Ok. I didn't make 2.4.0 in 2000. Tough. I tried, but we had some
[davej-history.git] / drivers / sound / vwsnd.c
blob4db994a45e9d4e0f0b98af8b19bbbe7695a14cc4
1 /*
2 * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3 * onboard audio. See notes in ../../Documentation/sound/vwsnd .
5 * Copyright 1999 Silicon Graphics, Inc. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #undef VWSND_DEBUG /* define for debugging */
25 * XXX to do -
27 * External sync.
28 * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29 * Bug - if select() called before read(), pcm_setup() not called.
30 * Bug - output doesn't stop soon enough if process killed.
34 * Things to test -
36 * Will readv/writev work? Write a test.
38 * insmod/rmmod 100 million times.
40 * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
41 * rate).
43 * Concurrent threads banging on mixer simultaneously, both UP
44 * and SMP kernels. Especially, watch for thread A changing
45 * OUTSRC while thread B changes gain -- both write to the same
46 * ad1843 register.
48 * What happens if a client opens /dev/audio then forks?
49 * Do two procs have /dev/audio open? Test.
51 * Pump audio through the CD, MIC and line inputs and verify that
52 * they mix/mute into the output.
54 * Apps:
55 * amp
56 * mpg123
57 * x11amp
58 * mxv
59 * kmedia
60 * esound
61 * need more input apps
63 * Run tests while bombarding with signals. setitimer(2) will do it... */
66 * This driver is organized in nine sections.
67 * The nine sections are:
69 * debug stuff
70 * low level lithium access
71 * high level lithium access
72 * AD1843 access
73 * PCM I/O
74 * audio driver
75 * mixer driver
76 * probe/attach/unload
77 * initialization and loadable kernel module interface
79 * That is roughly the order of increasing abstraction, so forward
80 * dependencies are minimal.
84 * Locking Notes
86 * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87 * open descriptors to this driver. They store it in vwsnd_use_count.
88 * The global device list, vwsnd_dev_list, is immutable when the IN_USE
89 * is true.
91 * devc->open_lock is a semaphore that is used to enforce the
92 * single reader/single writer rule for /dev/audio. The rule is
93 * that each device may have at most one reader and one writer.
94 * Open will block until the previous client has closed the
95 * device, unless O_NONBLOCK is specified.
97 * The semaphore devc->io_sema serializes PCM I/O syscalls. This
98 * is unnecessary in Linux 2.2, because the kernel lock
99 * serializes read, write, and ioctl globally, but it's there,
100 * ready for the brave, new post-kernel-lock world.
102 * Locking between interrupt and baselevel is handled by the
103 * "lock" spinlock in vwsnd_port (one lock each for read and
104 * write). Each half holds the lock just long enough to see what
105 * area it owns and update its pointers. See pcm_output() and
106 * pcm_input() for most of the gory stuff.
108 * devc->mix_sema serializes all mixer ioctls. This is also
109 * redundant because of the kernel lock.
111 * The lowest level lock is lith->lithium_lock. It is a
112 * spinlock which is held during the two-register tango of
113 * reading/writing an AD1843 register. See
114 * li_{read,write}_ad1843_reg().
118 * Sample Format Notes
120 * Lithium's DMA engine has two formats: 16-bit 2's complement
121 * and 8-bit unsigned . 16-bit transfers the data unmodified, 2
122 * bytes per sample. 8-bit unsigned transfers 1 byte per sample
123 * and XORs each byte with 0x80. Lithium can input or output
124 * either mono or stereo in either format.
126 * The AD1843 has four formats: 16-bit 2's complement, 8-bit
127 * unsigned, 8-bit mu-Law and 8-bit A-Law.
129 * This driver supports five formats: AFMT_S8, AFMT_U8,
130 * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
132 * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133 * rely on Lithium's XOR to translate between U8 and S8.
135 * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136 * the 0x80 bit in software to compensate for Lithium's XOR.
137 * This happens in pcm_copy_{in,out}().
139 * Changes:
140 * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
141 * Added some __init/__exit
144 #include <linux/module.h>
145 #include <linux/init.h>
147 #include <linux/sched.h>
148 #include <linux/semaphore.h>
149 #include <linux/stddef.h>
150 #include <linux/spinlock.h>
151 #include <linux/smp_lock.h>
152 #include <asm/fixmap.h>
153 #include <asm/cobalt.h>
154 #include <asm/semaphore.h>
156 #include "sound_config.h"
158 /*****************************************************************************/
159 /* debug stuff */
161 #ifdef VWSND_DEBUG
163 #include <linux/interrupt.h> /* for in_interrupt() */
165 static int shut_up = 1;
168 * dbgassert - called when an assertion fails.
171 static void dbgassert(const char *fcn, int line, const char *expr)
173 if (in_interrupt())
174 panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
175 __FILE__, fcn, line, expr);
176 else {
177 int x;
178 printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
179 __FILE__, fcn, line, expr);
180 x = * (volatile int *) 0; /* force proc to exit */
185 * Bunch of useful debug macros:
187 * ASSERT - print unless e nonzero (panic if in interrupt)
188 * DBGDO - include arbitrary code if debugging
189 * DBGX - debug print raw (w/o function name)
190 * DBGP - debug print w/ function name
191 * DBGE - debug print function entry
192 * DBGC - debug print function call
193 * DBGR - debug print function return
194 * DBGXV - debug print raw when verbose
195 * DBGPV - debug print when verbose
196 * DBGEV - debug print function entry when verbose
197 * DBGRV - debug print function return when verbose
200 #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__FUNCTION__, __LINE__, #e))
201 #define DBGDO(x) x
202 #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
203 #define DBGP(fmt, args...) (DBGX(__FUNCTION__ ": " fmt, ##args))
204 #define DBGE(fmt, args...) (DBGX(__FUNCTION__ fmt, ##args))
205 #define DBGC(rtn) (DBGP("calling %s\n", rtn))
206 #define DBGR() (DBGP("returning\n"))
207 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
208 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
209 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
210 #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
211 #define DBGRV() (shut_up ? 0 : DBGR())
213 #else /* !VWSND_DEBUG */
215 #define ASSERT(e) ((void) 0)
216 #define DBGDO(x) /* don't */
217 #define DBGX(fmt, args...) ((void) 0)
218 #define DBGP(fmt, args...) ((void) 0)
219 #define DBGE(fmt, args...) ((void) 0)
220 #define DBGC(rtn) ((void) 0)
221 #define DBGR() ((void) 0)
222 #define DBGPV(fmt, args...) ((void) 0)
223 #define DBGXV(fmt, args...) ((void) 0)
224 #define DBGEV(fmt, args...) ((void) 0)
225 #define DBGCV(rtn) ((void) 0)
226 #define DBGRV() ((void) 0)
228 #endif /* !VWSND_DEBUG */
230 /*****************************************************************************/
231 /* low level lithium access */
234 * We need to talk to Lithium registers on three pages. Here are
235 * the pages' offsets from the base address (0xFF001000).
238 enum {
239 LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
240 LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
241 LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
244 /* low-level lithium data */
246 typedef struct lithium {
247 caddr_t page0; /* virtual addresses */
248 caddr_t page1;
249 caddr_t page2;
250 spinlock_t lock; /* protects codec and UST/MSC access */
251 } lithium_t;
254 * li_create initializes the lithium_t structure and sets up vm mappings
255 * to access the registers.
256 * Returns 0 on success, -errno on failure.
259 static int li_create(lithium_t *lith, unsigned long baseaddr)
261 static void li_destroy(lithium_t *);
263 lith->lock = SPIN_LOCK_UNLOCKED;
264 lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
265 lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
266 lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
267 if (!lith->page0 || !lith->page1 || !lith->page2) {
268 li_destroy(lith);
269 return -ENOMEM;
271 return 0;
275 * li_destroy destroys the lithium_t structure and vm mappings.
278 static void li_destroy(lithium_t *lith)
280 if (lith->page0) {
281 iounmap(lith->page0);
282 lith->page0 = NULL;
284 if (lith->page1) {
285 iounmap(lith->page1);
286 lith->page1 = NULL;
288 if (lith->page2) {
289 iounmap(lith->page2);
290 lith->page2 = NULL;
295 * basic register accessors - read/write long/byte
298 static __inline__ unsigned long li_readl(lithium_t *lith, int off)
300 return * (volatile unsigned long *) (lith->page0 + off);
303 static __inline__ unsigned char li_readb(lithium_t *lith, int off)
305 return * (volatile unsigned char *) (lith->page0 + off);
308 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
310 * (volatile unsigned long *) (lith->page0 + off) = val;
313 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
315 * (volatile unsigned char *) (lith->page0 + off) = val;
318 /*****************************************************************************/
319 /* High Level Lithium Access */
322 * Lithium DMA Notes
324 * Lithium has two dedicated DMA channels for audio. They are known
325 * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
326 * input, and comm2 is for output. Each is controlled by three
327 * registers: BASE (base address), CFG (config) and CCTL
328 * (config/control).
330 * Each DMA channel points to a physically contiguous ring buffer in
331 * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
332 * There are three pointers into the ring buffer: read, write, and
333 * trigger. The pointers are 8 bits each. Each pointer points to
334 * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
335 * so there is no finer-granularity control.
337 * In comm1, the hardware updates the write ptr, and software updates
338 * the read ptr. In comm2, it's the opposite: hardware updates the
339 * read ptr, and software updates the write ptr. I designate the
340 * hardware-updated ptr as the hwptr, and the software-updated ptr as
341 * the swptr.
343 * The trigger ptr and trigger mask are used to trigger interrupts.
344 * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
346 * Trigger Mask Value
348 * A three bit wide field that represents a power of two mask
349 * that is used whenever the trigger pointer is compared to its
350 * respective read or write pointer. A value of zero here
351 * implies a mask of 0xFF and a value of seven implies a mask
352 * 0x01. This value can be used to sub-divide the ring buffer
353 * into pie sections so that interrupts monitor the progress of
354 * hardware from section to section.
356 * My interpretation of that is, whenever the hw ptr is updated, it is
357 * compared with the trigger ptr, and the result is masked by the
358 * trigger mask. (Actually, by the complement of the trigger mask.)
359 * If the result is zero, an interrupt is triggered. I.e., interrupt
360 * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
361 * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
363 * In yet different words, setting tmreg to 0 causes an interrupt after
364 * every 256 DMA chunks (8192 bytes) or once per traversal of the
365 * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
366 * (64 bytes) or 128 times per traversal of the ring buffer.
369 /* Lithium register offsets and bit definitions */
371 #define LI_HOST_CONTROLLER 0x000
372 # define LI_HC_RESET 0x00008000
373 # define LI_HC_LINK_ENABLE 0x00004000
374 # define LI_HC_LINK_FAILURE 0x00000004
375 # define LI_HC_LINK_CODEC 0x00000002
376 # define LI_HC_LINK_READY 0x00000001
378 #define LI_INTR_STATUS 0x010
379 #define LI_INTR_MASK 0x014
380 # define LI_INTR_LINK_ERR 0x00008000
381 # define LI_INTR_COMM2_TRIG 0x00000008
382 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
383 # define LI_INTR_COMM1_TRIG 0x00000002
384 # define LI_INTR_COMM1_OVERFLOW 0x00000001
386 #define LI_CODEC_COMMAND 0x018
387 # define LI_CC_BUSY 0x00008000
388 # define LI_CC_DIR 0x00000080
389 # define LI_CC_DIR_RD LI_CC_DIR
390 # define LI_CC_DIR_WR (!LI_CC_DIR)
391 # define LI_CC_ADDR_MASK 0x0000007F
393 #define LI_CODEC_DATA 0x01C
395 #define LI_COMM1_BASE 0x100
396 #define LI_COMM1_CTL 0x104
397 # define LI_CCTL_RESET 0x80000000
398 # define LI_CCTL_SIZE 0x70000000
399 # define LI_CCTL_DMA_ENABLE 0x08000000
400 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */
401 # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
402 # define LI_CCTL_RPTR 0x0000FF00
403 # define LI_CCTL_WPTR 0x000000FF
404 #define LI_COMM1_CFG 0x108
405 # define LI_CCFG_LOCK 0x00008000
406 # define LI_CCFG_SLOT 0x00000070
407 # define LI_CCFG_DIRECTION 0x00000008
408 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
409 # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
410 # define LI_CCFG_MODE 0x00000004
411 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
412 # define LI_CCFG_MODE_STEREO LI_CCFG_MODE
413 # define LI_CCFG_FORMAT 0x00000003
414 # define LI_CCFG_FMT_8BIT 0x00000000
415 # define LI_CCFG_FMT_16BIT 0x00000001
416 #define LI_COMM2_BASE 0x10C
417 #define LI_COMM2_CTL 0x110
418 /* bit definitions are the same as LI_COMM1_CTL */
419 #define LI_COMM2_CFG 0x114
420 /* bit definitions are the same as LI_COMM1_CFG */
422 #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
423 #define LI_UST_HIGH 0x204 /* microseconds since boot */
425 #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
426 #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
427 #define LI_AUDIO2_UST 0x308 /* counts samples actually */
428 #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
431 * Lithium's DMA engine operates on chunks of 32 bytes. We call that
432 * a DMACHUNK.
435 #define DMACHUNK_SHIFT 5
436 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
437 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
438 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
441 * Two convenient macros to shift bitfields into/out of position.
443 * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
444 * As long as mask is constant, we trust the compiler will change the
445 * multipy and divide into shifts.
448 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
449 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
452 * dma_chan_desc is invariant information about a Lithium
453 * DMA channel. There are two instances, li_comm1 and li_comm2.
455 * Note that the CCTL register fields are write ptr and read ptr, but what
456 * we care about are which pointer is updated by software and which by
457 * hardware.
460 typedef struct dma_chan_desc {
461 int basereg;
462 int cfgreg;
463 int ctlreg;
464 int hwptrreg;
465 int swptrreg;
466 int ustreg;
467 int mscreg;
468 unsigned long swptrmask;
469 int ad1843_slot;
470 int direction; /* LI_CCTL_DIR_IN/OUT */
471 } dma_chan_desc_t;
473 static const dma_chan_desc_t li_comm1 = {
474 LI_COMM1_BASE, /* base register offset */
475 LI_COMM1_CFG, /* config register offset */
476 LI_COMM1_CTL, /* control register offset */
477 LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */
478 LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */
479 LI_AUDIO1_UST, /* ust reg offset */
480 LI_AUDIO1_MSC, /* msc reg offset */
481 LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */
482 2, /* ad1843 serial slot */
483 LI_CCFG_DIR_IN /* direction */
486 static const dma_chan_desc_t li_comm2 = {
487 LI_COMM2_BASE, /* base register offset */
488 LI_COMM2_CFG, /* config register offset */
489 LI_COMM2_CTL, /* control register offset */
490 LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */
491 LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */
492 LI_AUDIO2_UST, /* ust reg offset */
493 LI_AUDIO2_MSC, /* msc reg offset */
494 LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */
495 2, /* ad1843 serial slot */
496 LI_CCFG_DIR_OUT /* direction */
500 * dma_chan is variable information about a Lithium DMA channel.
502 * The desc field points to invariant information.
503 * The lith field points to a lithium_t which is passed
504 * to li_read* and li_write* to access the registers.
505 * The *val fields shadow the lithium registers' contents.
508 typedef struct dma_chan {
509 const dma_chan_desc_t *desc;
510 lithium_t *lith;
511 unsigned long baseval;
512 unsigned long cfgval;
513 unsigned long ctlval;
514 } dma_chan_t;
517 * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
518 * UST is time in microseconds since the system booted, and MSC is a
519 * counter that increments with every audio sample.
522 typedef struct ustmsc {
523 unsigned long long ust;
524 unsigned long msc;
525 } ustmsc_t;
528 * li_ad1843_wait waits until lithium says the AD1843 register
529 * exchange is not busy. Returns 0 on success, -EBUSY on timeout.
531 * Locking: must be called with lithium_lock held.
534 static int li_ad1843_wait(lithium_t *lith)
536 unsigned long later = jiffies + 2;
537 while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
538 if (jiffies >= later)
539 return -EBUSY;
540 return 0;
544 * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
546 * Returns unsigned register value on success, -errno on failure.
549 static int li_read_ad1843_reg(lithium_t *lith, int reg)
551 int val;
553 ASSERT(!in_interrupt());
554 spin_lock(&lith->lock);
556 val = li_ad1843_wait(lith);
557 if (val == 0) {
558 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
559 val = li_ad1843_wait(lith);
561 if (val == 0)
562 val = li_readl(lith, LI_CODEC_DATA);
564 spin_unlock(&lith->lock);
566 DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
567 lith, reg, val);
569 return val;
573 * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
576 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
578 spin_lock(&lith->lock);
580 if (li_ad1843_wait(lith) == 0) {
581 li_writel(lith, LI_CODEC_DATA, newval);
582 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
585 spin_unlock(&lith->lock);
589 * li_setup_dma calculates all the register settings for DMA in a particular
590 * mode. It takes too many arguments.
593 static void li_setup_dma(dma_chan_t *chan,
594 const dma_chan_desc_t *desc,
595 lithium_t *lith,
596 unsigned long buffer_paddr,
597 int bufshift,
598 int fragshift,
599 int channels,
600 int sampsize)
602 unsigned long mode, format;
603 unsigned long size, tmask;
605 DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
606 "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
607 chan, desc, lith, buffer_paddr,
608 bufshift, fragshift, channels, sampsize);
610 /* Reset the channel first. */
612 li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
614 ASSERT(channels == 1 || channels == 2);
615 if (channels == 2)
616 mode = LI_CCFG_MODE_STEREO;
617 else
618 mode = LI_CCFG_MODE_MONO;
619 ASSERT(sampsize == 1 || sampsize == 2);
620 if (sampsize == 2)
621 format = LI_CCFG_FMT_16BIT;
622 else
623 format = LI_CCFG_FMT_8BIT;
624 chan->desc = desc;
625 chan->lith = lith;
628 * Lithium DMA address register takes a 40-bit physical
629 * address, right-shifted by 8 so it fits in 32 bits. Bit 37
630 * must be set -- it enables cache coherence.
633 ASSERT(!(buffer_paddr & 0xFF));
634 chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
636 chan->cfgval = (!LI_CCFG_LOCK |
637 SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
638 desc->direction |
639 mode |
640 format);
642 size = bufshift - 6;
643 tmask = 13 - fragshift; /* See Lithium DMA Notes above. */
644 ASSERT(size >= 2 && size <= 7);
645 ASSERT(tmask >= 1 && tmask <= 7);
646 chan->ctlval = (!LI_CCTL_RESET |
647 SHIFT_FIELD(size, LI_CCTL_SIZE) |
648 !LI_CCTL_DMA_ENABLE |
649 SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
650 SHIFT_FIELD(0, LI_CCTL_TPTR));
652 DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
653 DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
654 DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
656 li_writel(lith, desc->basereg, chan->baseval);
657 li_writel(lith, desc->cfgreg, chan->cfgval);
658 li_writel(lith, desc->ctlreg, chan->ctlval);
660 DBGRV();
663 static void li_shutdown_dma(dma_chan_t *chan)
665 lithium_t *lith = chan->lith;
666 caddr_t lith1 = lith->page1;
668 DBGEV("(chan=0x%p)\n", chan);
670 chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
671 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
672 li_writel(lith, chan->desc->ctlreg, chan->ctlval);
675 * Offset 0x500 on Lithium page 1 is an undocumented,
676 * unsupported register that holds the zero sample value.
677 * Lithium is supposed to output zero samples when DMA is
678 * inactive, and repeat the last sample when DMA underflows.
679 * But it has a bug, where, after underflow occurs, the zero
680 * sample is not reset.
682 * I expect this to break in a future rev of Lithium.
685 if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
686 * (volatile unsigned long *) (lith1 + 0x500) = 0;
690 * li_activate_dma always starts dma at the beginning of the buffer.
692 * N.B., these may be called from interrupt.
695 static __inline__ void li_activate_dma(dma_chan_t *chan)
697 chan->ctlval |= LI_CCTL_DMA_ENABLE;
698 DBGPV("ctlval = 0x%lx\n", chan->ctlval);
699 li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
702 static void li_deactivate_dma(dma_chan_t *chan)
704 lithium_t *lith = chan->lith;
705 caddr_t lith2 = lith->page2;
707 chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
708 DBGPV("ctlval = 0x%lx\n", chan->ctlval);
709 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
710 li_writel(lith, chan->desc->ctlreg, chan->ctlval);
713 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
714 * unsupported registers that are internal copies of the DMA
715 * read and write pointers. Because of a Lithium bug, these
716 * registers aren't zeroed correctly when DMA is shut off. So
717 * we whack them directly.
719 * I expect this to break in a future rev of Lithium.
722 if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
723 * (volatile unsigned long *) (lith2 + 0x98) = 0;
724 * (volatile unsigned long *) (lith2 + 0x9C) = 0;
729 * read/write the ring buffer pointers. These routines' arguments and results
730 * are byte offsets from the beginning of the ring buffer.
733 static __inline__ int li_read_swptr(dma_chan_t *chan)
735 const unsigned long mask = chan->desc->swptrmask;
737 return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
740 static __inline__ int li_read_hwptr(dma_chan_t *chan)
742 return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
745 static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
747 const unsigned long mask = chan->desc->swptrmask;
749 ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
750 val = BYTES_TO_CHUNKS(val);
751 chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
752 li_writeb(chan->lith, chan->desc->swptrreg, val);
755 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
757 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
759 lithium_t *lith = chan->lith;
760 const dma_chan_desc_t *desc = chan->desc;
761 unsigned long now_low, now_high0, now_high1, chan_ust;
763 spin_lock(&lith->lock);
766 * retry until we do all five reads without the
767 * high word changing. (High word increments
768 * every 2^32 microseconds, i.e., not often)
770 do {
771 now_high0 = li_readl(lith, LI_UST_HIGH);
772 now_low = li_readl(lith, LI_UST_LOW);
775 * Lithium guarantees these two reads will be
776 * atomic -- ust will not increment after msc
777 * is read.
780 ustmsc->msc = li_readl(lith, desc->mscreg);
781 chan_ust = li_readl(lith, desc->ustreg);
783 now_high1 = li_readl(lith, LI_UST_HIGH);
784 } while (now_high0 != now_high1);
786 spin_unlock(&lith->lock);
787 ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
790 static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
792 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
794 /* clear any already-pending interrupts. */
796 li_writel(lith, LI_INTR_STATUS, mask);
798 /* enable the interrupts. */
800 mask |= li_readl(lith, LI_INTR_MASK);
801 li_writel(lith, LI_INTR_MASK, mask);
804 static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
806 unsigned int keepmask;
808 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
810 /* disable the interrupts */
812 keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
813 li_writel(lith, LI_INTR_MASK, keepmask);
815 /* clear any pending interrupts. */
817 li_writel(lith, LI_INTR_STATUS, mask);
820 /* Get the interrupt status and clear all pending interrupts. */
822 static unsigned int li_get_clear_intr_status(lithium_t *lith)
824 unsigned int status;
826 status = li_readl(lith, LI_INTR_STATUS);
827 li_writel(lith, LI_INTR_STATUS, ~0);
828 return status & li_readl(lith, LI_INTR_MASK);
831 static int li_init(lithium_t *lith)
833 /* 1. System power supplies stabilize. */
835 /* 2. Assert the ~RESET signal. */
837 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
838 udelay(1);
840 /* 3. Deassert the ~RESET signal and enter a wait period to allow
841 the AD1843 internal clocks and the external crystal oscillator
842 to stabilize. */
844 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
845 udelay(1);
847 return 0;
850 /*****************************************************************************/
851 /* AD1843 access */
854 * AD1843 bitfield definitions. All are named as in the AD1843 data
855 * sheet, with ad1843_ prepended and individual bit numbers removed.
857 * E.g., bits LSS0 through LSS2 become ad1843_LSS.
859 * Only the bitfields we need are defined.
862 typedef struct ad1843_bitfield {
863 char reg;
864 char lo_bit;
865 char nbits;
866 } ad1843_bitfield_t;
868 static const ad1843_bitfield_t
869 ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
870 ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
871 ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
872 ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
873 ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
874 ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
875 ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
876 ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
877 ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
878 ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
879 ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
880 ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
881 ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
882 ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
883 ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
884 ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
885 ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
886 ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
887 ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
888 ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
889 ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
890 ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
891 ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
892 ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
893 ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
894 ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
895 ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
896 ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
897 ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
898 ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
899 ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
900 ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
901 ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
902 ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
903 ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
904 ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
905 ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
906 ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
907 ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
908 ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
909 ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
910 ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
911 ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
912 ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
913 ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
914 ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
915 ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
916 ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
917 ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
918 ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
919 ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
922 * The various registers of the AD1843 use three different formats for
923 * specifying gain. The ad1843_gain structure parameterizes the
924 * formats.
927 typedef struct ad1843_gain {
929 int negative; /* nonzero if gain is negative. */
930 const ad1843_bitfield_t *lfield;
931 const ad1843_bitfield_t *rfield;
933 } ad1843_gain_t;
935 static const ad1843_gain_t ad1843_gain_RECLEV
936 = { 0, &ad1843_LIG, &ad1843_RIG };
937 static const ad1843_gain_t ad1843_gain_LINE
938 = { 1, &ad1843_LX1M, &ad1843_RX1M };
939 static const ad1843_gain_t ad1843_gain_CD
940 = { 1, &ad1843_LX2M, &ad1843_RX2M };
941 static const ad1843_gain_t ad1843_gain_MIC
942 = { 1, &ad1843_LMCM, &ad1843_RMCM };
943 static const ad1843_gain_t ad1843_gain_PCM
944 = { 1, &ad1843_LDA1G, &ad1843_RDA1G };
946 /* read the current value of an AD1843 bitfield. */
948 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
950 int w = li_read_ad1843_reg(lith, field->reg);
951 int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
953 DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
954 lith, field->reg, field->lo_bit, field->nbits, val);
956 return val;
960 * write a new value to an AD1843 bitfield and return the old value.
963 static int ad1843_write_bits(lithium_t *lith,
964 const ad1843_bitfield_t *field,
965 int newval)
967 int w = li_read_ad1843_reg(lith, field->reg);
968 int mask = ((1 << field->nbits) - 1) << field->lo_bit;
969 int oldval = (w & mask) >> field->lo_bit;
970 int newbits = (newval << field->lo_bit) & mask;
971 w = (w & ~mask) | newbits;
972 (void) li_write_ad1843_reg(lith, field->reg, w);
974 DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
975 "returns 0x%x\n",
976 lith, field->reg, field->lo_bit, field->nbits, newval,
977 oldval);
979 return oldval;
983 * ad1843_read_multi reads multiple bitfields from the same AD1843
984 * register. It uses a single read cycle to do it. (Reading the
985 * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
986 * microseconds.)
988 * Called ike this.
990 * ad1843_read_multi(lith, nfields,
991 * &ad1843_FIELD1, &val1,
992 * &ad1843_FIELD2, &val2, ...);
995 static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
997 va_list ap;
998 const ad1843_bitfield_t *fp;
999 int w = 0, mask, *value, reg = -1;
1001 va_start(ap, argcount);
1002 while (--argcount >= 0) {
1003 fp = va_arg(ap, const ad1843_bitfield_t *);
1004 value = va_arg(ap, int *);
1005 if (reg == -1) {
1006 reg = fp->reg;
1007 w = li_read_ad1843_reg(lith, reg);
1009 ASSERT(reg == fp->reg);
1010 mask = (1 << fp->nbits) - 1;
1011 *value = w >> fp->lo_bit & mask;
1013 va_end(ap);
1017 * ad1843_write_multi stores multiple bitfields into the same AD1843
1018 * register. It uses one read and one write cycle to do it.
1020 * Called like this.
1022 * ad1843_write_multi(lith, nfields,
1023 * &ad1843_FIELD1, val1,
1024 * &ad1843_FIELF2, val2, ...);
1027 static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
1029 va_list ap;
1030 int reg;
1031 const ad1843_bitfield_t *fp;
1032 int value;
1033 int w, m, mask, bits;
1035 mask = 0;
1036 bits = 0;
1037 reg = -1;
1039 va_start(ap, argcount);
1040 while (--argcount >= 0) {
1041 fp = va_arg(ap, const ad1843_bitfield_t *);
1042 value = va_arg(ap, int);
1043 if (reg == -1)
1044 reg = fp->reg;
1045 ASSERT(fp->reg == reg);
1046 m = ((1 << fp->nbits) - 1) << fp->lo_bit;
1047 mask |= m;
1048 bits |= (value << fp->lo_bit) & m;
1050 va_end(ap);
1051 ASSERT(!(bits & ~mask));
1052 if (~mask & 0xFFFF)
1053 w = li_read_ad1843_reg(lith, reg);
1054 else
1055 w = 0;
1056 w = (w & ~mask) | bits;
1057 (void) li_write_ad1843_reg(lith, reg, w);
1061 * ad1843_get_gain reads the specified register and extracts the gain value
1062 * using the supplied gain type. It returns the gain in OSS format.
1065 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
1067 int lg, rg;
1068 unsigned short mask = (1 << gp->lfield->nbits) - 1;
1070 ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
1071 if (gp->negative) {
1072 lg = mask - lg;
1073 rg = mask - rg;
1075 lg = (lg * 100 + (mask >> 1)) / mask;
1076 rg = (rg * 100 + (mask >> 1)) / mask;
1077 return lg << 0 | rg << 8;
1081 * Set an audio channel's gain. Converts from OSS format to AD1843's
1082 * format.
1084 * Returns the new gain, which may be lower than the old gain.
1087 static int ad1843_set_gain(lithium_t *lith,
1088 const ad1843_gain_t *gp,
1089 int newval)
1091 unsigned short mask = (1 << gp->lfield->nbits) - 1;
1093 int lg = newval >> 0 & 0xFF;
1094 int rg = newval >> 8;
1095 if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
1096 return -EINVAL;
1097 lg = (lg * mask + (mask >> 1)) / 100;
1098 rg = (rg * mask + (mask >> 1)) / 100;
1099 if (gp->negative) {
1100 lg = mask - lg;
1101 rg = mask - rg;
1103 ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
1104 return ad1843_get_gain(lith, gp);
1107 /* Returns the current recording source, in OSS format. */
1109 static int ad1843_get_recsrc(lithium_t *lith)
1111 int ls = ad1843_read_bits(lith, &ad1843_LSS);
1113 switch (ls) {
1114 case 1:
1115 return SOUND_MASK_MIC;
1116 case 2:
1117 return SOUND_MASK_LINE;
1118 case 3:
1119 return SOUND_MASK_CD;
1120 case 6:
1121 return SOUND_MASK_PCM;
1122 default:
1123 ASSERT(0);
1124 return -1;
1129 * Enable/disable digital resample mode in the AD1843.
1131 * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1132 * while switching modes. So we save DA1's state (DA2's state is not
1133 * interesting), power them down, switch into/out of resample mode,
1134 * power them up, and restore state.
1136 * This will cause audible glitches if D/A or A/D is going on, so the
1137 * driver disallows that (in mixer_write_ioctl()).
1139 * The open question is, is this worth doing? I'm leaving it in,
1140 * because it's written, but...
1143 static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
1145 /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1146 int save_da1 = li_read_ad1843_reg(lith, 9);
1148 /* Power down A/D and D/A. */
1149 ad1843_write_multi(lith, 4,
1150 &ad1843_DA1EN, 0,
1151 &ad1843_DA2EN, 0,
1152 &ad1843_ADLEN, 0,
1153 &ad1843_ADREN, 0);
1155 /* Switch mode */
1156 ASSERT(onoff == 0 || onoff == 1);
1157 ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
1159 /* Power up A/D and D/A. */
1160 ad1843_write_multi(lith, 3,
1161 &ad1843_DA1EN, 1,
1162 &ad1843_ADLEN, 1,
1163 &ad1843_ADREN, 1);
1165 /* Restore DA1 mute and gain. */
1166 li_write_ad1843_reg(lith, 9, save_da1);
1170 * Set recording source. Arg newsrc specifies an OSS channel mask.
1172 * The complication is that when we switch into/out of loopback mode
1173 * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1174 * digital resampling mode.
1176 * Returns newsrc on success, -errno on failure.
1179 static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
1181 int bits;
1182 int oldbits;
1184 switch (newsrc) {
1185 case SOUND_MASK_PCM:
1186 bits = 6;
1187 break;
1189 case SOUND_MASK_MIC:
1190 bits = 1;
1191 break;
1193 case SOUND_MASK_LINE:
1194 bits = 2;
1195 break;
1197 case SOUND_MASK_CD:
1198 bits = 3;
1199 break;
1201 default:
1202 return -EINVAL;
1204 oldbits = ad1843_read_bits(lith, &ad1843_LSS);
1205 if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
1206 DBGP("enabling digital resample mode\n");
1207 ad1843_set_resample_mode(lith, 1);
1208 ad1843_write_multi(lith, 2,
1209 &ad1843_DAADL, 2,
1210 &ad1843_DAADR, 2);
1211 } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
1212 DBGP("disabling digital resample mode\n");
1213 ad1843_set_resample_mode(lith, 0);
1214 ad1843_write_multi(lith, 2,
1215 &ad1843_DAADL, 0,
1216 &ad1843_DAADR, 0);
1218 ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
1219 return newsrc;
1223 * Return current output sources, in OSS format.
1226 static int ad1843_get_outsrc(lithium_t *lith)
1228 int pcm, line, mic, cd;
1230 pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
1231 line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE;
1232 cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD;
1233 mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC;
1235 return pcm | line | cd | mic;
1239 * Set output sources. Arg is a mask of active sources in OSS format.
1241 * Returns source mask on success, -errno on failure.
1244 static int ad1843_set_outsrc(lithium_t *lith, int mask)
1246 int pcm, line, mic, cd;
1248 if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
1249 SOUND_MASK_CD | SOUND_MASK_MIC))
1250 return -EINVAL;
1251 pcm = (mask & SOUND_MASK_PCM) ? 0 : 1;
1252 line = (mask & SOUND_MASK_LINE) ? 0 : 1;
1253 mic = (mask & SOUND_MASK_MIC) ? 0 : 1;
1254 cd = (mask & SOUND_MASK_CD) ? 0 : 1;
1256 ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
1257 ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
1258 ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd);
1259 ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic);
1261 return mask;
1264 /* Setup ad1843 for D/A conversion. */
1266 static void ad1843_setup_dac(lithium_t *lith,
1267 int framerate,
1268 int fmt,
1269 int channels)
1271 int ad_fmt = 0, ad_mode = 0;
1273 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1274 lith, framerate, fmt, channels);
1276 switch (fmt) {
1277 case AFMT_S8: ad_fmt = 1; break;
1278 case AFMT_U8: ad_fmt = 1; break;
1279 case AFMT_S16_LE: ad_fmt = 1; break;
1280 case AFMT_MU_LAW: ad_fmt = 2; break;
1281 case AFMT_A_LAW: ad_fmt = 3; break;
1282 default: ASSERT(0);
1285 switch (channels) {
1286 case 2: ad_mode = 0; break;
1287 case 1: ad_mode = 1; break;
1288 default: ASSERT(0);
1291 DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
1292 ASSERT(framerate >= 4000 && framerate <= 49000);
1293 ad1843_write_bits(lith, &ad1843_C1C, framerate);
1294 ad1843_write_multi(lith, 2,
1295 &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
1298 static void ad1843_shutdown_dac(lithium_t *lith)
1300 ad1843_write_bits(lith, &ad1843_DA1F, 1);
1303 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
1305 int da_fmt = 0;
1307 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1308 lith, framerate, fmt, channels);
1310 switch (fmt) {
1311 case AFMT_S8: da_fmt = 1; break;
1312 case AFMT_U8: da_fmt = 1; break;
1313 case AFMT_S16_LE: da_fmt = 1; break;
1314 case AFMT_MU_LAW: da_fmt = 2; break;
1315 case AFMT_A_LAW: da_fmt = 3; break;
1316 default: ASSERT(0);
1319 DBGPV("da_fmt = %d\n", da_fmt);
1320 ASSERT(framerate >= 4000 && framerate <= 49000);
1321 ad1843_write_bits(lith, &ad1843_C2C, framerate);
1322 ad1843_write_multi(lith, 2,
1323 &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
1326 static void ad1843_shutdown_adc(lithium_t *lith)
1328 /* nothing to do */
1332 * Fully initialize the ad1843. As described in the AD1843 data
1333 * sheet, section "START-UP SEQUENCE". The numbered comments are
1334 * subsection headings from the data sheet. See the data sheet, pages
1335 * 52-54, for more info.
1337 * return 0 on success, -errno on failure. */
1339 static int __init ad1843_init(lithium_t *lith)
1341 unsigned long later;
1342 int err;
1344 err = li_init(lith);
1345 if (err)
1346 return err;
1348 if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
1349 printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
1350 return -EIO;
1353 ad1843_write_bits(lith, &ad1843_SCF, 1);
1355 /* 4. Put the conversion resources into standby. */
1357 ad1843_write_bits(lith, &ad1843_PDNI, 0);
1358 later = jiffies + HZ / 2; /* roughly half a second */
1359 DBGDO(shut_up++);
1360 while (ad1843_read_bits(lith, &ad1843_PDNO)) {
1361 if (jiffies > later) {
1362 printk(KERN_ERR
1363 "vwsnd audio: AD1843 won't power up\n");
1364 return -EIO;
1366 schedule();
1368 DBGDO(shut_up--);
1370 /* 5. Power up the clock generators and enable clock output pins. */
1372 ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
1374 /* 6. Configure conversion resources while they are in standby. */
1376 /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
1378 ad1843_write_multi(lith, 3,
1379 &ad1843_DA1C, 1,
1380 &ad1843_ADLC, 2,
1381 &ad1843_ADRC, 2);
1383 /* 7. Enable conversion resources. */
1385 ad1843_write_bits(lith, &ad1843_ADTLK, 1);
1386 ad1843_write_multi(lith, 5,
1387 &ad1843_ANAEN, 1,
1388 &ad1843_AAMEN, 1,
1389 &ad1843_DA1EN, 1,
1390 &ad1843_ADLEN, 1,
1391 &ad1843_ADREN, 1);
1393 /* 8. Configure conversion resources while they are enabled. */
1395 ad1843_write_bits(lith, &ad1843_DA1C, 1);
1397 /* Unmute all channels. */
1399 ad1843_set_outsrc(lith,
1400 (SOUND_MASK_PCM | SOUND_MASK_LINE |
1401 SOUND_MASK_MIC | SOUND_MASK_CD));
1402 ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
1404 /* Set default recording source to Line In and set
1405 * mic gain to +20 dB.
1408 ad1843_set_recsrc(lith, SOUND_MASK_LINE);
1409 ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
1411 /* Set Speaker Out level to +/- 4V and unmute it. */
1413 ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
1415 return 0;
1418 /*****************************************************************************/
1419 /* PCM I/O */
1421 #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1422 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1424 typedef enum vwsnd_port_swstate { /* software state */
1425 SW_OFF,
1426 SW_INITIAL,
1427 SW_RUN,
1428 SW_DRAIN,
1429 } vwsnd_port_swstate_t;
1431 typedef enum vwsnd_port_hwstate { /* hardware state */
1432 HW_STOPPED,
1433 HW_RUNNING,
1434 } vwsnd_port_hwstate_t;
1437 * These flags are read by ISR, but only written at baseline.
1440 typedef enum vwsnd_port_flags {
1441 DISABLED = 1 << 0,
1442 ERFLOWN = 1 << 1, /* overflown or underflown */
1443 HW_BUSY = 1 << 2,
1444 } vwsnd_port_flags_t;
1447 * vwsnd_port is the per-port data structure. Each device has two
1448 * ports, one for input and one for output.
1450 * Locking:
1452 * port->lock protects: hwstate, flags, swb_[iu]_avail.
1454 * devc->io_sema protects: swstate, sw_*, swb_[iu]_idx.
1456 * everything else is only written by open/release or
1457 * pcm_{setup,shutdown}(), which are serialized by a
1458 * combination of devc->open_sema and devc->io_sema.
1461 typedef struct vwsnd_port {
1463 spinlock_t lock;
1464 wait_queue_head_t queue;
1465 vwsnd_port_swstate_t swstate;
1466 vwsnd_port_hwstate_t hwstate;
1467 vwsnd_port_flags_t flags;
1469 int sw_channels;
1470 int sw_samplefmt;
1471 int sw_framerate;
1472 int sample_size;
1473 int frame_size;
1474 unsigned int zero_word; /* zero for the sample format */
1476 int sw_fragshift;
1477 int sw_fragcount;
1478 int sw_subdivshift;
1480 unsigned int hw_fragshift;
1481 unsigned int hw_fragsize;
1482 unsigned int hw_fragcount;
1484 int hwbuf_size;
1485 unsigned long hwbuf_paddr;
1486 unsigned long hwbuf_vaddr;
1487 caddr_t hwbuf; /* hwbuf == hwbuf_vaddr */
1488 int hwbuf_max; /* max bytes to preload */
1490 caddr_t swbuf;
1491 unsigned int swbuf_size; /* size in bytes */
1492 unsigned int swb_u_idx; /* index of next user byte */
1493 unsigned int swb_i_idx; /* index of next intr byte */
1494 unsigned int swb_u_avail; /* # bytes avail to user */
1495 unsigned int swb_i_avail; /* # bytes avail to intr */
1497 dma_chan_t chan;
1499 /* Accounting */
1501 int byte_count;
1502 int frag_count;
1503 int MSC_offset;
1505 } vwsnd_port_t;
1507 /* vwsnd_dev is the per-device data structure. */
1509 typedef struct vwsnd_dev {
1510 struct vwsnd_dev *next_dev;
1511 int audio_minor; /* minor number of audio device */
1512 int mixer_minor; /* minor number of mixer device */
1514 struct semaphore open_sema;
1515 struct semaphore io_sema;
1516 struct semaphore mix_sema;
1517 mode_t open_mode;
1518 wait_queue_head_t open_wait;
1520 lithium_t lith;
1522 vwsnd_port_t rport;
1523 vwsnd_port_t wport;
1524 } vwsnd_dev_t;
1526 static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */
1528 static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
1530 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1531 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1532 # define IN_USE (atomic_read(&vwsnd_use_count) != 0)
1535 * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
1536 * be up to 8 Kb. This driver always uses 8 Kb.
1538 * Memory bug workaround -- I'm not sure what's going on here, but
1539 * somehow pcm_copy_out() was triggering segv's going on to the next
1540 * page of the hw buffer. So, I make the hw buffer one size bigger
1541 * than we actually use. That way, the following page is allocated
1542 * and mapped, and no error. I suspect that something is broken
1543 * in Cobalt, but haven't really investigated. HBO is the actual
1544 * size of the buffer, and HWBUF_ORDER is what we allocate.
1547 #define HWBUF_SHIFT 13
1548 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1549 # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1550 # define HWBUF_ORDER (HBO + 1) /* next size bigger */
1551 #define MIN_SPEED 4000
1552 #define MAX_SPEED 49000
1554 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
1555 #define MAX_FRAGSHIFT (PAGE_SHIFT)
1556 #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
1557 #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
1558 #define MIN_FRAGCOUNT(fragsize) 3
1559 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
1560 #define DEFAULT_FRAGSHIFT 12
1561 #define DEFAULT_FRAGCOUNT 16
1562 #define DEFAULT_SUBDIVSHIFT 0
1565 * The software buffer (swbuf) is a ring buffer shared between user
1566 * level and interrupt level. Each level owns some of the bytes in
1567 * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1568 * User level calls _u for user, and interrupt level calls _i for
1569 * interrupt.
1571 * port->swb_{u,i}_avail is the number of bytes available to that level.
1573 * port->swb_{u,i}_idx is the index of the first available byte in the
1574 * buffer.
1576 * Each level calls swb_inc_{u,i}() to atomically increment its index,
1577 * recalculate the number of bytes available for both sides, and
1578 * return the number of bytes available. Since each side can only
1579 * give away bytes, the other side can only increase the number of
1580 * bytes available to this side. Each side updates its own index
1581 * variable, swb_{u,i}_idx, so no lock is needed to read it.
1583 * To query the number of bytes available, call swb_inc_{u,i} with an
1584 * increment of zero.
1587 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
1589 if (inc) {
1590 port->swb_u_idx += inc;
1591 port->swb_u_idx %= port->swbuf_size;
1592 port->swb_u_avail -= inc;
1593 port->swb_i_avail += inc;
1595 return port->swb_u_avail;
1598 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
1600 unsigned long flags;
1601 unsigned int ret;
1603 spin_lock_irqsave(&port->lock, flags);
1605 ret = __swb_inc_u(port, inc);
1607 spin_unlock_irqrestore(&port->lock, flags);
1608 return ret;
1611 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
1613 if (inc) {
1614 port->swb_i_idx += inc;
1615 port->swb_i_idx %= port->swbuf_size;
1616 port->swb_i_avail -= inc;
1617 port->swb_u_avail += inc;
1619 return port->swb_i_avail;
1622 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
1624 unsigned long flags;
1625 unsigned int ret;
1627 spin_lock_irqsave(&port->lock, flags);
1629 ret = __swb_inc_i(port, inc);
1631 spin_unlock_irqrestore(&port->lock, flags);
1632 return ret;
1636 * pcm_setup - this routine initializes all port state after
1637 * mode-setting ioctls have been done, but before the first I/O is
1638 * done.
1640 * Locking: called with devc->io_sema held.
1642 * Returns 0 on success, -errno on failure.
1645 static int pcm_setup(vwsnd_dev_t *devc,
1646 vwsnd_port_t *rport,
1647 vwsnd_port_t *wport)
1649 vwsnd_port_t *aport = rport ? rport : wport;
1650 int sample_size;
1651 unsigned int zero_word;
1653 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1655 ASSERT(aport != NULL);
1656 if (aport->swbuf != NULL)
1657 return 0;
1658 switch (aport->sw_samplefmt) {
1659 case AFMT_MU_LAW:
1660 sample_size = 1;
1661 zero_word = 0xFFFFFFFF ^ 0x80808080;
1662 break;
1664 case AFMT_A_LAW:
1665 sample_size = 1;
1666 zero_word = 0xD5D5D5D5 ^ 0x80808080;
1667 break;
1669 case AFMT_U8:
1670 sample_size = 1;
1671 zero_word = 0x80808080;
1672 break;
1674 case AFMT_S8:
1675 sample_size = 1;
1676 zero_word = 0x00000000;
1677 break;
1679 case AFMT_S16_LE:
1680 sample_size = 2;
1681 zero_word = 0x00000000;
1682 break;
1684 default:
1685 sample_size = 0; /* prevent compiler warning */
1686 zero_word = 0;
1687 ASSERT(0);
1689 aport->sample_size = sample_size;
1690 aport->zero_word = zero_word;
1691 aport->frame_size = aport->sw_channels * aport->sample_size;
1692 aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
1693 aport->hw_fragsize = 1 << aport->hw_fragshift;
1694 aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
1695 ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
1696 ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
1697 ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
1698 ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
1699 if (rport) {
1700 int hwfrags, swfrags;
1701 rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1702 hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
1703 swfrags = aport->hw_fragcount - hwfrags;
1704 if (swfrags < 2)
1705 swfrags = 2;
1706 rport->swbuf_size = swfrags * aport->hw_fragsize;
1707 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1708 DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1709 rport->hwbuf_max, rport->swbuf_size);
1711 if (wport) {
1712 int hwfrags, swfrags;
1713 int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
1714 wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1715 if (wport->hwbuf_max > total_bytes)
1716 wport->hwbuf_max = total_bytes;
1717 hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
1718 DBGPV("hwfrags = %d\n", hwfrags);
1719 swfrags = aport->hw_fragcount - hwfrags;
1720 if (swfrags < 2)
1721 swfrags = 2;
1722 wport->swbuf_size = swfrags * aport->hw_fragsize;
1723 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1724 DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1725 wport->hwbuf_max, wport->swbuf_size);
1728 aport->swb_u_idx = 0;
1729 aport->swb_i_idx = 0;
1730 aport->byte_count = 0;
1733 * Is this a Cobalt bug? We need to make this buffer extend
1734 * one page further than we actually use -- somehow memcpy
1735 * causes an exceptoin otherwise. I suspect there's a bug in
1736 * Cobalt (or somewhere) where it's generating a fault on a
1737 * speculative load or something. Obviously, I haven't taken
1738 * the time to track it down.
1741 aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1742 if (!aport->swbuf)
1743 return -ENOMEM;
1744 if (rport && wport) {
1745 ASSERT(aport == rport);
1746 ASSERT(wport->swbuf == NULL);
1747 /* One extra page - see comment above. */
1748 wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1749 if (!wport->swbuf) {
1750 vfree(aport->swbuf);
1751 aport->swbuf = NULL;
1752 return -ENOMEM;
1754 wport->sample_size = rport->sample_size;
1755 wport->zero_word = rport->zero_word;
1756 wport->frame_size = rport->frame_size;
1757 wport->hw_fragshift = rport->hw_fragshift;
1758 wport->hw_fragsize = rport->hw_fragsize;
1759 wport->hw_fragcount = rport->hw_fragcount;
1760 wport->swbuf_size = rport->swbuf_size;
1761 wport->hwbuf_max = rport->hwbuf_max;
1762 wport->swb_u_idx = rport->swb_u_idx;
1763 wport->swb_i_idx = rport->swb_i_idx;
1764 wport->byte_count = rport->byte_count;
1766 if (rport) {
1767 rport->swb_u_avail = 0;
1768 rport->swb_i_avail = rport->swbuf_size;
1769 rport->swstate = SW_RUN;
1770 li_setup_dma(&rport->chan,
1771 &li_comm1,
1772 &devc->lith,
1773 rport->hwbuf_paddr,
1774 HWBUF_SHIFT,
1775 rport->hw_fragshift,
1776 rport->sw_channels,
1777 rport->sample_size);
1778 ad1843_setup_adc(&devc->lith,
1779 rport->sw_framerate,
1780 rport->sw_samplefmt,
1781 rport->sw_channels);
1782 li_enable_interrupts(&devc->lith, READ_INTR_MASK);
1783 if (!(rport->flags & DISABLED)) {
1784 ustmsc_t ustmsc;
1785 rport->hwstate = HW_RUNNING;
1786 li_activate_dma(&rport->chan);
1787 li_read_USTMSC(&rport->chan, &ustmsc);
1788 rport->MSC_offset = ustmsc.msc;
1791 if (wport) {
1792 if (wport->hwbuf_max > wport->swbuf_size)
1793 wport->hwbuf_max = wport->swbuf_size;
1794 wport->flags &= ~ERFLOWN;
1795 wport->swb_u_avail = wport->swbuf_size;
1796 wport->swb_i_avail = 0;
1797 wport->swstate = SW_RUN;
1798 li_setup_dma(&wport->chan,
1799 &li_comm2,
1800 &devc->lith,
1801 wport->hwbuf_paddr,
1802 HWBUF_SHIFT,
1803 wport->hw_fragshift,
1804 wport->sw_channels,
1805 wport->sample_size);
1806 ad1843_setup_dac(&devc->lith,
1807 wport->sw_framerate,
1808 wport->sw_samplefmt,
1809 wport->sw_channels);
1810 li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
1812 DBGRV();
1813 return 0;
1817 * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1818 * Only called from pcm_shutdown.
1821 static void pcm_shutdown_port(vwsnd_dev_t *devc,
1822 vwsnd_port_t *aport,
1823 unsigned int mask)
1825 unsigned long flags;
1826 vwsnd_port_hwstate_t hwstate;
1827 DECLARE_WAITQUEUE(wait, current);
1829 aport->swstate = SW_INITIAL;
1830 add_wait_queue(&aport->queue, &wait);
1831 while (1) {
1832 set_current_state(TASK_UNINTERRUPTIBLE);
1833 spin_lock_irqsave(&aport->lock, flags);
1835 hwstate = aport->hwstate;
1837 spin_unlock_irqrestore(&aport->lock, flags);
1838 if (hwstate == HW_STOPPED)
1839 break;
1840 schedule();
1842 current->state = TASK_RUNNING;
1843 remove_wait_queue(&aport->queue, &wait);
1844 li_disable_interrupts(&devc->lith, mask);
1845 if (aport == &devc->rport)
1846 ad1843_shutdown_adc(&devc->lith);
1847 else /* aport == &devc->wport) */
1848 ad1843_shutdown_dac(&devc->lith);
1849 li_shutdown_dma(&aport->chan);
1850 vfree(aport->swbuf);
1851 aport->swbuf = NULL;
1852 aport->byte_count = 0;
1856 * pcm_shutdown undoes what pcm_setup did.
1857 * Also sets the ports' swstate to newstate.
1860 static void pcm_shutdown(vwsnd_dev_t *devc,
1861 vwsnd_port_t *rport,
1862 vwsnd_port_t *wport)
1864 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1866 if (rport && rport->swbuf) {
1867 DBGPV("shutting down rport\n");
1868 pcm_shutdown_port(devc, rport, READ_INTR_MASK);
1870 if (wport && wport->swbuf) {
1871 DBGPV("shutting down wport\n");
1872 pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
1874 DBGRV();
1877 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
1879 char *src = rport->hwbuf + hwidx;
1880 char *dst = rport->swbuf + swidx;
1881 int fmt = rport->sw_samplefmt;
1883 DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
1884 ASSERT(rport->hwbuf != NULL);
1885 ASSERT(rport->swbuf != NULL);
1886 ASSERT(nb > 0 && (nb % 32) == 0);
1887 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1888 ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
1889 ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
1891 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1893 /* See Sample Format Notes above. */
1895 char *end = src + nb;
1896 while (src < end)
1897 *dst++ = *src++ ^ 0x80;
1898 } else
1899 memcpy(dst, src, nb);
1902 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
1904 char *src = wport->swbuf + swidx;
1905 char *dst = wport->hwbuf + hwidx;
1906 int fmt = wport->sw_samplefmt;
1908 ASSERT(nb > 0 && (nb % 32) == 0);
1909 ASSERT(wport->hwbuf != NULL);
1910 ASSERT(wport->swbuf != NULL);
1911 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1912 ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
1913 ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
1914 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1916 /* See Sample Format Notes above. */
1918 char *end = src + nb;
1919 while (src < end)
1920 *dst++ = *src++ ^ 0x80;
1921 } else
1922 memcpy(dst, src, nb);
1926 * pcm_output() is called both from baselevel and from interrupt level.
1927 * This is where audio frames are copied into the hardware-accessible
1928 * ring buffer.
1930 * Locking note: The part of this routine that figures out what to do
1931 * holds wport->lock. The longer part releases wport->lock, but sets
1932 * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
1933 * checks for more work to do.
1935 * If another thread calls pcm_output() while HW_BUSY is set, it
1936 * returns immediately, knowing that the thread that set HW_BUSY will
1937 * look for more work to do before returning.
1939 * This has the advantage that port->lock is held for several short
1940 * periods instead of one long period. Also, when pcm_output is
1941 * called from base level, it reenables interrupts.
1944 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
1946 vwsnd_port_t *wport = &devc->wport;
1947 const int hwmax = wport->hwbuf_max;
1948 const int hwsize = wport->hwbuf_size;
1949 const int swsize = wport->swbuf_size;
1950 const int fragsize = wport->hw_fragsize;
1951 unsigned long iflags;
1953 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
1954 spin_lock_irqsave(&wport->lock, iflags);
1955 if (erflown)
1956 wport->flags |= ERFLOWN;
1957 (void) __swb_inc_u(wport, nb);
1958 if (wport->flags & HW_BUSY) {
1959 spin_unlock_irqrestore(&wport->lock, iflags);
1960 DBGPV("returning: HW BUSY\n");
1961 return;
1963 if (wport->flags & DISABLED) {
1964 spin_unlock_irqrestore(&wport->lock, iflags);
1965 DBGPV("returning: DISABLED\n");
1966 return;
1968 wport->flags |= HW_BUSY;
1969 while (1) {
1970 int swptr, hwptr, hw_avail, sw_avail, swidx;
1971 vwsnd_port_hwstate_t hwstate = wport->hwstate;
1972 vwsnd_port_swstate_t swstate = wport->swstate;
1973 int hw_unavail;
1974 ustmsc_t ustmsc;
1976 hwptr = li_read_hwptr(&wport->chan);
1977 swptr = li_read_swptr(&wport->chan);
1978 hw_unavail = (swptr - hwptr + hwsize) % hwsize;
1979 hw_avail = (hwmax - hw_unavail) & -fragsize;
1980 sw_avail = wport->swb_i_avail & -fragsize;
1981 if (sw_avail && swstate == SW_RUN) {
1982 if (wport->flags & ERFLOWN) {
1983 wport->flags &= ~ERFLOWN;
1985 } else if (swstate == SW_INITIAL ||
1986 swstate == SW_OFF ||
1987 (swstate == SW_DRAIN &&
1988 !sw_avail &&
1989 (wport->flags & ERFLOWN))) {
1990 DBGP("stopping. hwstate = %d\n", hwstate);
1991 if (hwstate != HW_STOPPED) {
1992 li_deactivate_dma(&wport->chan);
1993 wport->hwstate = HW_STOPPED;
1995 wake_up(&wport->queue);
1996 break;
1998 if (!sw_avail || !hw_avail)
1999 break;
2000 spin_unlock_irqrestore(&wport->lock, iflags);
2003 * We gave up the port lock, but we have the HW_BUSY flag.
2004 * Proceed without accessing any nonlocal state.
2005 * Do not exit the loop -- must check for more work.
2008 swidx = wport->swb_i_idx;
2009 nb = hw_avail;
2010 if (nb > sw_avail)
2011 nb = sw_avail;
2012 if (nb > hwsize - swptr)
2013 nb = hwsize - swptr; /* don't overflow hwbuf */
2014 if (nb > swsize - swidx)
2015 nb = swsize - swidx; /* don't overflow swbuf */
2016 ASSERT(nb > 0);
2017 if (nb % fragsize) {
2018 DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2019 DBGP("hw_avail = %d\n", hw_avail);
2020 DBGP("sw_avail = %d\n", sw_avail);
2021 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2022 DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2024 ASSERT(!(nb % fragsize));
2025 DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2026 swidx, swidx + nb, swptr, swptr + nb);
2027 pcm_copy_out(wport, swidx, swptr, nb);
2028 li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
2029 spin_lock_irqsave(&wport->lock, iflags);
2030 if (hwstate == HW_STOPPED) {
2031 DBGPV("starting\n");
2032 li_activate_dma(&wport->chan);
2033 wport->hwstate = HW_RUNNING;
2034 li_read_USTMSC(&wport->chan, &ustmsc);
2035 ASSERT(wport->byte_count % wport->frame_size == 0);
2036 wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
2038 __swb_inc_i(wport, nb);
2039 wport->byte_count += nb;
2040 wport->frag_count += nb / fragsize;
2041 ASSERT(nb % fragsize == 0);
2042 wake_up(&wport->queue);
2044 wport->flags &= ~HW_BUSY;
2045 spin_unlock_irqrestore(&wport->lock, iflags);
2046 DBGRV();
2050 * pcm_input() is called both from baselevel and from interrupt level.
2051 * This is where audio frames are copied out of the hardware-accessible
2052 * ring buffer.
2054 * Locking note: The part of this routine that figures out what to do
2055 * holds rport->lock. The longer part releases rport->lock, but sets
2056 * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
2057 * checks for more work to do.
2059 * If another thread calls pcm_input() while HW_BUSY is set, it
2060 * returns immediately, knowing that the thread that set HW_BUSY will
2061 * look for more work to do before returning.
2063 * This has the advantage that port->lock is held for several short
2064 * periods instead of one long period. Also, when pcm_input is
2065 * called from base level, it reenables interrupts.
2068 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
2070 vwsnd_port_t *rport = &devc->rport;
2071 const int hwmax = rport->hwbuf_max;
2072 const int hwsize = rport->hwbuf_size;
2073 const int swsize = rport->swbuf_size;
2074 const int fragsize = rport->hw_fragsize;
2075 unsigned long iflags;
2077 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
2079 spin_lock_irqsave(&rport->lock, iflags);
2080 if (erflown)
2081 rport->flags |= ERFLOWN;
2082 (void) __swb_inc_u(rport, nb);
2083 if (rport->flags & HW_BUSY || !rport->swbuf) {
2084 spin_unlock_irqrestore(&rport->lock, iflags);
2085 DBGPV("returning: HW BUSY or !swbuf\n");
2086 return;
2088 if (rport->flags & DISABLED) {
2089 spin_unlock_irqrestore(&rport->lock, iflags);
2090 DBGPV("returning: DISABLED\n");
2091 return;
2093 rport->flags |= HW_BUSY;
2094 while (1) {
2095 int swptr, hwptr, hw_avail, sw_avail, swidx;
2096 vwsnd_port_hwstate_t hwstate = rport->hwstate;
2097 vwsnd_port_swstate_t swstate = rport->swstate;
2099 hwptr = li_read_hwptr(&rport->chan);
2100 swptr = li_read_swptr(&rport->chan);
2101 hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
2102 if (hw_avail > hwmax)
2103 hw_avail = hwmax;
2104 sw_avail = rport->swb_i_avail & -fragsize;
2105 if (swstate != SW_RUN) {
2106 DBGP("stopping. hwstate = %d\n", hwstate);
2107 if (hwstate != HW_STOPPED) {
2108 li_deactivate_dma(&rport->chan);
2109 rport->hwstate = HW_STOPPED;
2111 wake_up(&rport->queue);
2112 break;
2114 if (!sw_avail || !hw_avail)
2115 break;
2116 spin_unlock_irqrestore(&rport->lock, iflags);
2119 * We gave up the port lock, but we have the HW_BUSY flag.
2120 * Proceed without accessing any nonlocal state.
2121 * Do not exit the loop -- must check for more work.
2124 swidx = rport->swb_i_idx;
2125 nb = hw_avail;
2126 if (nb > sw_avail)
2127 nb = sw_avail;
2128 if (nb > hwsize - swptr)
2129 nb = hwsize - swptr; /* don't overflow hwbuf */
2130 if (nb > swsize - swidx)
2131 nb = swsize - swidx; /* don't overflow swbuf */
2132 ASSERT(nb > 0);
2133 if (nb % fragsize) {
2134 DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2135 DBGP("hw_avail = %d\n", hw_avail);
2136 DBGP("sw_avail = %d\n", sw_avail);
2137 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2138 DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2140 ASSERT(!(nb % fragsize));
2141 DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2142 swptr, swptr + nb, swidx, swidx + nb);
2143 pcm_copy_in(rport, swidx, swptr, nb);
2144 li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
2145 spin_lock_irqsave(&rport->lock, iflags);
2146 __swb_inc_i(rport, nb);
2147 rport->byte_count += nb;
2148 rport->frag_count += nb / fragsize;
2149 ASSERT(nb % fragsize == 0);
2150 wake_up(&rport->queue);
2152 rport->flags &= ~HW_BUSY;
2153 spin_unlock_irqrestore(&rport->lock, iflags);
2154 DBGRV();
2158 * pcm_flush_frag() writes zero samples to fill the current fragment,
2159 * then flushes it to the hardware.
2161 * It is only meaningful to flush output, not input.
2164 static void pcm_flush_frag(vwsnd_dev_t *devc)
2166 vwsnd_port_t *wport = &devc->wport;
2168 DBGPV("swstate = %d\n", wport->swstate);
2169 if (wport->swstate == SW_RUN) {
2170 int idx = wport->swb_u_idx;
2171 int end = (idx + wport->hw_fragsize - 1)
2172 >> wport->hw_fragshift
2173 << wport->hw_fragshift;
2174 int nb = end - idx;
2175 DBGPV("clearing %d bytes\n", nb);
2176 if (nb)
2177 memset(wport->swbuf + idx,
2178 (char) wport->zero_word,
2179 nb);
2180 wport->swstate = SW_DRAIN;
2181 pcm_output(devc, 0, nb);
2183 DBGRV();
2187 * Wait for output to drain. This sleeps uninterruptibly because
2188 * there is nothing intelligent we can do if interrupted. This
2189 * means the process will be delayed in responding to the signal.
2192 static void pcm_write_sync(vwsnd_dev_t *devc)
2194 vwsnd_port_t *wport = &devc->wport;
2195 DECLARE_WAITQUEUE(wait, current);
2196 unsigned long flags;
2197 vwsnd_port_hwstate_t hwstate;
2199 DBGEV("(devc=0x%p)\n", devc);
2200 add_wait_queue(&wport->queue, &wait);
2201 while (1) {
2202 set_current_state(TASK_UNINTERRUPTIBLE);
2203 spin_lock_irqsave(&wport->lock, flags);
2205 hwstate = wport->hwstate;
2207 spin_unlock_irqrestore(&wport->lock, flags);
2208 if (hwstate == HW_STOPPED)
2209 break;
2210 schedule();
2212 current->state = TASK_RUNNING;
2213 remove_wait_queue(&wport->queue, &wait);
2214 DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
2215 DBGRV();
2218 /*****************************************************************************/
2219 /* audio driver */
2222 * seek on an audio device always fails.
2225 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
2227 int overflown = status & LI_INTR_COMM1_OVERFLOW;
2229 if (status & READ_INTR_MASK)
2230 pcm_input(devc, overflown, 0);
2233 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
2235 int underflown = status & LI_INTR_COMM2_UNDERFLOW;
2237 if (status & WRITE_INTR_MASK)
2238 pcm_output(devc, underflown, 0);
2241 static void vwsnd_audio_intr(int irq, void *dev_id, struct pt_regs *regs)
2243 vwsnd_dev_t *devc = (vwsnd_dev_t *) dev_id;
2244 unsigned int status;
2246 DBGEV("(irq=%d, dev_id=0x%p, regs=0x%p)\n", irq, dev_id, regs);
2248 status = li_get_clear_intr_status(&devc->lith);
2249 vwsnd_audio_read_intr(devc, status);
2250 vwsnd_audio_write_intr(devc, status);
2253 static loff_t vwsnd_audio_llseek(struct file *file, loff_t offset, int whence)
2255 DBGEV("(file=0x%p, offset=%Ld, whence=%d)\n", file, offset, whence);
2256 return -ESPIPE;
2259 static ssize_t vwsnd_audio_do_read(struct file *file,
2260 char *buffer,
2261 size_t count,
2262 loff_t *ppos)
2264 vwsnd_dev_t *devc = file->private_data;
2265 vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
2266 &devc->rport : NULL);
2267 int ret, nb;
2269 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2270 file, buffer, count, ppos);
2272 if (!rport)
2273 return -EINVAL;
2275 if (rport->swbuf == NULL) {
2276 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2277 &devc->wport : NULL;
2278 ret = pcm_setup(devc, rport, wport);
2279 if (ret < 0)
2280 return ret;
2283 if (!access_ok(VERIFY_READ, buffer, count))
2284 return -EFAULT;
2285 ret = 0;
2286 while (count) {
2287 DECLARE_WAITQUEUE(wait, current);
2288 add_wait_queue(&rport->queue, &wait);
2289 while ((nb = swb_inc_u(rport, 0)) == 0) {
2290 DBGPV("blocking\n");
2291 set_current_state(TASK_INTERRUPTIBLE);
2292 if (rport->flags & DISABLED ||
2293 file->f_flags & O_NONBLOCK) {
2294 current->state = TASK_RUNNING;
2295 remove_wait_queue(&rport->queue, &wait);
2296 return ret ? ret : -EAGAIN;
2298 schedule();
2299 if (signal_pending(current)) {
2300 current->state = TASK_RUNNING;
2301 remove_wait_queue(&rport->queue, &wait);
2302 return ret ? ret : -ERESTARTSYS;
2305 current->state = TASK_RUNNING;
2306 remove_wait_queue(&rport->queue, &wait);
2307 pcm_input(devc, 0, 0);
2308 /* nb bytes are available in userbuf. */
2309 if (nb > count)
2310 nb = count;
2311 DBGPV("nb = %d\n", nb);
2312 copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb);
2313 (void) swb_inc_u(rport, nb);
2314 buffer += nb;
2315 count -= nb;
2316 ret += nb;
2318 DBGPV("returning %d\n", ret);
2319 return ret;
2322 static ssize_t vwsnd_audio_read(struct file *file,
2323 char *buffer,
2324 size_t count,
2325 loff_t *ppos)
2327 vwsnd_dev_t *devc = file->private_data;
2328 ssize_t ret;
2330 down(&devc->io_sema);
2331 ret = vwsnd_audio_do_read(file, buffer, count, ppos);
2332 up(&devc->io_sema);
2333 return ret;
2336 static ssize_t vwsnd_audio_do_write(struct file *file,
2337 const char *buffer,
2338 size_t count,
2339 loff_t *ppos)
2341 vwsnd_dev_t *devc = file->private_data;
2342 vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
2343 &devc->wport : NULL);
2344 int ret, nb;
2346 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2347 file, buffer, count, ppos);
2349 if (!wport)
2350 return -EINVAL;
2352 if (wport->swbuf == NULL) {
2353 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2354 &devc->rport : NULL;
2355 ret = pcm_setup(devc, rport, wport);
2356 if (ret < 0)
2357 return ret;
2359 if (!access_ok(VERIFY_WRITE, buffer, count))
2360 return -EFAULT;
2361 ret = 0;
2362 while (count) {
2363 DECLARE_WAITQUEUE(wait, current);
2364 add_wait_queue(&wport->queue, &wait);
2365 while ((nb = swb_inc_u(wport, 0)) == 0) {
2366 set_current_state(TASK_INTERRUPTIBLE);
2367 if (wport->flags & DISABLED ||
2368 file->f_flags & O_NONBLOCK) {
2369 current->state = TASK_RUNNING;
2370 remove_wait_queue(&wport->queue, &wait);
2371 return ret ? ret : -EAGAIN;
2373 schedule();
2374 if (signal_pending(current)) {
2375 current->state = TASK_RUNNING;
2376 remove_wait_queue(&wport->queue, &wait);
2377 return ret ? ret : -ERESTARTSYS;
2380 current->state = TASK_RUNNING;
2381 remove_wait_queue(&wport->queue, &wait);
2382 /* nb bytes are available in userbuf. */
2383 if (nb > count)
2384 nb = count;
2385 DBGPV("nb = %d\n", nb);
2386 copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb);
2387 pcm_output(devc, 0, nb);
2388 buffer += nb;
2389 count -= nb;
2390 ret += nb;
2392 DBGPV("returning %d\n", ret);
2393 return ret;
2396 static ssize_t vwsnd_audio_write(struct file *file,
2397 const char *buffer,
2398 size_t count,
2399 loff_t *ppos)
2401 vwsnd_dev_t *devc = file->private_data;
2402 ssize_t ret;
2404 down(&devc->io_sema);
2405 ret = vwsnd_audio_do_write(file, buffer, count, ppos);
2406 up(&devc->io_sema);
2407 return ret;
2410 /* No kernel lock - fine */
2411 static unsigned int vwsnd_audio_poll(struct file *file,
2412 struct poll_table_struct *wait)
2414 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2415 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2416 &devc->rport : NULL;
2417 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2418 &devc->wport : NULL;
2419 unsigned int mask = 0;
2421 DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
2423 ASSERT(rport || wport);
2424 if (rport) {
2425 poll_wait(file, &rport->queue, wait);
2426 if (swb_inc_u(rport, 0))
2427 mask |= (POLLIN | POLLRDNORM);
2429 if (wport) {
2430 poll_wait(file, &wport->queue, wait);
2431 if (wport->swbuf == NULL || swb_inc_u(wport, 0))
2432 mask |= (POLLOUT | POLLWRNORM);
2435 DBGPV("returning 0x%x\n", mask);
2436 return mask;
2439 static int vwsnd_audio_do_ioctl(struct inode *inode,
2440 struct file *file,
2441 unsigned int cmd,
2442 unsigned long arg)
2444 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2445 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2446 &devc->rport : NULL;
2447 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2448 &devc->wport : NULL;
2449 vwsnd_port_t *aport = rport ? rport : wport;
2450 struct audio_buf_info buf_info;
2451 struct count_info info;
2452 unsigned long flags;
2453 int ival;
2456 DBGEV("(inode=0x%p, file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2457 inode, file, cmd, arg);
2458 switch (cmd) {
2459 case OSS_GETVERSION: /* _SIOR ('M', 118, int) */
2460 DBGX("OSS_GETVERSION\n");
2461 ival = SOUND_VERSION;
2462 return put_user(ival, (int *) arg);
2464 case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */
2465 DBGX("SNDCTL_DSP_GETCAPS\n");
2466 ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
2467 return put_user(ival, (int *) arg);
2469 case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */
2470 DBGX("SNDCTL_DSP_GETFMTS\n");
2471 ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
2472 AFMT_U8 | AFMT_S8);
2473 return put_user(ival, (int *) arg);
2474 break;
2476 case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */
2477 DBGX("SOUND_PCM_READ_RATE\n");
2478 ival = aport->sw_framerate;
2479 return put_user(ival, (int *) arg);
2481 case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */
2482 DBGX("SOUND_PCM_READ_CHANNELS\n");
2483 ival = aport->sw_channels;
2484 return put_user(ival, (int *) arg);
2486 case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */
2487 if (get_user(ival, (int *) arg))
2488 return -EFAULT;
2489 DBGX("SNDCTL_DSP_SPEED %d\n", ival);
2490 if (ival) {
2491 if (aport->swstate != SW_INITIAL) {
2492 DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2493 aport->swstate);
2494 return -EINVAL;
2496 if (ival < MIN_SPEED)
2497 ival = MIN_SPEED;
2498 if (ival > MAX_SPEED)
2499 ival = MAX_SPEED;
2500 if (rport)
2501 rport->sw_framerate = ival;
2502 if (wport)
2503 wport->sw_framerate = ival;
2504 } else
2505 ival = aport->sw_framerate;
2506 return put_user(ival, (int *) arg);
2508 case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */
2509 if (get_user(ival, (int *) arg))
2510 return -EFAULT;
2511 DBGX("SNDCTL_DSP_STEREO %d\n", ival);
2512 if (ival != 0 && ival != 1)
2513 return -EINVAL;
2514 if (aport->swstate != SW_INITIAL)
2515 return -EINVAL;
2516 if (rport)
2517 rport->sw_channels = ival + 1;
2518 if (wport)
2519 wport->sw_channels = ival + 1;
2520 return put_user(ival, (int *) arg);
2522 case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */
2523 if (get_user(ival, (int *) arg))
2524 return -EFAULT;
2525 DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
2526 if (ival != 1 && ival != 2)
2527 return -EINVAL;
2528 if (aport->swstate != SW_INITIAL)
2529 return -EINVAL;
2530 if (rport)
2531 rport->sw_channels = ival;
2532 if (wport)
2533 wport->sw_channels = ival;
2534 return put_user(ival, (int *) arg);
2536 case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */
2537 ival = pcm_setup(devc, rport, wport);
2538 if (ival < 0) {
2539 DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
2540 return ival;
2542 ival = 1 << aport->sw_fragshift;
2543 DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
2544 return put_user(ival, (int *) arg);
2546 case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */
2547 if (get_user(ival, (int *) arg))
2548 return -EFAULT;
2549 DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2550 ival >> 16, ival & 0xFFFF);
2551 if (aport->swstate != SW_INITIAL)
2552 return -EINVAL;
2554 int sw_fragshift = ival & 0xFFFF;
2555 int sw_subdivshift = aport->sw_subdivshift;
2556 int hw_fragshift = sw_fragshift - sw_subdivshift;
2557 int sw_fragcount = (ival >> 16) & 0xFFFF;
2558 int hw_fragsize;
2559 if (hw_fragshift < MIN_FRAGSHIFT)
2560 hw_fragshift = MIN_FRAGSHIFT;
2561 if (hw_fragshift > MAX_FRAGSHIFT)
2562 hw_fragshift = MAX_FRAGSHIFT;
2563 sw_fragshift = hw_fragshift + aport->sw_subdivshift;
2564 hw_fragsize = 1 << hw_fragshift;
2565 if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
2566 sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
2567 if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2568 sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
2569 DBGPV("sw_fragshift = %d\n", sw_fragshift);
2570 DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
2571 if (rport) {
2572 rport->sw_fragshift = sw_fragshift;
2573 rport->sw_fragcount = sw_fragcount;
2575 if (wport) {
2576 wport->sw_fragshift = sw_fragshift;
2577 wport->sw_fragcount = sw_fragcount;
2579 ival = sw_fragcount << 16 | sw_fragshift;
2581 DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2582 ival >> 16, ival & 0xFFFF);
2583 return put_user(ival, (int *) arg);
2585 case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */
2586 if (get_user(ival, (int *) arg))
2587 return -EFAULT;
2588 DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
2589 if (aport->swstate != SW_INITIAL)
2590 return -EINVAL;
2592 int subdivshift;
2593 int hw_fragshift, hw_fragsize, hw_fragcount;
2594 switch (ival) {
2595 case 1: subdivshift = 0; break;
2596 case 2: subdivshift = 1; break;
2597 case 4: subdivshift = 2; break;
2598 default: return -EINVAL;
2600 hw_fragshift = aport->sw_fragshift - subdivshift;
2601 if (hw_fragshift < MIN_FRAGSHIFT ||
2602 hw_fragshift > MAX_FRAGSHIFT)
2603 return -EINVAL;
2604 hw_fragsize = 1 << hw_fragshift;
2605 hw_fragcount = aport->sw_fragcount >> subdivshift;
2606 if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
2607 hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2608 return -EINVAL;
2609 if (rport)
2610 rport->sw_subdivshift = subdivshift;
2611 if (wport)
2612 wport->sw_subdivshift = subdivshift;
2614 return 0;
2616 case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */
2617 if (get_user(ival, (int *) arg))
2618 return -EFAULT;
2619 DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
2620 if (ival != AFMT_QUERY) {
2621 if (aport->swstate != SW_INITIAL) {
2622 DBGP("SETFMT failed, swstate = %d\n",
2623 aport->swstate);
2624 return -EINVAL;
2626 switch (ival) {
2627 case AFMT_MU_LAW:
2628 case AFMT_A_LAW:
2629 case AFMT_U8:
2630 case AFMT_S8:
2631 case AFMT_S16_LE:
2632 if (rport)
2633 rport->sw_samplefmt = ival;
2634 if (wport)
2635 wport->sw_samplefmt = ival;
2636 break;
2637 default:
2638 return -EINVAL;
2641 ival = aport->sw_samplefmt;
2642 return put_user(ival, (int *) arg);
2644 case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */
2645 DBGXV("SNDCTL_DSP_GETOSPACE\n");
2646 if (!wport)
2647 return -EINVAL;
2648 ival = pcm_setup(devc, rport, wport);
2649 if (ival < 0)
2650 return ival;
2651 ival = swb_inc_u(wport, 0);
2652 buf_info.fragments = ival >> wport->sw_fragshift;
2653 buf_info.fragstotal = wport->sw_fragcount;
2654 buf_info.fragsize = 1 << wport->sw_fragshift;
2655 buf_info.bytes = ival;
2656 DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2657 buf_info.fragments, buf_info.fragstotal,
2658 buf_info.fragsize, buf_info.bytes);
2659 return copy_to_user((void *) arg, &buf_info, sizeof buf_info);
2661 case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */
2662 DBGX("SNDCTL_DSP_GETISPACE\n");
2663 if (!rport)
2664 return -EINVAL;
2665 ival = pcm_setup(devc, rport, wport);
2666 if (ival < 0)
2667 return ival;
2668 ival = swb_inc_u(rport, 0);
2669 buf_info.fragments = ival >> rport->sw_fragshift;
2670 buf_info.fragstotal = rport->sw_fragcount;
2671 buf_info.fragsize = 1 << rport->sw_fragshift;
2672 buf_info.bytes = ival;
2673 DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2674 buf_info.fragments, buf_info.fragstotal,
2675 buf_info.fragsize, buf_info.bytes);
2676 return copy_to_user((void *) arg, &buf_info, sizeof buf_info);
2678 case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */
2679 DBGX("SNDCTL_DSP_NONBLOCK\n");
2680 file->f_flags |= O_NONBLOCK;
2681 return 0;
2683 case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */
2684 DBGX("SNDCTL_DSP_RESET\n");
2686 * Nothing special needs to be done for input. Input
2687 * samples sit in swbuf, but it will be reinitialized
2688 * to empty when pcm_setup() is called.
2690 if (wport && wport->swbuf) {
2691 wport->swstate = SW_INITIAL;
2692 pcm_output(devc, 0, 0);
2693 pcm_write_sync(devc);
2695 pcm_shutdown(devc, rport, wport);
2696 return 0;
2698 case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */
2699 DBGX("SNDCTL_DSP_SYNC\n");
2700 if (wport) {
2701 pcm_flush_frag(devc);
2702 pcm_write_sync(devc);
2704 pcm_shutdown(devc, rport, wport);
2705 return 0;
2707 case SNDCTL_DSP_POST: /* _SIO ('P', 8) */
2708 DBGX("SNDCTL_DSP_POST\n");
2709 if (!wport)
2710 return -EINVAL;
2711 pcm_flush_frag(devc);
2712 return 0;
2714 case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */
2715 DBGX("SNDCTL_DSP_GETIPTR\n");
2716 if (!rport)
2717 return -EINVAL;
2718 spin_lock_irqsave(&rport->lock, flags);
2720 ustmsc_t ustmsc;
2721 if (rport->hwstate == HW_RUNNING) {
2722 ASSERT(rport->swstate == SW_RUN);
2723 li_read_USTMSC(&rport->chan, &ustmsc);
2724 info.bytes = ustmsc.msc - rport->MSC_offset;
2725 info.bytes *= rport->frame_size;
2726 } else {
2727 info.bytes = rport->byte_count;
2729 info.blocks = rport->frag_count;
2730 info.ptr = 0; /* not implemented */
2731 rport->frag_count = 0;
2733 spin_unlock_irqrestore(&rport->lock, flags);
2734 return copy_to_user((void *) arg, &info, sizeof info);
2736 case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */
2737 DBGX("SNDCTL_DSP_GETOPTR\n");
2738 if (!wport)
2739 return -EINVAL;
2740 spin_lock_irqsave(&wport->lock, flags);
2742 ustmsc_t ustmsc;
2743 if (wport->hwstate == HW_RUNNING) {
2744 ASSERT(wport->swstate == SW_RUN);
2745 li_read_USTMSC(&wport->chan, &ustmsc);
2746 info.bytes = ustmsc.msc - wport->MSC_offset;
2747 info.bytes *= wport->frame_size;
2748 } else {
2749 info.bytes = wport->byte_count;
2751 info.blocks = wport->frag_count;
2752 info.ptr = 0; /* not implemented */
2753 wport->frag_count = 0;
2755 spin_unlock_irqrestore(&wport->lock, flags);
2756 return copy_to_user((void *) arg, &info, sizeof info);
2758 case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */
2759 DBGX("SNDCTL_DSP_GETODELAY\n");
2760 if (!wport)
2761 return -EINVAL;
2762 spin_lock_irqsave(&wport->lock, flags);
2764 int fsize = wport->frame_size;
2765 ival = wport->swb_i_avail / fsize;
2766 if (wport->hwstate == HW_RUNNING) {
2767 int swptr, hwptr, hwframes, hwbytes, hwsize;
2768 int totalhwbytes;
2769 ustmsc_t ustmsc;
2771 hwsize = wport->hwbuf_size;
2772 swptr = li_read_swptr(&wport->chan);
2773 li_read_USTMSC(&wport->chan, &ustmsc);
2774 hwframes = ustmsc.msc - wport->MSC_offset;
2775 totalhwbytes = hwframes * fsize;
2776 hwptr = totalhwbytes % hwsize;
2777 hwbytes = (swptr - hwptr + hwsize) % hwsize;
2778 ival += hwbytes / fsize;
2781 spin_unlock_irqrestore(&wport->lock, flags);
2782 return put_user(ival, (int *) arg);
2784 case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */
2785 DBGX("SNDCTL_DSP_PROFILE\n");
2788 * Thomas Sailer explains SNDCTL_DSP_PROFILE
2789 * (private email, March 24, 1999):
2791 * This gives the sound driver a hint on what it
2792 * should do with partial fragments
2793 * (i.e. fragments partially filled with write).
2794 * This can direct the driver to zero them or
2795 * leave them alone. But don't ask me what this
2796 * is good for, my driver just zeroes the last
2797 * fragment before the receiver stops, no idea
2798 * what good for any other behaviour could
2799 * be. Implementing it as NOP seems safe.
2802 break;
2804 case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */
2805 DBGX("SNDCTL_DSP_GETTRIGGER\n");
2806 ival = 0;
2807 if (rport) {
2808 spin_lock_irqsave(&rport->lock, flags);
2810 if (!(rport->flags & DISABLED))
2811 ival |= PCM_ENABLE_INPUT;
2813 spin_unlock_irqrestore(&rport->lock, flags);
2815 if (wport) {
2816 spin_lock_irqsave(&wport->lock, flags);
2818 if (!(wport->flags & DISABLED))
2819 ival |= PCM_ENABLE_OUTPUT;
2821 spin_unlock_irqrestore(&wport->lock, flags);
2823 return put_user(ival, (int *) arg);
2825 case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */
2826 if (get_user(ival, (int *) arg))
2827 return -EFAULT;
2828 DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
2831 * If user is disabling I/O and port is not in initial
2832 * state, fail with EINVAL.
2835 if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
2836 (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
2837 aport->swstate != SW_INITIAL)
2838 return -EINVAL;
2840 if (rport) {
2841 vwsnd_port_hwstate_t hwstate;
2842 spin_lock_irqsave(&rport->lock, flags);
2844 hwstate = rport->hwstate;
2845 if (ival & PCM_ENABLE_INPUT)
2846 rport->flags &= ~DISABLED;
2847 else
2848 rport->flags |= DISABLED;
2850 spin_unlock_irqrestore(&rport->lock, flags);
2851 if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
2853 if (rport->swstate == SW_INITIAL)
2854 pcm_setup(devc, rport, wport);
2855 else
2856 li_activate_dma(&rport->chan);
2859 if (wport) {
2860 vwsnd_port_flags_t pflags;
2861 spin_lock_irqsave(&wport->lock, flags);
2863 pflags = wport->flags;
2864 if (ival & PCM_ENABLE_OUTPUT)
2865 wport->flags &= ~DISABLED;
2866 else
2867 wport->flags |= DISABLED;
2869 spin_unlock_irqrestore(&wport->lock, flags);
2870 if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
2871 if (wport->swstate == SW_RUN)
2872 pcm_output(devc, 0, 0);
2875 return 0;
2877 default:
2878 DBGP("unknown ioctl 0x%x\n", cmd);
2879 return -EINVAL;
2881 DBGP("unimplemented ioctl 0x%x\n", cmd);
2882 return -EINVAL;
2885 static int vwsnd_audio_ioctl(struct inode *inode,
2886 struct file *file,
2887 unsigned int cmd,
2888 unsigned long arg)
2890 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2891 int ret;
2893 down(&devc->io_sema);
2894 ret = vwsnd_audio_do_ioctl(inode, file, cmd, arg);
2895 up(&devc->io_sema);
2896 return ret;
2899 /* No mmap. */
2901 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
2903 DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
2904 return -ENODEV;
2908 * Open the audio device for read and/or write.
2910 * Returns 0 on success, -errno on failure.
2913 static int vwsnd_audio_open(struct inode *inode, struct file *file)
2915 vwsnd_dev_t *devc;
2916 dev_t minor = MINOR(inode->i_rdev);
2917 int sw_samplefmt;
2919 DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
2921 INC_USE_COUNT;
2922 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
2923 if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
2924 break;
2926 if (devc == NULL) {
2927 DEC_USE_COUNT;
2928 return -ENODEV;
2931 down(&devc->open_sema);
2932 while (devc->open_mode & file->f_mode) {
2933 up(&devc->open_sema);
2934 if (file->f_flags & O_NONBLOCK) {
2935 DEC_USE_COUNT;
2936 return -EBUSY;
2938 interruptible_sleep_on(&devc->open_wait);
2939 if (signal_pending(current)) {
2940 DEC_USE_COUNT;
2941 return -ERESTARTSYS;
2943 down(&devc->open_sema);
2945 devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2946 up(&devc->open_sema);
2948 /* get default sample format from minor number. */
2950 sw_samplefmt = 0;
2951 if ((minor & 0xF) == SND_DEV_DSP)
2952 sw_samplefmt = AFMT_U8;
2953 else if ((minor & 0xF) == SND_DEV_AUDIO)
2954 sw_samplefmt = AFMT_MU_LAW;
2955 else if ((minor & 0xF) == SND_DEV_DSP16)
2956 sw_samplefmt = AFMT_S16_LE;
2957 else
2958 ASSERT(0);
2960 /* Initialize vwsnd_ports. */
2962 down(&devc->io_sema);
2964 if (file->f_mode & FMODE_READ) {
2965 devc->rport.swstate = SW_INITIAL;
2966 devc->rport.flags = 0;
2967 devc->rport.sw_channels = 1;
2968 devc->rport.sw_samplefmt = sw_samplefmt;
2969 devc->rport.sw_framerate = 8000;
2970 devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT;
2971 devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT;
2972 devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2973 devc->rport.byte_count = 0;
2974 devc->rport.frag_count = 0;
2976 if (file->f_mode & FMODE_WRITE) {
2977 devc->wport.swstate = SW_INITIAL;
2978 devc->wport.flags = 0;
2979 devc->wport.sw_channels = 1;
2980 devc->wport.sw_samplefmt = sw_samplefmt;
2981 devc->wport.sw_framerate = 8000;
2982 devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT;
2983 devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT;
2984 devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2985 devc->wport.byte_count = 0;
2986 devc->wport.frag_count = 0;
2989 up(&devc->io_sema);
2991 file->private_data = devc;
2992 DBGRV();
2993 return 0;
2997 * Release (close) the audio device.
3000 static int vwsnd_audio_release(struct inode *inode, struct file *file)
3002 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3003 vwsnd_port_t *wport = NULL, *rport = NULL;
3004 int err = 0;
3006 lock_kernel();
3007 down(&devc->io_sema);
3009 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3011 if (file->f_mode & FMODE_READ)
3012 rport = &devc->rport;
3013 if (file->f_mode & FMODE_WRITE) {
3014 wport = &devc->wport;
3015 pcm_flush_frag(devc);
3016 pcm_write_sync(devc);
3018 pcm_shutdown(devc, rport, wport);
3019 if (rport)
3020 rport->swstate = SW_OFF;
3021 if (wport)
3022 wport->swstate = SW_OFF;
3024 up(&devc->io_sema);
3026 down(&devc->open_sema);
3028 devc->open_mode &= ~file->f_mode;
3030 up(&devc->open_sema);
3031 wake_up(&devc->open_wait);
3032 DEC_USE_COUNT;
3033 DBGR();
3034 unlock_kernel();
3035 return err;
3038 static struct file_operations vwsnd_audio_fops = {
3039 owner: THIS_MODULE,
3040 llseek: vwsnd_audio_llseek,
3041 read: vwsnd_audio_read,
3042 write: vwsnd_audio_write,
3043 poll: vwsnd_audio_poll,
3044 ioctl: vwsnd_audio_ioctl,
3045 mmap: vwsnd_audio_mmap,
3046 open: vwsnd_audio_open,
3047 release: vwsnd_audio_release,
3050 /*****************************************************************************/
3051 /* mixer driver */
3053 /* open the mixer device. */
3055 static int vwsnd_mixer_open(struct inode *inode, struct file *file)
3057 vwsnd_dev_t *devc;
3059 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3061 INC_USE_COUNT;
3062 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
3063 if (devc->mixer_minor == MINOR(inode->i_rdev))
3064 break;
3066 if (devc == NULL) {
3067 DEC_USE_COUNT;
3068 return -ENODEV;
3070 file->private_data = devc;
3071 return 0;
3074 /* release (close) the mixer device. */
3076 static int vwsnd_mixer_release(struct inode *inode, struct file *file)
3078 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3079 DEC_USE_COUNT;
3080 return 0;
3083 /* seek is illegal on mixer. */
3085 static loff_t vwsnd_mixer_llseek(struct file *file, loff_t offset, int whence)
3087 return -ESPIPE;
3090 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3092 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, caddr_t arg)
3094 int val = -1;
3096 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3098 switch (nr) {
3099 case SOUND_MIXER_CAPS:
3100 val = SOUND_CAP_EXCL_INPUT;
3101 break;
3103 case SOUND_MIXER_DEVMASK:
3104 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3105 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3106 break;
3108 case SOUND_MIXER_STEREODEVS:
3109 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3110 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3111 break;
3113 case SOUND_MIXER_OUTMASK:
3114 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3115 SOUND_MASK_MIC | SOUND_MASK_CD);
3116 break;
3118 case SOUND_MIXER_RECMASK:
3119 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3120 SOUND_MASK_MIC | SOUND_MASK_CD);
3121 break;
3123 case SOUND_MIXER_PCM:
3124 val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
3125 break;
3127 case SOUND_MIXER_LINE:
3128 val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
3129 break;
3131 case SOUND_MIXER_MIC:
3132 val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
3133 break;
3135 case SOUND_MIXER_CD:
3136 val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
3137 break;
3139 case SOUND_MIXER_RECLEV:
3140 val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
3141 break;
3143 case SOUND_MIXER_RECSRC:
3144 val = ad1843_get_recsrc(&devc->lith);
3145 break;
3147 case SOUND_MIXER_OUTSRC:
3148 val = ad1843_get_outsrc(&devc->lith);
3149 break;
3151 default:
3152 return -EINVAL;
3154 return put_user(val, (int *) arg);
3157 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3159 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, caddr_t arg)
3161 int val;
3162 int err;
3164 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3166 err = get_user(val, (int *) arg);
3167 if (err)
3168 return -EFAULT;
3169 switch (nr) {
3170 case SOUND_MIXER_PCM:
3171 val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
3172 break;
3174 case SOUND_MIXER_LINE:
3175 val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
3176 break;
3178 case SOUND_MIXER_MIC:
3179 val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
3180 break;
3182 case SOUND_MIXER_CD:
3183 val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
3184 break;
3186 case SOUND_MIXER_RECLEV:
3187 val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
3188 break;
3190 case SOUND_MIXER_RECSRC:
3191 if (devc->rport.swbuf || devc->wport.swbuf)
3192 return -EBUSY; /* can't change recsrc while running */
3193 val = ad1843_set_recsrc(&devc->lith, val);
3194 break;
3196 case SOUND_MIXER_OUTSRC:
3197 val = ad1843_set_outsrc(&devc->lith, val);
3198 break;
3200 default:
3201 return -EINVAL;
3203 if (val < 0)
3204 return val;
3205 return put_user(val, (int *) arg);
3208 /* This is the ioctl entry to the mixer driver. */
3210 static int vwsnd_mixer_ioctl(struct inode *ioctl,
3211 struct file *file,
3212 unsigned int cmd,
3213 unsigned long arg)
3215 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3216 const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
3217 const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
3218 int retval;
3220 DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
3222 down(&devc->mix_sema);
3224 if ((cmd & ~nrmask) == MIXER_READ(0))
3225 retval = mixer_read_ioctl(devc, nr, (caddr_t) arg);
3226 else if ((cmd & ~nrmask) == MIXER_WRITE(0))
3227 retval = mixer_write_ioctl(devc, nr, (caddr_t) arg);
3228 else
3229 retval = -EINVAL;
3231 up(&devc->mix_sema);
3232 return retval;
3235 static struct file_operations vwsnd_mixer_fops = {
3236 owner: THIS_MODULE,
3237 llseek: vwsnd_mixer_llseek,
3238 ioctl: vwsnd_mixer_ioctl,
3239 open: vwsnd_mixer_open,
3240 release: vwsnd_mixer_release,
3243 /*****************************************************************************/
3244 /* probe/attach/unload */
3246 /* driver probe routine. Return nonzero if hardware is found. */
3248 static int __init probe_vwsnd(struct address_info *hw_config)
3250 lithium_t lith;
3251 int w;
3252 unsigned long later;
3254 DBGEV("(hw_config=0x%p)\n", hw_config);
3256 /* XXX verify lithium present (to prevent crash on non-vw) */
3258 if (li_create(&lith, hw_config->io_base) != 0) {
3259 printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
3260 return 0;
3262 later = jiffies + 2;
3263 li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
3264 do {
3265 w = li_readl(&lith, LI_HOST_CONTROLLER);
3266 } while (w == LI_HC_LINK_ENABLE && jiffies < later);
3268 li_destroy(&lith);
3270 DBGPV("HC = 0x%04x\n", w);
3272 if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
3274 /* This may indicate a beta machine with no audio,
3275 * or a future machine with different audio.
3276 * On beta-release 320 w/ no audio, HC == 0x4000 */
3278 printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
3279 return 0;
3282 if (w & LI_HC_LINK_FAILURE) {
3283 printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
3284 return 0;
3287 printk(KERN_INFO "probe_vwsnd: lithium audio found\n");
3289 return 1;
3293 * driver attach routine. Initialize driver data structures and
3294 * initialize hardware. A new vwsnd_dev_t is allocated and put
3295 * onto the global list, vwsnd_dev_list.
3297 * Return +minor_dev on success, -errno on failure.
3300 static int __init attach_vwsnd(struct address_info *hw_config)
3302 vwsnd_dev_t *devc = NULL;
3303 int err = -ENOMEM;
3305 DBGEV("(hw_config=0x%p)\n", hw_config);
3307 devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
3308 if (devc == NULL)
3309 goto fail0;
3311 err = li_create(&devc->lith, hw_config->io_base);
3312 if (err)
3313 goto fail1;
3315 init_waitqueue(&devc->open_wait);
3317 devc->rport.hwbuf_size = HWBUF_SIZE;
3318 devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3319 if (!devc->rport.hwbuf_vaddr)
3320 goto fail2;
3321 devc->rport.hwbuf = (caddr_t) devc->rport.hwbuf_vaddr;
3322 devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
3325 * Quote from the NT driver:
3327 * // WARNING!!! HACK to setup output dma!!!
3328 * // This is required because even on output there is some data
3329 * // trickling into the input DMA channel. This is a bug in the
3330 * // Lithium microcode.
3331 * // --sde
3333 * We set the input side's DMA base address here. It will remain
3334 * valid until the driver is unloaded.
3337 li_writel(&devc->lith, LI_COMM1_BASE,
3338 devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
3340 devc->wport.hwbuf_size = HWBUF_SIZE;
3341 devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3342 if (!devc->wport.hwbuf_vaddr)
3343 goto fail3;
3344 devc->wport.hwbuf = (caddr_t) devc->wport.hwbuf_vaddr;
3345 devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
3346 DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
3348 DBGDO(shut_up++);
3349 err = ad1843_init(&devc->lith);
3350 DBGDO(shut_up--);
3351 if (err)
3352 goto fail4;
3354 /* install interrupt handler */
3356 err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
3357 if (err)
3358 goto fail5;
3360 /* register this device's drivers. */
3362 devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
3363 if ((err = devc->audio_minor) < 0) {
3364 DBGDO(printk(KERN_WARNING
3365 "attach_vwsnd: register_sound_dsp error %d\n",
3366 err));
3367 goto fail6;
3369 devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
3370 devc->audio_minor >> 4);
3371 if ((err = devc->mixer_minor) < 0) {
3372 DBGDO(printk(KERN_WARNING
3373 "attach_vwsnd: register_sound_mixer error %d\n",
3374 err));
3375 goto fail7;
3378 /* Squirrel away device indices for unload routine. */
3380 hw_config->slots[0] = devc->audio_minor;
3382 /* Initialize as much of *devc as possible */
3384 devc->open_sema = MUTEX;
3385 devc->io_sema = MUTEX;
3386 devc->mix_sema = MUTEX;
3387 devc->open_mode = 0;
3388 devc->rport.lock = SPIN_LOCK_UNLOCKED;
3389 init_waitqueue(&devc->rport.queue);
3390 devc->rport.swstate = SW_OFF;
3391 devc->rport.hwstate = HW_STOPPED;
3392 devc->rport.flags = 0;
3393 devc->rport.swbuf = NULL;
3394 devc->wport.lock = SPIN_LOCK_UNLOCKED;
3395 init_waitqueue(&devc->wport.queue);
3396 devc->wport.swstate = SW_OFF;
3397 devc->wport.hwstate = HW_STOPPED;
3398 devc->wport.flags = 0;
3399 devc->wport.swbuf = NULL;
3401 /* Success. Link us onto the local device list. */
3403 devc->next_dev = vwsnd_dev_list;
3404 vwsnd_dev_list = devc;
3405 return devc->audio_minor;
3407 /* So many ways to fail. Undo what we did. */
3409 fail7:
3410 unregister_sound_dsp(devc->audio_minor);
3411 fail6:
3412 free_irq(hw_config->irq, devc);
3413 fail5:
3414 fail4:
3415 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3416 fail3:
3417 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3418 fail2:
3419 li_destroy(&devc->lith);
3420 fail1:
3421 kfree(devc);
3422 fail0:
3423 return err;
3426 static int __exit unload_vwsnd(struct address_info *hw_config)
3428 vwsnd_dev_t *devc, **devcp;
3430 DBGE("()\n");
3432 devcp = &vwsnd_dev_list;
3433 while ((devc = *devcp)) {
3434 if (devc->audio_minor == hw_config->slots[0]) {
3435 *devcp = devc->next_dev;
3436 break;
3438 devcp = &devc->next_dev;
3441 if (!devc)
3442 return -ENODEV;
3444 unregister_sound_mixer(devc->mixer_minor);
3445 unregister_sound_dsp(devc->audio_minor);
3446 free_irq(hw_config->irq, devc);
3447 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3448 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3449 li_destroy(&devc->lith);
3450 kfree(devc);
3452 return 0;
3455 /*****************************************************************************/
3456 /* initialization and loadable kernel module interface */
3458 static struct address_info the_hw_config = {
3459 0xFF001000, /* lithium phys addr */
3460 CO_IRQ(CO_APIC_LI_AUDIO) /* irq */
3463 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3464 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
3466 static int __init init_vwsnd(void)
3468 int err;
3470 DBGXV("\n");
3471 DBGXV("sound::vwsnd::init_module()\n");
3473 if(!probe_vwsnd(&the_hw_config))
3474 return -ENODEV;
3475 err = attach_vwsnd(&the_hw_config);
3476 if (err < 0)
3477 return err;
3478 return 0;
3481 static void __exit cleanup_vwsnd(void)
3483 DBGX("sound::vwsnd::cleanup_module()\n");
3485 unload_vwsnd(&the_hw_config);
3488 module_init(init_vwsnd);
3489 module_exit(cleanup_vwsnd);