Clean import of gcc-core-4.1.2.tar.bz2
[delight.git] / gcc-4.1.2 / gcc / config / arm / arm926ejs.md
blob244e3a91c1b0aa92979228bde54521733100e6c3
1 ;; ARM 926EJ-S Pipeline Description
2 ;; Copyright (C) 2003 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 2, or (at your option)
10 ;; any later version.
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING.  If not, write to the Free
19 ;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 ;; 02110-1301, USA.  */
22 ;; These descriptions are based on the information contained in the
23 ;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM
24 ;; Limited.
27 ;; This automaton provides a pipeline description for the ARM
28 ;; 926EJ-S core.
30 ;; The model given here assumes that the condition for all conditional
31 ;; instructions is "true", i.e., that all of the instructions are
32 ;; actually executed.
34 (define_automaton "arm926ejs")
36 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37 ;; Pipelines
38 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
40 ;; There is a single pipeline
42 ;;   The ALU pipeline has fetch, decode, execute, memory, and
43 ;;   write stages. We only need to model the execute, memory and write
44 ;;   stages.
46 (define_cpu_unit "e,m,w" "arm926ejs")
48 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
49 ;; ALU Instructions
50 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
52 ;; ALU instructions require three cycles to execute, and use the ALU
53 ;; pipeline in each of the three stages.  The results are available
54 ;; after the execute stage stage has finished.
56 ;; If the destination register is the PC, the pipelines are stalled
57 ;; for several cycles.  That case is not modeled here.
59 ;; ALU operations with no shifted operand
60 (define_insn_reservation "9_alu_op" 1 
61  (and (eq_attr "tune" "arm926ejs")
62       (eq_attr "type" "alu,alu_shift"))
63  "e,m,w")
65 ;; ALU operations with a shift-by-register operand
66 ;; These really stall in the decoder, in order to read
67 ;; the shift value in a second cycle. Pretend we take two cycles in
68 ;; the execute stage.
69 (define_insn_reservation "9_alu_shift_reg_op" 2 
70  (and (eq_attr "tune" "arm926ejs")
71       (eq_attr "type" "alu_shift_reg"))
72  "e*2,m,w")
74 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
75 ;; Multiplication Instructions
76 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
78 ;; Multiplication instructions loop in the execute stage until the
79 ;; instruction has been passed through the multiplier array enough
80 ;; times. Multiply operations occur in both the execute and memory
81 ;; stages of the pipeline
83 (define_insn_reservation "9_mult1" 3
84  (and (eq_attr "tune" "arm926ejs")
85       (eq_attr "insn" "smlalxy,mul,mla"))
86  "e*2,m,w")
88 (define_insn_reservation "9_mult2" 4
89  (and (eq_attr "tune" "arm926ejs")
90       (eq_attr "insn" "muls,mlas"))
91  "e*3,m,w")
93 (define_insn_reservation "9_mult3" 4
94  (and (eq_attr "tune" "arm926ejs")
95       (eq_attr "insn" "umull,umlal,smull,smlal"))
96  "e*3,m,w")
98 (define_insn_reservation "9_mult4" 5
99  (and (eq_attr "tune" "arm926ejs")
100       (eq_attr "insn" "umulls,umlals,smulls,smlals"))
101  "e*4,m,w")
103 (define_insn_reservation "9_mult5" 2
104  (and (eq_attr "tune" "arm926ejs")
105       (eq_attr "insn" "smulxy,smlaxy,smlawx"))
106  "e,m,w")
108 (define_insn_reservation "9_mult6" 3
109  (and (eq_attr "tune" "arm926ejs")
110       (eq_attr "insn" "smlalxy"))
111  "e*2,m,w")
113 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
114 ;; Load/Store Instructions
115 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
117 ;; The models for load/store instructions do not accurately describe
118 ;; the difference between operations with a base register writeback
119 ;; (such as "ldm!").  These models assume that all memory references
120 ;; hit in dcache.
122 ;; Loads with a shifted offset take 3 cycles, and are (a) probably the
123 ;; most common and (b) the pessimistic assumption will lead to fewer stalls.
124 (define_insn_reservation "9_load1_op" 3
125  (and (eq_attr "tune" "arm926ejs")
126       (eq_attr "type" "load1,load_byte"))
127  "e*2,m,w")
129 (define_insn_reservation "9_store1_op" 0
130  (and (eq_attr "tune" "arm926ejs")
131       (eq_attr "type" "store1"))
132  "e,m,w")
134 ;; multiple word loads and stores
135 (define_insn_reservation "9_load2_op" 3
136  (and (eq_attr "tune" "arm926ejs")
137       (eq_attr "type" "load2"))
138  "e,m*2,w")
140 (define_insn_reservation "9_load3_op" 4
141  (and (eq_attr "tune" "arm926ejs")
142       (eq_attr "type" "load3"))
143  "e,m*3,w")
145 (define_insn_reservation "9_load4_op" 5
146  (and (eq_attr "tune" "arm926ejs")
147       (eq_attr "type" "load4"))
148  "e,m*4,w")
150 (define_insn_reservation "9_store2_op" 0
151  (and (eq_attr "tune" "arm926ejs")
152       (eq_attr "type" "store2"))
153  "e,m*2,w")
155 (define_insn_reservation "9_store3_op" 0
156  (and (eq_attr "tune" "arm926ejs")
157       (eq_attr "type" "store3"))
158  "e,m*3,w")
160 (define_insn_reservation "9_store4_op" 0
161  (and (eq_attr "tune" "arm926ejs")
162       (eq_attr "type" "store4"))
163  "e,m*4,w")
165 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
166 ;; Branch and Call Instructions
167 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
169 ;; Branch instructions are difficult to model accurately.  The ARM
170 ;; core can predict most branches.  If the branch is predicted
171 ;; correctly, and predicted early enough, the branch can be completely
172 ;; eliminated from the instruction stream.  Some branches can
173 ;; therefore appear to require zero cycles to execute.  We assume that
174 ;; all branches are predicted correctly, and that the latency is
175 ;; therefore the minimum value.
177 (define_insn_reservation "9_branch_op" 0
178  (and (eq_attr "tune" "arm926ejs")
179       (eq_attr "type" "branch"))
180  "nothing")
182 ;; The latency for a call is not predictable.  Therefore, we use 32 as
183 ;; roughly equivalent to positive infinity.
185 (define_insn_reservation "9_call_op" 32
186  (and (eq_attr "tune" "arm926ejs")
187       (eq_attr "type" "call"))
188  "nothing")