pre-2.1.109-2..
[davej-history.git] / include / asm-i386 / pgtable.h
blob99f45a7aed57e6be7a940be86efe7fcc6f98a23c
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
4 #include <linux/config.h>
6 /*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
15 #ifndef __ASSEMBLY__
16 #include <asm/processor.h>
17 #include <linux/tasks.h>
19 /* Caches aren't brain-dead on the intel. */
20 #define flush_cache_all() do { } while (0)
21 #define flush_cache_mm(mm) do { } while (0)
22 #define flush_cache_range(mm, start, end) do { } while (0)
23 #define flush_cache_page(vma, vmaddr) do { } while (0)
24 #define flush_page_to_ram(page) do { } while (0)
25 #define flush_icache_range(start, end) do { } while (0)
28 * TLB flushing:
30 * - flush_tlb() flushes the current mm struct TLBs
31 * - flush_tlb_all() flushes all processes TLBs
32 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
33 * - flush_tlb_page(vma, vmaddr) flushes one page
34 * - flush_tlb_range(mm, start, end) flushes a range of pages
36 * ..but the i386 has somewhat limited tlb flushing capabilities,
37 * and page-granular flushes are available only on i486 and up.
40 #define __flush_tlb() \
41 do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
43 #ifdef CONFIG_M386
44 #define __flush_tlb_one(addr) flush_tlb()
45 #else
46 #define __flush_tlb_one(addr) \
47 __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
48 #endif
50 #ifndef __SMP__
52 #define flush_tlb() __flush_tlb()
53 #define flush_tlb_all() __flush_tlb()
54 #define local_flush_tlb() __flush_tlb()
56 static inline void flush_tlb_mm(struct mm_struct *mm)
58 if (mm == current->mm)
59 __flush_tlb();
62 static inline void flush_tlb_page(struct vm_area_struct *vma,
63 unsigned long addr)
65 if (vma->vm_mm == current->mm)
66 __flush_tlb_one(addr);
69 static inline void flush_tlb_range(struct mm_struct *mm,
70 unsigned long start, unsigned long end)
72 if (mm == current->mm)
73 __flush_tlb();
76 #else
79 * We aren't very clever about this yet - SMP could certainly
80 * avoid some global flushes..
83 #include <asm/smp.h>
85 #define local_flush_tlb() \
86 __flush_tlb()
89 #define CLEVER_SMP_INVALIDATE
90 #ifdef CLEVER_SMP_INVALIDATE
93 * Smarter SMP flushing macros.
94 * c/o Linus Torvalds.
96 * These mean you can really definitely utterly forget about
97 * writing to user space from interrupts. (Its not allowed anyway).
100 static inline void flush_tlb_current_task(void)
102 if (current->mm->count == 1) /* just one copy of this mm */
103 local_flush_tlb(); /* and that's us, so.. */
104 else
105 smp_flush_tlb();
108 #define flush_tlb() flush_tlb_current_task()
110 #define flush_tlb_all() smp_flush_tlb()
112 static inline void flush_tlb_mm(struct mm_struct * mm)
114 if (mm == current->mm && mm->count == 1)
115 local_flush_tlb();
116 else
117 smp_flush_tlb();
120 static inline void flush_tlb_page(struct vm_area_struct * vma,
121 unsigned long va)
123 if (vma->vm_mm == current->mm && current->mm->count == 1)
124 __flush_tlb_one(va);
125 else
126 smp_flush_tlb();
129 static inline void flush_tlb_range(struct mm_struct * mm,
130 unsigned long start, unsigned long end)
132 flush_tlb_mm(mm);
136 #else
138 #define flush_tlb() \
139 smp_flush_tlb()
141 #define flush_tlb_all() flush_tlb()
143 static inline void flush_tlb_mm(struct mm_struct *mm)
145 flush_tlb();
148 static inline void flush_tlb_page(struct vm_area_struct *vma,
149 unsigned long addr)
151 flush_tlb();
154 static inline void flush_tlb_range(struct mm_struct *mm,
155 unsigned long start, unsigned long end)
157 flush_tlb();
159 #endif
160 #endif
161 #endif /* !__ASSEMBLY__ */
164 /* Certain architectures need to do special things when PTEs
165 * within a page table are directly modified. Thus, the following
166 * hook is made available.
168 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
170 /* PMD_SHIFT determines the size of the area a second-level page table can map */
171 #define PMD_SHIFT 22
172 #define PMD_SIZE (1UL << PMD_SHIFT)
173 #define PMD_MASK (~(PMD_SIZE-1))
175 /* PGDIR_SHIFT determines what a third-level page table entry can map */
176 #define PGDIR_SHIFT 22
177 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
178 #define PGDIR_MASK (~(PGDIR_SIZE-1))
181 * entries per page directory level: the i386 is two-level, so
182 * we don't really have any PMD directory physically.
184 #define PTRS_PER_PTE 1024
185 #define PTRS_PER_PMD 1
186 #define PTRS_PER_PGD 1024
187 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
190 * pgd entries used up by user/kernel:
193 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
194 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
195 #define __USER_PGD_PTRS ((__PAGE_OFFSET >> PGDIR_SHIFT) & 0x3ff)
196 #define __KERNEL_PGD_PTRS (PTRS_PER_PGD-__USER_PGD_PTRS)
198 #ifndef __ASSEMBLY__
199 /* Just any arbitrary offset to the start of the vmalloc VM area: the
200 * current 8MB value just means that there will be a 8MB "hole" after the
201 * physical memory until the kernel virtual memory starts. That means that
202 * any out-of-bounds memory accesses will hopefully be caught.
203 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
204 * area for the same reason. ;)
206 #define VMALLOC_OFFSET (8*1024*1024)
207 #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
208 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
211 * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
212 * of the Pentium details, but assuming intel did the straightforward
213 * thing, this bit set in the page directory entry just means that
214 * the page directory entry points directly to a 4MB-aligned block of
215 * memory.
217 #define _PAGE_PRESENT 0x001
218 #define _PAGE_PROTNONE 0x002 /* If not present */
219 #define _PAGE_RW 0x002 /* If present */
220 #define _PAGE_USER 0x004
221 #define _PAGE_WT 0x008
222 #define _PAGE_PCD 0x010
223 #define _PAGE_ACCESSED 0x020
224 #define _PAGE_DIRTY 0x040
225 #define _PAGE_4M 0x080 /* 4 MB page, Pentium+.. */
226 #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
228 #define _PAGE_READABLE (_PAGE_PRESENT)
229 #define _PAGE_WRITABLE (_PAGE_PRESENT | _PAGE_RW)
231 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
232 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
233 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
235 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
236 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
237 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
238 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
239 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
242 * The i386 can't do page protection for execute, and considers that the same are read.
243 * Also, write permissions imply read permissions. This is the closest we can get..
245 #define __P000 PAGE_NONE
246 #define __P001 PAGE_READONLY
247 #define __P010 PAGE_COPY
248 #define __P011 PAGE_COPY
249 #define __P100 PAGE_READONLY
250 #define __P101 PAGE_READONLY
251 #define __P110 PAGE_COPY
252 #define __P111 PAGE_COPY
254 #define __S000 PAGE_NONE
255 #define __S001 PAGE_READONLY
256 #define __S010 PAGE_SHARED
257 #define __S011 PAGE_SHARED
258 #define __S100 PAGE_READONLY
259 #define __S101 PAGE_READONLY
260 #define __S110 PAGE_SHARED
261 #define __S111 PAGE_SHARED
264 * Define this if things work differently on an i386 and an i486:
265 * it will (on an i486) warn about kernel memory accesses that are
266 * done without a 'verify_area(VERIFY_WRITE,..)'
268 #undef TEST_VERIFY_AREA
270 /* page table for 0-4MB for everybody */
271 extern unsigned long pg0[1024];
272 /* zero page used for uninitialized stuff */
273 extern unsigned long empty_zero_page[1024];
276 * BAD_PAGETABLE is used when we need a bogus page-table, while
277 * BAD_PAGE is used for a bogus page.
279 * ZERO_PAGE is a global shared page that is always zero: used
280 * for zero-mapped memory areas etc..
282 extern pte_t __bad_page(void);
283 extern pte_t * __bad_pagetable(void);
285 #define BAD_PAGETABLE __bad_pagetable()
286 #define BAD_PAGE __bad_page()
287 #define ZERO_PAGE ((unsigned long) empty_zero_page)
289 /* number of bits that fit into a memory pointer */
290 #define BITS_PER_PTR (8*sizeof(unsigned long))
292 /* to align the pointer to a pointer address */
293 #define PTR_MASK (~(sizeof(void*)-1))
295 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
296 /* 64-bit machines, beware! SRB. */
297 #define SIZEOF_PTR_LOG2 2
299 /* to find an entry in a page-table */
300 #define PAGE_PTR(address) \
301 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
303 /* to set the page-dir */
304 #define SET_PAGE_DIR(tsk,pgdir) \
305 do { \
306 unsigned long __pgdir = __pa(pgdir); \
307 (tsk)->tss.cr3 = __pgdir; \
308 if ((tsk) == current) \
309 __asm__ __volatile__("movl %0,%%cr3": :"r" (__pgdir)); \
310 } while (0)
312 #define pte_none(x) (!pte_val(x))
313 #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
314 #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
316 #define pmd_none(x) (!pmd_val(x))
317 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
318 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
319 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
322 * The "pgd_xxx()" functions here are trivial for a folded two-level
323 * setup: the pgd is never bad, and a pmd always exists (as it's folded
324 * into the pgd entry)
326 extern inline int pgd_none(pgd_t pgd) { return 0; }
327 extern inline int pgd_bad(pgd_t pgd) { return 0; }
328 extern inline int pgd_present(pgd_t pgd) { return 1; }
329 extern inline void pgd_clear(pgd_t * pgdp) { }
332 * The following only work if pte_present() is true.
333 * Undefined behaviour if not..
335 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
336 extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
337 extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
338 extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
340 extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
341 extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
342 extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
343 extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
344 extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
345 extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
346 extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
347 extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
350 * These are harder, as writability is two bits, not one..
352 extern inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_WRITABLE) == _PAGE_WRITABLE; }
353 extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~((pte_val(pte) & _PAGE_PRESENT) << 1); return pte; }
354 extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
357 * Conversion functions: convert a page and protection to a page entry,
358 * and a page entry and page directory to the page they refer to.
360 #define mk_pte(page, pgprot) \
361 ({ pte_t __pte; pte_val(__pte) = __pa(page) + pgprot_val(pgprot); __pte; })
363 /* This takes a physical page address that is used by the remapping functions */
364 #define mk_pte_phys(physpage, pgprot) \
365 ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
367 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
368 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
370 #define pte_page(pte) \
371 ((unsigned long) __va(pte_val(pte) & PAGE_MASK))
373 #define pmd_page(pmd) \
374 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
376 /* to find an entry in a page-table-directory */
377 #define pgd_offset(mm, address) \
378 ((mm)->pgd + ((address) >> PGDIR_SHIFT))
380 /* to find an entry in a kernel page-table-directory */
381 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
383 /* Find an entry in the second-level page table.. */
384 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
386 return (pmd_t *) dir;
389 /* Find an entry in the third-level page table.. */
390 #define pte_offset(pmd, address) \
391 ((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2))))
394 * Allocate and free page tables. The xxx_kernel() versions are
395 * used to allocate a kernel page table - this turns on ASN bits
396 * if any.
399 #define pgd_quicklist (current_cpu_data.pgd_quick)
400 #define pmd_quicklist ((unsigned long *)0)
401 #define pte_quicklist (current_cpu_data.pte_quick)
402 #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
404 extern __inline__ pgd_t *get_pgd_slow(void)
406 pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init;
408 if (ret) {
409 init = pgd_offset(&init_mm, 0);
410 memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
411 memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
412 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
414 return ret;
417 extern __inline__ pgd_t *get_pgd_fast(void)
419 unsigned long *ret;
421 if((ret = pgd_quicklist) != NULL) {
422 pgd_quicklist = (unsigned long *)(*ret);
423 ret[0] = ret[1];
424 pgtable_cache_size--;
425 } else
426 ret = (unsigned long *)get_pgd_slow();
427 return (pgd_t *)ret;
430 extern __inline__ void free_pgd_fast(pgd_t *pgd)
432 *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
433 pgd_quicklist = (unsigned long *) pgd;
434 pgtable_cache_size++;
437 extern __inline__ void free_pgd_slow(pgd_t *pgd)
439 free_page((unsigned long)pgd);
442 extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
443 extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
445 extern __inline__ pte_t *get_pte_fast(void)
447 unsigned long *ret;
449 if((ret = (unsigned long *)pte_quicklist) != NULL) {
450 pte_quicklist = (unsigned long *)(*ret);
451 ret[0] = ret[1];
452 pgtable_cache_size--;
454 return (pte_t *)ret;
457 extern __inline__ void free_pte_fast(pte_t *pte)
459 *(unsigned long *)pte = (unsigned long) pte_quicklist;
460 pte_quicklist = (unsigned long *) pte;
461 pgtable_cache_size++;
464 extern __inline__ void free_pte_slow(pte_t *pte)
466 free_page((unsigned long)pte);
469 /* We don't use pmd cache, so these are dummy routines */
470 extern __inline__ pmd_t *get_pmd_fast(void)
472 return (pmd_t *)0;
475 extern __inline__ void free_pmd_fast(pmd_t *pmd)
479 extern __inline__ void free_pmd_slow(pmd_t *pmd)
483 extern void __bad_pte(pmd_t *pmd);
484 extern void __bad_pte_kernel(pmd_t *pmd);
486 #define pte_free_kernel(pte) free_pte_fast(pte)
487 #define pte_free(pte) free_pte_fast(pte)
488 #define pgd_free(pgd) free_pgd_fast(pgd)
489 #define pgd_alloc() get_pgd_fast()
491 extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
493 address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
494 if (pmd_none(*pmd)) {
495 pte_t * page = (pte_t *) get_pte_fast();
497 if (!page)
498 return get_pte_kernel_slow(pmd, address);
499 pmd_val(*pmd) = _KERNPG_TABLE + __pa(page);
500 return page + address;
502 if (pmd_bad(*pmd)) {
503 __bad_pte_kernel(pmd);
504 return NULL;
506 return (pte_t *) pmd_page(*pmd) + address;
509 extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
511 address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);
513 if (pmd_none(*pmd))
514 goto getnew;
515 if (pmd_bad(*pmd))
516 goto fix;
517 return (pte_t *) (pmd_page(*pmd) + address);
518 getnew:
520 unsigned long page = (unsigned long) get_pte_fast();
522 if (!page)
523 return get_pte_slow(pmd, address);
524 pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
525 return (pte_t *) (page + address);
527 fix:
528 __bad_pte(pmd);
529 return NULL;
533 * allocating and freeing a pmd is trivial: the 1-entry pmd is
534 * inside the pgd, so has no extra memory associated with it.
536 extern inline void pmd_free(pmd_t * pmd)
540 extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
542 return (pmd_t *) pgd;
545 #define pmd_free_kernel pmd_free
546 #define pmd_alloc_kernel pmd_alloc
548 extern inline void set_pgdir(unsigned long address, pgd_t entry)
550 struct task_struct * p;
551 pgd_t *pgd;
552 #ifdef __SMP__
553 int i;
554 #endif
556 read_lock(&tasklist_lock);
557 for_each_task(p) {
558 if (!p->mm)
559 continue;
560 *pgd_offset(p->mm,address) = entry;
562 read_unlock(&tasklist_lock);
563 #ifndef __SMP__
564 for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
565 pgd[address >> PGDIR_SHIFT] = entry;
566 #else
567 /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
568 modify pgd caches of other CPUs as well. -jj */
569 for (i = 0; i < NR_CPUS; i++)
570 for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
571 pgd[address >> PGDIR_SHIFT] = entry;
572 #endif
575 extern pgd_t swapper_pg_dir[1024];
578 * The i386 doesn't have any external MMU info: the kernel page
579 * tables contain all the necessary information.
581 extern inline void update_mmu_cache(struct vm_area_struct * vma,
582 unsigned long address, pte_t pte)
586 #define SWP_TYPE(entry) (((entry) >> 2) & 0x3f)
587 #define SWP_OFFSET(entry) ((entry) >> 8)
588 #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 8))
590 #define module_map vmalloc
591 #define module_unmap vfree
593 #endif /* !__ASSEMBLY__ */
595 #endif /* _I386_PAGE_H */