Ok. I didn't make 2.4.0 in 2000. Tough. I tried, but we had some
[davej-history.git] / include / asm-mips / dma.h
blob54e938ef42ebde556a7de898907bb984a690fa2e
1 /* $Id: dma.h,v 1.6 1999/12/30 14:22:47 raiko Exp $
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
7 * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
8 * and can only be used for expansion cards. Onboard DMA controllers, such
9 * as the R4030 on Jazz boards behave totally different!
12 #ifndef __ASM_MIPS_DMA_H
13 #define __ASM_MIPS_DMA_H
15 #include <linux/config.h>
16 #include <asm/io.h> /* need byte IO */
17 #include <linux/spinlock.h> /* And spinlocks */
18 #include <linux/delay.h>
19 #include <asm/system.h>
22 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
23 #define dma_outb outb_p
24 #else
25 #define dma_outb outb
26 #endif
28 #define dma_inb inb
31 * NOTES about DMA transfers:
33 * controller 1: channels 0-3, byte operations, ports 00-1F
34 * controller 2: channels 4-7, word operations, ports C0-DF
36 * - ALL registers are 8 bits only, regardless of transfer size
37 * - channel 4 is not used - cascades 1 into 2.
38 * - channels 0-3 are byte - addresses/counts are for physical bytes
39 * - channels 5-7 are word - addresses/counts are for physical words
40 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
41 * - transfer count loaded to registers is 1 less than actual count
42 * - controller 2 offsets are all even (2x offsets for controller 1)
43 * - page registers for 5-7 don't use data bit 0, represent 128K pages
44 * - page registers for 0-3 use bit 0, represent 64K pages
46 * DMA transfers are limited to the lower 16MB of _physical_ memory.
47 * Note that addresses loaded into registers must be _physical_ addresses,
48 * not logical addresses (which may differ if paging is active).
50 * Address mapping for channels 0-3:
52 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
53 * | ... | | ... | | ... |
54 * | ... | | ... | | ... |
55 * | ... | | ... | | ... |
56 * P7 ... P0 A7 ... A0 A7 ... A0
57 * | Page | Addr MSB | Addr LSB | (DMA registers)
59 * Address mapping for channels 5-7:
61 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
62 * | ... | \ \ ... \ \ \ ... \ \
63 * | ... | \ \ ... \ \ \ ... \ (not used)
64 * | ... | \ \ ... \ \ \ ... \
65 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
66 * | Page | Addr MSB | Addr LSB | (DMA registers)
68 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
69 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
70 * the hardware level, so odd-byte transfers aren't possible).
72 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
73 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
74 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
78 #define MAX_DMA_CHANNELS 8
81 * The maximum address in KSEG0 that we can perform a DMA transfer to on this
82 * platform. This describes only the PC style part of the DMA logic like on
83 * Deskstations or Acer PICA but not the much more versatile DMA logic used
84 * for the local devices on Acer PICA or Magnums.
86 #define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000)
88 /* 8237 DMA controllers */
89 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
90 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
92 /* DMA controller registers */
93 #define DMA1_CMD_REG 0x08 /* command register (w) */
94 #define DMA1_STAT_REG 0x08 /* status register (r) */
95 #define DMA1_REQ_REG 0x09 /* request register (w) */
96 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
97 #define DMA1_MODE_REG 0x0B /* mode register (w) */
98 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
99 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
100 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
101 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
102 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
104 #define DMA2_CMD_REG 0xD0 /* command register (w) */
105 #define DMA2_STAT_REG 0xD0 /* status register (r) */
106 #define DMA2_REQ_REG 0xD2 /* request register (w) */
107 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
108 #define DMA2_MODE_REG 0xD6 /* mode register (w) */
109 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
110 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
111 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
112 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
113 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
115 #define DMA_ADDR_0 0x00 /* DMA address registers */
116 #define DMA_ADDR_1 0x02
117 #define DMA_ADDR_2 0x04
118 #define DMA_ADDR_3 0x06
119 #define DMA_ADDR_4 0xC0
120 #define DMA_ADDR_5 0xC4
121 #define DMA_ADDR_6 0xC8
122 #define DMA_ADDR_7 0xCC
124 #define DMA_CNT_0 0x01 /* DMA count registers */
125 #define DMA_CNT_1 0x03
126 #define DMA_CNT_2 0x05
127 #define DMA_CNT_3 0x07
128 #define DMA_CNT_4 0xC2
129 #define DMA_CNT_5 0xC6
130 #define DMA_CNT_6 0xCA
131 #define DMA_CNT_7 0xCE
133 #define DMA_PAGE_0 0x87 /* DMA page registers */
134 #define DMA_PAGE_1 0x83
135 #define DMA_PAGE_2 0x81
136 #define DMA_PAGE_3 0x82
137 #define DMA_PAGE_5 0x8B
138 #define DMA_PAGE_6 0x89
139 #define DMA_PAGE_7 0x8A
141 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
142 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
143 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
146 extern spinlock_t dma_spin_lock;
148 static __inline__ unsigned long claim_dma_lock(void)
150 unsigned long flags;
151 spin_lock_irqsave(&dma_spin_lock, flags);
152 return flags;
155 static __inline__ void release_dma_lock(unsigned long flags)
157 spin_unlock_irqrestore(&dma_spin_lock, flags);
160 /* enable/disable a specific DMA channel */
161 static __inline__ void enable_dma(unsigned int dmanr)
163 if (dmanr<=3)
164 dma_outb(dmanr, DMA1_MASK_REG);
165 else
166 dma_outb(dmanr & 3, DMA2_MASK_REG);
169 static __inline__ void disable_dma(unsigned int dmanr)
171 if (dmanr<=3)
172 dma_outb(dmanr | 4, DMA1_MASK_REG);
173 else
174 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
177 /* Clear the 'DMA Pointer Flip Flop'.
178 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
179 * Use this once to initialize the FF to a known state.
180 * After that, keep track of it. :-)
181 * --- In order to do that, the DMA routines below should ---
182 * --- only be used while holding the DMA lock ! ---
184 static __inline__ void clear_dma_ff(unsigned int dmanr)
186 if (dmanr<=3)
187 dma_outb(0, DMA1_CLEAR_FF_REG);
188 else
189 dma_outb(0, DMA2_CLEAR_FF_REG);
192 /* set mode (above) for a specific DMA channel */
193 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
195 if (dmanr<=3)
196 dma_outb(mode | dmanr, DMA1_MODE_REG);
197 else
198 dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
201 /* Set only the page register bits of the transfer address.
202 * This is used for successive transfers when we know the contents of
203 * the lower 16 bits of the DMA current address register, but a 64k boundary
204 * may have been crossed.
206 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
208 switch(dmanr) {
209 case 0:
210 dma_outb(pagenr, DMA_PAGE_0);
211 break;
212 case 1:
213 dma_outb(pagenr, DMA_PAGE_1);
214 break;
215 case 2:
216 dma_outb(pagenr, DMA_PAGE_2);
217 break;
218 case 3:
219 dma_outb(pagenr, DMA_PAGE_3);
220 break;
221 case 5:
222 dma_outb(pagenr & 0xfe, DMA_PAGE_5);
223 break;
224 case 6:
225 dma_outb(pagenr & 0xfe, DMA_PAGE_6);
226 break;
227 case 7:
228 dma_outb(pagenr & 0xfe, DMA_PAGE_7);
229 break;
234 /* Set transfer address & page bits for specific DMA channel.
235 * Assumes dma flipflop is clear.
237 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
239 set_dma_page(dmanr, a>>16);
240 if (dmanr <= 3) {
241 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
242 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
243 } else {
244 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
245 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
250 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
251 * a specific DMA channel.
252 * You must ensure the parameters are valid.
253 * NOTE: from a manual: "the number of transfers is one more
254 * than the initial word count"! This is taken into account.
255 * Assumes dma flip-flop is clear.
256 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
258 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
260 count--;
261 if (dmanr <= 3) {
262 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
263 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
264 } else {
265 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
266 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
271 /* Get DMA residue count. After a DMA transfer, this
272 * should return zero. Reading this while a DMA transfer is
273 * still in progress will return unpredictable results.
274 * If called before the channel has been used, it may return 1.
275 * Otherwise, it returns the number of _bytes_ left to transfer.
277 * Assumes DMA flip-flop is clear.
279 static __inline__ int get_dma_residue(unsigned int dmanr)
281 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
282 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
284 /* using short to get 16-bit wrap around */
285 unsigned short count;
287 count = 1 + dma_inb(io_port);
288 count += dma_inb(io_port) << 8;
290 return (dmanr<=3)? count : (count<<1);
294 /* These are in kernel/dma.c: */
295 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
296 extern void free_dma(unsigned int dmanr); /* release it again */
298 #ifdef CONFIG_PCI
299 extern int isa_dma_bridge_buggy;
300 #else
301 #define isa_dma_bridge_buggy (0)
302 #endif
304 #endif /* __ASM_MIPS_DMA_H */