>> Btw, I've been looking at why Andrea thinks he's patches are needed,
[davej-history.git] / include / linux / mm.h
blob17fdc35330453068184ba126f4894827d9a0ad16
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
8 #ifdef __KERNEL__
10 #include <linux/string.h>
12 extern unsigned long max_mapnr;
13 extern unsigned long num_physpages;
14 extern void * high_memory;
16 #include <asm/page.h>
17 #include <asm/atomic.h>
20 * Linux kernel virtual memory manager primitives.
21 * The idea being to have a "virtual" mm in the same way
22 * we have a virtual fs - giving a cleaner interface to the
23 * mm details, and allowing different kinds of memory mappings
24 * (from shared memory to executable loading to arbitrary
25 * mmap() functions).
29 * This struct defines a memory VMM memory area. There is one of these
30 * per VM-area/task. A VM area is any part of the process virtual memory
31 * space that has a special rule for the page-fault handlers (ie a shared
32 * library, the executable area etc).
34 struct vm_area_struct {
35 struct mm_struct * vm_mm; /* VM area parameters */
36 unsigned long vm_start;
37 unsigned long vm_end;
38 pgprot_t vm_page_prot;
39 unsigned short vm_flags;
40 struct vm_area_struct *vm_next;
41 struct vm_area_struct **vm_pprev;
43 /* For areas with inode, the list inode->i_mmap, for shm areas,
44 * the list of attaches, otherwise unused.
46 struct vm_area_struct *vm_next_share;
47 struct vm_area_struct **vm_pprev_share;
49 struct vm_operations_struct * vm_ops;
50 unsigned long vm_offset;
51 struct file * vm_file;
52 unsigned long vm_pte; /* shared mem */
56 * vm_flags..
58 #define VM_READ 0x0001 /* currently active flags */
59 #define VM_WRITE 0x0002
60 #define VM_EXEC 0x0004
61 #define VM_SHARED 0x0008
63 #define VM_MAYREAD 0x0010 /* limits for mprotect() etc */
64 #define VM_MAYWRITE 0x0020
65 #define VM_MAYEXEC 0x0040
66 #define VM_MAYSHARE 0x0080
68 #define VM_GROWSDOWN 0x0100 /* general info on the segment */
69 #define VM_GROWSUP 0x0200
70 #define VM_SHM 0x0400 /* shared memory area, don't swap out */
71 #define VM_DENYWRITE 0x0800 /* ETXTBSY on write attempts.. */
73 #define VM_EXECUTABLE 0x1000
74 #define VM_LOCKED 0x2000
75 #define VM_IO 0x4000 /* Memory mapped I/O or similar */
77 #define VM_STACK_FLAGS 0x0177
80 * mapping from the currently active vm_flags protection bits (the
81 * low four bits) to a page protection mask..
83 extern pgprot_t protection_map[16];
87 * These are the virtual MM functions - opening of an area, closing and
88 * unmapping it (needed to keep files on disk up-to-date etc), pointer
89 * to the functions called when a no-page or a wp-page exception occurs.
91 struct vm_operations_struct {
92 void (*open)(struct vm_area_struct * area);
93 void (*close)(struct vm_area_struct * area);
94 void (*unmap)(struct vm_area_struct *area, unsigned long, size_t);
95 void (*protect)(struct vm_area_struct *area, unsigned long, size_t, unsigned int newprot);
96 int (*sync)(struct vm_area_struct *area, unsigned long, size_t, unsigned int flags);
97 void (*advise)(struct vm_area_struct *area, unsigned long, size_t, unsigned int advise);
98 unsigned long (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access);
99 unsigned long (*wppage)(struct vm_area_struct * area, unsigned long address,
100 unsigned long page);
101 int (*swapout)(struct vm_area_struct *, unsigned long, pte_t *);
102 pte_t (*swapin)(struct vm_area_struct *, unsigned long, unsigned long);
106 * Try to keep the most commonly accessed fields in single cache lines
107 * here (16 bytes or greater). This ordering should be particularly
108 * beneficial on 32-bit processors.
110 * The first line is data used in page cache lookup, the second line
111 * is used for linear searches (eg. clock algorithm scans).
113 typedef struct page {
114 /* these must be first (free area handling) */
115 struct page *next;
116 struct page *prev;
117 struct inode *inode;
118 unsigned long offset;
119 struct page *next_hash;
120 atomic_t count;
121 unsigned int age;
122 unsigned long flags; /* atomic flags, some possibly updated asynchronously */
123 struct wait_queue *wait;
124 struct page **pprev_hash;
125 struct buffer_head * buffers;
126 unsigned long map_nr; /* page->map_nr == page - mem_map */
127 } mem_map_t;
129 /* Page flag bit values */
130 #define PG_locked 0
131 #define PG_error 1
132 #define PG_referenced 2
133 #define PG_uptodate 3
134 #define PG_free_after 4
135 #define PG_decr_after 5
136 #define PG_swap_unlock_after 6
137 #define PG_DMA 7
138 #define PG_Slab 8
139 #define PG_swap_cache 9
140 #define PG_skip 10
141 #define PG_reserved 31
143 /* Make it prettier to test the above... */
144 #define PageLocked(page) (test_bit(PG_locked, &(page)->flags))
145 #define PageError(page) (test_bit(PG_error, &(page)->flags))
146 #define PageReferenced(page) (test_bit(PG_referenced, &(page)->flags))
147 #define PageUptodate(page) (test_bit(PG_uptodate, &(page)->flags))
148 #define PageFreeAfter(page) (test_bit(PG_free_after, &(page)->flags))
149 #define PageDecrAfter(page) (test_bit(PG_decr_after, &(page)->flags))
150 #define PageSwapUnlockAfter(page) (test_bit(PG_swap_unlock_after, &(page)->flags))
151 #define PageDMA(page) (test_bit(PG_DMA, &(page)->flags))
152 #define PageSlab(page) (test_bit(PG_Slab, &(page)->flags))
153 #define PageSwapCache(page) (test_bit(PG_swap_cache, &(page)->flags))
154 #define PageReserved(page) (test_bit(PG_reserved, &(page)->flags))
156 #define PageSetSlab(page) (set_bit(PG_Slab, &(page)->flags))
157 #define PageSetSwapCache(page) (set_bit(PG_swap_cache, &(page)->flags))
158 #define PageTestandSetSwapCache(page) \
159 (test_and_set_bit(PG_swap_cache, &(page)->flags))
161 #define PageClearSlab(page) (clear_bit(PG_Slab, &(page)->flags))
162 #define PageClearSwapCache(page)(clear_bit(PG_swap_cache, &(page)->flags))
164 #define PageTestandClearSwapCache(page) \
165 (test_and_clear_bit(PG_swap_cache, &(page)->flags))
168 * page->reserved denotes a page which must never be accessed (which
169 * may not even be present).
171 * page->dma is set for those pages which lie in the range of
172 * physical addresses capable of carrying DMA transfers.
174 * Multiple processes may "see" the same page. E.g. for untouched
175 * mappings of /dev/null, all processes see the same page full of
176 * zeroes, and text pages of executables and shared libraries have
177 * only one copy in memory, at most, normally.
179 * For the non-reserved pages, page->count denotes a reference count.
180 * page->count == 0 means the page is free.
181 * page->count == 1 means the page is used for exactly one purpose
182 * (e.g. a private data page of one process).
184 * A page may be used for kmalloc() or anyone else who does a
185 * get_free_page(). In this case the page->count is at least 1, and
186 * all other fields are unused but should be 0 or NULL. The
187 * management of this page is the responsibility of the one who uses
188 * it.
190 * The other pages (we may call them "process pages") are completely
191 * managed by the Linux memory manager: I/O, buffers, swapping etc.
192 * The following discussion applies only to them.
194 * A page may belong to an inode's memory mapping. In this case,
195 * page->inode is the inode, and page->offset is the file offset
196 * of the page (not necessarily a multiple of PAGE_SIZE).
198 * A page may have buffers allocated to it. In this case,
199 * page->buffers is a circular list of these buffer heads. Else,
200 * page->buffers == NULL.
202 * For pages belonging to inodes, the page->count is the number of
203 * attaches, plus 1 if buffers are allocated to the page.
205 * All pages belonging to an inode make up a doubly linked list
206 * inode->i_pages, using the fields page->next and page->prev. (These
207 * fields are also used for freelist management when page->count==0.)
208 * There is also a hash table mapping (inode,offset) to the page
209 * in memory if present. The lists for this hash table use the fields
210 * page->next_hash and page->prev_hash.
212 * All process pages can do I/O:
213 * - inode pages may need to be read from disk,
214 * - inode pages which have been modified and are MAP_SHARED may need
215 * to be written to disk,
216 * - private pages which have been modified may need to be swapped out
217 * to swap space and (later) to be read back into memory.
218 * During disk I/O, page->locked is true. This bit is set before I/O
219 * and reset when I/O completes. page->wait is a wait queue of all
220 * tasks waiting for the I/O on this page to complete.
221 * page->uptodate tells whether the page's contents is valid.
222 * When a read completes, the page becomes uptodate, unless a disk I/O
223 * error happened.
224 * When a write completes, and page->free_after is true, the page is
225 * freed without any further delay.
227 * For choosing which pages to swap out, inode pages carry a
228 * page->referenced bit, which is set any time the system accesses
229 * that page through the (inode,offset) hash table.
230 * There is also the page->age counter, which implements a linear
231 * decay (why not an exponential decay?), see swapctl.h.
234 extern mem_map_t * mem_map;
237 * This is timing-critical - most of the time in getting a new page
238 * goes to clearing the page. If you want a page without the clearing
239 * overhead, just use __get_free_page() directly..
241 #define __get_free_page(gfp_mask) __get_free_pages((gfp_mask),0)
242 #define __get_dma_pages(gfp_mask, order) __get_free_pages((gfp_mask) | GFP_DMA,(order))
243 extern unsigned long FASTCALL(__get_free_pages(int gfp_mask, unsigned long gfp_order));
245 extern inline unsigned long get_free_page(int gfp_mask)
247 unsigned long page;
249 page = __get_free_page(gfp_mask);
250 if (page)
251 clear_page(page);
252 return page;
255 /* memory.c & swap.c*/
257 #define free_page(addr) free_pages((addr),0)
258 extern void FASTCALL(free_pages(unsigned long addr, unsigned long order));
259 extern void FASTCALL(__free_page(struct page *));
261 extern void show_free_areas(void);
262 extern unsigned long put_dirty_page(struct task_struct * tsk,unsigned long page,
263 unsigned long address);
265 extern void free_page_tables(struct mm_struct * mm);
266 extern void clear_page_tables(struct task_struct * tsk);
267 extern int new_page_tables(struct task_struct * tsk);
269 extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
270 extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
271 extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
272 extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
274 extern void vmtruncate(struct inode * inode, unsigned long offset);
275 extern int handle_mm_fault(struct task_struct *tsk,struct vm_area_struct *vma, unsigned long address, int write_access);
276 extern void make_pages_present(unsigned long addr, unsigned long end);
278 extern int pgt_cache_water[2];
279 extern int check_pgt_cache(void);
281 extern unsigned long paging_init(unsigned long start_mem, unsigned long end_mem);
282 extern void mem_init(unsigned long start_mem, unsigned long end_mem);
283 extern void show_mem(void);
284 extern void oom(struct task_struct * tsk);
285 extern void si_meminfo(struct sysinfo * val);
287 /* mmap.c */
288 extern void vma_init(void);
289 extern void merge_segments(struct mm_struct *, unsigned long, unsigned long);
290 extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
291 extern void exit_mmap(struct mm_struct *);
292 extern unsigned long get_unmapped_area(unsigned long, unsigned long);
294 extern unsigned long do_mmap(struct file *, unsigned long, unsigned long,
295 unsigned long, unsigned long, unsigned long);
296 extern int do_munmap(unsigned long, size_t);
298 /* filemap.c */
299 extern void remove_inode_page(struct page *);
300 extern unsigned long page_unuse(struct page *);
301 extern int shrink_mmap(int, int);
302 extern void truncate_inode_pages(struct inode *, unsigned long);
303 extern unsigned long get_cached_page(struct inode *, unsigned long, int);
304 extern void put_cached_page(unsigned long);
307 * GFP bitmasks..
309 #define __GFP_WAIT 0x01
310 #define __GFP_LOW 0x02
311 #define __GFP_MED 0x04
312 #define __GFP_HIGH 0x08
314 #define __GFP_DMA 0x80
316 #define GFP_BUFFER (__GFP_LOW | __GFP_WAIT)
317 #define GFP_ATOMIC (__GFP_HIGH)
318 #define GFP_USER (__GFP_LOW | __GFP_WAIT)
319 #define GFP_KERNEL (__GFP_MED | __GFP_WAIT)
320 #define GFP_NFS (__GFP_HIGH | __GFP_WAIT)
322 /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some
323 platforms, used as appropriate on others */
325 #define GFP_DMA __GFP_DMA
328 * Decide if we should try to do some swapout..
330 extern int free_memory_available(void);
331 extern struct task_struct * kswapd_task;
333 /* vma is the first one with address < vma->vm_end,
334 * and even address < vma->vm_start. Have to extend vma. */
335 static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
337 unsigned long grow;
339 address &= PAGE_MASK;
340 grow = vma->vm_start - address;
341 if (vma->vm_end - address
342 > (unsigned long) current->rlim[RLIMIT_STACK].rlim_cur ||
343 (vma->vm_mm->total_vm << PAGE_SHIFT) + grow
344 > (unsigned long) current->rlim[RLIMIT_AS].rlim_cur)
345 return -ENOMEM;
346 vma->vm_start = address;
347 vma->vm_offset -= grow;
348 vma->vm_mm->total_vm += grow >> PAGE_SHIFT;
349 if (vma->vm_flags & VM_LOCKED)
350 vma->vm_mm->locked_vm += grow >> PAGE_SHIFT;
351 return 0;
354 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
355 static inline struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
357 struct vm_area_struct *vma = NULL;
359 if (mm) {
360 /* Check the cache first. */
361 vma = mm->mmap_cache;
362 if(!vma || (vma->vm_end <= addr) || (vma->vm_start > addr)) {
363 vma = mm->mmap;
364 while(vma && vma->vm_end <= addr)
365 vma = vma->vm_next;
366 mm->mmap_cache = vma;
369 return vma;
372 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
373 NULL if none. Assume start_addr < end_addr. */
374 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
376 struct vm_area_struct * vma = find_vma(mm,start_addr);
378 if (vma && end_addr <= vma->vm_start)
379 vma = NULL;
380 return vma;
383 #define buffer_under_min() ((buffermem >> PAGE_SHIFT) * 100 < \
384 buffer_mem.min_percent * num_physpages)
385 #define buffer_under_borrow() ((buffermem >> PAGE_SHIFT) * 100 < \
386 buffer_mem.borrow_percent * num_physpages)
387 #define buffer_under_max() ((buffermem >> PAGE_SHIFT) * 100 < \
388 buffer_mem.max_percent * num_physpages)
389 #define buffer_over_min() ((buffermem >> PAGE_SHIFT) * 100 > \
390 buffer_mem.min_percent * num_physpages)
391 #define buffer_over_borrow() ((buffermem >> PAGE_SHIFT) * 100 > \
392 buffer_mem.borrow_percent * num_physpages)
393 #define buffer_over_max() ((buffermem >> PAGE_SHIFT) * 100 > \
394 buffer_mem.max_percent * num_physpages)
395 #define pgcache_under_min() (page_cache_size * 100 < \
396 page_cache.min_percent * num_physpages)
397 #define pgcache_under_borrow() (page_cache_size * 100 < \
398 page_cache.borrow_percent * num_physpages)
399 #define pgcache_under_max() (page_cache_size * 100 < \
400 page_cache.max_percent * num_physpages)
401 #define pgcache_over_min() (page_cache_size * 100 > \
402 page_cache.min_percent * num_physpages)
403 #define pgcache_over_borrow() (page_cache_size * 100 > \
404 page_cache.borrow_percent * num_physpages)
405 #define pgcache_over_max() (page_cache_size * 100 > \
406 page_cache.max_percent * num_physpages)
408 #endif /* __KERNEL__ */
410 #endif