Import 2.3.4
[davej-history.git] / mm / slab.c
blob5c6075cb5357a32eb8900992026c2fd2a7dc9630
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * 11 April '97. Started multi-threading - markhe
7 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
8 * The sem is only needed when accessing/extending the cache-chain, which
9 * can never happen inside an interrupt (kmem_cache_create(),
10 * kmem_cache_shrink() and kmem_cache_reap()).
11 * This is a medium-term exclusion lock.
13 * Each cache has its own lock; 'c_spinlock'. This lock is needed only
14 * when accessing non-constant members of a cache-struct.
15 * Note: 'constant members' are assigned a value in kmem_cache_create() before
16 * the cache is linked into the cache-chain. The values never change, so not
17 * even a multi-reader lock is needed for these members.
18 * The c_spinlock is only ever held for a few cycles.
20 * To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
21 * maybe be sleeping and therefore not holding the semaphore/lock), the
22 * c_growing field is used. This also prevents reaping from a cache.
24 * Note, caches can _never_ be destroyed. When a sub-system (eg module) has
25 * finished with a cache, it can only be shrunk. This leaves the cache empty,
26 * but already enabled for re-use, eg. during a module re-load.
28 * Notes:
29 * o Constructors/deconstructors are called while the cache-lock
30 * is _not_ held. Therefore they _must_ be threaded.
31 * o Constructors must not attempt to allocate memory from the
32 * same cache that they are a constructor for - infinite loop!
33 * (There is no easy way to trap this.)
34 * o The per-cache locks must be obtained with local-interrupts disabled.
35 * o When compiled with debug support, and an object-verify (upon release)
36 * is request for a cache, the verify-function is called with the cache
37 * lock held. This helps debugging.
38 * o The functions called from try_to_free_page() must not attempt
39 * to allocate memory from a cache which is being grown.
40 * The buffer sub-system might try to allocate memory, via buffer_cachep.
41 * As this pri is passed to the SLAB, and then (if necessary) onto the
42 * gfp() funcs (which avoid calling try_to_free_page()), no deadlock
43 * should happen.
45 * The positioning of the per-cache lock is tricky. If the lock is
46 * placed on the same h/w cache line as commonly accessed members
47 * the number of L1 cache-line faults is reduced. However, this can
48 * lead to the cache-line ping-ponging between processors when the
49 * lock is in contention (and the common members are being accessed).
50 * Decided to keep it away from common members.
52 * More fine-graining is possible, with per-slab locks...but this might be
53 * taking fine graining too far, but would have the advantage;
54 * During most allocs/frees no writes occur to the cache-struct.
55 * Therefore a multi-reader/one writer lock could be used (the writer
56 * needed when the slab chain is being link/unlinked).
57 * As we would not have an exclusion lock for the cache-structure, one
58 * would be needed per-slab (for updating s_free ptr, and/or the contents
59 * of s_index).
60 * The above locking would allow parallel operations to different slabs within
61 * the same cache with reduced spinning.
63 * Per-engine slab caches, backed by a global cache (as in Mach's Zone allocator),
64 * would allow most allocations from the same cache to execute in parallel.
66 * At present, each engine can be growing a cache. This should be blocked.
68 * It is not currently 100% safe to examine the page_struct outside of a kernel
69 * or global cli lock. The risk is v. small, and non-fatal.
71 * Calls to printk() are not 100% safe (the function is not threaded). However,
72 * printk() is only used under an error condition, and the risk is v. small (not
73 * sure if the console write functions 'enjoy' executing multiple contexts in
74 * parallel. I guess they don't...).
75 * Note, for most calls to printk() any held cache-lock is dropped. This is not
76 * always done for text size reasons - having *_unlock() everywhere is bloat.
80 * An implementation of the Slab Allocator as described in outline in;
81 * UNIX Internals: The New Frontiers by Uresh Vahalia
82 * Pub: Prentice Hall ISBN 0-13-101908-2
83 * or with a little more detail in;
84 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
85 * Jeff Bonwick (Sun Microsystems).
86 * Presented at: USENIX Summer 1994 Technical Conference
90 * This implementation deviates from Bonwick's paper as it
91 * does not use a hash-table for large objects, but rather a per slab
92 * index to hold the bufctls. This allows the bufctl structure to
93 * be small (one word), but limits the number of objects a slab (not
94 * a cache) can contain when off-slab bufctls are used. The limit is the
95 * size of the largest general cache that does not use off-slab bufctls,
96 * divided by the size of a bufctl. For 32bit archs, is this 256/4 = 64.
97 * This is not serious, as it is only for large objects, when it is unwise
98 * to have too many per slab.
99 * Note: This limit can be raised by introducing a general cache whose size
100 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
103 #include <linux/config.h>
104 #include <linux/slab.h>
105 #include <linux/interrupt.h>
106 #include <linux/init.h>
108 /* If there is a different PAGE_SIZE around, and it works with this allocator,
109 * then change the following.
111 #if (PAGE_SIZE != 8192 && PAGE_SIZE != 4096)
112 #error Your page size is probably not correctly supported - please check
113 #endif
115 /* SLAB_MGMT_CHECKS - 1 to enable extra checks in kmem_cache_create().
116 * 0 if you wish to reduce memory usage.
118 * SLAB_DEBUG_SUPPORT - 1 for kmem_cache_create() to honour; SLAB_DEBUG_FREE,
119 * SLAB_DEBUG_INITIAL, SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller, code (especially in the critical paths).
122 * SLAB_STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller, code (especially in the critical paths).
125 * SLAB_SELFTEST - 1 to perform a few tests, mainly for development.
127 #define SLAB_MGMT_CHECKS 1
128 #define SLAB_DEBUG_SUPPORT 0
129 #define SLAB_STATS 0
130 #define SLAB_SELFTEST 0
132 /* Shouldn't this be in a header file somewhere? */
133 #define BYTES_PER_WORD sizeof(void *)
135 /* Legal flag mask for kmem_cache_create(). */
136 #if SLAB_DEBUG_SUPPORT
137 #if 0
138 #define SLAB_C_MASK (SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
139 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP| \
140 SLAB_HIGH_PACK)
141 #endif
142 #define SLAB_C_MASK (SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
143 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
144 #else
145 #if 0
146 #define SLAB_C_MASK (SLAB_HWCACHE_ALIGN|SLAB_NO_REAP|SLAB_HIGH_PACK)
147 #endif
148 #define SLAB_C_MASK (SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
149 #endif /* SLAB_DEBUG_SUPPORT */
151 /* Slab management struct.
152 * Manages the objs in a slab. Placed either at the end of mem allocated
153 * for a slab, or from an internal obj cache (cache_slabp).
154 * Slabs are chained into a partially ordered list; fully used first, partial
155 * next, and then fully free slabs.
156 * The first 4 members are referenced during an alloc/free operation, and
157 * should always appear on the same cache line.
158 * Note: The offset between some members _must_ match offsets within
159 * the kmem_cache_t - see kmem_cache_init() for the checks. */
161 #define SLAB_OFFSET_BITS 16 /* could make this larger for 64bit archs */
163 typedef struct kmem_slab_s {
164 struct kmem_bufctl_s *s_freep; /* ptr to first inactive obj in slab */
165 struct kmem_bufctl_s *s_index;
166 unsigned long s_magic;
167 unsigned long s_inuse; /* num of objs active in slab */
169 struct kmem_slab_s *s_nextp;
170 struct kmem_slab_s *s_prevp;
171 void *s_mem; /* addr of first obj in slab */
172 unsigned long s_offset:SLAB_OFFSET_BITS,
173 s_dma:1;
174 } kmem_slab_t;
176 /* When the slab management is on-slab, this gives the size to use. */
177 #define slab_align_size (L1_CACHE_ALIGN(sizeof(kmem_slab_t)))
179 /* Test for end of slab chain. */
180 #define kmem_slab_end(x) ((kmem_slab_t*)&((x)->c_offset))
182 /* s_magic */
183 #define SLAB_MAGIC_ALLOC 0xA5C32F2BUL /* slab is alive */
184 #define SLAB_MAGIC_DESTROYED 0xB2F23C5AUL /* slab has been destroyed */
186 /* Bufctl's are used for linking objs within a slab, identifying what slab an obj
187 * is in, and the address of the associated obj (for sanity checking with off-slab
188 * bufctls). What a bufctl contains depends upon the state of the obj and
189 * the organisation of the cache.
191 typedef struct kmem_bufctl_s {
192 union {
193 struct kmem_bufctl_s *buf_nextp;
194 kmem_slab_t *buf_slabp; /* slab for obj */
195 void * buf_objp;
196 } u;
197 } kmem_bufctl_t;
199 /* ...shorthand... */
200 #define buf_nextp u.buf_nextp
201 #define buf_slabp u.buf_slabp
202 #define buf_objp u.buf_objp
204 #if SLAB_DEBUG_SUPPORT
205 /* Magic nums for obj red zoning.
206 * Placed in the first word before and the first word after an obj.
208 #define SLAB_RED_MAGIC1 0x5A2CF071UL /* when obj is active */
209 #define SLAB_RED_MAGIC2 0x170FC2A5UL /* when obj is inactive */
211 /* ...and for poisoning */
212 #define SLAB_POISON_BYTE 0x5a /* byte value for poisoning */
213 #define SLAB_POISON_END 0xa5 /* end-byte of poisoning */
215 #endif /* SLAB_DEBUG_SUPPORT */
217 /* Cache struct - manages a cache.
218 * First four members are commonly referenced during an alloc/free operation.
220 struct kmem_cache_s {
221 kmem_slab_t *c_freep; /* first slab w. free objs */
222 unsigned long c_flags; /* constant flags */
223 unsigned long c_offset;
224 unsigned long c_num; /* # of objs per slab */
226 unsigned long c_magic;
227 unsigned long c_inuse; /* kept at zero */
228 kmem_slab_t *c_firstp; /* first slab in chain */
229 kmem_slab_t *c_lastp; /* last slab in chain */
231 spinlock_t c_spinlock;
232 unsigned long c_growing;
233 unsigned long c_dflags; /* dynamic flags */
234 size_t c_org_size;
235 unsigned long c_gfporder; /* order of pgs per slab (2^n) */
236 void (*c_ctor)(void *, kmem_cache_t *, unsigned long); /* constructor func */
237 void (*c_dtor)(void *, kmem_cache_t *, unsigned long); /* de-constructor func */
238 unsigned long c_align; /* alignment of objs */
239 size_t c_colour; /* cache colouring range */
240 size_t c_colour_next;/* cache colouring */
241 unsigned long c_failures;
242 const char *c_name;
243 struct kmem_cache_s *c_nextp;
244 kmem_cache_t *c_index_cachep;
245 #if SLAB_STATS
246 unsigned long c_num_active;
247 unsigned long c_num_allocations;
248 unsigned long c_high_mark;
249 unsigned long c_grown;
250 unsigned long c_reaped;
251 atomic_t c_errors;
252 #endif /* SLAB_STATS */
255 /* internal c_flags */
256 #define SLAB_CFLGS_OFF_SLAB 0x010000UL /* slab management in own cache */
257 #define SLAB_CFLGS_BUFCTL 0x020000UL /* bufctls in own cache */
258 #define SLAB_CFLGS_GENERAL 0x080000UL /* a general cache */
260 /* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
261 #define SLAB_CFLGS_GROWN 0x000002UL /* don't reap a recently grown */
263 #define SLAB_OFF_SLAB(x) ((x) & SLAB_CFLGS_OFF_SLAB)
264 #define SLAB_BUFCTL(x) ((x) & SLAB_CFLGS_BUFCTL)
265 #define SLAB_GROWN(x) ((x) & SLAB_CFLGS_GROWN)
267 #if SLAB_STATS
268 #define SLAB_STATS_INC_ACTIVE(x) ((x)->c_num_active++)
269 #define SLAB_STATS_DEC_ACTIVE(x) ((x)->c_num_active--)
270 #define SLAB_STATS_INC_ALLOCED(x) ((x)->c_num_allocations++)
271 #define SLAB_STATS_INC_GROWN(x) ((x)->c_grown++)
272 #define SLAB_STATS_INC_REAPED(x) ((x)->c_reaped++)
273 #define SLAB_STATS_SET_HIGH(x) do { if ((x)->c_num_active > (x)->c_high_mark) \
274 (x)->c_high_mark = (x)->c_num_active; \
275 } while (0)
276 #define SLAB_STATS_INC_ERR(x) (atomic_inc(&(x)->c_errors))
277 #else
278 #define SLAB_STATS_INC_ACTIVE(x)
279 #define SLAB_STATS_DEC_ACTIVE(x)
280 #define SLAB_STATS_INC_ALLOCED(x)
281 #define SLAB_STATS_INC_GROWN(x)
282 #define SLAB_STATS_INC_REAPED(x)
283 #define SLAB_STATS_SET_HIGH(x)
284 #define SLAB_STATS_INC_ERR(x)
285 #endif /* SLAB_STATS */
287 #if SLAB_SELFTEST
288 #if !SLAB_DEBUG_SUPPORT
289 #error Debug support needed for self-test
290 #endif
291 static void kmem_self_test(void);
292 #endif /* SLAB_SELFTEST */
294 /* c_magic - used to detect 'out of slabs' in __kmem_cache_alloc() */
295 #define SLAB_C_MAGIC 0x4F17A36DUL
297 /* maximum size of an obj (in 2^order pages) */
298 #define SLAB_OBJ_MAX_ORDER 5 /* 32 pages */
300 /* maximum num of pages for a slab (prevents large requests to the VM layer) */
301 #define SLAB_MAX_GFP_ORDER 5 /* 32 pages */
303 /* the 'preferred' minimum num of objs per slab - maybe less for large objs */
304 #define SLAB_MIN_OBJS_PER_SLAB 4
306 /* If the num of objs per slab is <= SLAB_MIN_OBJS_PER_SLAB,
307 * then the page order must be less than this before trying the next order.
309 #define SLAB_BREAK_GFP_ORDER_HI 2
310 #define SLAB_BREAK_GFP_ORDER_LO 1
311 static int slab_break_gfp_order = SLAB_BREAK_GFP_ORDER_LO;
313 /* Macros for storing/retrieving the cachep and or slab from the
314 * global 'mem_map'. With off-slab bufctls, these are used to find the
315 * slab an obj belongs to. With kmalloc(), and kfree(), these are used
316 * to find the cache which an obj belongs to.
318 #define SLAB_SET_PAGE_CACHE(pg, x) ((pg)->next = (struct page *)(x))
319 #define SLAB_GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->next)
320 #define SLAB_SET_PAGE_SLAB(pg, x) ((pg)->prev = (struct page *)(x))
321 #define SLAB_GET_PAGE_SLAB(pg) ((kmem_slab_t *)(pg)->prev)
323 /* Size description struct for general caches. */
324 typedef struct cache_sizes {
325 size_t cs_size;
326 kmem_cache_t *cs_cachep;
327 } cache_sizes_t;
329 static cache_sizes_t cache_sizes[] = {
330 #if PAGE_SIZE == 4096
331 { 32, NULL},
332 #endif
333 { 64, NULL},
334 { 128, NULL},
335 { 256, NULL},
336 { 512, NULL},
337 {1024, NULL},
338 {2048, NULL},
339 {4096, NULL},
340 {8192, NULL},
341 {16384, NULL},
342 {32768, NULL},
343 {65536, NULL},
344 {131072, NULL},
345 {0, NULL}
348 /* Names for the general caches. Not placed into the sizes struct for
349 * a good reason; the string ptr is not needed while searching in kmalloc(),
350 * and would 'get-in-the-way' in the h/w cache.
352 static char *cache_sizes_name[] = {
353 #if PAGE_SIZE == 4096
354 "size-32",
355 #endif
356 "size-64",
357 "size-128",
358 "size-256",
359 "size-512",
360 "size-1024",
361 "size-2048",
362 "size-4096",
363 "size-8192",
364 "size-16384",
365 "size-32768",
366 "size-65536",
367 "size-131072"
370 /* internal cache of cache description objs */
371 static kmem_cache_t cache_cache = {
372 /* freep, flags */ kmem_slab_end(&cache_cache), SLAB_NO_REAP,
373 /* offset, num */ sizeof(kmem_cache_t), 0,
374 /* c_magic, c_inuse */ SLAB_C_MAGIC, 0,
375 /* firstp, lastp */ kmem_slab_end(&cache_cache), kmem_slab_end(&cache_cache),
376 /* spinlock */ SPIN_LOCK_UNLOCKED,
377 /* growing */ 0,
378 /* dflags */ 0,
379 /* org_size, gfp */ 0, 0,
380 /* ctor, dtor, align */ NULL, NULL, L1_CACHE_BYTES,
381 /* colour, colour_next */ 0, 0,
382 /* failures */ 0,
383 /* name */ "kmem_cache",
384 /* nextp */ &cache_cache,
385 /* index */ NULL,
388 /* Guard access to the cache-chain. */
389 static struct semaphore cache_chain_sem;
391 /* Place maintainer for reaping. */
392 static kmem_cache_t *clock_searchp = &cache_cache;
394 /* Internal slab management cache, for when slab management is off-slab. */
395 static kmem_cache_t *cache_slabp = NULL;
397 /* Max number of objs-per-slab for caches which use bufctl's.
398 * Needed to avoid a possible looping condition in kmem_cache_grow().
400 static unsigned long bufctl_limit = 0;
402 /* Initialisation - setup the `cache' cache. */
403 long __init kmem_cache_init(long start, long end)
405 size_t size, i;
407 #define kmem_slab_offset(x) ((unsigned long)&((kmem_slab_t *)0)->x)
408 #define kmem_slab_diff(a,b) (kmem_slab_offset(a) - kmem_slab_offset(b))
409 #define kmem_cache_offset(x) ((unsigned long)&((kmem_cache_t *)0)->x)
410 #define kmem_cache_diff(a,b) (kmem_cache_offset(a) - kmem_cache_offset(b))
412 /* Sanity checks... */
413 if (kmem_cache_diff(c_firstp, c_magic) != kmem_slab_diff(s_nextp, s_magic) ||
414 kmem_cache_diff(c_firstp, c_inuse) != kmem_slab_diff(s_nextp, s_inuse) ||
415 ((kmem_cache_offset(c_lastp) -
416 ((unsigned long) kmem_slab_end((kmem_cache_t*)NULL))) !=
417 kmem_slab_offset(s_prevp)) ||
418 kmem_cache_diff(c_lastp, c_firstp) != kmem_slab_diff(s_prevp, s_nextp)) {
419 /* Offsets to the magic are incorrect, either the structures have
420 * been incorrectly changed, or adjustments are needed for your
421 * architecture.
423 panic("kmem_cache_init(): Offsets are wrong - I've been messed with!");
424 /* NOTREACHED */
426 #undef kmem_cache_offset
427 #undef kmem_cache_diff
428 #undef kmem_slab_offset
429 #undef kmem_slab_diff
431 init_MUTEX(&cache_chain_sem);
433 size = cache_cache.c_offset + sizeof(kmem_bufctl_t);
434 size += (L1_CACHE_BYTES-1);
435 size &= ~(L1_CACHE_BYTES-1);
436 cache_cache.c_offset = size-sizeof(kmem_bufctl_t);
438 i = (PAGE_SIZE<<cache_cache.c_gfporder)-slab_align_size;
439 cache_cache.c_num = i / size; /* num of objs per slab */
441 /* Cache colouring. */
442 cache_cache.c_colour = (i-(cache_cache.c_num*size))/L1_CACHE_BYTES;
443 cache_cache.c_colour_next = cache_cache.c_colour;
446 * Fragmentation resistance on low memory - only use bigger
447 * page orders on machines with more than 32MB of memory.
449 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
450 slab_break_gfp_order = SLAB_BREAK_GFP_ORDER_HI;
451 return start;
454 /* Initialisation - setup remaining internal and general caches.
455 * Called after the gfp() functions have been enabled, and before smp_init().
457 void __init kmem_cache_sizes_init(void)
459 unsigned int found = 0;
461 cache_slabp = kmem_cache_create("slab_cache", sizeof(kmem_slab_t),
462 0, SLAB_HWCACHE_ALIGN, NULL, NULL);
463 if (cache_slabp) {
464 char **names = cache_sizes_name;
465 cache_sizes_t *sizes = cache_sizes;
466 do {
467 /* For performance, all the general caches are L1 aligned.
468 * This should be particularly beneficial on SMP boxes, as it
469 * eliminates "false sharing".
470 * Note for systems short on memory removing the alignment will
471 * allow tighter packing of the smaller caches. */
472 if (!(sizes->cs_cachep =
473 kmem_cache_create(*names++, sizes->cs_size,
474 0, SLAB_HWCACHE_ALIGN, NULL, NULL)))
475 goto panic_time;
476 if (!found) {
477 /* Inc off-slab bufctl limit until the ceiling is hit. */
478 if (SLAB_BUFCTL(sizes->cs_cachep->c_flags))
479 found++;
480 else
481 bufctl_limit =
482 (sizes->cs_size/sizeof(kmem_bufctl_t));
484 sizes->cs_cachep->c_flags |= SLAB_CFLGS_GENERAL;
485 sizes++;
486 } while (sizes->cs_size);
487 #if SLAB_SELFTEST
488 kmem_self_test();
489 #endif /* SLAB_SELFTEST */
490 return;
492 panic_time:
493 panic("kmem_cache_sizes_init: Error creating caches");
494 /* NOTREACHED */
497 /* Interface to system's page allocator. Dma pts to non-zero if all
498 * of memory is DMAable. No need to hold the cache-lock.
500 static inline void *
501 kmem_getpages(kmem_cache_t *cachep, unsigned long flags, unsigned int *dma)
503 void *addr;
505 *dma = flags & SLAB_DMA;
506 addr = (void*) __get_free_pages(flags, cachep->c_gfporder);
507 /* Assume that now we have the pages no one else can legally
508 * messes with the 'struct page's.
509 * However vm_scan() might try to test the structure to see if
510 * it is a named-page or buffer-page. The members it tests are
511 * of no interest here.....
513 if (!*dma && addr) {
514 /* Need to check if can dma. */
515 struct page *page = mem_map + MAP_NR(addr);
516 *dma = 1<<cachep->c_gfporder;
517 while ((*dma)--) {
518 if (!PageDMA(page)) {
519 *dma = 0;
520 break;
522 page++;
525 return addr;
528 /* Interface to system's page release. */
529 static inline void
530 kmem_freepages(kmem_cache_t *cachep, void *addr)
532 unsigned long i = (1<<cachep->c_gfporder);
533 struct page *page = &mem_map[MAP_NR(addr)];
535 /* free_pages() does not clear the type bit - we do that.
536 * The pages have been unlinked from their cache-slab,
537 * but their 'struct page's might be accessed in
538 * vm_scan(). Shouldn't be a worry.
540 while (i--) {
541 PageClearSlab(page);
542 page++;
544 free_pages((unsigned long)addr, cachep->c_gfporder);
547 #if SLAB_DEBUG_SUPPORT
548 static inline void
549 kmem_poison_obj(kmem_cache_t *cachep, void *addr)
551 memset(addr, SLAB_POISON_BYTE, cachep->c_org_size);
552 *(unsigned char *)(addr+cachep->c_org_size-1) = SLAB_POISON_END;
555 static inline int
556 kmem_check_poison_obj(kmem_cache_t *cachep, void *addr)
558 void *end;
559 end = memchr(addr, SLAB_POISON_END, cachep->c_org_size);
560 if (end != (addr+cachep->c_org_size-1))
561 return 1;
562 return 0;
564 #endif /* SLAB_DEBUG_SUPPORT */
566 /* Three slab chain funcs - all called with ints disabled and the appropriate
567 * cache-lock held.
569 static inline void
570 kmem_slab_unlink(kmem_slab_t *slabp)
572 kmem_slab_t *prevp = slabp->s_prevp;
573 kmem_slab_t *nextp = slabp->s_nextp;
574 prevp->s_nextp = nextp;
575 nextp->s_prevp = prevp;
578 static inline void
579 kmem_slab_link_end(kmem_cache_t *cachep, kmem_slab_t *slabp)
581 kmem_slab_t *lastp = cachep->c_lastp;
582 slabp->s_nextp = kmem_slab_end(cachep);
583 slabp->s_prevp = lastp;
584 cachep->c_lastp = slabp;
585 lastp->s_nextp = slabp;
588 static inline void
589 kmem_slab_link_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
591 kmem_slab_t *nextp = cachep->c_freep;
592 kmem_slab_t *prevp = nextp->s_prevp;
593 slabp->s_nextp = nextp;
594 slabp->s_prevp = prevp;
595 nextp->s_prevp = slabp;
596 slabp->s_prevp->s_nextp = slabp;
599 /* Destroy all the objs in a slab, and release the mem back to the system.
600 * Before calling the slab must have been unlinked from the cache.
601 * The cache-lock is not held/needed.
603 static void
604 kmem_slab_destroy(kmem_cache_t *cachep, kmem_slab_t *slabp)
606 if (cachep->c_dtor
607 #if SLAB_DEBUG_SUPPORT
608 || cachep->c_flags & (SLAB_POISON | SLAB_RED_ZONE)
609 #endif /*SLAB_DEBUG_SUPPORT*/
611 /* Doesn't use the bufctl ptrs to find objs. */
612 unsigned long num = cachep->c_num;
613 void *objp = slabp->s_mem;
614 do {
615 #if SLAB_DEBUG_SUPPORT
616 if (cachep->c_flags & SLAB_RED_ZONE) {
617 if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1)
618 printk(KERN_ERR "kmem_slab_destroy: "
619 "Bad front redzone - %s\n",
620 cachep->c_name);
621 objp += BYTES_PER_WORD;
622 if (*((unsigned long*)(objp+cachep->c_org_size)) !=
623 SLAB_RED_MAGIC1)
624 printk(KERN_ERR "kmem_slab_destroy: "
625 "Bad rear redzone - %s\n",
626 cachep->c_name);
628 if (cachep->c_dtor)
629 #endif /*SLAB_DEBUG_SUPPORT*/
630 (cachep->c_dtor)(objp, cachep, 0);
631 #if SLAB_DEBUG_SUPPORT
632 else if (cachep->c_flags & SLAB_POISON) {
633 if (kmem_check_poison_obj(cachep, objp))
634 printk(KERN_ERR "kmem_slab_destroy: "
635 "Bad poison - %s\n", cachep->c_name);
637 if (cachep->c_flags & SLAB_RED_ZONE)
638 objp -= BYTES_PER_WORD;
639 #endif /* SLAB_DEBUG_SUPPORT */
640 objp += cachep->c_offset;
641 if (!slabp->s_index)
642 objp += sizeof(kmem_bufctl_t);
643 } while (--num);
646 slabp->s_magic = SLAB_MAGIC_DESTROYED;
647 if (slabp->s_index)
648 kmem_cache_free(cachep->c_index_cachep, slabp->s_index);
649 kmem_freepages(cachep, slabp->s_mem-slabp->s_offset);
650 if (SLAB_OFF_SLAB(cachep->c_flags))
651 kmem_cache_free(cache_slabp, slabp);
654 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
655 static inline size_t
656 kmem_cache_cal_waste(unsigned long gfporder, size_t size, size_t extra,
657 unsigned long flags, size_t *left_over, unsigned long *num)
659 size_t wastage = PAGE_SIZE<<gfporder;
661 if (SLAB_OFF_SLAB(flags))
662 gfporder = 0;
663 else
664 gfporder = slab_align_size;
665 wastage -= gfporder;
666 *num = wastage / size;
667 wastage -= (*num * size);
668 *left_over = wastage;
670 return (wastage + gfporder + (extra * *num));
673 /* Create a cache:
674 * Returns a ptr to the cache on success, NULL on failure.
675 * Cannot be called within a int, but can be interrupted.
676 * NOTE: The 'name' is assumed to be memory that is _not_ going to disappear.
678 kmem_cache_t *
679 kmem_cache_create(const char *name, size_t size, size_t offset,
680 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
681 void (*dtor)(void*, kmem_cache_t *, unsigned long))
683 const char *func_nm= KERN_ERR "kmem_create: ";
684 kmem_cache_t *searchp;
685 kmem_cache_t *cachep=NULL;
686 size_t extra;
687 size_t left_over;
688 size_t align;
690 /* Sanity checks... */
691 #if SLAB_MGMT_CHECKS
692 if (!name) {
693 printk("%sNULL ptr\n", func_nm);
694 goto opps;
696 if (in_interrupt()) {
697 printk("%sCalled during int - %s\n", func_nm, name);
698 goto opps;
701 if (size < BYTES_PER_WORD) {
702 printk("%sSize too small %d - %s\n", func_nm, (int) size, name);
703 size = BYTES_PER_WORD;
706 if (size > ((1<<SLAB_OBJ_MAX_ORDER)*PAGE_SIZE)) {
707 printk("%sSize too large %d - %s\n", func_nm, (int) size, name);
708 goto opps;
711 if (dtor && !ctor) {
712 /* Decon, but no con - doesn't make sense */
713 printk("%sDecon but no con - %s\n", func_nm, name);
714 goto opps;
717 if (offset < 0 || offset > size) {
718 printk("%sOffset weird %d - %s\n", func_nm, (int) offset, name);
719 offset = 0;
722 #if SLAB_DEBUG_SUPPORT
723 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
724 /* No constructor, but inital state check requested */
725 printk("%sNo con, but init state check requested - %s\n", func_nm, name);
726 flags &= ~SLAB_DEBUG_INITIAL;
729 if ((flags & SLAB_POISON) && ctor) {
730 /* request for poisoning, but we can't do that with a constructor */
731 printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
732 flags &= ~SLAB_POISON;
734 #if 0
735 if ((flags & SLAB_HIGH_PACK) && ctor) {
736 printk("%sHigh pack requested, but con given - %s\n", func_nm, name);
737 flags &= ~SLAB_HIGH_PACK;
739 if ((flags & SLAB_HIGH_PACK) && (flags & (SLAB_POISON|SLAB_RED_ZONE))) {
740 printk("%sHigh pack requested, but with poisoning/red-zoning - %s\n",
741 func_nm, name);
742 flags &= ~SLAB_HIGH_PACK;
744 #endif
745 #endif /* SLAB_DEBUG_SUPPORT */
746 #endif /* SLAB_MGMT_CHECKS */
748 /* Always checks flags, a caller might be expecting debug
749 * support which isn't available.
751 if (flags & ~SLAB_C_MASK) {
752 printk("%sIllgl flg %lX - %s\n", func_nm, flags, name);
753 flags &= SLAB_C_MASK;
756 /* Get cache's description obj. */
757 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
758 if (!cachep)
759 goto opps;
760 memset(cachep, 0, sizeof(kmem_cache_t));
762 /* Check that size is in terms of words. This is needed to avoid
763 * unaligned accesses for some archs when redzoning is used, and makes
764 * sure any on-slab bufctl's are also correctly aligned.
766 if (size & (BYTES_PER_WORD-1)) {
767 size += (BYTES_PER_WORD-1);
768 size &= ~(BYTES_PER_WORD-1);
769 printk("%sForcing size word alignment - %s\n", func_nm, name);
772 cachep->c_org_size = size;
773 #if SLAB_DEBUG_SUPPORT
774 if (flags & SLAB_RED_ZONE) {
775 /* There is no point trying to honour cache alignment when redzoning. */
776 flags &= ~SLAB_HWCACHE_ALIGN;
777 size += 2*BYTES_PER_WORD; /* words for redzone */
779 #endif /* SLAB_DEBUG_SUPPORT */
781 align = BYTES_PER_WORD;
782 if (flags & SLAB_HWCACHE_ALIGN)
783 align = L1_CACHE_BYTES;
785 /* Determine if the slab management and/or bufclts are 'on' or 'off' slab. */
786 extra = sizeof(kmem_bufctl_t);
787 if (size < (PAGE_SIZE>>3)) {
788 /* Size is small(ish). Use packing where bufctl size per
789 * obj is low, and slab management is on-slab.
791 #if 0
792 if ((flags & SLAB_HIGH_PACK)) {
793 /* Special high packing for small objects
794 * (mainly for vm_mapping structs, but
795 * others can use it).
797 if (size == (L1_CACHE_BYTES/4) || size == (L1_CACHE_BYTES/2) ||
798 size == L1_CACHE_BYTES) {
799 /* The bufctl is stored with the object. */
800 extra = 0;
801 } else
802 flags &= ~SLAB_HIGH_PACK;
804 #endif
805 } else {
806 /* Size is large, assume best to place the slab management obj
807 * off-slab (should allow better packing of objs).
809 flags |= SLAB_CFLGS_OFF_SLAB;
810 if (!(size & ~PAGE_MASK) || size == (PAGE_SIZE/2)
811 || size == (PAGE_SIZE/4) || size == (PAGE_SIZE/8)) {
812 /* To avoid waste the bufctls are off-slab... */
813 flags |= SLAB_CFLGS_BUFCTL;
814 extra = 0;
815 } /* else slab management is off-slab, but freelist pointers are on. */
817 size += extra;
819 if (flags & SLAB_HWCACHE_ALIGN) {
820 /* Need to adjust size so that objs are cache aligned. */
821 if (size > (L1_CACHE_BYTES/2)) {
822 size_t words = size % L1_CACHE_BYTES;
823 if (words)
824 size += (L1_CACHE_BYTES-words);
825 } else {
826 /* Small obj size, can get at least two per cache line. */
827 int num_per_line = L1_CACHE_BYTES/size;
828 left_over = L1_CACHE_BYTES - (num_per_line*size);
829 if (left_over) {
830 /* Need to adjust size so objs cache align. */
831 if (left_over%num_per_line) {
832 /* Odd num of objs per line - fixup. */
833 num_per_line--;
834 left_over += size;
836 size += (left_over/num_per_line);
839 } else if (!(size%L1_CACHE_BYTES)) {
840 /* Size happens to cache align... */
841 flags |= SLAB_HWCACHE_ALIGN;
842 align = L1_CACHE_BYTES;
845 /* Cal size (in pages) of slabs, and the num of objs per slab.
846 * This could be made much more intelligent. For now, try to avoid
847 * using high page-orders for slabs. When the gfp() funcs are more
848 * friendly towards high-order requests, this should be changed.
850 do {
851 size_t wastage;
852 unsigned int break_flag = 0;
853 cal_wastage:
854 wastage = kmem_cache_cal_waste(cachep->c_gfporder, size, extra,
855 flags, &left_over, &cachep->c_num);
856 if (!cachep->c_num)
857 goto next;
858 if (break_flag)
859 break;
860 if (SLAB_BUFCTL(flags) && cachep->c_num > bufctl_limit) {
861 /* Oops, this num of objs will cause problems. */
862 cachep->c_gfporder--;
863 break_flag++;
864 goto cal_wastage;
866 if (cachep->c_gfporder == SLAB_MAX_GFP_ORDER)
867 break;
869 /* Large num of objs is good, but v. large slabs are currently
870 * bad for the gfp()s.
872 if (cachep->c_num <= SLAB_MIN_OBJS_PER_SLAB) {
873 if (cachep->c_gfporder < slab_break_gfp_order)
874 goto next;
877 /* Stop caches with small objs having a large num of pages. */
878 if (left_over <= slab_align_size)
879 break;
880 if ((wastage*8) <= (PAGE_SIZE<<cachep->c_gfporder))
881 break; /* Acceptable internal fragmentation. */
882 next:
883 cachep->c_gfporder++;
884 } while (1);
886 /* If the slab has been placed off-slab, and we have enough space then
887 * move it on-slab. This is at the expense of any extra colouring.
889 if ((flags & SLAB_CFLGS_OFF_SLAB) && !SLAB_BUFCTL(flags) &&
890 left_over >= slab_align_size) {
891 flags &= ~SLAB_CFLGS_OFF_SLAB;
892 left_over -= slab_align_size;
895 /* Offset must be a multiple of the alignment. */
896 offset += (align-1);
897 offset &= ~(align-1);
899 /* Mess around with the offset alignment. */
900 if (!left_over) {
901 offset = 0;
902 } else if (left_over < offset) {
903 offset = align;
904 if (flags & SLAB_HWCACHE_ALIGN) {
905 if (left_over < offset)
906 offset = 0;
907 } else {
908 /* Offset is BYTES_PER_WORD, and left_over is at
909 * least BYTES_PER_WORD.
911 if (left_over >= (BYTES_PER_WORD*2)) {
912 offset >>= 1;
913 if (left_over >= (BYTES_PER_WORD*4))
914 offset >>= 1;
917 } else if (!offset) {
918 /* No offset requested, but space enough - give one. */
919 offset = left_over/align;
920 if (flags & SLAB_HWCACHE_ALIGN) {
921 if (offset >= 8) {
922 /* A large number of colours - use a larger alignment. */
923 align <<= 1;
925 } else {
926 if (offset >= 10) {
927 align <<= 1;
928 if (offset >= 16)
929 align <<= 1;
932 offset = align;
935 #if 0
936 printk("%s: Left_over:%d Align:%d Size:%d\n", name, left_over, offset, size);
937 #endif
939 if ((cachep->c_align = (unsigned long) offset))
940 cachep->c_colour = (left_over/offset);
941 cachep->c_colour_next = cachep->c_colour;
943 /* If the bufctl's are on-slab, c_offset does not include the size of bufctl. */
944 if (!SLAB_BUFCTL(flags))
945 size -= sizeof(kmem_bufctl_t);
946 else
947 cachep->c_index_cachep =
948 kmem_find_general_cachep(cachep->c_num*sizeof(kmem_bufctl_t));
949 cachep->c_offset = (unsigned long) size;
950 cachep->c_freep = kmem_slab_end(cachep);
951 cachep->c_firstp = kmem_slab_end(cachep);
952 cachep->c_lastp = kmem_slab_end(cachep);
953 cachep->c_flags = flags;
954 cachep->c_ctor = ctor;
955 cachep->c_dtor = dtor;
956 cachep->c_magic = SLAB_C_MAGIC;
957 cachep->c_name = name; /* Simply point to the name. */
958 spin_lock_init(&cachep->c_spinlock);
960 /* Need the semaphore to access the chain. */
961 down(&cache_chain_sem);
962 searchp = &cache_cache;
963 do {
964 /* The name field is constant - no lock needed. */
965 if (!strcmp(searchp->c_name, name)) {
966 printk("%sDup name - %s\n", func_nm, name);
967 break;
969 searchp = searchp->c_nextp;
970 } while (searchp != &cache_cache);
972 /* There is no reason to lock our new cache before we
973 * link it in - no one knows about it yet...
975 cachep->c_nextp = cache_cache.c_nextp;
976 cache_cache.c_nextp = cachep;
977 up(&cache_chain_sem);
978 opps:
979 return cachep;
982 /* Shrink a cache. Releases as many slabs as possible for a cache.
983 * It is expected this function will be called by a module when it is
984 * unloaded. The cache is _not_ removed, this creates too many problems and
985 * the cache-structure does not take up much room. A module should keep its
986 * cache pointer(s) in unloaded memory, so when reloaded it knows the cache
987 * is available. To help debugging, a zero exit status indicates all slabs
988 * were released.
991 kmem_cache_shrink(kmem_cache_t *cachep)
993 kmem_cache_t *searchp;
994 kmem_slab_t *slabp;
995 int ret;
997 if (!cachep) {
998 printk(KERN_ERR "kmem_shrink: NULL ptr\n");
999 return 2;
1001 if (in_interrupt()) {
1002 printk(KERN_ERR "kmem_shrink: Called during int - %s\n", cachep->c_name);
1003 return 2;
1006 /* Find the cache in the chain of caches. */
1007 down(&cache_chain_sem); /* Semaphore is needed. */
1008 searchp = &cache_cache;
1009 for (;searchp->c_nextp != &cache_cache; searchp = searchp->c_nextp) {
1010 if (searchp->c_nextp != cachep)
1011 continue;
1013 /* Accessing clock_searchp is safe - we hold the mutex. */
1014 if (cachep == clock_searchp)
1015 clock_searchp = cachep->c_nextp;
1016 goto found;
1018 up(&cache_chain_sem);
1019 printk(KERN_ERR "kmem_shrink: Invalid cache addr %p\n", cachep);
1020 return 2;
1021 found:
1022 /* Release the semaphore before getting the cache-lock. This could
1023 * mean multiple engines are shrinking the cache, but so what.
1025 up(&cache_chain_sem);
1026 spin_lock_irq(&cachep->c_spinlock);
1028 /* If the cache is growing, stop shrinking. */
1029 while (!cachep->c_growing) {
1030 slabp = cachep->c_lastp;
1031 if (slabp->s_inuse || slabp == kmem_slab_end(cachep))
1032 break;
1033 kmem_slab_unlink(slabp);
1034 spin_unlock_irq(&cachep->c_spinlock);
1035 kmem_slab_destroy(cachep, slabp);
1036 spin_lock_irq(&cachep->c_spinlock);
1038 ret = 1;
1039 if (cachep->c_lastp == kmem_slab_end(cachep))
1040 ret--; /* Cache is empty. */
1041 spin_unlock_irq(&cachep->c_spinlock);
1042 return ret;
1045 /* Get the memory for a slab management obj. */
1046 static inline kmem_slab_t *
1047 kmem_cache_slabmgmt(kmem_cache_t *cachep, void *objp, int local_flags)
1049 kmem_slab_t *slabp;
1051 if (SLAB_OFF_SLAB(cachep->c_flags)) {
1052 /* Slab management obj is off-slab. */
1053 slabp = kmem_cache_alloc(cache_slabp, local_flags);
1054 } else {
1055 /* Slab management at end of slab memory, placed so that
1056 * the position is 'coloured'.
1058 void *end;
1059 end = objp + (cachep->c_num * cachep->c_offset);
1060 if (!SLAB_BUFCTL(cachep->c_flags))
1061 end += (cachep->c_num * sizeof(kmem_bufctl_t));
1062 slabp = (kmem_slab_t *) L1_CACHE_ALIGN((unsigned long)end);
1065 if (slabp) {
1066 slabp->s_inuse = 0;
1067 slabp->s_dma = 0;
1068 slabp->s_index = NULL;
1071 return slabp;
1074 static inline void
1075 kmem_cache_init_objs(kmem_cache_t * cachep, kmem_slab_t * slabp, void *objp,
1076 unsigned long ctor_flags)
1078 kmem_bufctl_t **bufpp = &slabp->s_freep;
1079 unsigned long num = cachep->c_num-1;
1081 do {
1082 #if SLAB_DEBUG_SUPPORT
1083 if (cachep->c_flags & SLAB_RED_ZONE) {
1084 *((unsigned long*)(objp)) = SLAB_RED_MAGIC1;
1085 objp += BYTES_PER_WORD;
1086 *((unsigned long*)(objp+cachep->c_org_size)) = SLAB_RED_MAGIC1;
1088 #endif /* SLAB_DEBUG_SUPPORT */
1090 /* Constructors are not allowed to allocate memory from the same cache
1091 * which they are a constructor for. Otherwise, deadlock.
1092 * They must also be threaded.
1094 if (cachep->c_ctor)
1095 cachep->c_ctor(objp, cachep, ctor_flags);
1096 #if SLAB_DEBUG_SUPPORT
1097 else if (cachep->c_flags & SLAB_POISON) {
1098 /* need to poison the objs */
1099 kmem_poison_obj(cachep, objp);
1102 if (cachep->c_flags & SLAB_RED_ZONE) {
1103 if (*((unsigned long*)(objp+cachep->c_org_size)) !=
1104 SLAB_RED_MAGIC1) {
1105 *((unsigned long*)(objp+cachep->c_org_size)) =
1106 SLAB_RED_MAGIC1;
1107 printk(KERN_ERR "kmem_init_obj: Bad rear redzone "
1108 "after constructor - %s\n", cachep->c_name);
1110 objp -= BYTES_PER_WORD;
1111 if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1) {
1112 *((unsigned long*)(objp)) = SLAB_RED_MAGIC1;
1113 printk(KERN_ERR "kmem_init_obj: Bad front redzone "
1114 "after constructor - %s\n", cachep->c_name);
1117 #endif /* SLAB_DEBUG_SUPPORT */
1119 objp += cachep->c_offset;
1120 if (!slabp->s_index) {
1121 *bufpp = objp;
1122 objp += sizeof(kmem_bufctl_t);
1123 } else
1124 *bufpp = &slabp->s_index[num];
1125 bufpp = &(*bufpp)->buf_nextp;
1126 } while (num--);
1128 *bufpp = NULL;
1131 /* Grow (by 1) the number of slabs within a cache. This is called by
1132 * kmem_cache_alloc() when there are no active objs left in a cache.
1134 static int
1135 kmem_cache_grow(kmem_cache_t * cachep, int flags)
1137 kmem_slab_t *slabp;
1138 struct page *page;
1139 void *objp;
1140 size_t offset;
1141 unsigned int dma, local_flags;
1142 unsigned long ctor_flags;
1143 unsigned long save_flags;
1145 /* Be lazy and only check for valid flags here,
1146 * keeping it out of the critical path in kmem_cache_alloc().
1148 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) {
1149 printk(KERN_WARNING "kmem_grow: Illegal flgs %X (correcting) - %s\n",
1150 flags, cachep->c_name);
1151 flags &= (SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW);
1154 if (flags & SLAB_NO_GROW)
1155 return 0;
1157 /* The test for missing atomic flag is performed here, rather than
1158 * the more obvious place, simply to reduce the critical path length
1159 * in kmem_cache_alloc(). If a caller is slightly mis-behaving they
1160 * will eventually be caught here (where it matters).
1162 if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC) {
1163 printk(KERN_ERR "kmem_grow: Called nonatomically from int - %s\n",
1164 cachep->c_name);
1165 flags &= ~SLAB_LEVEL_MASK;
1166 flags |= SLAB_ATOMIC;
1168 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1169 local_flags = (flags & SLAB_LEVEL_MASK);
1170 if (local_flags == SLAB_ATOMIC) {
1171 /* Not allowed to sleep. Need to tell a constructor about
1172 * this - it might need to know...
1174 ctor_flags |= SLAB_CTOR_ATOMIC;
1177 /* About to mess with non-constant members - lock. */
1178 spin_lock_irqsave(&cachep->c_spinlock, save_flags);
1180 /* Get colour for the slab, and cal the next value. */
1181 if (!(offset = cachep->c_colour_next--))
1182 cachep->c_colour_next = cachep->c_colour;
1183 offset *= cachep->c_align;
1184 cachep->c_dflags = SLAB_CFLGS_GROWN;
1186 cachep->c_growing++;
1187 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1189 /* A series of memory allocations for a new slab.
1190 * Neither the cache-chain semaphore, or cache-lock, are
1191 * held, but the incrementing c_growing prevents this
1192 * this cache from being reaped or shrunk.
1193 * Note: The cache could be selected in for reaping in
1194 * kmem_cache_reap(), but when the final test is made the
1195 * growing value will be seen.
1198 /* Get mem for the objs. */
1199 if (!(objp = kmem_getpages(cachep, flags, &dma)))
1200 goto failed;
1202 /* Get slab management. */
1203 if (!(slabp = kmem_cache_slabmgmt(cachep, objp+offset, local_flags)))
1204 goto opps1;
1205 if (dma)
1206 slabp->s_dma = 1;
1207 if (SLAB_BUFCTL(cachep->c_flags)) {
1208 slabp->s_index = kmem_cache_alloc(cachep->c_index_cachep, local_flags);
1209 if (!slabp->s_index)
1210 goto opps2;
1213 /* Nasty!!!!!! I hope this is OK. */
1214 dma = 1 << cachep->c_gfporder;
1215 page = &mem_map[MAP_NR(objp)];
1216 do {
1217 SLAB_SET_PAGE_CACHE(page, cachep);
1218 SLAB_SET_PAGE_SLAB(page, slabp);
1219 PageSetSlab(page);
1220 page++;
1221 } while (--dma);
1223 slabp->s_offset = offset; /* It will fit... */
1224 objp += offset; /* Address of first object. */
1225 slabp->s_mem = objp;
1227 /* For on-slab bufctls, c_offset is the distance between the start of
1228 * an obj and its related bufctl. For off-slab bufctls, c_offset is
1229 * the distance between objs in the slab.
1231 kmem_cache_init_objs(cachep, slabp, objp, ctor_flags);
1233 spin_lock_irq(&cachep->c_spinlock);
1235 /* Make slab active. */
1236 slabp->s_magic = SLAB_MAGIC_ALLOC;
1237 kmem_slab_link_end(cachep, slabp);
1238 if (cachep->c_freep == kmem_slab_end(cachep))
1239 cachep->c_freep = slabp;
1240 SLAB_STATS_INC_GROWN(cachep);
1241 cachep->c_failures = 0;
1242 cachep->c_growing--;
1244 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1245 return 1;
1246 opps2:
1247 if (SLAB_OFF_SLAB(cachep->c_flags))
1248 kmem_cache_free(cache_slabp, slabp);
1249 opps1:
1250 kmem_freepages(cachep, objp);
1251 failed:
1252 spin_lock_irq(&cachep->c_spinlock);
1253 cachep->c_growing--;
1254 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1255 return 0;
1258 static void
1259 kmem_report_alloc_err(const char *str, kmem_cache_t * cachep)
1261 if (cachep)
1262 SLAB_STATS_INC_ERR(cachep); /* this is atomic */
1263 printk(KERN_ERR "kmem_alloc: %s (name=%s)\n",
1264 str, cachep ? cachep->c_name : "unknown");
1267 static void
1268 kmem_report_free_err(const char *str, const void *objp, kmem_cache_t * cachep)
1270 if (cachep)
1271 SLAB_STATS_INC_ERR(cachep);
1272 printk(KERN_ERR "kmem_free: %s (objp=%p, name=%s)\n",
1273 str, objp, cachep ? cachep->c_name : "unknown");
1276 /* Search for a slab whose objs are suitable for DMA.
1277 * Note: since testing the first free slab (in __kmem_cache_alloc()),
1278 * ints must not have been enabled, or the cache-lock released!
1280 static inline kmem_slab_t *
1281 kmem_cache_search_dma(kmem_cache_t * cachep)
1283 kmem_slab_t *slabp = cachep->c_freep->s_nextp;
1285 for (; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) {
1286 if (!(slabp->s_dma))
1287 continue;
1288 kmem_slab_unlink(slabp);
1289 kmem_slab_link_free(cachep, slabp);
1290 cachep->c_freep = slabp;
1291 break;
1293 return slabp;
1296 #if SLAB_DEBUG_SUPPORT
1297 /* Perform extra freeing checks. Currently, this check is only for caches
1298 * that use bufctl structures within the slab. Those which use bufctl's
1299 * from the internal cache have a reasonable check when the address is
1300 * searched for. Called with the cache-lock held.
1302 static void *
1303 kmem_extra_free_checks(kmem_cache_t * cachep, kmem_bufctl_t *search_bufp,
1304 kmem_bufctl_t *bufp, void * objp)
1306 if (SLAB_BUFCTL(cachep->c_flags))
1307 return objp;
1309 /* Check slab's freelist to see if this obj is there. */
1310 for (; search_bufp; search_bufp = search_bufp->buf_nextp) {
1311 if (search_bufp != bufp)
1312 continue;
1313 return NULL;
1315 return objp;
1317 #endif /* SLAB_DEBUG_SUPPORT */
1319 /* Called with cache lock held. */
1320 static inline void
1321 kmem_cache_full_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
1323 if (slabp->s_nextp->s_inuse) {
1324 /* Not at correct position. */
1325 if (cachep->c_freep == slabp)
1326 cachep->c_freep = slabp->s_nextp;
1327 kmem_slab_unlink(slabp);
1328 kmem_slab_link_end(cachep, slabp);
1332 /* Called with cache lock held. */
1333 static inline void
1334 kmem_cache_one_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
1336 if (slabp->s_nextp->s_inuse == cachep->c_num) {
1337 kmem_slab_unlink(slabp);
1338 kmem_slab_link_free(cachep, slabp);
1340 cachep->c_freep = slabp;
1343 /* Returns a ptr to an obj in the given cache. */
1344 static inline void *
1345 __kmem_cache_alloc(kmem_cache_t *cachep, int flags)
1347 kmem_slab_t *slabp;
1348 kmem_bufctl_t *bufp;
1349 void *objp;
1350 unsigned long save_flags;
1352 /* Sanity check. */
1353 if (!cachep)
1354 goto nul_ptr;
1355 spin_lock_irqsave(&cachep->c_spinlock, save_flags);
1356 try_again:
1357 /* Get slab alloc is to come from. */
1358 slabp = cachep->c_freep;
1360 /* Magic is a sanity check _and_ says if we need a new slab. */
1361 if (slabp->s_magic != SLAB_MAGIC_ALLOC)
1362 goto alloc_new_slab;
1363 /* DMA requests are 'rare' - keep out of the critical path. */
1364 if (flags & SLAB_DMA)
1365 goto search_dma;
1366 try_again_dma:
1367 SLAB_STATS_INC_ALLOCED(cachep);
1368 SLAB_STATS_INC_ACTIVE(cachep);
1369 SLAB_STATS_SET_HIGH(cachep);
1370 slabp->s_inuse++;
1371 bufp = slabp->s_freep;
1372 slabp->s_freep = bufp->buf_nextp;
1373 if (slabp->s_freep) {
1374 ret_obj:
1375 if (!slabp->s_index) {
1376 bufp->buf_slabp = slabp;
1377 objp = ((void*)bufp) - cachep->c_offset;
1378 finished:
1379 /* The lock is not needed by the red-zone or poison ops, and the
1380 * obj has been removed from the slab. Should be safe to drop
1381 * the lock here.
1383 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1384 #if SLAB_DEBUG_SUPPORT
1385 if (cachep->c_flags & SLAB_RED_ZONE)
1386 goto red_zone;
1387 ret_red:
1388 if ((cachep->c_flags & SLAB_POISON) && kmem_check_poison_obj(cachep, objp))
1389 kmem_report_alloc_err("Bad poison", cachep);
1390 #endif /* SLAB_DEBUG_SUPPORT */
1391 return objp;
1393 /* Update index ptr. */
1394 objp = ((bufp-slabp->s_index)*cachep->c_offset) + slabp->s_mem;
1395 bufp->buf_objp = objp;
1396 goto finished;
1398 cachep->c_freep = slabp->s_nextp;
1399 goto ret_obj;
1401 #if SLAB_DEBUG_SUPPORT
1402 red_zone:
1403 /* Set alloc red-zone, and check old one. */
1404 if (xchg((unsigned long *)objp, SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1)
1405 kmem_report_alloc_err("Bad front redzone", cachep);
1406 objp += BYTES_PER_WORD;
1407 if (xchg((unsigned long *)(objp+cachep->c_org_size), SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1)
1408 kmem_report_alloc_err("Bad rear redzone", cachep);
1409 goto ret_red;
1410 #endif /* SLAB_DEBUG_SUPPORT */
1412 search_dma:
1413 if (slabp->s_dma || (slabp = kmem_cache_search_dma(cachep))!=kmem_slab_end(cachep))
1414 goto try_again_dma;
1415 alloc_new_slab:
1416 /* Either out of slabs, or magic number corruption. */
1417 if (slabp == kmem_slab_end(cachep)) {
1418 /* Need a new slab. Release the lock before calling kmem_cache_grow().
1419 * This allows objs to be released back into the cache while growing.
1421 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1422 if (kmem_cache_grow(cachep, flags)) {
1423 /* Someone may have stolen our objs. Doesn't matter, we'll
1424 * just come back here again.
1426 spin_lock_irq(&cachep->c_spinlock);
1427 goto try_again;
1429 /* Couldn't grow, but some objs may have been freed. */
1430 spin_lock_irq(&cachep->c_spinlock);
1431 if (cachep->c_freep != kmem_slab_end(cachep)) {
1432 if ((flags & SLAB_ATOMIC) == 0)
1433 goto try_again;
1435 } else {
1436 /* Very serious error - maybe panic() here? */
1437 kmem_report_alloc_err("Bad slab magic (corrupt)", cachep);
1439 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1440 err_exit:
1441 return NULL;
1442 nul_ptr:
1443 kmem_report_alloc_err("NULL ptr", NULL);
1444 goto err_exit;
1447 /* Release an obj back to its cache. If the obj has a constructed state,
1448 * it should be in this state _before_ it is released.
1450 static inline void
1451 __kmem_cache_free(kmem_cache_t *cachep, const void *objp)
1453 kmem_slab_t *slabp;
1454 kmem_bufctl_t *bufp;
1455 unsigned long save_flags;
1457 /* Basic sanity checks. */
1458 if (!cachep || !objp)
1459 goto null_addr;
1461 #if SLAB_DEBUG_SUPPORT
1462 /* A verify func is called without the cache-lock held. */
1463 if (cachep->c_flags & SLAB_DEBUG_INITIAL)
1464 goto init_state_check;
1465 finished_initial:
1467 if (cachep->c_flags & SLAB_RED_ZONE)
1468 goto red_zone;
1469 return_red:
1470 #endif /* SLAB_DEBUG_SUPPORT */
1472 spin_lock_irqsave(&cachep->c_spinlock, save_flags);
1474 if (SLAB_BUFCTL(cachep->c_flags))
1475 goto bufctl;
1476 bufp = (kmem_bufctl_t *)(objp+cachep->c_offset);
1478 /* Get slab for the object. */
1479 #if 0
1480 /* _NASTY_IF/ELSE_, but avoids a 'distant' memory ref for some objects.
1481 * Is this worth while? XXX
1483 if (cachep->c_flags & SLAB_HIGH_PACK)
1484 slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(bufp)]);
1485 else
1486 #endif
1487 slabp = bufp->buf_slabp;
1489 check_magic:
1490 if (slabp->s_magic != SLAB_MAGIC_ALLOC) /* Sanity check. */
1491 goto bad_slab;
1493 #if SLAB_DEBUG_SUPPORT
1494 if (cachep->c_flags & SLAB_DEBUG_FREE)
1495 goto extra_checks;
1496 passed_extra:
1497 #endif /* SLAB_DEBUG_SUPPORT */
1499 if (slabp->s_inuse) { /* Sanity check. */
1500 SLAB_STATS_DEC_ACTIVE(cachep);
1501 slabp->s_inuse--;
1502 bufp->buf_nextp = slabp->s_freep;
1503 slabp->s_freep = bufp;
1504 if (bufp->buf_nextp) {
1505 if (slabp->s_inuse) {
1506 /* (hopefully) The most common case. */
1507 finished:
1508 #if SLAB_DEBUG_SUPPORT
1509 if (cachep->c_flags & SLAB_POISON) {
1510 if (cachep->c_flags & SLAB_RED_ZONE)
1511 objp += BYTES_PER_WORD;
1512 kmem_poison_obj(cachep, objp);
1514 #endif /* SLAB_DEBUG_SUPPORT */
1515 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1516 return;
1518 kmem_cache_full_free(cachep, slabp);
1519 goto finished;
1521 kmem_cache_one_free(cachep, slabp);
1522 goto finished;
1525 /* Don't add to freelist. */
1526 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1527 kmem_report_free_err("free with no active objs", objp, cachep);
1528 return;
1529 bufctl:
1530 /* No 'extra' checks are performed for objs stored this way, finding
1531 * the obj is check enough.
1533 slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(objp)]);
1534 bufp = &slabp->s_index[(objp - slabp->s_mem)/cachep->c_offset];
1535 if (bufp->buf_objp == objp)
1536 goto check_magic;
1537 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1538 kmem_report_free_err("Either bad obj addr or double free", objp, cachep);
1539 return;
1540 #if SLAB_DEBUG_SUPPORT
1541 init_state_check:
1542 /* Need to call the slab's constructor so the
1543 * caller can perform a verify of its state (debugging).
1545 cachep->c_ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
1546 goto finished_initial;
1547 extra_checks:
1548 if (!kmem_extra_free_checks(cachep, slabp->s_freep, bufp, objp)) {
1549 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1550 kmem_report_free_err("Double free detected during checks", objp, cachep);
1551 return;
1553 goto passed_extra;
1554 red_zone:
1555 /* We do not hold the cache-lock while checking the red-zone.
1557 objp -= BYTES_PER_WORD;
1558 if (xchg((unsigned long *)objp, SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) {
1559 /* Either write before start of obj, or a double free. */
1560 kmem_report_free_err("Bad front redzone", objp, cachep);
1562 if (xchg((unsigned long *)(objp+cachep->c_org_size+BYTES_PER_WORD), SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) {
1563 /* Either write past end of obj, or a double free. */
1564 kmem_report_free_err("Bad rear redzone", objp, cachep);
1566 goto return_red;
1567 #endif /* SLAB_DEBUG_SUPPORT */
1569 bad_slab:
1570 /* Slab doesn't contain the correct magic num. */
1571 if (slabp->s_magic == SLAB_MAGIC_DESTROYED) {
1572 /* Magic num says this is a destroyed slab. */
1573 kmem_report_free_err("free from inactive slab", objp, cachep);
1574 } else
1575 kmem_report_free_err("Bad obj addr", objp, cachep);
1576 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1578 #if 1
1579 /* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
1580 *(int *) 0 = 0;
1581 #endif
1583 return;
1584 null_addr:
1585 kmem_report_free_err("NULL ptr", objp, cachep);
1586 return;
1589 void *
1590 kmem_cache_alloc(kmem_cache_t *cachep, int flags)
1592 return __kmem_cache_alloc(cachep, flags);
1595 void
1596 kmem_cache_free(kmem_cache_t *cachep, void *objp)
1598 __kmem_cache_free(cachep, objp);
1601 void *
1602 kmalloc(size_t size, int flags)
1604 cache_sizes_t *csizep = cache_sizes;
1606 for (; csizep->cs_size; csizep++) {
1607 if (size > csizep->cs_size)
1608 continue;
1609 return __kmem_cache_alloc(csizep->cs_cachep, flags);
1611 printk(KERN_ERR "kmalloc: Size (%lu) too large\n", (unsigned long) size);
1612 return NULL;
1615 void
1616 kfree(const void *objp)
1618 struct page *page;
1619 int nr;
1621 if (!objp)
1622 goto null_ptr;
1623 nr = MAP_NR(objp);
1624 if (nr >= max_mapnr)
1625 goto bad_ptr;
1627 /* Assume we own the page structure - hence no locking.
1628 * If someone is misbehaving (for example, calling us with a bad
1629 * address), then access to the page structure can race with the
1630 * kmem_slab_destroy() code. Need to add a spin_lock to each page
1631 * structure, which would be useful in threading the gfp() functions....
1633 page = &mem_map[nr];
1634 if (PageSlab(page)) {
1635 kmem_cache_t *cachep;
1637 /* Here, we again assume the obj address is good.
1638 * If it isn't, and happens to map onto another
1639 * general cache page which has no active objs, then
1640 * we race.
1642 cachep = SLAB_GET_PAGE_CACHE(page);
1643 if (cachep && (cachep->c_flags & SLAB_CFLGS_GENERAL)) {
1644 __kmem_cache_free(cachep, objp);
1645 return;
1648 bad_ptr:
1649 printk(KERN_ERR "kfree: Bad obj %p\n", objp);
1651 #if 1
1652 /* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
1653 *(int *) 0 = 0;
1654 #endif
1656 null_ptr:
1657 return;
1660 void
1661 kfree_s(const void *objp, size_t size)
1663 struct page *page;
1664 int nr;
1666 if (!objp)
1667 goto null_ptr;
1668 nr = MAP_NR(objp);
1669 if (nr >= max_mapnr)
1670 goto null_ptr;
1671 /* See comment in kfree() */
1672 page = &mem_map[nr];
1673 if (PageSlab(page)) {
1674 kmem_cache_t *cachep;
1675 /* See comment in kfree() */
1676 cachep = SLAB_GET_PAGE_CACHE(page);
1677 if (cachep && cachep->c_flags & SLAB_CFLGS_GENERAL) {
1678 if (size <= cachep->c_org_size) { /* XXX better check */
1679 __kmem_cache_free(cachep, objp);
1680 return;
1684 null_ptr:
1685 printk(KERN_ERR "kfree_s: Bad obj %p\n", objp);
1686 return;
1689 kmem_cache_t *
1690 kmem_find_general_cachep(size_t size)
1692 cache_sizes_t *csizep = cache_sizes;
1694 /* This function could be moved to the header file, and
1695 * made inline so consumers can quickly determine what
1696 * cache pointer they require.
1698 for (; csizep->cs_size; csizep++) {
1699 if (size > csizep->cs_size)
1700 continue;
1701 break;
1703 return csizep->cs_cachep;
1707 /* Called from try_to_free_page().
1708 * This function _cannot_ be called within a int, but it
1709 * can be interrupted.
1711 void
1712 kmem_cache_reap(int gfp_mask)
1714 kmem_slab_t *slabp;
1715 kmem_cache_t *searchp;
1716 kmem_cache_t *best_cachep;
1717 unsigned int scan;
1718 unsigned int reap_level;
1720 if (in_interrupt()) {
1721 printk("kmem_cache_reap() called within int!\n");
1722 return;
1725 /* We really need a test semaphore op so we can avoid sleeping when
1726 * !wait is true.
1728 down(&cache_chain_sem);
1730 scan = 10;
1731 reap_level = 0;
1733 best_cachep = NULL;
1734 searchp = clock_searchp;
1735 do {
1736 unsigned int full_free;
1737 unsigned int dma_flag;
1739 /* It's safe to test this without holding the cache-lock. */
1740 if (searchp->c_flags & SLAB_NO_REAP)
1741 goto next;
1742 spin_lock_irq(&searchp->c_spinlock);
1743 if (searchp->c_growing)
1744 goto next_unlock;
1745 if (searchp->c_dflags & SLAB_CFLGS_GROWN) {
1746 searchp->c_dflags &= ~SLAB_CFLGS_GROWN;
1747 goto next_unlock;
1749 /* Sanity check for corruption of static values. */
1750 if (searchp->c_inuse || searchp->c_magic != SLAB_C_MAGIC) {
1751 spin_unlock_irq(&searchp->c_spinlock);
1752 printk(KERN_ERR "kmem_reap: Corrupted cache struct for %s\n", searchp->c_name);
1753 goto next;
1755 dma_flag = 0;
1756 full_free = 0;
1758 /* Count the fully free slabs. There should not be not many,
1759 * since we are holding the cache lock.
1761 slabp = searchp->c_lastp;
1762 while (!slabp->s_inuse && slabp != kmem_slab_end(searchp)) {
1763 slabp = slabp->s_prevp;
1764 full_free++;
1765 if (slabp->s_dma)
1766 dma_flag++;
1768 spin_unlock_irq(&searchp->c_spinlock);
1770 if ((gfp_mask & GFP_DMA) && !dma_flag)
1771 goto next;
1773 if (full_free) {
1774 if (full_free >= 10) {
1775 best_cachep = searchp;
1776 break;
1779 /* Try to avoid slabs with constructors and/or
1780 * more than one page per slab (as it can be difficult
1781 * to get high orders from gfp()).
1783 if (full_free >= reap_level) {
1784 reap_level = full_free;
1785 best_cachep = searchp;
1788 goto next;
1789 next_unlock:
1790 spin_unlock_irq(&searchp->c_spinlock);
1791 next:
1792 searchp = searchp->c_nextp;
1793 } while (--scan && searchp != clock_searchp);
1795 clock_searchp = searchp;
1796 up(&cache_chain_sem);
1798 if (!best_cachep) {
1799 /* couldn't find anything to reap */
1800 return;
1803 spin_lock_irq(&best_cachep->c_spinlock);
1804 while (!best_cachep->c_growing &&
1805 !(slabp = best_cachep->c_lastp)->s_inuse &&
1806 slabp != kmem_slab_end(best_cachep)) {
1807 if (gfp_mask & GFP_DMA) {
1808 do {
1809 if (slabp->s_dma)
1810 goto good_dma;
1811 slabp = slabp->s_prevp;
1812 } while (!slabp->s_inuse && slabp != kmem_slab_end(best_cachep));
1814 /* Didn't found a DMA slab (there was a free one -
1815 * must have been become active).
1817 goto dma_fail;
1818 good_dma:
1820 if (slabp == best_cachep->c_freep)
1821 best_cachep->c_freep = slabp->s_nextp;
1822 kmem_slab_unlink(slabp);
1823 SLAB_STATS_INC_REAPED(best_cachep);
1825 /* Safe to drop the lock. The slab is no longer linked to the
1826 * cache.
1828 spin_unlock_irq(&best_cachep->c_spinlock);
1829 kmem_slab_destroy(best_cachep, slabp);
1830 spin_lock_irq(&best_cachep->c_spinlock);
1832 dma_fail:
1833 spin_unlock_irq(&best_cachep->c_spinlock);
1834 return;
1837 #if SLAB_SELFTEST
1838 /* A few v. simple tests */
1839 static void
1840 kmem_self_test(void)
1842 kmem_cache_t *test_cachep;
1844 printk(KERN_INFO "kmem_test() - start\n");
1845 test_cachep = kmem_cache_create("test-cachep", 16, 0, SLAB_RED_ZONE|SLAB_POISON, NULL, NULL);
1846 if (test_cachep) {
1847 char *objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL);
1848 if (objp) {
1849 /* Write in front and past end, red-zone test. */
1850 *(objp-1) = 1;
1851 *(objp+16) = 1;
1852 kmem_cache_free(test_cachep, objp);
1854 /* Mess up poisoning. */
1855 *objp = 10;
1856 objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL);
1857 kmem_cache_free(test_cachep, objp);
1859 /* Mess up poisoning (again). */
1860 *objp = 10;
1861 kmem_cache_shrink(test_cachep);
1864 printk(KERN_INFO "kmem_test() - finished\n");
1866 #endif /* SLAB_SELFTEST */
1868 #if defined(CONFIG_PROC_FS)
1869 /* /proc/slabinfo
1870 * cache-name num-active-objs total-objs num-active-slabs total-slabs num-pages-per-slab
1873 get_slabinfo(char *buf)
1875 kmem_cache_t *cachep;
1876 kmem_slab_t *slabp;
1877 unsigned long active_objs;
1878 unsigned long save_flags;
1879 unsigned long num_slabs;
1880 unsigned long num_objs;
1881 int len=0;
1882 #if SLAB_STATS
1883 unsigned long active_slabs;
1884 #endif /* SLAB_STATS */
1886 __save_flags(save_flags);
1888 /* Output format version, so at least we can change it without _too_
1889 * many complaints.
1891 #if SLAB_STATS
1892 len = sprintf(buf, "slabinfo - version: 1.0 (statistics)\n");
1893 #else
1894 len = sprintf(buf, "slabinfo - version: 1.0\n");
1895 #endif /* SLAB_STATS */
1896 down(&cache_chain_sem);
1897 cachep = &cache_cache;
1898 do {
1899 #if SLAB_STATS
1900 active_slabs = 0;
1901 #endif /* SLAB_STATS */
1902 num_slabs = active_objs = 0;
1903 spin_lock_irq(&cachep->c_spinlock);
1904 for (slabp = cachep->c_firstp; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) {
1905 active_objs += slabp->s_inuse;
1906 num_slabs++;
1907 #if SLAB_STATS
1908 if (slabp->s_inuse)
1909 active_slabs++;
1910 #endif /* SLAB_STATS */
1912 num_objs = cachep->c_num*num_slabs;
1913 #if SLAB_STATS
1915 unsigned long errors;
1916 unsigned long high = cachep->c_high_mark;
1917 unsigned long grown = cachep->c_grown;
1918 unsigned long reaped = cachep->c_reaped;
1919 unsigned long allocs = cachep->c_num_allocations;
1920 errors = (unsigned long) atomic_read(&cachep->c_errors);
1921 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1922 len += sprintf(buf+len, "%-16s %6lu %6lu %4lu %4lu %4lu %6lu %7lu %5lu %4lu %4lu\n",
1923 cachep->c_name, active_objs, num_objs, active_slabs, num_slabs,
1924 (1<<cachep->c_gfporder)*num_slabs,
1925 high, allocs, grown, reaped, errors);
1927 #else
1928 spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
1929 len += sprintf(buf+len, "%-17s %6lu %6lu\n", cachep->c_name, active_objs, num_objs);
1930 #endif /* SLAB_STATS */
1931 } while ((cachep = cachep->c_nextp) != &cache_cache);
1932 up(&cache_chain_sem);
1934 return len;
1936 #endif /* CONFIG_PROC_FS */