional reloads since they will force all previous reloads
5864 to be allocated. Also don't do this for reloads that have been
5865 turned off. */
5867 for (i = j + 1; i < n_reloads; i++)
5869 int s = reload_order[i];
5871 if ((rld[s].in == 0 && rld[s].out == 0
5872 && ! rld[s].secondary_p)
5873 || rld[s].optional)
5874 continue;
5876 if ((rld[s].class != rld[r].class
5877 && reg_classes_intersect_p (rld[r].class,
5878 rld[s].class))
5879 || rld[s].nregs < rld[r].nregs)
5880 break;
5883 if (i == n_reloads)
5884 continue;
5886 allocate_reload_reg (chain, r, j == n_reloads - 1);
5887 #endif
5890 /* Now allocate reload registers for anything non-optional that
5891 didn't get one yet. */
5892 for (j = 0; j < n_reloads; j++)
5894 int r = reload_order[j];
5896 /* Ignore reloads that got marked inoperative. */
5897 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5898 continue;
5900 /* Skip reloads that already have a register allocated or are
5901 optional. */
5902 if (rld[r].reg_rtx != 0 || rld[r].optional)
5903 continue;
5905 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5906 break;
5909 /* If that loop got all the way, we have won. */
5910 if (j == n_reloads)
5912 win = 1;
5913 break;
5916 /* Loop around and try without any inheritance. */
5919 if (! win)
5921 /* First undo everything done by the failed attempt
5922 to allocate with inheritance. */
5923 choose_reload_regs_init (chain, save_reload_reg_rtx);
5925 /* Some sanity tests to verify that the reloads found in the first
5926 pass are identical to the ones we have now. */
5927 gcc_assert (chain->n_reloads == n_reloads);
5929 for (i = 0; i < n_reloads; i++)
5931 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5932 continue;
5933 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
5934 for (j = 0; j < n_spills; j++)
5935 if (spill_regs[j] == chain->rld[i].regno)
5936 if (! set_reload_reg (j, i))
5937 failed_reload (chain->insn, i);
5941 /* If we thought we could inherit a reload, because it seemed that
5942 nothing else wanted the same reload register earlier in the insn,
5943 verify that assumption, now that all reloads have been assigned.
5944 Likewise for reloads where reload_override_in has been set. */
5946 /* If doing expensive optimizations, do one preliminary pass that doesn't
5947 cancel any inheritance, but removes reloads that have been needed only
5948 for reloads that we know can be inherited. */
5949 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5951 for (j = 0; j < n_reloads; j++)
5953 int r = reload_order[j];
5954 rtx check_reg;
5955 if (reload_inherited[r] && rld[r].reg_rtx)
5956 check_reg = rld[r].reg_rtx;
5957 else if (reload_override_in[r]
5958 && (REG_P (reload_override_in[r])
5959 || GET_CODE (reload_override_in[r]) == SUBREG))
5960 check_reg = reload_override_in[r];
5961 else
5962 continue;
5963 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5964 rld[r].opnum, rld[r].when_needed, rld[r].in,
5965 (reload_inherited[r]
5966 ? rld[r].out : const0_rtx),
5967 r, 1))
5969 if (pass)
5970 continue;
5971 reload_inherited[r] = 0;
5972 reload_override_in[r] = 0;
5974 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5975 reload_override_in, then we do not need its related
5976 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5977 likewise for other reload types.
5978 We handle this by removing a reload when its only replacement
5979 is mentioned in reload_in of the reload we are going to inherit.
5980 A special case are auto_inc expressions; even if the input is
5981 inherited, we still need the address for the output. We can
5982 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5983 If we succeeded removing some reload and we are doing a preliminary
5984 pass just to remove such reloads, make another pass, since the
5985 removal of one reload might allow us to inherit another one. */
5986 else if (rld[r].in
5987 && rld[r].out != rld[r].in
5988 && remove_address_replacements (rld[r].in) && pass)
5989 pass = 2;
5993 /* Now that reload_override_in is known valid,
5994 actually override reload_in. */
5995 for (j = 0; j < n_reloads; j++)
5996 if (reload_override_in[j])
5997 rld[j].in = reload_override_in[j];
5999 /* If this reload won't be done because it has been canceled or is
6000 optional and not inherited, clear reload_reg_rtx so other
6001 routines (such as subst_reloads) don't get confused. */
6002 for (j = 0; j < n_reloads; j++)
6003 if (rld[j].reg_rtx != 0
6004 && ((rld[j].optional && ! reload_inherited[j])
6005 || (rld[j].in == 0 && rld[j].out == 0
6006 && ! rld[j].secondary_p)))
6008 int regno = true_regnum (rld[j].reg_rtx);
6010 if (spill_reg_order[regno] >= 0)
6011 clear_reload_reg_in_use (regno, rld[j].opnum,
6012 rld[j].when_needed, rld[j].mode);
6013 rld[j].reg_rtx = 0;
6014 reload_spill_index[j] = -1;
6017 /* Record which pseudos and which spill regs have output reloads. */
6018 for (j = 0; j < n_reloads; j++)
6020 int r = reload_order[j];
6022 i = reload_spill_index[r];
6024 /* I is nonneg if this reload uses a register.
6025 If rld[r].reg_rtx is 0, this is an optional reload
6026 that we opted to ignore. */
6027 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6028 && rld[r].reg_rtx != 0)
6030 int nregno = REGNO (rld[r].out_reg);
6031 int nr = 1;
6033 if (nregno < FIRST_PSEUDO_REGISTER)
6034 nr = hard_regno_nregs[nregno][rld[r].mode];
6036 while (--nr >= 0)
6037 reg_has_output_reload[nregno + nr] = 1;
6039 if (i >= 0)
6041 nr = hard_regno_nregs[i][rld[r].mode];
6042 while (--nr >= 0)
6043 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6046 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6047 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6048 || rld[r].when_needed == RELOAD_FOR_INSN);
6053 /* Deallocate the reload register for reload R. This is called from
6054 remove_address_replacements. */
6056 void
6057 deallocate_reload_reg (int r)
6059 int regno;
6061 if (! rld[r].reg_rtx)
6062 return;
6063 regno = true_regnum (rld[r].reg_rtx);
6064 rld[r].reg_rtx = 0;
6065 if (spill_reg_order[regno] >= 0)
6066 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6067 rld[r].mode);
6068 reload_spill_index[r] = -1;
6071 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6072 reloads of the same item for fear that we might not have enough reload
6073 registers. However, normally they will get the same reload register
6074 and hence actually need not be loaded twice.
6076 Here we check for the most common case of this phenomenon: when we have
6077 a number of reloads for the same object, each of which were allocated
6078 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6079 reload, and is not modified in the insn itself. If we find such,
6080 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6081 This will not increase the number of spill registers needed and will
6082 prevent redundant code. */
6084 static void
6085 merge_assigned_reloads (rtx insn)
6087 int i, j;
6089 /* Scan all the reloads looking for ones that only load values and
6090 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6091 assigned and not modified by INSN. */
6093 for (i = 0; i < n_reloads; i++)
6095 int conflicting_input = 0;
6096 int max_input_address_opnum = -1;
6097 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6099 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6100 || rld[i].out != 0 || rld[i].reg_rtx == 0
6101 || reg_set_p (rld[i].reg_rtx, insn))
6102 continue;
6104 /* Look at all other reloads. Ensure that the only use of this
6105 reload_reg_rtx is in a reload that just loads the same value
6106 as we do. Note that any secondary reloads must be of the identical
6107 class since the values, modes, and result registers are the
6108 same, so we need not do anything with any secondary reloads. */
6110 for (j = 0; j < n_reloads; j++)
6112 if (i == j || rld[j].reg_rtx == 0
6113 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6114 rld[i].reg_rtx))
6115 continue;
6117 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6118 && rld[j].opnum > max_input_address_opnum)
6119 max_input_address_opnum = rld[j].opnum;
6121 /* If the reload regs aren't exactly the same (e.g, different modes)
6122 or if the values are different, we can't merge this reload.
6123 But if it is an input reload, we might still merge
6124 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6126 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6127 || rld[j].out != 0 || rld[j].in == 0
6128 || ! rtx_equal_p (rld[i].in, rld[j].in))
6130 if (rld[j].when_needed != RELOAD_FOR_INPUT
6131 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6132 || rld[i].opnum > rld[j].opnum)
6133 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6134 break;
6135 conflicting_input = 1;
6136 if (min_conflicting_input_opnum > rld[j].opnum)
6137 min_conflicting_input_opnum = rld[j].opnum;
6141 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6142 we, in fact, found any matching reloads. */
6144 if (j == n_reloads
6145 && max_input_address_opnum <= min_conflicting_input_opnum)
6147 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6149 for (j = 0; j < n_reloads; j++)
6150 if (i != j && rld[j].reg_rtx != 0
6151 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6152 && (! conflicting_input
6153 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6154 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6156 rld[i].when_needed = RELOAD_OTHER;
6157 rld[j].in = 0;
6158 reload_spill_index[j] = -1;
6159 transfer_replacements (i, j);
6162 /* If this is now RELOAD_OTHER, look for any reloads that load
6163 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6164 if they were for inputs, RELOAD_OTHER for outputs. Note that
6165 this test is equivalent to looking for reloads for this operand
6166 number. */
6167 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6168 share registers with a RELOAD_FOR_INPUT, so we can not change it
6169 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6170 do not modify RELOAD_FOR_OUTPUT. */
6172 if (rld[i].when_needed == RELOAD_OTHER)
6173 for (j = 0; j < n_reloads; j++)
6174 if (rld[j].in != 0
6175 && rld[j].when_needed != RELOAD_OTHER
6176 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6177 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6178 && (! conflicting_input
6179 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6180 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6181 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6182 rld[i].in))
6184 int k;
6186 rld[j].when_needed
6187 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6188 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6189 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6191 /* Check to see if we accidentally converted two
6192 reloads that use the same reload register with
6193 different inputs to the same type. If so, the
6194 resulting code won't work. */
6195 if (rld[j].reg_rtx)
6196 for (k = 0; k < j; k++)
6197 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6198 || rld[k].when_needed != rld[j].when_needed
6199 || !rtx_equal_p (rld[k].reg_rtx,
6200 rld[j].reg_rtx)
6201 || rtx_equal_p (rld[k].in,
6202 rld[j].in));
6208 /* These arrays are filled by emit_reload_insns and its subroutines. */
6209 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6210 static rtx other_input_address_reload_insns = 0;
6211 static rtx other_input_reload_insns = 0;
6212 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6213 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6214 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6215 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6216 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6217 static rtx operand_reload_insns = 0;
6218 static rtx other_operand_reload_insns = 0;
6219 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6221 /* Values to be put in spill_reg_store are put here first. */
6222 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6223 static HARD_REG_SET reg_reloaded_died;
6225 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6226 has the number J. OLD contains the value to be used as input. */
6228 static void
6229 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6230 rtx old, int j)
6232 rtx insn = chain->insn;
6233 rtx reloadreg = rl->reg_rtx;
6234 rtx oldequiv_reg = 0;
6235 rtx oldequiv = 0;
6236 int special = 0;
6237 enum machine_mode mode;
6238 rtx *where;
6240 /* Determine the mode to reload in.
6241 This is very tricky because we have three to choose from.
6242 There is the mode the insn operand wants (rl->inmode).
6243 There is the mode of the reload register RELOADREG.
6244 There is the intrinsic mode of the operand, which we could find
6245 by stripping some SUBREGs.
6246 It turns out that RELOADREG's mode is irrelevant:
6247 we can change that arbitrarily.
6249 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6250 then the reload reg may not support QImode moves, so use SImode.
6251 If foo is in memory due to spilling a pseudo reg, this is safe,
6252 because the QImode value is in the least significant part of a
6253 slot big enough for a SImode. If foo is some other sort of
6254 memory reference, then it is impossible to reload this case,
6255 so previous passes had better make sure this never happens.
6257 Then consider a one-word union which has SImode and one of its
6258 members is a float, being fetched as (SUBREG:SF union:SI).
6259 We must fetch that as SFmode because we could be loading into
6260 a float-only register. In this case OLD's mode is correct.
6262 Consider an immediate integer: it has VOIDmode. Here we need
6263 to get a mode from something else.
6265 In some cases, there is a fourth mode, the operand's
6266 containing mode. If the insn specifies a containing mode for
6267 this operand, it overrides all others.
6269 I am not sure whether the algorithm here is always right,
6270 but it does the right things in those cases. */
6272 mode = GET_MODE (old);
6273 if (mode == VOIDmode)
6274 mode = rl->inmode;
6276 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6277 /* If we need a secondary register for this operation, see if
6278 the value is already in a register in that class. Don't
6279 do this if the secondary register will be used as a scratch
6280 register. */
6282 if (rl->secondary_in_reload >= 0
6283 && rl->secondary_in_icode == CODE_FOR_nothing
6284 && optimize)
6285 oldequiv
6286 = find_equiv_reg (old, insn,
6287 rld[rl->secondary_in_reload].class,
6288 -1, NULL, 0, mode);
6289 #endif
6291 /* If reloading from memory, see if there is a register
6292 that already holds the same value. If so, reload from there.
6293 We can pass 0 as the reload_reg_p argument because
6294 any other reload has either already been emitted,
6295 in which case find_equiv_reg will see the reload-insn,
6296 or has yet to be emitted, in which case it doesn't matter
6297 because we will use this equiv reg right away. */
6299 if (oldequiv == 0 && optimize
6300 && (MEM_P (old)
6301 || (REG_P (old)
6302 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6303 && reg_renumber[REGNO (old)] < 0)))
6304 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6306 if (oldequiv)
6308 unsigned int regno = true_regnum (oldequiv);
6310 /* Don't use OLDEQUIV if any other reload changes it at an
6311 earlier stage of this insn or at this stage. */
6312 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6313 rl->in, const0_rtx, j, 0))
6314 oldequiv = 0;
6316 /* If it is no cheaper to copy from OLDEQUIV into the
6317 reload register than it would be to move from memory,
6318 don't use it. Likewise, if we need a secondary register
6319 or memory. */
6321 if (oldequiv != 0
6322 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6323 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6324 rl->class)
6325 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6326 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6327 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6328 mode, oldequiv)
6329 != NO_REGS)
6330 #endif
6331 #ifdef SECONDARY_MEMORY_NEEDED
6332 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6333 rl->class,
6334 mode)
6335 #endif
6337 oldequiv = 0;
6340 /* delete_output_reload is only invoked properly if old contains
6341 the original pseudo register. Since this is replaced with a
6342 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6343 find the pseudo in RELOAD_IN_REG. */
6344 if (oldequiv == 0
6345 && reload_override_in[j]
6346 && REG_P (rl->in_reg))
6348 oldequiv = old;
6349 old = rl->in_reg;
6351 if (oldequiv == 0)
6352 oldequiv = old;
6353 else if (REG_P (oldequiv))
6354 oldequiv_reg = oldequiv;
6355 else if (GET_CODE (oldequiv) == SUBREG)
6356 oldequiv_reg = SUBREG_REG (oldequiv);
6358 /* If we are reloading from a register that was recently stored in
6359 with an output-reload, see if we can prove there was
6360 actually no need to store the old value in it. */
6362 if (optimize && REG_P (oldequiv)
6363 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6364 && spill_reg_store[REGNO (oldequiv)]
6365 && REG_P (old)
6366 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6367 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6368 rl->out_reg)))
6369 delete_output_reload (insn, j, REGNO (oldequiv));
6371 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6372 then load RELOADREG from OLDEQUIV. Note that we cannot use
6373 gen_lowpart_common since it can do the wrong thing when
6374 RELOADREG has a multi-word mode. Note that RELOADREG
6375 must always be a REG here. */
6377 if (GET_MODE (reloadreg) != mode)
6378 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6379 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6380 oldequiv = SUBREG_REG (oldequiv);
6381 if (GET_MODE (oldequiv) != VOIDmode
6382 && mode != GET_MODE (oldequiv))
6383 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6385 /* Switch to the right place to emit the reload insns. */
6386 switch (rl->when_needed)
6388 case RELOAD_OTHER:
6389 where = &other_input_reload_insns;
6390 break;
6391 case RELOAD_FOR_INPUT:
6392 where = &input_reload_insns[rl->opnum];
6393 break;
6394 case RELOAD_FOR_INPUT_ADDRESS:
6395 where = &input_address_reload_insns[rl->opnum];
6396 break;
6397 case RELOAD_FOR_INPADDR_ADDRESS:
6398 where = &inpaddr_address_reload_insns[rl->opnum];
6399 break;
6400 case RELOAD_FOR_OUTPUT_ADDRESS:
6401 where = &output_address_reload_insns[rl->opnum];
6402 break;
6403 case RELOAD_FOR_OUTADDR_ADDRESS:
6404 where = &outaddr_address_reload_insns[rl->opnum];
6405 break;
6406 case RELOAD_FOR_OPERAND_ADDRESS:
6407 where = &operand_reload_insns;
6408 break;
6409 case RELOAD_FOR_OPADDR_ADDR:
6410 where = &other_operand_reload_insns;
6411 break;
6412 case RELOAD_FOR_OTHER_ADDRESS:
6413 where = &other_input_address_reload_insns;
6414 break;
6415 default:
6416 gcc_unreachable ();
6419 push_to_sequence (*where);
6421 /* Auto-increment addresses must be reloaded in a special way. */
6422 if (rl->out && ! rl->out_reg)
6424 /* We are not going to bother supporting the case where a
6425 incremented register can't be copied directly from
6426 OLDEQUIV since this seems highly unlikely. */
6427 gcc_assert (rl->secondary_in_reload < 0);
6429 if (reload_inherited[j])
6430 oldequiv = reloadreg;
6432 old = XEXP (rl->in_reg, 0);
6434 if (optimize && REG_P (oldequiv)
6435 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6436 && spill_reg_store[REGNO (oldequiv)]
6437 && REG_P (old)
6438 && (dead_or_set_p (insn,
6439 spill_reg_stored_to[REGNO (oldequiv)])
6440 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6441 old)))
6442 delete_output_reload (insn, j, REGNO (oldequiv));
6444 /* Prevent normal processing of this reload. */
6445 special = 1;
6446 /* Output a special code sequence for this case. */
6447 new_spill_reg_store[REGNO (reloadreg)]
6448 = inc_for_reload (reloadreg, oldequiv, rl->out,
6449 rl->inc);
6452 /* If we are reloading a pseudo-register that was set by the previous
6453 insn, see if we can get rid of that pseudo-register entirely
6454 by redirecting the previous insn into our reload register. */
6456 else if (optimize && REG_P (old)
6457 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6458 && dead_or_set_p (insn, old)
6459 /* This is unsafe if some other reload
6460 uses the same reg first. */
6461 && ! conflicts_with_override (reloadreg)
6462 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6463 rl->when_needed, old, rl->out, j, 0))
6465 rtx temp = PREV_INSN (insn);
6466 while (temp && NOTE_P (temp))
6467 temp = PREV_INSN (temp);
6468 if (temp
6469 && NONJUMP_INSN_P (temp)
6470 && GET_CODE (PATTERN (temp)) == SET
6471 && SET_DEST (PATTERN (temp)) == old
6472 /* Make sure we can access insn_operand_constraint. */
6473 && asm_noperands (PATTERN (temp)) < 0
6474 /* This is unsafe if operand occurs more than once in current
6475 insn. Perhaps some occurrences aren't reloaded. */
6476 && count_occurrences (PATTERN (insn), old, 0) == 1)
6478 rtx old = SET_DEST (PATTERN (temp));
6479 /* Store into the reload register instead of the pseudo. */
6480 SET_DEST (PATTERN (temp)) = reloadreg;
6482 /* Verify that resulting insn is valid. */
6483 extract_insn (temp);
6484 if (constrain_operands (1))
6486 /* If the previous insn is an output reload, the source is
6487 a reload register, and its spill_reg_store entry will
6488 contain the previous destination. This is now
6489 invalid. */
6490 if (REG_P (SET_SRC (PATTERN (temp)))
6491 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6493 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6494 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6497 /* If these are the only uses of the pseudo reg,
6498 pretend for GDB it lives in the reload reg we used. */
6499 if (REG_N_DEATHS (REGNO (old)) == 1
6500 && REG_N_SETS (REGNO (old)) == 1)
6502 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6503 alter_reg (REGNO (old), -1);
6505 special = 1;
6507 else
6509 SET_DEST (PATTERN (temp)) = old;
6514 /* We can't do that, so output an insn to load RELOADREG. */
6516 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6517 /* If we have a secondary reload, pick up the secondary register
6518 and icode, if any. If OLDEQUIV and OLD are different or
6519 if this is an in-out reload, recompute whether or not we
6520 still need a secondary register and what the icode should
6521 be. If we still need a secondary register and the class or
6522 icode is different, go back to reloading from OLD if using
6523 OLDEQUIV means that we got the wrong type of register. We
6524 cannot have different class or icode due to an in-out reload
6525 because we don't make such reloads when both the input and
6526 output need secondary reload registers. */
6528 if (! special && rl->secondary_in_reload >= 0)
6530 rtx second_reload_reg = 0;
6531 int secondary_reload = rl->secondary_in_reload;
6532 rtx real_oldequiv = oldequiv;
6533 rtx real_old = old;
6534 rtx tmp;
6535 enum insn_code icode;
6537 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6538 and similarly for OLD.
6539 See comments in get_secondary_reload in reload.c. */
6540 /* If it is a pseudo that cannot be replaced with its
6541 equivalent MEM, we must fall back to reload_in, which
6542 will have all the necessary substitutions registered.
6543 Likewise for a pseudo that can't be replaced with its
6544 equivalent constant.
6546 Take extra care for subregs of such pseudos. Note that
6547 we cannot use reg_equiv_mem in this case because it is
6548 not in the right mode. */
6550 tmp = oldequiv;
6551 if (GET_CODE (tmp) == SUBREG)
6552 tmp = SUBREG_REG (tmp);
6553 if (REG_P (tmp)
6554 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6555 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6556 || reg_equiv_constant[REGNO (tmp)] != 0))
6558 if (! reg_equiv_mem[REGNO (tmp)]
6559 || num_not_at_initial_offset
6560 || GET_CODE (oldequiv) == SUBREG)
6561 real_oldequiv = rl->in;
6562 else
6563 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6566 tmp = old;
6567 if (GET_CODE (tmp) == SUBREG)
6568 tmp = SUBREG_REG (tmp);
6569 if (REG_P (tmp)
6570 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6571 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6572 || reg_equiv_constant[REGNO (tmp)] != 0))
6574 if (! reg_equiv_mem[REGNO (tmp)]
6575 || num_not_at_initial_offset
6576 || GET_CODE (old) == SUBREG)
6577 real_old = rl->in;
6578 else
6579 real_old = reg_equiv_mem[REGNO (tmp)];
6582 second_reload_reg = rld[secondary_reload].reg_rtx;
6583 icode = rl->secondary_in_icode;
6585 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6586 || (rl->in != 0 && rl->out != 0))
6588 enum reg_class new_class
6589 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6590 mode, real_oldequiv);
6592 if (new_class == NO_REGS)
6593 second_reload_reg = 0;
6594 else
6596 enum insn_code new_icode;
6597 enum machine_mode new_mode;
6599 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6600 REGNO (second_reload_reg)))
6601 oldequiv = old, real_oldequiv = real_old;
6602 else
6604 new_icode = reload_in_optab[(int) mode];
6605 if (new_icode != CODE_FOR_nothing
6606 && ((insn_data[(int) new_icode].operand[0].predicate
6607 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6608 (reloadreg, mode)))
6609 || (insn_data[(int) new_icode].operand[1].predicate
6610 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6611 (real_oldequiv, mode)))))
6612 new_icode = CODE_FOR_nothing;
6614 if (new_icode == CODE_FOR_nothing)
6615 new_mode = mode;
6616 else
6617 new_mode = insn_data[(int) new_icode].operand[2].mode;
6619 if (GET_MODE (second_reload_reg) != new_mode)
6621 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6622 new_mode))
6623 oldequiv = old, real_oldequiv = real_old;
6624 else
6625 second_reload_reg
6626 = reload_adjust_reg_for_mode (second_reload_reg,
6627 new_mode);
6633 /* If we still need a secondary reload register, check
6634 to see if it is being used as a scratch or intermediate
6635 register and generate code appropriately. If we need
6636 a scratch register, use REAL_OLDEQUIV since the form of
6637 the insn may depend on the actual address if it is
6638 a MEM. */
6640 if (second_reload_reg)
6642 if (icode != CODE_FOR_nothing)
6644 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6645 second_reload_reg));
6646 special = 1;
6648 else
6650 /* See if we need a scratch register to load the
6651 intermediate register (a tertiary reload). */
6652 enum insn_code tertiary_icode
6653 = rld[secondary_reload].secondary_in_icode;
6655 if (tertiary_icode != CODE_FOR_nothing)
6657 rtx third_reload_reg
6658 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6660 emit_insn ((GEN_FCN (tertiary_icode)
6661 (second_reload_reg, real_oldequiv,
6662 third_reload_reg)));
6664 else
6665 gen_reload (second_reload_reg, real_oldequiv,
6666 rl->opnum,
6667 rl->when_needed);
6669 oldequiv = second_reload_reg;
6673 #endif
6675 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6677 rtx real_oldequiv = oldequiv;
6679 if ((REG_P (oldequiv)
6680 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6681 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6682 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6683 || (GET_CODE (oldequiv) == SUBREG
6684 && REG_P (SUBREG_REG (oldequiv))
6685 && (REGNO (SUBREG_REG (oldequiv))
6686 >= FIRST_PSEUDO_REGISTER)
6687 && ((reg_equiv_memory_loc
6688 [REGNO (SUBREG_REG (oldequiv))] != 0)
6689 || (reg_equiv_constant
6690 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6691 || (CONSTANT_P (oldequiv)
6692 && (PREFERRED_RELOAD_CLASS (oldequiv,
6693 REGNO_REG_CLASS (REGNO (reloadreg)))
6694 == NO_REGS)))
6695 real_oldequiv = rl->in;
6696 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6697 rl->when_needed);
6700 if (flag_non_call_exceptions)
6701 copy_eh_notes (insn, get_insns ());
6703 /* End this sequence. */
6704 *where = get_insns ();
6705 end_sequence ();
6707 /* Update reload_override_in so that delete_address_reloads_1
6708 can see the actual register usage. */
6709 if (oldequiv_reg)
6710 reload_override_in[j] = oldequiv;
6713 /* Generate insns to for the output reload RL, which is for the insn described
6714 by CHAIN and has the number J. */
6715 static void
6716 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6717 int j)
6719 rtx reloadreg = rl->reg_rtx;
6720 rtx insn = chain->insn;
6721 int special = 0;
6722 rtx old = rl->out;
6723 enum machine_mode mode = GET_MODE (old);
6724 rtx p;
6726 if (rl->when_needed == RELOAD_OTHER)
6727 start_sequence ();
6728 else
6729 push_to_sequence (output_reload_insns[rl->opnum]);
6731 /* Determine the mode to reload in.
6732 See comments above (for input reloading). */
6734 if (mode == VOIDmode)
6736 /* VOIDmode should never happen for an output. */
6737 if (asm_noperands (PATTERN (insn)) < 0)
6738 /* It's the compiler's fault. */
6739 fatal_insn ("VOIDmode on an output", insn);
6740 error_for_asm (insn, "output operand is constant in %<asm%>");
6741 /* Prevent crash--use something we know is valid. */
6742 mode = word_mode;
6743 old = gen_rtx_REG (mode, REGNO (reloadreg));
6746 if (GET_MODE (reloadreg) != mode)
6747 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6749 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6751 /* If we need two reload regs, set RELOADREG to the intermediate
6752 one, since it will be stored into OLD. We might need a secondary
6753 register only for an input reload, so check again here. */
6755 if (rl->secondary_out_reload >= 0)
6757 rtx real_old = old;
6759 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6760 && reg_equiv_mem[REGNO (old)] != 0)
6761 real_old = reg_equiv_mem[REGNO (old)];
6763 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6764 mode, real_old)
6765 != NO_REGS))
6767 rtx second_reloadreg = reloadreg;
6768 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6770 /* See if RELOADREG is to be used as a scratch register
6771 or as an intermediate register. */
6772 if (rl->secondary_out_icode != CODE_FOR_nothing)
6774 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6775 (real_old, second_reloadreg, reloadreg)));
6776 special = 1;
6778 else
6780 /* See if we need both a scratch and intermediate reload
6781 register. */
6783 int secondary_reload = rl->secondary_out_reload;
6784 enum insn_code tertiary_icode
6785 = rld[secondary_reload].secondary_out_icode;
6787 if (GET_MODE (reloadreg) != mode)
6788 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6790 if (tertiary_icode != CODE_FOR_nothing)
6792 rtx third_reloadreg
6793 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6794 rtx tem;
6796 /* Copy primary reload reg to secondary reload reg.
6797 (Note that these have been swapped above, then
6798 secondary reload reg to OLD using our insn.) */
6800 /* If REAL_OLD is a paradoxical SUBREG, remove it
6801 and try to put the opposite SUBREG on
6802 RELOADREG. */
6803 if (GET_CODE (real_old) == SUBREG
6804 && (GET_MODE_SIZE (GET_MODE (real_old))
6805 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6806 && 0 != (tem = gen_lowpart_common
6807 (GET_MODE (SUBREG_REG (real_old)),
6808 reloadreg)))
6809 real_old = SUBREG_REG (real_old), reloadreg = tem;
6811 gen_reload (reloadreg, second_reloadreg,
6812 rl->opnum, rl->when_needed);
6813 emit_insn ((GEN_FCN (tertiary_icode)
6814 (real_old, reloadreg, third_reloadreg)));
6815 special = 1;
6818 else
6819 /* Copy between the reload regs here and then to
6820 OUT later. */
6822 gen_reload (reloadreg, second_reloadreg,
6823 rl->opnum, rl->when_needed);
6827 #endif
6829 /* Output the last reload insn. */
6830 if (! special)
6832 rtx set;
6834 /* Don't output the last reload if OLD is not the dest of
6835 INSN and is in the src and is clobbered by INSN. */
6836 if (! flag_expensive_optimizations
6837 || !REG_P (old)
6838 || !(set = single_set (insn))
6839 || rtx_equal_p (old, SET_DEST (set))
6840 || !reg_mentioned_p (old, SET_SRC (set))
6841 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6842 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6843 gen_reload (old, reloadreg, rl->opnum,
6844 rl->when_needed);
6847 /* Look at all insns we emitted, just to be safe. */
6848 for (p = get_insns (); p; p = NEXT_INSN (p))
6849 if (INSN_P (p))
6851 rtx pat = PATTERN (p);
6853 /* If this output reload doesn't come from a spill reg,
6854 clear any memory of reloaded copies of the pseudo reg.
6855 If this output reload comes from a spill reg,
6856 reg_has_output_reload will make this do nothing. */
6857 note_stores (pat, forget_old_reloads_1, NULL);
6859 if (reg_mentioned_p (rl->reg_rtx, pat))
6861 rtx set = single_set (insn);
6862 if (reload_spill_index[j] < 0
6863 && set
6864 && SET_SRC (set) == rl->reg_rtx)
6866 int src = REGNO (SET_SRC (set));
6868 reload_spill_index[j] = src;
6869 SET_HARD_REG_BIT (reg_is_output_reload, src);
6870 if (find_regno_note (insn, REG_DEAD, src))
6871 SET_HARD_REG_BIT (reg_reloaded_died, src);
6873 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6875 int s = rl->secondary_out_reload;
6876 set = single_set (p);
6877 /* If this reload copies only to the secondary reload
6878 register, the secondary reload does the actual
6879 store. */
6880 if (s >= 0 && set == NULL_RTX)
6881 /* We can't tell what function the secondary reload
6882 has and where the actual store to the pseudo is
6883 made; leave new_spill_reg_store alone. */
6885 else if (s >= 0
6886 && SET_SRC (set) == rl->reg_rtx
6887 && SET_DEST (set) == rld[s].reg_rtx)
6889 /* Usually the next instruction will be the
6890 secondary reload insn; if we can confirm
6891 that it is, setting new_spill_reg_store to
6892 that insn will allow an extra optimization. */
6893 rtx s_reg = rld[s].reg_rtx;
6894 rtx next = NEXT_INSN (p);
6895 rld[s].out = rl->out;
6896 rld[s].out_reg = rl->out_reg;
6897 set = single_set (next);
6898 if (set && SET_SRC (set) == s_reg
6899 && ! new_spill_reg_store[REGNO (s_reg)])
6901 SET_HARD_REG_BIT (reg_is_output_reload,
6902 REGNO (s_reg));
6903 new_spill_reg_store[REGNO (s_reg)] = next;
6906 else
6907 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6912 if (rl->when_needed == RELOAD_OTHER)
6914 emit_insn (other_output_reload_insns[rl->opnum]);
6915 other_output_reload_insns[rl->opnum] = get_insns ();
6917 else
6918 output_reload_insns[rl->opnum] = get_insns ();
6920 if (flag_non_call_exceptions)
6921 copy_eh_notes (insn, get_insns ());
6923 end_sequence ();
6926 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6927 and has the number J. */
6928 static void
6929 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6931 rtx insn = chain->insn;
6932 rtx old = (rl->in && MEM_P (rl->in)
6933 ? rl->in_reg : rl->in);
6935 if (old != 0
6936 /* AUTO_INC reloads need to be handled even if inherited. We got an
6937 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6938 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6939 && ! rtx_equal_p (rl->reg_rtx, old)
6940 && rl->reg_rtx != 0)
6941 emit_input_reload_insns (chain, rld + j, old, j);
6943 /* When inheriting a wider reload, we have a MEM in rl->in,
6944 e.g. inheriting a SImode output reload for
6945 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6946 if (optimize && reload_inherited[j] && rl->in
6947 && MEM_P (rl->in)
6948 && MEM_P (rl->in_reg)
6949 && reload_spill_index[j] >= 0
6950 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6951 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6953 /* If we are reloading a register that was recently stored in with an
6954 output-reload, see if we can prove there was
6955 actually no need to store the old value in it. */
6957 if (optimize
6958 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
6959 that there may be multiple uses of the previous output reload.
6960 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
6961 && rl->when_needed == RELOAD_FOR_INPUT
6962 && (reload_inherited[j] || reload_override_in[j])
6963 && rl->reg_rtx
6964 && REG_P (rl->reg_rtx)
6965 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6966 #if 0
6967 /* There doesn't seem to be any reason to restrict this to pseudos
6968 and doing so loses in the case where we are copying from a
6969 register of the wrong class. */
6970 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6971 >= FIRST_PSEUDO_REGISTER)
6972 #endif
6973 /* The insn might have already some references to stackslots
6974 replaced by MEMs, while reload_out_reg still names the
6975 original pseudo. */
6976 && (dead_or_set_p (insn,
6977 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6978 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6979 rl->out_reg)))
6980 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6983 /* Do output reloading for reload RL, which is for the insn described by
6984 CHAIN and has the number J.
6985 ??? At some point we need to support handling output reloads of
6986 JUMP_INSNs or insns that set cc0. */
6987 static void
6988 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6990 rtx note, old;
6991 rtx insn = chain->insn;
6992 /* If this is an output reload that stores something that is
6993 not loaded in this same reload, see if we can eliminate a previous
6994 store. */
6995 rtx pseudo = rl->out_reg;
6997 if (pseudo
6998 && optimize
6999 && REG_P (pseudo)
7000 && ! rtx_equal_p (rl->in_reg, pseudo)
7001 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7002 && reg_last_reload_reg[REGNO (pseudo)])
7004 int pseudo_no = REGNO (pseudo);
7005 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7007 /* We don't need to test full validity of last_regno for
7008 inherit here; we only want to know if the store actually
7009 matches the pseudo. */
7010 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7011 && reg_reloaded_contents[last_regno] == pseudo_no
7012 && spill_reg_store[last_regno]
7013 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7014 delete_output_reload (insn, j, last_regno);
7017 old = rl->out_reg;
7018 if (old == 0
7019 || rl->reg_rtx == old
7020 || rl->reg_rtx == 0)
7021 return;
7023 /* An output operand that dies right away does need a reload,
7024 but need not be copied from it. Show the new location in the
7025 REG_UNUSED note. */
7026 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7027 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7029 XEXP (note, 0) = rl->reg_rtx;
7030 return;
7032 /* Likewise for a SUBREG of an operand that dies. */
7033 else if (GET_CODE (old) == SUBREG
7034 && REG_P (SUBREG_REG (old))
7035 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7036 SUBREG_REG (old))))
7038 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7039 rl->reg_rtx);
7040 return;
7042 else if (GET_CODE (old) == SCRATCH)
7043 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7044 but we don't want to make an output reload. */
7045 return;
7047 /* If is a JUMP_INSN, we can't support output reloads yet. */
7048 gcc_assert (!JUMP_P (insn));
7050 emit_output_reload_insns (chain, rld + j, j);
7053 /* Reload number R reloads from or to a group of hard registers starting at
7054 register REGNO. Return true if it can be treated for inheritance purposes
7055 like a group of reloads, each one reloading a single hard register.
7056 The caller has already checked that the spill register and REGNO use
7057 the same number of registers to store the reload value. */
7059 static bool
7060 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7062 #ifdef CANNOT_CHANGE_MODE_CLASS
7063 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7064 GET_MODE (rld[r].reg_rtx),
7065 reg_raw_mode[reload_spill_index[r]])
7066 && !REG_CANNOT_CHANGE_MODE_P (regno,
7067 GET_MODE (rld[r].reg_rtx),
7068 reg_raw_mode[regno]));
7069 #else
7070 return true;
7071 #endif
7074 /* Output insns to reload values in and out of the chosen reload regs. */
7076 static void
7077 emit_reload_insns (struct insn_chain *chain)
7079 rtx insn = chain->insn;
7081 int j;
7083 CLEAR_HARD_REG_SET (reg_reloaded_died);
7085 for (j = 0; j < reload_n_operands; j++)
7086 input_reload_insns[j] = input_address_reload_insns[j]
7087 = inpaddr_address_reload_insns[j]
7088 = output_reload_insns[j] = output_address_reload_insns[j]
7089 = outaddr_address_reload_insns[j]
7090 = other_output_reload_insns[j] = 0;
7091 other_input_address_reload_insns = 0;
7092 other_input_reload_insns = 0;
7093 operand_reload_insns = 0;
7094 other_operand_reload_insns = 0;
7096 /* Dump reloads into the dump file. */
7097 if (dump_file)
7099 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7100 debug_reload_to_stream (dump_file);
7103 /* Now output the instructions to copy the data into and out of the
7104 reload registers. Do these in the order that the reloads were reported,
7105 since reloads of base and index registers precede reloads of operands
7106 and the operands may need the base and index registers reloaded. */
7108 for (j = 0; j < n_reloads; j++)
7110 if (rld[j].reg_rtx
7111 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7112 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7114 do_input_reload (chain, rld + j, j);
7115 do_output_reload (chain, rld + j, j);
7118 /* Now write all the insns we made for reloads in the order expected by
7119 the allocation functions. Prior to the insn being reloaded, we write
7120 the following reloads:
7122 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7124 RELOAD_OTHER reloads.
7126 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7127 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7128 RELOAD_FOR_INPUT reload for the operand.
7130 RELOAD_FOR_OPADDR_ADDRS reloads.
7132 RELOAD_FOR_OPERAND_ADDRESS reloads.
7134 After the insn being reloaded, we write the following:
7136 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7137 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7138 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7139 reloads for the operand. The RELOAD_OTHER output reloads are
7140 output in descending order by reload number. */
7142 emit_insn_before (other_input_address_reload_insns, insn);
7143 emit_insn_before (other_input_reload_insns, insn);
7145 for (j = 0; j < reload_n_operands; j++)
7147 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7148 emit_insn_before (input_address_reload_insns[j], insn);
7149 emit_insn_before (input_reload_insns[j], insn);
7152 emit_insn_before (other_operand_reload_insns, insn);
7153 emit_insn_before (operand_reload_insns, insn);
7155 for (j = 0; j < reload_n_operands; j++)
7157 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7158 x = emit_insn_after (output_address_reload_insns[j], x);
7159 x = emit_insn_after (output_reload_insns[j], x);
7160 emit_insn_after (other_output_reload_insns[j], x);
7163 /* For all the spill regs newly reloaded in this instruction,
7164 record what they were reloaded from, so subsequent instructions
7165 can inherit the reloads.
7167 Update spill_reg_store for the reloads of this insn.
7168 Copy the elements that were updated in the loop above. */
7170 for (j = 0; j < n_reloads; j++)
7172 int r = reload_order[j];
7173 int i = reload_spill_index[r];
7175 /* If this is a non-inherited input reload from a pseudo, we must
7176 clear any memory of a previous store to the same pseudo. Only do
7177 something if there will not be an output reload for the pseudo
7178 being reloaded. */
7179 if (rld[r].in_reg != 0
7180 && ! (reload_inherited[r] || reload_override_in[r]))
7182 rtx reg = rld[r].in_reg;
7184 if (GET_CODE (reg) == SUBREG)
7185 reg = SUBREG_REG (reg);
7187 if (REG_P (reg)
7188 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7189 && ! reg_has_output_reload[REGNO (reg)])
7191 int nregno = REGNO (reg);
7193 if (reg_last_reload_reg[nregno])
7195 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7197 if (reg_reloaded_contents[last_regno] == nregno)
7198 spill_reg_store[last_regno] = 0;
7203 /* I is nonneg if this reload used a register.
7204 If rld[r].reg_rtx is 0, this is an optional reload
7205 that we opted to ignore. */
7207 if (i >= 0 && rld[r].reg_rtx != 0)
7209 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7210 int k;
7211 int part_reaches_end = 0;
7212 int all_reaches_end = 1;
7214 /* For a multi register reload, we need to check if all or part
7215 of the value lives to the end. */
7216 for (k = 0; k < nr; k++)
7218 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7219 rld[r].when_needed))
7220 part_reaches_end = 1;
7221 else
7222 all_reaches_end = 0;
7225 /* Ignore reloads that don't reach the end of the insn in
7226 entirety. */
7227 if (all_reaches_end)
7229 /* First, clear out memory of what used to be in this spill reg.
7230 If consecutive registers are used, clear them all. */
7232 for (k = 0; k < nr; k++)
7234 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7235 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7238 /* Maybe the spill reg contains a copy of reload_out. */
7239 if (rld[r].out != 0
7240 && (REG_P (rld[r].out)
7241 #ifdef AUTO_INC_DEC
7242 || ! rld[r].out_reg
7243 #endif
7244 || REG_P (rld[r].out_reg)))
7246 rtx out = (REG_P (rld[r].out)
7247 ? rld[r].out
7248 : rld[r].out_reg
7249 ? rld[r].out_reg
7250 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7251 int nregno = REGNO (out);
7252 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7253 : hard_regno_nregs[nregno]
7254 [GET_MODE (rld[r].reg_rtx)]);
7255 bool piecemeal;
7257 spill_reg_store[i] = new_spill_reg_store[i];
7258 spill_reg_stored_to[i] = out;
7259 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7261 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7262 && nr == nnr
7263 && inherit_piecemeal_p (r, nregno));
7265 /* If NREGNO is a hard register, it may occupy more than
7266 one register. If it does, say what is in the
7267 rest of the registers assuming that both registers
7268 agree on how many words the object takes. If not,
7269 invalidate the subsequent registers. */
7271 if (nregno < FIRST_PSEUDO_REGISTER)
7272 for (k = 1; k < nnr; k++)
7273 reg_last_reload_reg[nregno + k]
7274 = (piecemeal
7275 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7276 : 0);
7278 /* Now do the inverse operation. */
7279 for (k = 0; k < nr; k++)
7281 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7282 reg_reloaded_contents[i + k]
7283 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7284 ? nregno
7285 : nregno + k);
7286 reg_reloaded_insn[i + k] = insn;
7287 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7288 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7289 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7293 /* Maybe the spill reg contains a copy of reload_in. Only do
7294 something if there will not be an output reload for
7295 the register being reloaded. */
7296 else if (rld[r].out_reg == 0
7297 && rld[r].in != 0
7298 && ((REG_P (rld[r].in)
7299 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7300 && ! reg_has_output_reload[REGNO (rld[r].in)])
7301 || (REG_P (rld[r].in_reg)
7302 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7303 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7305 int nregno;
7306 int nnr;
7307 rtx in;
7308 bool piecemeal;
7310 if (REG_P (rld[r].in)
7311 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7312 in = rld[r].in;
7313 else if (REG_P (rld[r].in_reg))
7314 in = rld[r].in_reg;
7315 else
7316 in = XEXP (rld[r].in_reg, 0);
7317 nregno = REGNO (in);
7319 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7320 : hard_regno_nregs[nregno]
7321 [GET_MODE (rld[r].reg_rtx)]);
7323 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7325 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7326 && nr == nnr
7327 && inherit_piecemeal_p (r, nregno));
7329 if (nregno < FIRST_PSEUDO_REGISTER)
7330 for (k = 1; k < nnr; k++)
7331 reg_last_reload_reg[nregno + k]
7332 = (piecemeal
7333 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7334 : 0);
7336 /* Unless we inherited this reload, show we haven't
7337 recently done a store.
7338 Previous stores of inherited auto_inc expressions
7339 also have to be discarded. */
7340 if (! reload_inherited[r]
7341 || (rld[r].out && ! rld[r].out_reg))
7342 spill_reg_store[i] = 0;
7344 for (k = 0; k < nr; k++)
7346 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7347 reg_reloaded_contents[i + k]
7348 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7349 ? nregno
7350 : nregno + k);
7351 reg_reloaded_insn[i + k] = insn;
7352 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7353 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7354 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7359 /* However, if part of the reload reaches the end, then we must
7360 invalidate the old info for the part that survives to the end. */
7361 else if (part_reaches_end)
7363 for (k = 0; k < nr; k++)
7364 if (reload_reg_reaches_end_p (i + k,
7365 rld[r].opnum,
7366 rld[r].when_needed))
7367 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7371 /* The following if-statement was #if 0'd in 1.34 (or before...).
7372 It's reenabled in 1.35 because supposedly nothing else
7373 deals with this problem. */
7375 /* If a register gets output-reloaded from a non-spill register,
7376 that invalidates any previous reloaded copy of it.
7377 But forget_old_reloads_1 won't get to see it, because
7378 it thinks only about the original insn. So invalidate it here. */
7379 if (i < 0 && rld[r].out != 0
7380 && (REG_P (rld[r].out)
7381 || (MEM_P (rld[r].out)
7382 && REG_P (rld[r].out_reg))))
7384 rtx out = (REG_P (rld[r].out)
7385 ? rld[r].out : rld[r].out_reg);
7386 int nregno = REGNO (out);
7387 if (nregno >= FIRST_PSEUDO_REGISTER)
7389 rtx src_reg, store_insn = NULL_RTX;
7391 reg_last_reload_reg[nregno] = 0;
7393 /* If we can find a hard register that is stored, record
7394 the storing insn so that we may delete this insn with
7395 delete_output_reload. */
7396 src_reg = rld[r].reg_rtx;
7398 /* If this is an optional reload, try to find the source reg
7399 from an input reload. */
7400 if (! src_reg)
7402 rtx set = single_set (insn);
7403 if (set && SET_DEST (set) == rld[r].out)
7405 int k;
7407 src_reg = SET_SRC (set);
7408 store_insn = insn;
7409 for (k = 0; k < n_reloads; k++)
7411 if (rld[k].in == src_reg)
7413 src_reg = rld[k].reg_rtx;
7414 break;
7419 else
7420 store_insn = new_spill_reg_store[REGNO (src_reg)];
7421 if (src_reg && REG_P (src_reg)
7422 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7424 int src_regno = REGNO (src_reg);
7425 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7426 /* The place where to find a death note varies with
7427 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7428 necessarily checked exactly in the code that moves
7429 notes, so just check both locations. */
7430 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7431 if (! note && store_insn)
7432 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7433 while (nr-- > 0)
7435 spill_reg_store[src_regno + nr] = store_insn;
7436 spill_reg_stored_to[src_regno + nr] = out;
7437 reg_reloaded_contents[src_regno + nr] = nregno;
7438 reg_reloaded_insn[src_regno + nr] = store_insn;
7439 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7440 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7441 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7442 GET_MODE (src_reg)))
7443 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7444 src_regno + nr);
7445 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7446 if (note)
7447 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7448 else
7449 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7451 reg_last_reload_reg[nregno] = src_reg;
7452 /* We have to set reg_has_output_reload here, or else
7453 forget_old_reloads_1 will clear reg_last_reload_reg
7454 right away. */
7455 reg_has_output_reload[nregno] = 1;
7458 else
7460 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
7462 while (num_regs-- > 0)
7463 reg_last_reload_reg[nregno + num_regs] = 0;
7467 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7470 /* Go through the motions to emit INSN and test if it is strictly valid.
7471 Return the emitted insn if valid, else return NULL. */
7473 static rtx
7474 emit_insn_if_valid_for_reload (rtx insn)
7476 rtx last = get_last_insn ();
7477 int code;
7479 insn = emit_insn (insn);
7480 code = recog_memoized (insn);
7482 if (code >= 0)
7484 extract_insn (insn);
7485 /* We want constrain operands to treat this insn strictly in its
7486 validity determination, i.e., the way it would after reload has
7487 completed. */
7488 if (constrain_operands (1))
7489 return insn;
7492 delete_insns_since (last);
7493 return NULL;
7496 /* Emit code to perform a reload from IN (which may be a reload register) to
7497 OUT (which may also be a reload register). IN or OUT is from operand
7498 OPNUM with reload type TYPE.
7500 Returns first insn emitted. */
7502 static rtx
7503 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7505 rtx last = get_last_insn ();
7506 rtx tem;
7508 /* If IN is a paradoxical SUBREG, remove it and try to put the
7509 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7510 if (GET_CODE (in) == SUBREG
7511 && (GET_MODE_SIZE (GET_MODE (in))
7512 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7513 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7514 in = SUBREG_REG (in), out = tem;
7515 else if (GET_CODE (out) == SUBREG
7516 && (GET_MODE_SIZE (GET_MODE (out))
7517 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7518 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7519 out = SUBREG_REG (out), in = tem;
7521 /* How to do this reload can get quite tricky. Normally, we are being
7522 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7523 register that didn't get a hard register. In that case we can just
7524 call emit_move_insn.
7526 We can also be asked to reload a PLUS that adds a register or a MEM to
7527 another register, constant or MEM. This can occur during frame pointer
7528 elimination and while reloading addresses. This case is handled by
7529 trying to emit a single insn to perform the add. If it is not valid,
7530 we use a two insn sequence.
7532 Or we can be asked to reload an unary operand that was a fragment of
7533 an addressing mode, into a register. If it isn't recognized as-is,
7534 we try making the unop operand and the reload-register the same:
7535 (set reg:X (unop:X expr:Y))
7536 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7538 Finally, we could be called to handle an 'o' constraint by putting
7539 an address into a register. In that case, we first try to do this
7540 with a named pattern of "reload_load_address". If no such pattern
7541 exists, we just emit a SET insn and hope for the best (it will normally
7542 be valid on machines that use 'o').
7544 This entire process is made complex because reload will never
7545 process the insns we generate here and so we must ensure that
7546 they will fit their constraints and also by the fact that parts of
7547 IN might be being reloaded separately and replaced with spill registers.
7548 Because of this, we are, in some sense, just guessing the right approach
7549 here. The one listed above seems to work.
7551 ??? At some point, this whole thing needs to be rethought. */
7553 if (GET_CODE (in) == PLUS
7554 && (REG_P (XEXP (in, 0))
7555 || GET_CODE (XEXP (in, 0)) == SUBREG
7556 || MEM_P (XEXP (in, 0)))
7557 && (REG_P (XEXP (in, 1))
7558 || GET_CODE (XEXP (in, 1)) == SUBREG
7559 || CONSTANT_P (XEXP (in, 1))
7560 || MEM_P (XEXP (in, 1))))
7562 /* We need to compute the sum of a register or a MEM and another
7563 register, constant, or MEM, and put it into the reload
7564 register. The best possible way of doing this is if the machine
7565 has a three-operand ADD insn that accepts the required operands.
7567 The simplest approach is to try to generate such an insn and see if it
7568 is recognized and matches its constraints. If so, it can be used.
7570 It might be better not to actually emit the insn unless it is valid,
7571 but we need to pass the insn as an operand to `recog' and
7572 `extract_insn' and it is simpler to emit and then delete the insn if
7573 not valid than to dummy things up. */
7575 rtx op0, op1, tem, insn;
7576 int code;
7578 op0 = find_replacement (&XEXP (in, 0));
7579 op1 = find_replacement (&XEXP (in, 1));
7581 /* Since constraint checking is strict, commutativity won't be
7582 checked, so we need to do that here to avoid spurious failure
7583 if the add instruction is two-address and the second operand
7584 of the add is the same as the reload reg, which is frequently
7585 the case. If the insn would be A = B + A, rearrange it so
7586 it will be A = A + B as constrain_operands expects. */
7588 if (REG_P (XEXP (in, 1))
7589 && REGNO (out) == REGNO (XEXP (in, 1)))
7590 tem = op0, op0 = op1, op1 = tem;
7592 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7593 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7595 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7596 if (insn)
7597 return insn;
7599 /* If that failed, we must use a conservative two-insn sequence.
7601 Use a move to copy one operand into the reload register. Prefer
7602 to reload a constant, MEM or pseudo since the move patterns can
7603 handle an arbitrary operand. If OP1 is not a constant, MEM or
7604 pseudo and OP1 is not a valid operand for an add instruction, then
7605 reload OP1.
7607 After reloading one of the operands into the reload register, add
7608 the reload register to the output register.
7610 If there is another way to do this for a specific machine, a
7611 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7612 we emit below. */
7614 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7616 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7617 || (REG_P (op1)
7618 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7619 || (code != CODE_FOR_nothing
7620 && ! ((*insn_data[code].operand[2].predicate)
7621 (op1, insn_data[code].operand[2].mode))))
7622 tem = op0, op0 = op1, op1 = tem;
7624 gen_reload (out, op0, opnum, type);
7626 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7627 This fixes a problem on the 32K where the stack pointer cannot
7628 be used as an operand of an add insn. */
7630 if (rtx_equal_p (op0, op1))
7631 op1 = out;
7633 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7634 if (insn)
7636 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7637 REG_NOTES (insn)
7638 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7639 return insn;
7642 /* If that failed, copy the address register to the reload register.
7643 Then add the constant to the reload register. */
7645 gen_reload (out, op1, opnum, type);
7646 insn = emit_insn (gen_add2_insn (out, op0));
7647 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7650 #ifdef SECONDARY_MEMORY_NEEDED
7651 /* If we need a memory location to do the move, do it that way. */
7652 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7653 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7654 && (REG_P (out) || GET_CODE (out) == SUBREG)
7655 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7656 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7657 REGNO_REG_CLASS (reg_or_subregno (out)),
7658 GET_MODE (out)))
7660 /* Get the memory to use and rewrite both registers to its mode. */
7661 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7663 if (GET_MODE (loc) != GET_MODE (out))
7664 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7666 if (GET_MODE (loc) != GET_MODE (in))
7667 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7669 gen_reload (loc, in, opnum, type);
7670 gen_reload (out, loc, opnum, type);
7672 #endif
7673 else if (REG_P (out) && UNARY_P (in))
7675 rtx insn;
7676 rtx op1;
7677 rtx out_moded;
7678 rtx set;
7680 op1 = find_replacement (&XEXP (in, 0));
7681 if (op1 != XEXP (in, 0))
7682 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7684 /* First, try a plain SET. */
7685 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7686 if (set)
7687 return set;
7689 /* If that failed, move the inner operand to the reload
7690 register, and try the same unop with the inner expression
7691 replaced with the reload register. */
7693 if (GET_MODE (op1) != GET_MODE (out))
7694 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7695 else
7696 out_moded = out;
7698 gen_reload (out_moded, op1, opnum, type);
7700 insn
7701 = gen_rtx_SET (VOIDmode, out,
7702 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7703 out_moded));
7704 insn = emit_insn_if_valid_for_reload (insn);
7705 if (insn)
7707 REG_NOTES (insn)
7708 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7709 return insn;
7712 fatal_insn ("Failure trying to reload:", set);
7714 /* If IN is a simple operand, use gen_move_insn. */
7715 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7716 emit_insn (gen_move_insn (out, in));
7718 #ifdef HAVE_reload_load_address
7719 else if (HAVE_reload_load_address)
7720 emit_insn (gen_reload_load_address (out, in));
7721 #endif
7723 /* Otherwise, just write (set OUT IN) and hope for the best. */
7724 else
7725 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7727 /* Return the first insn emitted.
7728 We can not just return get_last_insn, because there may have
7729 been multiple instructions emitted. Also note that gen_move_insn may
7730 emit more than one insn itself, so we can not assume that there is one
7731 insn emitted per emit_insn_before call. */
7733 return last ? NEXT_INSN (last) : get_insns ();
7736 /* Delete a previously made output-reload whose result we now believe
7737 is not needed. First we double-check.
7739 INSN is the insn now being processed.
7740 LAST_RELOAD_REG is the hard register number for which we want to delete
7741 the last output reload.
7742 J is the reload-number that originally used REG. The caller has made
7743 certain that reload J doesn't use REG any longer for input. */
7745 static void
7746 delete_output_reload (rtx insn, int j, int last_reload_reg)
7748 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7749 rtx reg = spill_reg_stored_to[last_reload_reg];
7750 int k;
7751 int n_occurrences;
7752 int n_inherited = 0;
7753 rtx i1;
7754 rtx substed;
7756 /* It is possible that this reload has been only used to set another reload
7757 we eliminated earlier and thus deleted this instruction too. */
7758 if (INSN_DELETED_P (output_reload_insn))
7759 return;
7761 /* Get the raw pseudo-register referred to. */
7763 while (GET_CODE (reg) == SUBREG)
7764 reg = SUBREG_REG (reg);
7765 substed = reg_equiv_memory_loc[REGNO (reg)];
7767 /* This is unsafe if the operand occurs more often in the current
7768 insn than it is inherited. */
7769 for (k = n_reloads - 1; k >= 0; k--)
7771 rtx reg2 = rld[k].in;
7772 if (! reg2)
7773 continue;
7774 if (MEM_P (reg2) || reload_override_in[k])
7775 reg2 = rld[k].in_reg;
7776 #ifdef AUTO_INC_DEC
7777 if (rld[k].out && ! rld[k].out_reg)
7778 reg2 = XEXP (rld[k].in_reg, 0);
7779 #endif
7780 while (GET_CODE (reg2) == SUBREG)
7781 reg2 = SUBREG_REG (reg2);
7782 if (rtx_equal_p (reg2, reg))
7784 if (reload_inherited[k] || reload_override_in[k] || k == j)
7786 n_inherited++;
7787 reg2 = rld[k].out_reg;
7788 if (! reg2)
7789 continue;
7790 while (GET_CODE (reg2) == SUBREG)
7791 reg2 = XEXP (reg2, 0);
7792 if (rtx_equal_p (reg2, reg))
7793 n_inherited++;
7795 else
7796 return;
7799 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7800 if (substed)
7801 n_occurrences += count_occurrences (PATTERN (insn),
7802 eliminate_regs (substed, 0,
7803 NULL_RTX), 0);
7804 if (n_occurrences > n_inherited)
7805 return;
7807 /* If the pseudo-reg we are reloading is no longer referenced
7808 anywhere between the store into it and here,
7809 and we're within the same basic block, then the value can only
7810 pass through the reload reg and end up here.
7811 Otherwise, give up--return. */
7812 for (i1 = NEXT_INSN (output_reload_insn);
7813 i1 != insn; i1 = NEXT_INSN (i1))
7815 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7816 return;
7817 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7818 && reg_mentioned_p (reg, PATTERN (i1)))
7820 /* If this is USE in front of INSN, we only have to check that
7821 there are no more references than accounted for by inheritance. */
7822 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7824 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7825 i1 = NEXT_INSN (i1);
7827 if (n_occurrences <= n_inherited && i1 == insn)
7828 break;
7829 return;
7833 /* We will be deleting the insn. Remove the spill reg information. */
7834 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7836 spill_reg_store[last_reload_reg + k] = 0;
7837 spill_reg_stored_to[last_reload_reg + k] = 0;
7840 /* The caller has already checked that REG dies or is set in INSN.
7841 It has also checked that we are optimizing, and thus some
7842 inaccuracies in the debugging information are acceptable.
7843 So we could just delete output_reload_insn. But in some cases
7844 we can improve the debugging information without sacrificing
7845 optimization - maybe even improving the code: See if the pseudo
7846 reg has been completely replaced with reload regs. If so, delete
7847 the store insn and forget we had a stack slot for the pseudo. */
7848 if (rld[j].out != rld[j].in
7849 && REG_N_DEATHS (REGNO (reg)) == 1
7850 && REG_N_SETS (REGNO (reg)) == 1
7851 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7852 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7854 rtx i2;
7856 /* We know that it was used only between here and the beginning of
7857 the current basic block. (We also know that the last use before
7858 INSN was the output reload we are thinking of deleting, but never
7859 mind that.) Search that range; see if any ref remains. */
7860 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7862 rtx set = single_set (i2);
7864 /* Uses which just store in the pseudo don't count,
7865 since if they are the only uses, they are dead. */
7866 if (set != 0 && SET_DEST (set) == reg)
7867 continue;
7868 if (LABEL_P (i2)
7869 || JUMP_P (i2))
7870 break;
7871 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7872 && reg_mentioned_p (reg, PATTERN (i2)))
7874 /* Some other ref remains; just delete the output reload we
7875 know to be dead. */
7876 delete_address_reloads (output_reload_insn, insn);
7877 delete_insn (output_reload_insn);
7878 return;
7882 /* Delete the now-dead stores into this pseudo. Note that this
7883 loop also takes care of deleting output_reload_insn. */
7884 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7886 rtx set = single_set (i2);
7888 if (set != 0 && SET_DEST (set) == reg)
7890 delete_address_reloads (i2, insn);
7891 delete_insn (i2);
7893 if (LABEL_P (i2)
7894 || JUMP_P (i2))
7895 break;
7898 /* For the debugging info, say the pseudo lives in this reload reg. */
7899 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7900 alter_reg (REGNO (reg), -1);
7902 else
7904 delete_address_reloads (output_reload_insn, insn);
7905 delete_insn (output_reload_insn);
7909 /* We are going to delete DEAD_INSN. Recursively delete loads of
7910 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7911 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7912 static void
7913 delete_address_reloads (rtx dead_insn, rtx current_insn)
7915 rtx set = single_set (dead_insn);
7916 rtx set2, dst, prev, next;
7917 if (set)
7919 rtx dst = SET_DEST (set);
7920 if (MEM_P (dst))
7921 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7923 /* If we deleted the store from a reloaded post_{in,de}c expression,
7924 we can delete the matching adds. */
7925 prev = PREV_INSN (dead_insn);
7926 next = NEXT_INSN (dead_insn);
7927 if (! prev || ! next)
7928 return;
7929 set = single_set (next);
7930 set2 = single_set (prev);
7931 if (! set || ! set2
7932 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7933 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7934 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7935 return;
7936 dst = SET_DEST (set);
7937 if (! rtx_equal_p (dst, SET_DEST (set2))
7938 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7939 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7940 || (INTVAL (XEXP (SET_SRC (set), 1))
7941 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7942 return;
7943 delete_related_insns (prev);
7944 delete_related_insns (next);
7947 /* Subfunction of delete_address_reloads: process registers found in X. */
7948 static void
7949 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7951 rtx prev, set, dst, i2;
7952 int i, j;
7953 enum rtx_code code = GET_CODE (x);
7955 if (code != REG)
7957 const char *fmt = GET_RTX_FORMAT (code);
7958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7960 if (fmt[i] == 'e')
7961 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7962 else if (fmt[i] == 'E')
7964 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7965 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7966 current_insn);
7969 return;
7972 if (spill_reg_order[REGNO (x)] < 0)
7973 return;
7975 /* Scan backwards for the insn that sets x. This might be a way back due
7976 to inheritance. */
7977 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7979 code = GET_CODE (prev);
7980 if (code == CODE_LABEL || code == JUMP_INSN)
7981 return;
7982 if (!INSN_P (prev))
7983 continue;
7984 if (reg_set_p (x, PATTERN (prev)))
7985 break;
7986 if (reg_referenced_p (x, PATTERN (prev)))
7987 return;
7989 if (! prev || INSN_UID (prev) < reload_first_uid)
7990 return;
7991 /* Check that PREV only sets the reload register. */
7992 set = single_set (prev);
7993 if (! set)
7994 return;
7995 dst = SET_DEST (set);
7996 if (!REG_P (dst)
7997 || ! rtx_equal_p (dst, x))
7998 return;
7999 if (! reg_set_p (dst, PATTERN (dead_insn)))
8001 /* Check if DST was used in a later insn -
8002 it might have been inherited. */
8003 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8005 if (LABEL_P (i2))
8006 break;
8007 if (! INSN_P (i2))
8008 continue;
8009 if (reg_referenced_p (dst, PATTERN (i2)))
8011 /* If there is a reference to the register in the current insn,
8012 it might be loaded in a non-inherited reload. If no other
8013 reload uses it, that means the register is set before
8014 referenced. */
8015 if (i2 == current_insn)
8017 for (j = n_reloads - 1; j >= 0; j--)
8018 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8019 || reload_override_in[j] == dst)
8020 return;
8021 for (j = n_reloads - 1; j >= 0; j--)
8022 if (rld[j].in && rld[j].reg_rtx == dst)
8023 break;
8024 if (j >= 0)
8025 break;
8027 return;
8029 if (JUMP_P (i2))
8030 break;
8031 /* If DST is still live at CURRENT_INSN, check if it is used for
8032 any reload. Note that even if CURRENT_INSN sets DST, we still
8033 have to check the reloads. */
8034 if (i2 == current_insn)
8036 for (j = n_reloads - 1; j >= 0; j--)
8037 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8038 || reload_override_in[j] == dst)
8039 return;
8040 /* ??? We can't finish the loop here, because dst might be
8041 allocated to a pseudo in this block if no reload in this
8042 block needs any of the classes containing DST - see
8043 spill_hard_reg. There is no easy way to tell this, so we
8044 have to scan till the end of the basic block. */
8046 if (reg_set_p (dst, PATTERN (i2)))
8047 break;
8050 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8051 reg_reloaded_contents[REGNO (dst)] = -1;
8052 delete_insn (prev);
8055 /* Output reload-insns to reload VALUE into RELOADREG.
8056 VALUE is an autoincrement or autodecrement RTX whose operand
8057 is a register or memory location;
8058 so reloading involves incrementing that location.
8059 IN is either identical to VALUE, or some cheaper place to reload from.
8061 INC_AMOUNT is the number to increment or decrement by (always positive).
8062 This cannot be deduced from VALUE.
8064 Return the instruction that stores into RELOADREG. */
8066 static rtx
8067 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8069 /* REG or MEM to be copied and incremented. */
8070 rtx incloc = XEXP (value, 0);
8071 /* Nonzero if increment after copying. */
8072 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
8073 rtx last;
8074 rtx inc;
8075 rtx add_insn;
8076 int code;
8077 rtx store;
8078 rtx real_in = in == value ? XEXP (in, 0) : in;
8080 /* No hard register is equivalent to this register after
8081 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8082 we could inc/dec that register as well (maybe even using it for
8083 the source), but I'm not sure it's worth worrying about. */
8084 if (REG_P (incloc))
8085 reg_last_reload_reg[REGNO (incloc)] = 0;
8087 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8088 inc_amount = -inc_amount;
8090 inc = GEN_INT (inc_amount);
8092 /* If this is post-increment, first copy the location to the reload reg. */
8093 if (post && real_in != reloadreg)
8094 emit_insn (gen_move_insn (reloadreg, real_in));
8096 if (in == value)
8098 /* See if we can directly increment INCLOC. Use a method similar to
8099 that in gen_reload. */
8101 last = get_last_insn ();
8102 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8103 gen_rtx_PLUS (GET_MODE (incloc),
8104 incloc, inc)));
8106 code = recog_memoized (add_insn);
8107 if (code >= 0)
8109 extract_insn (add_insn);
8110 if (constrain_operands (1))
8112 /* If this is a pre-increment and we have incremented the value
8113 where it lives, copy the incremented value to RELOADREG to
8114 be used as an address. */
8116 if (! post)
8117 emit_insn (gen_move_insn (reloadreg, incloc));
8119 return add_insn;
8122 delete_insns_since (last);
8125 /* If couldn't do the increment directly, must increment in RELOADREG.
8126 The way we do this depends on whether this is pre- or post-increment.
8127 For pre-increment, copy INCLOC to the reload register, increment it
8128 there, then save back. */
8130 if (! post)
8132 if (in != reloadreg)
8133 emit_insn (gen_move_insn (reloadreg, real_in));
8134 emit_insn (gen_add2_insn (reloadreg, inc));
8135 store = emit_insn (gen_move_insn (incloc, reloadreg));
8137 else
8139 /* Postincrement.
8140 Because this might be a jump insn or a compare, and because RELOADREG
8141 may not be available after the insn in an input reload, we must do
8142 the incrementation before the insn being reloaded for.
8144 We have already copied IN to RELOADREG. Increment the copy in
8145 RELOADREG, save that back, then decrement RELOADREG so it has
8146 the original value. */
8148 emit_insn (gen_add2_insn (reloadreg, inc));
8149 store = emit_insn (gen_move_insn (incloc, reloadreg));
8150 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8153 return store;
8156 #ifdef AUTO_INC_DEC
8157 static void
8158 add_auto_inc_notes (rtx insn, rtx x)
8160 enum rtx_code code = GET_CODE (x);
8161 const char *fmt;
8162 int i, j;
8164 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8166 REG_NOTES (insn)
8167 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8168 return;
8171 /* Scan all the operand sub-expressions. */
8172 fmt = GET_RTX_FORMAT (code);
8173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8175 if (fmt[i] == 'e')
8176 add_auto_inc_notes (insn, XEXP (x, i));
8177 else if (fmt[i] == 'E')
8178 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8179 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8182 #endif
8184 /* Copy EH notes from an insn to its reloads. */
8185 static void
8186 copy_eh_notes (rtx insn, rtx x)
8188 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8189 if (eh_note)
8191 for (; x != 0; x = NEXT_INSN (x))
8193 if (may_trap_p (PATTERN (x)))
8194 REG_NOTES (x)
8195 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8196 REG_NOTES (x));
8201 /* This is used by reload pass, that does emit some instructions after
8202 abnormal calls moving basic block end, but in fact it wants to emit
8203 them on the edge. Looks for abnormal call edges, find backward the
8204 proper call and fix the damage.
8206 Similar handle instructions throwing exceptions internally. */
8207 void
8208 fixup_abnormal_edges (void)
8210 bool inserted = false;
8211 basic_block bb;
8213 FOR_EACH_BB (bb)
8215 edge e;
8216 edge_iterator ei;
8218 /* Look for cases we are interested in - calls or instructions causing
8219 exceptions. */
8220 FOR_EACH_EDGE (e, ei, bb->succs)
8222 if (e->flags & EDGE_ABNORMAL_CALL)
8223 break;
8224 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8225 == (EDGE_ABNORMAL | EDGE_EH))
8226 break;
8228 if (e && !CALL_P (BB_END (bb))
8229 && !can_throw_internal (BB_END (bb)))
8231 rtx insn;
8233 /* Get past the new insns generated. Allow notes, as the insns
8234 may be already deleted. */
8235 insn = BB_END (bb);
8236 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8237 && !can_throw_internal (insn)
8238 && insn != BB_HEAD (bb))
8239 insn = PREV_INSN (insn);
8241 if (CALL_P (insn) || can_throw_internal (insn))
8243 rtx stop, next;
8245 stop = NEXT_INSN (BB_END (bb));
8246 BB_END (bb) = insn;
8247 insn = NEXT_INSN (insn);
8249 FOR_EACH_EDGE (e, ei, bb->succs)
8250 if (e->flags & EDGE_FALLTHRU)
8251 break;
8253 while (insn && insn != stop)
8255 next = NEXT_INSN (insn);
8256 if (INSN_P (insn))
8258 delete_insn (insn);
8260 /* Sometimes there's still the return value USE.
8261 If it's placed after a trapping call (i.e. that
8262 call is the last insn anyway), we have no fallthru
8263 edge. Simply delete this use and don't try to insert
8264 on the non-existent edge. */
8265 if (GET_CODE (PATTERN (insn)) != USE)
8267 /* We're not deleting it, we're moving it. */
8268 INSN_DELETED_P (insn) = 0;
8269 PREV_INSN (insn) = NULL_RTX;
8270 NEXT_INSN (insn) = NULL_RTX;
8272 insert_insn_on_edge (insn, e);
8273 inserted = true;
8276 insn = next;
8280 /* It may be that we don't find any such trapping insn. In this
8281 case we discovered quite late that the insn that had been
8282 marked as can_throw_internal in fact couldn't trap at all.
8283 So we should in fact delete the EH edges out of the block. */
8284 else
8285 purge_dead_edges (bb);
8289 /* We've possibly turned single trapping insn into multiple ones. */
8290 if (flag_non_call_exceptions)
8292 sbitmap blocks;
8293 blocks = sbitmap_alloc (last_basic_block);
8294 sbitmap_ones (blocks);
8295 find_many_sub_basic_blocks (blocks);
8298 if (inserted)
8299 commit_edge_insertions ();
8301 #ifdef ENABLE_CHECKING
8302 /* Verify that we didn't turn one trapping insn into many, and that
8303 we found and corrected all of the problems wrt fixups on the
8304 fallthru edge. */
8305 verify_flow_info ();
8306 #endif