pre-2.3.4..
[davej-history.git] / include / linux / mm.h
blob96108c5b9d1391c8aed4a49c2645eec2b84e9224
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
7 #ifdef __KERNEL__
9 #include <linux/string.h>
11 extern unsigned long max_mapnr;
12 extern unsigned long num_physpages;
13 extern void * high_memory;
14 extern int page_cluster;
16 #include <asm/page.h>
17 #include <asm/atomic.h>
20 * Linux kernel virtual memory manager primitives.
21 * The idea being to have a "virtual" mm in the same way
22 * we have a virtual fs - giving a cleaner interface to the
23 * mm details, and allowing different kinds of memory mappings
24 * (from shared memory to executable loading to arbitrary
25 * mmap() functions).
29 * This struct defines a memory VMM memory area. There is one of these
30 * per VM-area/task. A VM area is any part of the process virtual memory
31 * space that has a special rule for the page-fault handlers (ie a shared
32 * library, the executable area etc).
34 struct vm_area_struct {
35 struct mm_struct * vm_mm; /* VM area parameters */
36 unsigned long vm_start;
37 unsigned long vm_end;
39 /* linked list of VM areas per task, sorted by address */
40 struct vm_area_struct *vm_next;
42 pgprot_t vm_page_prot;
43 unsigned short vm_flags;
45 /* AVL tree of VM areas per task, sorted by address */
46 short vm_avl_height;
47 struct vm_area_struct * vm_avl_left;
48 struct vm_area_struct * vm_avl_right;
50 /* For areas with inode, the list inode->i_mmap, for shm areas,
51 * the list of attaches, otherwise unused.
53 struct vm_area_struct *vm_next_share;
54 struct vm_area_struct **vm_pprev_share;
56 struct vm_operations_struct * vm_ops;
57 unsigned long vm_offset;
58 struct file * vm_file;
59 unsigned long vm_pte; /* shared mem */
63 * vm_flags..
65 #define VM_READ 0x0001 /* currently active flags */
66 #define VM_WRITE 0x0002
67 #define VM_EXEC 0x0004
68 #define VM_SHARED 0x0008
70 #define VM_MAYREAD 0x0010 /* limits for mprotect() etc */
71 #define VM_MAYWRITE 0x0020
72 #define VM_MAYEXEC 0x0040
73 #define VM_MAYSHARE 0x0080
75 #define VM_GROWSDOWN 0x0100 /* general info on the segment */
76 #define VM_GROWSUP 0x0200
77 #define VM_SHM 0x0400 /* shared memory area, don't swap out */
78 #define VM_DENYWRITE 0x0800 /* ETXTBSY on write attempts.. */
80 #define VM_EXECUTABLE 0x1000
81 #define VM_LOCKED 0x2000
82 #define VM_IO 0x4000 /* Memory mapped I/O or similar */
84 #define VM_STACK_FLAGS 0x0177
87 * mapping from the currently active vm_flags protection bits (the
88 * low four bits) to a page protection mask..
90 extern pgprot_t protection_map[16];
94 * These are the virtual MM functions - opening of an area, closing and
95 * unmapping it (needed to keep files on disk up-to-date etc), pointer
96 * to the functions called when a no-page or a wp-page exception occurs.
98 struct vm_operations_struct {
99 void (*open)(struct vm_area_struct * area);
100 void (*close)(struct vm_area_struct * area);
101 void (*unmap)(struct vm_area_struct *area, unsigned long, size_t);
102 void (*protect)(struct vm_area_struct *area, unsigned long, size_t, unsigned int newprot);
103 int (*sync)(struct vm_area_struct *area, unsigned long, size_t, unsigned int flags);
104 void (*advise)(struct vm_area_struct *area, unsigned long, size_t, unsigned int advise);
105 unsigned long (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access);
106 unsigned long (*wppage)(struct vm_area_struct * area, unsigned long address,
107 unsigned long page);
108 int (*swapout)(struct vm_area_struct *, struct page *);
109 pte_t (*swapin)(struct vm_area_struct *, unsigned long, unsigned long);
113 * Try to keep the most commonly accessed fields in single cache lines
114 * here (16 bytes or greater). This ordering should be particularly
115 * beneficial on 32-bit processors.
117 * The first line is data used in page cache lookup, the second line
118 * is used for linear searches (eg. clock algorithm scans).
120 typedef struct page {
121 /* these must be first (free area handling) */
122 struct page *next;
123 struct page *prev;
124 struct inode *inode;
125 unsigned long offset;
126 struct page *next_hash;
127 atomic_t count;
128 unsigned long flags; /* atomic flags, some possibly updated asynchronously */
129 wait_queue_head_t wait;
130 struct page **pprev_hash;
131 struct buffer_head * buffers;
132 } mem_map_t;
134 /* Page flag bit values */
135 #define PG_locked 0
136 #define PG_error 1
137 #define PG_referenced 2
138 #define PG_dirty 3
139 #define PG_uptodate 4
140 #define PG_free_after 5
141 #define PG_decr_after 6
142 #define PG_swap_unlock_after 7
143 #define PG_DMA 8
144 #define PG_Slab 9
145 #define PG_swap_cache 10
146 #define PG_skip 11
147 #define PG_reserved 31
149 /* Make it prettier to test the above... */
150 #define PageLocked(page) (test_bit(PG_locked, &(page)->flags))
151 #define PageError(page) (test_bit(PG_error, &(page)->flags))
152 #define PageReferenced(page) (test_bit(PG_referenced, &(page)->flags))
153 #define PageDirty(page) (test_bit(PG_dirty, &(page)->flags))
154 #define PageUptodate(page) (test_bit(PG_uptodate, &(page)->flags))
155 #define PageFreeAfter(page) (test_bit(PG_free_after, &(page)->flags))
156 #define PageDecrAfter(page) (test_bit(PG_decr_after, &(page)->flags))
157 #define PageSwapUnlockAfter(page) (test_bit(PG_swap_unlock_after, &(page)->flags))
158 #define PageDMA(page) (test_bit(PG_DMA, &(page)->flags))
159 #define PageSlab(page) (test_bit(PG_Slab, &(page)->flags))
160 #define PageSwapCache(page) (test_bit(PG_swap_cache, &(page)->flags))
161 #define PageReserved(page) (test_bit(PG_reserved, &(page)->flags))
163 #define PageSetSlab(page) (set_bit(PG_Slab, &(page)->flags))
164 #define PageSetSwapCache(page) (set_bit(PG_swap_cache, &(page)->flags))
166 #define PageTestandSetDirty(page) \
167 (test_and_set_bit(PG_dirty, &(page)->flags))
168 #define PageTestandSetSwapCache(page) \
169 (test_and_set_bit(PG_swap_cache, &(page)->flags))
171 #define PageClearSlab(page) (clear_bit(PG_Slab, &(page)->flags))
172 #define PageClearSwapCache(page)(clear_bit(PG_swap_cache, &(page)->flags))
174 #define PageTestandClearDirty(page) \
175 (test_and_clear_bit(PG_dirty, &(page)->flags))
176 #define PageTestandClearSwapCache(page) \
177 (test_and_clear_bit(PG_swap_cache, &(page)->flags))
180 * Various page->flags bits:
182 * PG_reserved is set for a page which must never be accessed (which
183 * may not even be present).
185 * PG_DMA is set for those pages which lie in the range of
186 * physical addresses capable of carrying DMA transfers.
188 * Multiple processes may "see" the same page. E.g. for untouched
189 * mappings of /dev/null, all processes see the same page full of
190 * zeroes, and text pages of executables and shared libraries have
191 * only one copy in memory, at most, normally.
193 * For the non-reserved pages, page->count denotes a reference count.
194 * page->count == 0 means the page is free.
195 * page->count == 1 means the page is used for exactly one purpose
196 * (e.g. a private data page of one process).
198 * A page may be used for kmalloc() or anyone else who does a
199 * get_free_page(). In this case the page->count is at least 1, and
200 * all other fields are unused but should be 0 or NULL. The
201 * management of this page is the responsibility of the one who uses
202 * it.
204 * The other pages (we may call them "process pages") are completely
205 * managed by the Linux memory manager: I/O, buffers, swapping etc.
206 * The following discussion applies only to them.
208 * A page may belong to an inode's memory mapping. In this case,
209 * page->inode is the pointer to the inode, and page->offset is the
210 * file offset of the page (not necessarily a multiple of PAGE_SIZE).
212 * A page may have buffers allocated to it. In this case,
213 * page->buffers is a circular list of these buffer heads. Else,
214 * page->buffers == NULL.
216 * For pages belonging to inodes, the page->count is the number of
217 * attaches, plus 1 if buffers are allocated to the page.
219 * All pages belonging to an inode make up a doubly linked list
220 * inode->i_pages, using the fields page->next and page->prev. (These
221 * fields are also used for freelist management when page->count==0.)
222 * There is also a hash table mapping (inode,offset) to the page
223 * in memory if present. The lists for this hash table use the fields
224 * page->next_hash and page->pprev_hash.
226 * All process pages can do I/O:
227 * - inode pages may need to be read from disk,
228 * - inode pages which have been modified and are MAP_SHARED may need
229 * to be written to disk,
230 * - private pages which have been modified may need to be swapped out
231 * to swap space and (later) to be read back into memory.
232 * During disk I/O, PG_locked is used. This bit is set before I/O
233 * and reset when I/O completes. page->wait is a wait queue of all
234 * tasks waiting for the I/O on this page to complete.
235 * PG_uptodate tells whether the page's contents is valid.
236 * When a read completes, the page becomes uptodate, unless a disk I/O
237 * error happened.
238 * When a write completes, and PG_free_after is set, the page is
239 * freed without any further delay.
241 * For choosing which pages to swap out, inode pages carry a
242 * PG_referenced bit, which is set any time the system accesses
243 * that page through the (inode,offset) hash table.
245 * PG_skip is used on sparc/sparc64 architectures to "skip" certain
246 * parts of the address space.
248 * PG_error is set to indicate that an I/O error occurred on this page.
251 extern mem_map_t * mem_map;
254 * This is timing-critical - most of the time in getting a new page
255 * goes to clearing the page. If you want a page without the clearing
256 * overhead, just use __get_free_page() directly..
258 #define __get_free_page(gfp_mask) __get_free_pages((gfp_mask),0)
259 #define __get_dma_pages(gfp_mask, order) __get_free_pages((gfp_mask) | GFP_DMA,(order))
260 extern unsigned long FASTCALL(__get_free_pages(int gfp_mask, unsigned long gfp_order));
262 extern inline unsigned long get_free_page(int gfp_mask)
264 unsigned long page;
266 page = __get_free_page(gfp_mask);
267 if (page)
268 clear_page(page);
269 return page;
272 extern int low_on_memory;
274 /* memory.c & swap.c*/
276 #define free_page(addr) free_pages((addr),0)
277 extern void FASTCALL(free_pages(unsigned long addr, unsigned long order));
278 extern void FASTCALL(__free_page(struct page *));
280 extern void show_free_areas(void);
281 extern unsigned long put_dirty_page(struct task_struct * tsk,unsigned long page,
282 unsigned long address);
284 extern void free_page_tables(struct mm_struct * mm);
285 extern void clear_page_tables(struct mm_struct *, unsigned long, int);
286 extern int new_page_tables(struct task_struct * tsk);
288 extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
289 extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
290 extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
291 extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
293 extern void vmtruncate(struct inode * inode, unsigned long offset);
294 extern int handle_mm_fault(struct task_struct *tsk,struct vm_area_struct *vma, unsigned long address, int write_access);
295 extern void make_pages_present(unsigned long addr, unsigned long end);
297 extern int pgt_cache_water[2];
298 extern int check_pgt_cache(void);
300 extern unsigned long paging_init(unsigned long start_mem, unsigned long end_mem);
301 extern void mem_init(unsigned long start_mem, unsigned long end_mem);
302 extern void show_mem(void);
303 extern void oom(struct task_struct * tsk);
304 extern void si_meminfo(struct sysinfo * val);
306 /* mmap.c */
307 extern void vma_init(void);
308 extern void merge_segments(struct mm_struct *, unsigned long, unsigned long);
309 extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
310 extern void build_mmap_avl(struct mm_struct *);
311 extern void exit_mmap(struct mm_struct *);
312 extern unsigned long get_unmapped_area(unsigned long, unsigned long);
314 extern unsigned long do_mmap(struct file *, unsigned long, unsigned long,
315 unsigned long, unsigned long, unsigned long);
316 extern int do_munmap(unsigned long, size_t);
318 /* filemap.c */
319 extern void remove_inode_page(struct page *);
320 extern unsigned long page_unuse(struct page *);
321 extern int shrink_mmap(int, int);
322 extern void truncate_inode_pages(struct inode *, unsigned long);
323 extern unsigned long get_cached_page(struct inode *, unsigned long, int);
324 extern void put_cached_page(unsigned long);
327 * GFP bitmasks..
329 #define __GFP_WAIT 0x01
330 #define __GFP_LOW 0x02
331 #define __GFP_MED 0x04
332 #define __GFP_HIGH 0x08
333 #define __GFP_IO 0x10
334 #define __GFP_SWAP 0x20
336 #define __GFP_DMA 0x80
338 #define GFP_BUFFER (__GFP_LOW | __GFP_WAIT)
339 #define GFP_ATOMIC (__GFP_HIGH)
340 #define GFP_USER (__GFP_LOW | __GFP_WAIT | __GFP_IO)
341 #define GFP_KERNEL (__GFP_MED | __GFP_WAIT | __GFP_IO)
342 #define GFP_NFS (__GFP_HIGH | __GFP_WAIT | __GFP_IO)
343 #define GFP_KSWAPD (__GFP_IO | __GFP_SWAP)
345 /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some
346 platforms, used as appropriate on others */
348 #define GFP_DMA __GFP_DMA
350 /* vma is the first one with address < vma->vm_end,
351 * and even address < vma->vm_start. Have to extend vma. */
352 static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
354 unsigned long grow;
356 address &= PAGE_MASK;
357 grow = vma->vm_start - address;
358 if (vma->vm_end - address
359 > (unsigned long) current->rlim[RLIMIT_STACK].rlim_cur ||
360 (vma->vm_mm->total_vm << PAGE_SHIFT) + grow
361 > (unsigned long) current->rlim[RLIMIT_AS].rlim_cur)
362 return -ENOMEM;
363 vma->vm_start = address;
364 vma->vm_offset -= grow;
365 vma->vm_mm->total_vm += grow >> PAGE_SHIFT;
366 if (vma->vm_flags & VM_LOCKED)
367 vma->vm_mm->locked_vm += grow >> PAGE_SHIFT;
368 return 0;
371 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
372 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
374 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
375 NULL if none. Assume start_addr < end_addr. */
376 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
378 struct vm_area_struct * vma = find_vma(mm,start_addr);
380 if (vma && end_addr <= vma->vm_start)
381 vma = NULL;
382 return vma;
385 #define buffer_under_min() ((buffermem >> PAGE_SHIFT) * 100 < \
386 buffer_mem.min_percent * num_physpages)
387 #define pgcache_under_min() (page_cache_size * 100 < \
388 page_cache.min_percent * num_physpages)
390 #endif /* __KERNEL__ */
392 #endif