1 #ifndef _M68K_PGTABLE_H
2 #define _M68K_PGTABLE_H
4 #include <linux/config.h>
8 #include <asm/processor.h>
9 #include <linux/threads.h>
12 * This file contains the functions and defines necessary to modify and use
13 * the m68k page table tree.
16 #include <asm/virtconvert.h>
19 * Cache handling functions
22 #define flush_icache() \
24 if (CPU_IS_040_OR_060) \
25 asm __volatile__ ("nop\n\t" \
31 asm __volatile__ ("movec %%cacr,%0\n\t" \
40 * invalidate the cache for the specified memory range.
41 * It starts at the physical address specified for
42 * the given number of bytes.
44 extern void cache_clear (unsigned long paddr
, int len
);
46 * push any dirty cache in the specified memory range.
47 * It starts at the physical address specified for
48 * the given number of bytes.
50 extern void cache_push (unsigned long paddr
, int len
);
53 * push and invalidate pages in the specified user virtual
56 extern void cache_push_v (unsigned long vaddr
, int len
);
59 #define FLUSH_I_AND_D (0x00000808)
60 #define FLUSH_I (0x00000008)
62 /* This is needed whenever the virtual mapping of the current
64 #define __flush_cache_all() \
66 if (CPU_IS_040_OR_060) \
67 __asm__ __volatile__ ("nop\n\t" \
73 __asm__ __volatile__ ("movec %%cacr,%0\n\t" \
77 : "di" (FLUSH_I_AND_D)); \
81 #define __flush_cache_030() \
83 if (CPU_IS_020_OR_030) { \
85 __asm__ __volatile__ ("movec %%cacr,%0\n\t" \
89 : "di" (FLUSH_I_AND_D)); \
93 #define flush_cache_all() __flush_cache_all()
95 extern inline void flush_cache_mm(struct mm_struct
*mm
)
97 if (mm
== current
->mm
)
101 extern inline void flush_cache_range(struct mm_struct
*mm
,
105 if (mm
== current
->mm
)
109 extern inline void flush_cache_page(struct vm_area_struct
*vma
,
110 unsigned long vmaddr
)
112 if (vma
->vm_mm
== current
->mm
)
116 /* Push the page at kernel virtual address and clear the icache */
117 extern inline void flush_page_to_ram (unsigned long address
)
119 if (CPU_IS_040_OR_060
) {
120 __asm__
__volatile__ ("nop\n\t"
122 "cpushp %%dc,(%0)\n\t"
123 "cinvp %%ic,(%0)\n\t"
125 : : "a" (virt_to_phys((void *)address
)));
129 __asm
volatile ("movec %%cacr,%0\n\t"
137 /* Push n pages at kernel virtual address and clear the icache */
138 extern inline void flush_icache_range (unsigned long address
,
139 unsigned long endaddr
)
141 if (CPU_IS_040_OR_060
) {
142 short n
= (endaddr
- address
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
145 __asm__
__volatile__ ("nop\n\t"
147 "cpushp %%dc,(%0)\n\t"
148 "cinvp %%ic,(%0)\n\t"
150 : : "a" (virt_to_phys((void *)address
)));
151 address
+= PAGE_SIZE
;
156 __asm
volatile ("movec %%cacr,%0\n\t"
166 * flush all user-space atc entries.
168 static inline void __flush_tlb(void)
170 if (CPU_IS_040_OR_060
)
171 __asm__
__volatile__(".chip 68040\n\t"
175 __asm__
__volatile__("pflush #0,#4");
178 static inline void __flush_tlb_one(unsigned long addr
)
180 if (CPU_IS_040_OR_060
) {
181 __asm__
__volatile__(".chip 68040\n\t"
186 __asm__
__volatile__("pflush #0,#4,(%0)" : : "a" (addr
));
189 #define flush_tlb() __flush_tlb()
192 * flush all atc entries (both kernel and user-space entries).
194 static inline void flush_tlb_all(void)
196 if (CPU_IS_040_OR_060
)
197 __asm__
__volatile__(".chip 68040\n\t"
201 __asm__
__volatile__("pflusha");
204 static inline void flush_tlb_mm(struct mm_struct
*mm
)
206 if (mm
== current
->mm
)
210 static inline void flush_tlb_page(struct vm_area_struct
*vma
,
213 if (vma
->vm_mm
== current
->mm
)
214 __flush_tlb_one(addr
);
217 static inline void flush_tlb_range(struct mm_struct
*mm
,
218 unsigned long start
, unsigned long end
)
220 if (mm
== current
->mm
)
224 extern inline void flush_tlb_kernel_page(unsigned long addr
)
226 if (CPU_IS_040_OR_060
) {
227 mm_segment_t old_fs
= get_fs();
229 __asm__
__volatile__(".chip 68040\n\t"
235 __asm__
__volatile__("pflush #4,#4,(%0)" : : "a" (addr
));
238 /* Certain architectures need to do special things when pte's
239 * within a page table are directly modified. Thus, the following
240 * hook is made available.
242 #define set_pte(pteptr, pteval) \
244 *(pteptr) = (pteval); \
248 /* PMD_SHIFT determines the size of the area a second-level page table can map */
250 #define PMD_SIZE (1UL << PMD_SHIFT)
251 #define PMD_MASK (~(PMD_SIZE-1))
253 /* PGDIR_SHIFT determines what a third-level page table entry can map */
254 #define PGDIR_SHIFT 25
255 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
256 #define PGDIR_MASK (~(PGDIR_SIZE-1))
259 * entries per page directory level: the m68k is configured as three-level,
260 * so we do have PMD level physically.
262 #define PTRS_PER_PTE 1024
263 #define PTRS_PER_PMD 8
264 #define PTRS_PER_PGD 128
265 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
267 /* Virtual address region for use by kernel_map() */
268 #define KMAP_START 0xd0000000
269 #define KMAP_END 0xf0000000
271 /* Just any arbitrary offset to the start of the vmalloc VM area: the
272 * current 8MB value just means that there will be a 8MB "hole" after the
273 * physical memory until the kernel virtual memory starts. That means that
274 * any out-of-bounds memory accesses will hopefully be caught.
275 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
276 * area for the same reason. ;)
278 #define VMALLOC_OFFSET (8*1024*1024)
279 #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
280 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
281 #define VMALLOC_END KMAP_START
283 #endif /* __ASSEMBLY__ */
286 * Definitions for MMU descriptors
288 #define _PAGE_PRESENT 0x001
289 #define _PAGE_SHORT 0x002
290 #define _PAGE_RONLY 0x004
291 #define _PAGE_ACCESSED 0x008
292 #define _PAGE_DIRTY 0x010
293 #define _PAGE_SUPER 0x080 /* 68040 supervisor only */
294 #define _PAGE_FAKE_SUPER 0x200 /* fake supervisor only on 680[23]0 */
295 #define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */
296 #define _PAGE_COW 0x800 /* implemented in software */
297 #define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */
298 #define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */
299 #define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */
300 #define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */
301 #define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */
303 #define _DESCTYPE_MASK 0x003
305 #define _CACHEMASK040 (~0x060)
306 #define _TABLE_MASK (0xfffffe00)
308 #define _PAGE_TABLE (_PAGE_SHORT)
309 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE)
313 /* This is the cache mode to be used for pages containing page descriptors for
314 * processors >= '040. It is in pte_mknocache(), and the variable is defined
315 * and initialized in head.S */
316 extern int m68k_pgtable_cachemode
;
318 /* This is the cache mode for normal pages, for supervisor access on
319 * processors >= '040. It is used in pte_mkcache(), and the variable is
320 * defined and initialized in head.S */
322 #if defined(CONFIG_060_WRITETHROUGH)
323 extern int m68k_supervisor_cachemode
;
325 #define m68k_supervisor_cachemode _PAGE_CACHE040
328 #if defined(CPU_M68040_OR_M68060_ONLY)
329 #define mm_cachebits _PAGE_CACHE040
330 #elif defined(CPU_M68020_OR_M68030_ONLY)
331 #define mm_cachebits 0
333 extern unsigned long mm_cachebits
;
336 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
337 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits)
338 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
339 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
340 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits)
342 /* Alternate definitions that are compile time constants, for
343 initializing protection_map. The cachebits are fixed later. */
344 #define PAGE_NONE_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
345 #define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
346 #define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
347 #define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
350 * The m68k can't do page protection for execute, and considers that the same are read.
351 * Also, write permissions imply read permissions. This is the closest we can get..
353 #define __P000 PAGE_NONE_C
354 #define __P001 PAGE_READONLY_C
355 #define __P010 PAGE_COPY_C
356 #define __P011 PAGE_COPY_C
357 #define __P100 PAGE_READONLY_C
358 #define __P101 PAGE_READONLY_C
359 #define __P110 PAGE_COPY_C
360 #define __P111 PAGE_COPY_C
362 #define __S000 PAGE_NONE_C
363 #define __S001 PAGE_READONLY_C
364 #define __S010 PAGE_SHARED_C
365 #define __S011 PAGE_SHARED_C
366 #define __S100 PAGE_READONLY_C
367 #define __S101 PAGE_READONLY_C
368 #define __S110 PAGE_SHARED_C
369 #define __S111 PAGE_SHARED_C
371 /* zero page used for uninitialized stuff */
372 extern unsigned long empty_zero_page
;
375 * BAD_PAGETABLE is used when we need a bogus page-table, while
376 * BAD_PAGE is used for a bogus page.
378 * ZERO_PAGE is a global shared page that is always zero: used
379 * for zero-mapped memory areas etc..
381 extern pte_t
__bad_page(void);
382 extern pte_t
* __bad_pagetable(void);
384 #define BAD_PAGETABLE __bad_pagetable()
385 #define BAD_PAGE __bad_page()
386 #define ZERO_PAGE(vaddr) empty_zero_page
388 /* number of bits that fit into a memory pointer */
389 #define BITS_PER_PTR (8*sizeof(unsigned long))
391 /* to align the pointer to a pointer address */
392 #define PTR_MASK (~(sizeof(void*)-1))
394 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
395 /* 64-bit machines, beware! SRB. */
396 #define SIZEOF_PTR_LOG2 2
398 /* to find an entry in a page-table */
399 #define PAGE_PTR(address) \
400 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
403 * Conversion functions: convert a page and protection to a page entry,
404 * and a page entry and page directory to the page they refer to.
406 #define mk_pte(page, pgprot) \
407 ({ pte_t __pte; pte_val(__pte) = virt_to_phys((void *)page) + pgprot_val(pgprot); __pte; })
408 #define mk_pte_phys(physpage, pgprot) \
409 ({ pte_t __pte; pte_val(__pte) = (unsigned long)physpage + pgprot_val(pgprot); __pte; })
411 extern inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
412 { pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
); return pte
; }
414 extern inline void pmd_set(pmd_t
* pmdp
, pte_t
* ptep
)
418 ptbl
= virt_to_phys(ptep
) | _PAGE_TABLE
| _PAGE_ACCESSED
;
419 for (i
= 0; i
< 16; i
++, ptbl
+= (sizeof(pte_t
)*PTRS_PER_PTE
/16))
423 extern inline void pgd_set(pgd_t
* pgdp
, pmd_t
* pmdp
)
424 { pgd_val(*pgdp
) = _PAGE_TABLE
| _PAGE_ACCESSED
| virt_to_phys(pmdp
); }
426 extern inline unsigned long pte_page(pte_t pte
)
427 { return (unsigned long)phys_to_virt(pte_val(pte
) & PAGE_MASK
); }
429 extern inline unsigned long pmd_page2(pmd_t
*pmd
)
430 { return (unsigned long)phys_to_virt(pmd_val(*pmd
) & _TABLE_MASK
); }
431 #define pmd_page(pmd) pmd_page2(&(pmd))
433 extern inline unsigned long pgd_page(pgd_t pgd
)
434 { return (unsigned long)phys_to_virt(pgd_val(pgd
) & _TABLE_MASK
); }
436 extern inline int pte_none(pte_t pte
) { return !pte_val(pte
); }
437 extern inline int pte_present(pte_t pte
) { return pte_val(pte
) & (_PAGE_PRESENT
| _PAGE_FAKE_SUPER
); }
438 extern inline void pte_clear(pte_t
*ptep
) { pte_val(*ptep
) = 0; }
440 extern inline int pmd_none2(pmd_t
*pmd
) { return !pmd_val(*pmd
); }
441 #define pmd_none(pmd) pmd_none2(&(pmd))
442 extern inline int pmd_bad2(pmd_t
*pmd
) { return (pmd_val(*pmd
) & _DESCTYPE_MASK
) != _PAGE_TABLE
; }
443 #define pmd_bad(pmd) pmd_bad2(&(pmd))
444 extern inline int pmd_present2(pmd_t
*pmd
) { return pmd_val(*pmd
) & _PAGE_TABLE
; }
445 #define pmd_present(pmd) pmd_present2(&(pmd))
446 extern inline void pmd_clear(pmd_t
* pmdp
)
450 for (i
= 15; i
>= 0; i
--)
454 extern inline int pgd_none(pgd_t pgd
) { return !pgd_val(pgd
); }
455 extern inline int pgd_bad(pgd_t pgd
) { return (pgd_val(pgd
) & _DESCTYPE_MASK
) != _PAGE_TABLE
; }
456 extern inline int pgd_present(pgd_t pgd
) { return pgd_val(pgd
) & _PAGE_TABLE
; }
458 extern inline void pgd_clear(pgd_t
* pgdp
) { pgd_val(*pgdp
) = 0; }
461 * The following only work if pte_present() is true.
462 * Undefined behaviour if not..
464 extern inline int pte_read(pte_t pte
) { return 1; }
465 extern inline int pte_write(pte_t pte
) { return !(pte_val(pte
) & _PAGE_RONLY
); }
466 extern inline int pte_exec(pte_t pte
) { return 1; }
467 extern inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
468 extern inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
470 extern inline pte_t
pte_wrprotect(pte_t pte
) { pte_val(pte
) |= _PAGE_RONLY
; return pte
; }
471 extern inline pte_t
pte_rdprotect(pte_t pte
) { return pte
; }
472 extern inline pte_t
pte_exprotect(pte_t pte
) { return pte
; }
473 extern inline pte_t
pte_mkclean(pte_t pte
) { pte_val(pte
) &= ~_PAGE_DIRTY
; return pte
; }
474 extern inline pte_t
pte_mkold(pte_t pte
) { pte_val(pte
) &= ~_PAGE_ACCESSED
; return pte
; }
475 extern inline pte_t
pte_mkwrite(pte_t pte
) { pte_val(pte
) &= ~_PAGE_RONLY
; return pte
; }
476 extern inline pte_t
pte_mkread(pte_t pte
) { return pte
; }
477 extern inline pte_t
pte_mkexec(pte_t pte
) { return pte
; }
478 extern inline pte_t
pte_mkdirty(pte_t pte
) { pte_val(pte
) |= _PAGE_DIRTY
; return pte
; }
479 extern inline pte_t
pte_mkyoung(pte_t pte
) { pte_val(pte
) |= _PAGE_ACCESSED
; return pte
; }
480 extern inline pte_t
pte_mknocache(pte_t pte
)
482 pte_val(pte
) = (pte_val(pte
) & _CACHEMASK040
) | m68k_pgtable_cachemode
;
485 extern inline pte_t
pte_mkcache(pte_t pte
) { pte_val(pte
) = (pte_val(pte
) & _CACHEMASK040
) | m68k_supervisor_cachemode
; return pte
; }
487 #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
489 /* to find an entry in a page-table-directory */
490 extern inline pgd_t
* pgd_offset(struct mm_struct
* mm
, unsigned long address
)
492 return mm
->pgd
+ (address
>> PGDIR_SHIFT
);
495 #define swapper_pg_dir kernel_pg_dir
496 extern pgd_t kernel_pg_dir
[128];
498 extern inline pgd_t
* pgd_offset_k(unsigned long address
)
500 return kernel_pg_dir
+ (address
>> PGDIR_SHIFT
);
504 /* Find an entry in the second-level page table.. */
505 extern inline pmd_t
* pmd_offset(pgd_t
* dir
, unsigned long address
)
507 return (pmd_t
*) pgd_page(*dir
) + ((address
>> PMD_SHIFT
) & (PTRS_PER_PMD
-1));
510 /* Find an entry in the third-level page table.. */
511 extern inline pte_t
* pte_offset(pmd_t
* pmdp
, unsigned long address
)
513 return (pte_t
*) pmd_page(*pmdp
) + ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
517 * Allocate and free page tables. The xxx_kernel() versions are
518 * used to allocate a kernel page table - this turns on ASN bits
522 /* Prior to calling these routines, the page should have been flushed
523 * from both the cache and ATC, or the CPU might not notice that the
524 * cache setting for the page has been changed. -jskov
526 static inline void nocache_page (unsigned long vaddr
)
528 if (CPU_IS_040_OR_060
) {
533 dir
= pgd_offset_k(vaddr
);
534 pmdp
= pmd_offset(dir
,vaddr
);
535 ptep
= pte_offset(pmdp
,vaddr
);
536 *ptep
= pte_mknocache(*ptep
);
540 static inline void cache_page (unsigned long vaddr
)
542 if (CPU_IS_040_OR_060
) {
547 dir
= pgd_offset_k(vaddr
);
548 pmdp
= pmd_offset(dir
,vaddr
);
549 ptep
= pte_offset(pmdp
,vaddr
);
550 *ptep
= pte_mkcache(*ptep
);
554 extern struct pgtable_cache_struct
{
555 unsigned long *pmd_cache
;
556 unsigned long *pte_cache
;
557 /* This counts in units of pointer tables, of which can be eight per page. */
558 unsigned long pgtable_cache_sz
;
561 #define pgd_quicklist ((unsigned long *)0)
562 #define pmd_quicklist (quicklists.pmd_cache)
563 #define pte_quicklist (quicklists.pte_cache)
564 /* This isn't accurate because of fragmentation of allocated pages for
565 pointer tables, but that should not be a problem. */
566 #define pgtable_cache_size ((quicklists.pgtable_cache_sz+7)/8)
568 extern pte_t
*get_pte_slow(pmd_t
*pmd
, unsigned long offset
);
569 extern pmd_t
*get_pmd_slow(pgd_t
*pgd
, unsigned long offset
);
571 extern pmd_t
*get_pointer_table(void);
572 extern int free_pointer_table(pmd_t
*);
574 extern __inline__ pte_t
*get_pte_fast(void)
580 pte_quicklist
= (unsigned long *)*ret
;
582 quicklists
.pgtable_cache_sz
-= 8;
587 extern __inline__
void free_pte_fast(pte_t
*pte
)
589 *(unsigned long *)pte
= (unsigned long)pte_quicklist
;
590 pte_quicklist
= (unsigned long *)pte
;
591 quicklists
.pgtable_cache_sz
+= 8;
594 extern __inline__
void free_pte_slow(pte_t
*pte
)
596 cache_page((unsigned long)pte
);
597 free_page((unsigned long) pte
);
600 extern __inline__ pmd_t
*get_pmd_fast(void)
606 pmd_quicklist
= (unsigned long *)*ret
;
608 quicklists
.pgtable_cache_sz
--;
613 extern __inline__
void free_pmd_fast(pmd_t
*pmd
)
615 *(unsigned long *)pmd
= (unsigned long)pmd_quicklist
;
616 pmd_quicklist
= (unsigned long *) pmd
;
617 quicklists
.pgtable_cache_sz
++;
620 extern __inline__
int free_pmd_slow(pmd_t
*pmd
)
622 return free_pointer_table(pmd
);
625 /* The pgd cache is folded into the pmd cache, so these are dummy routines. */
626 extern __inline__ pgd_t
*get_pgd_fast(void)
631 extern __inline__
void free_pgd_fast(pgd_t
*pgd
)
635 extern __inline__
void free_pgd_slow(pgd_t
*pgd
)
639 extern void __bad_pte(pmd_t
*pmd
);
640 extern void __bad_pmd(pgd_t
*pgd
);
642 extern inline void pte_free(pte_t
* pte
)
647 extern inline pte_t
* pte_alloc(pmd_t
* pmd
, unsigned long address
)
649 address
= (address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
650 if (pmd_none(*pmd
)) {
651 pte_t
* page
= get_pte_fast();
654 return get_pte_slow(pmd
, address
);
656 return page
+ address
;
662 return (pte_t
*) pmd_page(*pmd
) + address
;
665 extern inline void pmd_free(pmd_t
* pmd
)
670 extern inline pmd_t
* pmd_alloc(pgd_t
* pgd
, unsigned long address
)
672 address
= (address
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1);
673 if (pgd_none(*pgd
)) {
674 pmd_t
*page
= get_pmd_fast();
677 return get_pmd_slow(pgd
, address
);
679 return page
+ address
;
685 return (pmd_t
*) pgd_page(*pgd
) + address
;
688 extern inline void pte_free_kernel(pte_t
* pte
)
693 extern inline pte_t
* pte_alloc_kernel(pmd_t
* pmd
, unsigned long address
)
695 return pte_alloc(pmd
, address
);
698 extern inline void pmd_free_kernel(pmd_t
* pmd
)
703 extern inline pmd_t
* pmd_alloc_kernel(pgd_t
* pgd
, unsigned long address
)
705 return pmd_alloc(pgd
, address
);
708 extern inline void pgd_free(pgd_t
* pgd
)
710 free_pmd_fast((pmd_t
*)pgd
);
713 extern inline pgd_t
* pgd_alloc(void)
715 pgd_t
*pgd
= (pgd_t
*)get_pmd_fast();
717 pgd
= (pgd_t
*)get_pointer_table();
721 extern int do_check_pgt_cache(int, int);
723 extern inline void set_pgdir(unsigned long address
, pgd_t entry
)
728 * Check if the addr/len goes up to the end of a physical
729 * memory chunk. Used for DMA functions.
731 #ifdef CONFIG_SINGLE_MEMORY_CHUNK
733 * It makes no sense to consider whether we cross a memory boundary if
734 * we support just one physical chunk of memory.
736 extern inline int mm_end_of_chunk (unsigned long addr
, int len
)
741 int mm_end_of_chunk (unsigned long addr
, int len
);
744 extern void kernel_set_cachemode(void *addr
, unsigned long size
, int cmode
);
747 * The m68k doesn't have any external MMU info: the kernel page
748 * tables contain all the necessary information.
750 extern inline void update_mmu_cache(struct vm_area_struct
* vma
,
751 unsigned long address
, pte_t pte
)
756 * I don't know what is going on here, but since these were changed,
757 * swapping hasn't been working on the 68040.
759 /* With the new handling of PAGE_NONE the old definitions definitely
760 don't work any more. */
762 #define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
764 #define SWP_OFFSET(entry) ((entry) >> 9)
765 #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
767 #define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT)
768 #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << PAGE_SHIFT))
771 #endif /* __ASSEMBLY__ */
773 #define module_map vmalloc
774 #define module_unmap vfree
776 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
777 #define PageSkip(page) (0)
778 #define kern_addr_valid(addr) (1)
780 #endif /* _M68K_PGTABLE_H */