Import 2.3.18pre1
[davej-history.git] / drivers / net / defxx.c
blobfbfd71d93369180555e075c4daba8c9890fc6db1
1 /*
2 * File Name:
3 * defxx.c
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU Public License, incorporated herein by reference.
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI EISA and PCI controller families. Supported adapters include:
15 * DEC FDDIcontroller/EISA (DEFEA)
16 * DEC FDDIcontroller/PCI (DEFPA)
18 * Maintainers:
19 * LVS Lawrence V. Stefani
21 * Contact:
22 * The author may be reached at:
24 * Inet: stefani@lkg.dec.com
25 * Mail: Digital Equipment Corporation
26 * 550 King Street
27 * M/S: LKG1-3/M07
28 * Littleton, MA 01460
30 * Credits:
31 * I'd like to thank Patricia Cross for helping me get started with
32 * Linux, David Davies for a lot of help upgrading and configuring
33 * my development system and for answering many OS and driver
34 * development questions, and Alan Cox for recommendations and
35 * integration help on getting FDDI support into Linux. LVS
37 * Driver Architecture:
38 * The driver architecture is largely based on previous driver work
39 * for other operating systems. The upper edge interface and
40 * functions were largely taken from existing Linux device drivers
41 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
42 * driver.
44 * Adapter Probe -
45 * The driver scans for supported EISA adapters by reading the
46 * SLOT ID register for each EISA slot and making a match
47 * against the expected value. The supported PCI adapters are
48 * discovered using successive calls to pcibios_find_device.
49 * The first time the probe routine is called, all supported
50 * devices are discovered and initialized. The adapters aren't
51 * brought up to an operational state until the open routine is
52 * called.
54 * Bus-Specific Initialization -
55 * This driver currently supports both EISA and PCI controller
56 * families. While the custom DMA chip and FDDI logic is similar
57 * or identical, the bus logic is very different. After
58 * initialization, the only bus-specific differences is in how the
59 * driver enables and disables interrupts. Other than that, the
60 * run-time critical code behaves the same on both families.
61 * It's important to note that both adapter families are configured
62 * to I/O map, rather than memory map, the adapter registers.
64 * Driver Open/Close -
65 * In the driver open routine, the driver ISR (interrupt service
66 * routine) is registered and the adapter is brought to an
67 * operational state. In the driver close routine, the opposite
68 * occurs; the driver ISR is deregistered and the adapter is
69 * brought to a safe, but closed state. Users may use consecutive
70 * commands to bring the adapter up and down as in the following
71 * example:
72 * ifconfig fddi0 up
73 * ifconfig fddi0 down
74 * ifconfig fddi0 up
76 * Driver Shutdown -
77 * Apparently, there is no shutdown or halt routine support under
78 * Linux. This routine would be called during "reboot" or
79 * "shutdown" to allow the driver to place the adapter in a safe
80 * state before a warm reboot occurs. To be really safe, the user
81 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
82 * to ensure that the adapter DMA engine is taken off-line. However,
83 * the current driver code anticipates this problem and always issues
84 * a soft reset of the adapter at the beginning of driver initialization.
85 * A future driver enhancement in this area may occur in 2.1.X where
86 * Alan indicated that a shutdown handler may be implemented.
88 * Interrupt Service Routine -
89 * The driver supports shared interrupts, so the ISR is registered for
90 * each board with the appropriate flag and the pointer to that board's
91 * device structure. This provides the context during interrupt
92 * processing to support shared interrupts and multiple boards.
94 * Interrupt enabling/disabling can occur at many levels. At the host
95 * end, you can disable system interrupts, or disable interrupts at the
96 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
97 * have a bus-logic chip interrupt enable/disable as well as a DMA
98 * controller interrupt enable/disable.
100 * The driver currently enables and disables adapter interrupts at the
101 * bus-logic chip and assumes that Linux will take care of clearing or
102 * acknowledging any host-based interrupt chips.
104 * Control Functions -
105 * Control functions are those used to support functions such as adding
106 * or deleting multicast addresses, enabling or disabling packet
107 * reception filters, or other custom/proprietary commands. Presently,
108 * the driver supports the "get statistics", "set multicast list", and
109 * "set mac address" functions defined by Linux. A list of possible
110 * enhancements include:
112 * - Custom ioctl interface for executing port interface commands
113 * - Custom ioctl interface for adding unicast addresses to
114 * adapter CAM (to support bridge functions).
115 * - Custom ioctl interface for supporting firmware upgrades.
117 * Hardware (port interface) Support Routines -
118 * The driver function names that start with "dfx_hw_" represent
119 * low-level port interface routines that are called frequently. They
120 * include issuing a DMA or port control command to the adapter,
121 * resetting the adapter, or reading the adapter state. Since the
122 * driver initialization and run-time code must make calls into the
123 * port interface, these routines were written to be as generic and
124 * usable as possible.
126 * Receive Path -
127 * The adapter DMA engine supports a 256 entry receive descriptor block
128 * of which up to 255 entries can be used at any given time. The
129 * architecture is a standard producer, consumer, completion model in
130 * which the driver "produces" receive buffers to the adapter, the
131 * adapter "consumes" the receive buffers by DMAing incoming packet data,
132 * and the driver "completes" the receive buffers by servicing the
133 * incoming packet, then "produces" a new buffer and starts the cycle
134 * again. Receive buffers can be fragmented in up to 16 fragments
135 * (descriptor entries). For simplicity, this driver posts
136 * single-fragment receive buffers of 4608 bytes, then allocates a
137 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
138 * utilization, a better approach would be to pass up the receive
139 * buffer (no extra copy) then allocate and post a replacement buffer.
140 * This is a performance enhancement that should be looked into at
141 * some point.
143 * Transmit Path -
144 * Like the receive path, the adapter DMA engine supports a 256 entry
145 * transmit descriptor block of which up to 255 entries can be used at
146 * any given time. Transmit buffers can be fragmented in up to 255
147 * fragments (descriptor entries). This driver always posts one
148 * fragment per transmit packet request.
150 * The fragment contains the entire packet from FC to end of data.
151 * Before posting the buffer to the adapter, the driver sets a three-byte
152 * packet request header (PRH) which is required by the Motorola MAC chip
153 * used on the adapters. The PRH tells the MAC the type of token to
154 * receive/send, whether or not to generate and append the CRC, whether
155 * synchronous or asynchronous framing is used, etc. Since the PRH
156 * definition is not necessarily consistent across all FDDI chipsets,
157 * the driver, rather than the common FDDI packet handler routines,
158 * sets these bytes.
160 * To reduce the amount of descriptor fetches needed per transmit request,
161 * the driver takes advantage of the fact that there are at least three
162 * bytes available before the skb->data field on the outgoing transmit
163 * request. This is guaranteed by having fddi_setup() in net_init.c set
164 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
165 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
166 * bytes which we'll use to store the PRH.
168 * There's a subtle advantage to adding these pad bytes to the
169 * hard_header_len, it ensures that the data portion of the packet for
170 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
171 * implementations may not need the extra padding and can start copying
172 * or DMAing directly from the FC byte which starts at skb->data. Should
173 * another driver implementation need ADDITIONAL padding, the net_init.c
174 * module should be updated and dev->hard_header_len should be increased.
175 * NOTE: To maintain the alignment on the data portion of the packet,
176 * dev->hard_header_len should always be evenly divisible by 4 and at
177 * least 24 bytes in size.
179 * Modification History:
180 * Date Name Description
181 * 16-Aug-96 LVS Created.
182 * 20-Aug-96 LVS Updated dfx_probe so that version information
183 * string is only displayed if 1 or more cards are
184 * found. Changed dfx_rcv_queue_process to copy
185 * 3 NULL bytes before FC to ensure that data is
186 * longword aligned in receive buffer.
187 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
188 * LLC group promiscuous mode if multicast list
189 * is too large. LLC individual/group promiscuous
190 * mode is now disabled if IFF_PROMISC flag not set.
191 * dfx_xmt_queue_pkt no longer checks for NULL skb
192 * on Alan Cox recommendation. Added node address
193 * override support.
194 * 12-Sep-96 LVS Reset current address to factory address during
195 * device open. Updated transmit path to post a
196 * single fragment which includes PRH->end of data.
199 /* Version information string - should be updated prior to each new release!!! */
201 static const char *version = "defxx.c:v1.04 09/16/96 Lawrence V. Stefani (stefani@lkg.dec.com)\n";
203 /* Include files */
205 #include <linux/module.h>
207 #include <linux/kernel.h>
208 #include <linux/sched.h>
209 #include <linux/string.h>
210 #include <linux/ptrace.h>
211 #include <linux/errno.h>
212 #include <linux/ioport.h>
213 #include <linux/malloc.h>
214 #include <linux/interrupt.h>
215 #include <linux/pci.h>
216 #include <linux/delay.h>
217 #include <linux/init.h>
218 #include <asm/byteorder.h>
219 #include <asm/bitops.h>
220 #include <asm/io.h>
222 #include <linux/netdevice.h>
223 #include <linux/fddidevice.h>
224 #include <linux/skbuff.h>
226 #include "defxx.h"
228 #define DYNAMIC_BUFFERS 1
230 #define SKBUFF_RX_COPYBREAK 200
232 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
233 * alignment for compatibility with old EISA boards.
235 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
237 /* Define global routines */
239 int dfx_probe(struct net_device *dev);
241 /* Define module-wide (static) routines */
243 static struct net_device *dfx_alloc_device(struct net_device *dev, u16 iobase);
245 static void dfx_bus_init(struct net_device *dev);
246 static void dfx_bus_config_check(DFX_board_t *bp);
248 static int dfx_driver_init(struct net_device *dev);
249 static int dfx_adap_init(DFX_board_t *bp);
251 static int dfx_open(struct net_device *dev);
252 static int dfx_close(struct net_device *dev);
254 static void dfx_int_pr_halt_id(DFX_board_t *bp);
255 static void dfx_int_type_0_process(DFX_board_t *bp);
256 static void dfx_int_common(DFX_board_t *bp);
257 static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
259 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
260 static void dfx_ctl_set_multicast_list(struct net_device *dev);
261 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
262 static int dfx_ctl_update_cam(DFX_board_t *bp);
263 static int dfx_ctl_update_filters(DFX_board_t *bp);
265 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
266 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
267 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
268 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
269 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
271 static void dfx_rcv_init(DFX_board_t *bp);
272 static void dfx_rcv_queue_process(DFX_board_t *bp);
274 static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
275 static void dfx_xmt_done(DFX_board_t *bp);
276 static void dfx_xmt_flush(DFX_board_t *bp);
278 /* Define module-wide (static) variables */
280 static int num_boards = 0; /* total number of adapters configured */
281 static int already_probed = 0; /* have we already entered dfx_probe? */
285 * =======================
286 * = dfx_port_write_byte =
287 * = dfx_port_read_byte =
288 * = dfx_port_write_long =
289 * = dfx_port_read_long =
290 * =======================
292 * Overview:
293 * Routines for reading and writing values from/to adapter
295 * Returns:
296 * None
298 * Arguments:
299 * bp - pointer to board information
300 * offset - register offset from base I/O address
301 * data - for dfx_port_write_byte and dfx_port_write_long, this
302 * is a value to write.
303 * for dfx_port_read_byte and dfx_port_read_byte, this
304 * is a pointer to store the read value.
306 * Functional Description:
307 * These routines perform the correct operation to read or write
308 * the adapter register.
310 * EISA port block base addresses are based on the slot number in which the
311 * controller is installed. For example, if the EISA controller is installed
312 * in slot 4, the port block base address is 0x4000. If the controller is
313 * installed in slot 2, the port block base address is 0x2000, and so on.
314 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
315 * registers using the register offsets defined in DEFXX.H.
317 * PCI port block base addresses are assigned by the PCI BIOS or system
318 * firmware. There is one 128 byte port block which can be accessed. It
319 * allows for I/O mapping of both PDQ and PFI registers using the register
320 * offsets defined in DEFXX.H.
322 * Return Codes:
323 * None
325 * Assumptions:
326 * bp->base_addr is a valid base I/O address for this adapter.
327 * offset is a valid register offset for this adapter.
329 * Side Effects:
330 * Rather than produce macros for these functions, these routines
331 * are defined using "inline" to ensure that the compiler will
332 * generate inline code and not waste a procedure call and return.
333 * This provides all the benefits of macros, but with the
334 * advantage of strict data type checking.
337 static inline void dfx_port_write_byte(
338 DFX_board_t *bp,
339 int offset,
340 u8 data
344 u16 port = bp->base_addr + offset;
346 outb(data, port);
347 return;
350 static inline void dfx_port_read_byte(
351 DFX_board_t *bp,
352 int offset,
353 u8 *data
357 u16 port = bp->base_addr + offset;
359 *data = inb(port);
360 return;
363 static inline void dfx_port_write_long(
364 DFX_board_t *bp,
365 int offset,
366 u32 data
370 u16 port = bp->base_addr + offset;
372 outl(data, port);
373 return;
376 static inline void dfx_port_read_long(
377 DFX_board_t *bp,
378 int offset,
379 u32 *data
383 u16 port = bp->base_addr + offset;
385 *data = inl(port);
386 return;
391 * =============
392 * = dfx_probe =
393 * =============
395 * Overview:
396 * Probes for supported FDDI EISA and PCI controllers
398 * Returns:
399 * Condition code
401 * Arguments:
402 * dev - pointer to device information
404 * Functional Description:
405 * This routine is called by the OS for each FDDI device name (fddi0,
406 * fddi1,...,fddi6, fddi7) specified in drivers/net/Space.c. Since
407 * the DEFXX.C driver currently does not support being loaded as a
408 * module, dfx_probe() will initialize all devices the first time
409 * it is called.
411 * Let's say that dfx_probe() is getting called to initialize fddi0.
412 * Furthermore, let's say there are three supported controllers in the
413 * system. Before dfx_probe() leaves, devices fddi0, fddi1, and fddi2
414 * will be initialized and a global flag will be set to indicate that
415 * dfx_probe() has already been called.
417 * However...the OS doesn't know that we've already initialized
418 * devices fddi1 and fddi2 so dfx_probe() gets called again and again
419 * until it reaches the end of the device list for FDDI (presently,
420 * fddi7). It's important that the driver "pretend" to probe for
421 * devices fddi1 and fddi2 and return success. Devices fddi3
422 * through fddi7 will return failure since they weren't initialized.
424 * This algorithm seems to work for the time being. As other FDDI
425 * drivers are written for Linux, a more generic approach (perhaps
426 * similar to the Ethernet card approach) may need to be implemented.
428 * Return Codes:
429 * 0 - This device (fddi0, fddi1, etc) configured successfully
430 * -ENODEV - No devices present, or no Digital FDDI EISA or PCI device
431 * present for this device name
433 * Assumptions:
434 * For the time being, DEFXX.C is the only FDDI driver under Linux.
435 * As this assumption changes, this routine will likely be impacted.
436 * Also, it is assumed that no more than eight (8) FDDI controllers
437 * will be configured in the system (fddi0 through fddi7). This
438 * routine will not allocate new device structures. If more than
439 * eight FDDI controllers need to be configured, drivers/net/Space.c
440 * should be updated as well as the DFX_MAX_NUM_BOARDS constant in
441 * DEFXX.H.
443 * Side Effects:
444 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
445 * initialized and the board resources are read and stored in
446 * the device structure.
449 int __init dfx_probe(struct net_device *dev)
451 int i; /* used in for loops */
452 int version_disp; /* was version info string already displayed? */
453 int port_len; /* length of port address range (in bytes) */
454 u16 port; /* temporary I/O (port) address */
455 struct pci_dev * pdev = NULL; /* PCI device record */
456 u16 command; /* PCI Configuration space Command register val */
457 u32 slot_id; /* EISA hardware (slot) ID read from adapter */
458 DFX_board_t *bp; /* board pointer */
460 DBG_printk("In dfx_probe...\n");
463 * Verify whether we're going through dfx_probe() again
465 * If so, see if we're going through for a subsequent fddi device that
466 * we've already initialized. If we are, return success (0). If not,
467 * return failure (-ENODEV).
470 version_disp = 0; /* default to version string not displayed */
471 if (already_probed)
473 DBG_printk("Already entered dfx_probe\n");
474 if (dev != NULL)
475 if ((strncmp(dev->name, "fddi", 4) == 0) && (dev->base_addr != 0))
477 DBG_printk("In dfx_probe for fddi adapter (%s) we've already initialized it, so return success\n", dev->name);
478 return(0);
480 return(-ENODEV);
482 already_probed = 1; /* set global flag */
484 /* Scan for FDDI EISA controllers */
486 for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */
488 port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */
489 slot_id = inl(port); /* read EISA HW (slot) ID */
490 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
492 if (!version_disp) /* display version info if adapter is found */
494 version_disp = 1; /* set display flag to TRUE so that */
495 printk(version); /* we only display this string ONCE */
498 port = (i << 12); /* recalc base addr */
500 /* Verify port address range is not already being used */
502 port_len = PI_ESIC_K_CSR_IO_LEN;
503 if (check_region(port, port_len) == 0)
505 /* Allocate a new device structure for this adapter */
507 dev = dfx_alloc_device(dev, port);
508 if (dev != NULL)
510 /* Initialize board structure with bus-specific info */
512 bp = (DFX_board_t *) dev->priv;
513 bp->dev = dev;
514 bp->bus_type = DFX_BUS_TYPE_EISA;
515 if (dfx_driver_init(dev) == DFX_K_SUCCESS)
516 num_boards++; /* only increment global board count on success */
517 else
518 dev->base_addr = 0; /* clear port address field in device structure on failure */
521 else
522 printk("I/O range allocated to adapter (0x%X-0x%X) is already being used!\n", port, (port + port_len-1));
526 /* Scan for FDDI PCI controllers */
528 if (pci_present()) /* is PCI even present? */
529 while ((pdev = pci_find_device(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, pdev)))
531 if (!version_disp) /* display version info if adapter is found */
533 version_disp = 1; /* set display flag to TRUE so that */
534 printk(version); /* we only display this string ONCE */
537 /* Verify that I/O enable bit is set (PCI slot is enabled) */
539 pci_read_config_word(pdev, PCI_COMMAND, &command);
540 if ((command & PCI_COMMAND_IO) == 0)
541 printk("I/O enable bit not set! Verify that slot is enabled\n");
542 else
544 /* Turn off memory mapped space and enable mastering */
546 command |= PCI_COMMAND_MASTER;
547 command &= ~PCI_COMMAND_MEMORY;
548 pci_write_config_word(pdev, PCI_COMMAND, command);
550 /* Get I/O base address from PCI Configuration Space */
552 port = pdev->resource[1].start;
554 /* Verify port address range is not already being used */
556 port_len = PFI_K_CSR_IO_LEN;
558 if (check_region(port, port_len) == 0)
560 /* Allocate a new device structure for this adapter */
562 dev = dfx_alloc_device(dev, port);
563 if (dev != NULL)
565 /* Initialize board structure with bus-specific info */
567 bp = (DFX_board_t *) dev->priv;
568 bp->dev = dev;
569 bp->bus_type = DFX_BUS_TYPE_PCI;
570 bp->pci_dev = pdev;
571 if (dfx_driver_init(dev) == DFX_K_SUCCESS)
572 num_boards++; /* only increment global board count on success */
573 else
574 dev->base_addr = 0; /* clear port address field in device structure on failure */
577 else
578 printk("I/O range allocated to adapter (0x%X-0x%X) is already being used!\n", port, (port + port_len-1));
583 * If we're at this point we're going through dfx_probe() for the first
584 * time. Return success (0) if we've initialized 1 or more boards.
585 * Otherwise, return failure (-ENODEV).
588 if (num_boards > 0)
589 return(0);
590 else
591 return(-ENODEV);
596 * ====================
597 * = dfx_alloc_device =
598 * ====================
600 * Overview:
601 * Allocate new device structure for adapter
603 * Returns:
604 * Pointer to device structure for this adapter or NULL if
605 * none are available or could not allocate memory for
606 * private board structure.
608 * Arguments:
609 * dev - pointer to device information for last device
610 * iobase - base I/O address of new adapter
612 * Functional Description:
613 * The algorithm for allocating a new device structure is
614 * fairly simple. Since we're presently the only FDDI driver
615 * under Linux, we'll find the first device structure with an
616 * "fddi*" device name that's free. If we run out of devices,
617 * we'll fail on error. This is simpler than trying to
618 * allocate the memory for a new device structure, determine
619 * the next free number (beyond 7) and link it into the chain
620 * of devices. A user can always modify drivers/net/Space.c
621 * to add new FDDI device structures if necessary.
623 * Beyond finding a free FDDI device structure, this routine
624 * initializes most of the fields, resource tags, and dispatch
625 * pointers in the device structure and calls the common
626 * fddi_setup() routine to perform the rest of the device
627 * structure initialization.
629 * Return Codes:
630 * None
632 * Assumptions:
633 * If additional FDDI drivers are integrated into Linux,
634 * we'll likely need to use a different approach to
635 * allocate a device structure. Perhaps one that is
636 * similar to what the Ethernet drivers use.
638 * Side Effects:
639 * None
642 struct net_device __init *dfx_alloc_device( struct net_device *dev, u16 iobase)
644 struct net_device *tmp_dev; /* pointer to a device structure */
646 DBG_printk("In dfx_alloc_device...\n");
648 /* Find next free fddi entry */
650 for (tmp_dev = dev; tmp_dev != NULL; tmp_dev = tmp_dev->next)
651 if ((strncmp(tmp_dev->name, "fddi", 4) == 0) && (tmp_dev->base_addr == 0))
652 break;
653 if (tmp_dev == NULL)
655 printk("Could not find free FDDI device structure for this adapter!\n");
656 return(NULL);
658 DBG_printk("Device entry free, device name = %s\n", tmp_dev->name);
660 /* Allocate space for private board structure */
662 tmp_dev->priv = (void *) kmalloc(sizeof(DFX_board_t), GFP_KERNEL);
663 if (tmp_dev->priv == NULL)
665 printk("Could not allocate memory for private board structure!\n");
666 return(NULL);
668 memset(tmp_dev->priv, 0, sizeof(DFX_board_t)); /* clear structure */
670 /* Initialize new device structure */
672 tmp_dev->rmem_end = 0; /* shared memory isn't used */
673 tmp_dev->rmem_start = 0; /* shared memory isn't used */
674 tmp_dev->mem_end = 0; /* shared memory isn't used */
675 tmp_dev->mem_start = 0; /* shared memory isn't used */
676 tmp_dev->base_addr = iobase; /* save port (I/O) base address */
677 tmp_dev->irq = 0; /* set in dfx_bus_init() */
678 tmp_dev->if_port = 0; /* not applicable to FDDI adapters */
679 tmp_dev->dma = 0; /* Bus Master DMA doesn't require channel */
681 tmp_dev->get_stats = &dfx_ctl_get_stats;
682 tmp_dev->open = &dfx_open;
683 tmp_dev->stop = &dfx_close;
684 tmp_dev->hard_start_xmit = &dfx_xmt_queue_pkt;
685 tmp_dev->hard_header = NULL; /* set in fddi_setup() */
686 tmp_dev->rebuild_header = NULL; /* set in fddi_setup() */
687 tmp_dev->set_multicast_list = &dfx_ctl_set_multicast_list;
688 tmp_dev->set_mac_address = &dfx_ctl_set_mac_address;
689 tmp_dev->do_ioctl = NULL; /* not supported for now &&& */
690 tmp_dev->set_config = NULL; /* not supported for now &&& */
691 tmp_dev->hard_header_cache = NULL; /* not supported */
692 tmp_dev->header_cache_update = NULL; /* not supported */
693 tmp_dev->change_mtu = NULL; /* set in fddi_setup() */
695 /* Initialize remaining device structure information */
697 fddi_setup(tmp_dev);
698 return(tmp_dev);
703 * ================
704 * = dfx_bus_init =
705 * ================
707 * Overview:
708 * Initializes EISA and PCI controller bus-specific logic.
710 * Returns:
711 * None
713 * Arguments:
714 * dev - pointer to device information
716 * Functional Description:
717 * Determine and save adapter IRQ in device table,
718 * then perform bus-specific logic initialization.
720 * Return Codes:
721 * None
723 * Assumptions:
724 * dev->base_addr has already been set with the proper
725 * base I/O address for this device.
727 * Side Effects:
728 * Interrupts are enabled at the adapter bus-specific logic.
729 * Note: Interrupts at the DMA engine (PDQ chip) are not
730 * enabled yet.
733 void __init dfx_bus_init(struct net_device *dev)
735 DFX_board_t *bp = (DFX_board_t *)dev->priv;
736 u8 val; /* used for I/O read/writes */
738 DBG_printk("In dfx_bus_init...\n");
741 * Initialize base I/O address field in bp structure
743 * Note: bp->base_addr is the same as dev->base_addr.
744 * It's useful because often we'll need to read
745 * or write registers where we already have the
746 * bp pointer instead of the dev pointer. Having
747 * the base address in the bp structure will
748 * save a pointer dereference.
750 * IMPORTANT!! This field must be defined before
751 * any of the dfx_port_* inline functions are
752 * called.
755 bp->base_addr = dev->base_addr;
757 /* Initialize adapter based on bus type */
759 if (bp->bus_type == DFX_BUS_TYPE_EISA)
761 /* Get the interrupt level from the ESIC chip */
763 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
764 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
766 case PI_CONFIG_STAT_0_IRQ_K_9:
767 dev->irq = 9;
768 break;
770 case PI_CONFIG_STAT_0_IRQ_K_10:
771 dev->irq = 10;
772 break;
774 case PI_CONFIG_STAT_0_IRQ_K_11:
775 dev->irq = 11;
776 break;
778 case PI_CONFIG_STAT_0_IRQ_K_15:
779 dev->irq = 15;
780 break;
783 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
785 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
787 /* Set the I/O decode range of the board */
789 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
790 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
791 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
793 /* Enable access to rest of module (including PDQ and packet memory) */
795 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
798 * Map PDQ registers into I/O space. This is done by clearing a bit
799 * in Burst Holdoff register.
802 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
803 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
805 /* Enable interrupts at EISA bus interface chip (ESIC) */
807 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
808 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
810 else
812 struct pci_dev *pdev = bp->pci_dev;
814 /* Get the interrupt level from the PCI Configuration Table */
816 dev->irq = pdev->irq;
818 /* Check Latency Timer and set if less than minimal */
820 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
821 if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */
823 val = PFI_K_LAT_TIMER_DEF;
824 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
827 /* Enable interrupts at PCI bus interface chip (PFI) */
829 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
831 return;
836 * ========================
837 * = dfx_bus_config_check =
838 * ========================
840 * Overview:
841 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
842 * are illegal, then this routine will set new defaults.
844 * Returns:
845 * None
847 * Arguments:
848 * bp - pointer to board information
850 * Functional Description:
851 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
852 * PDQ, and all FDDI PCI controllers, all values are legal.
854 * Return Codes:
855 * None
857 * Assumptions:
858 * dfx_adap_init has NOT been called yet so burst size and other items have
859 * not been set.
861 * Side Effects:
862 * None
865 void __init dfx_bus_config_check(DFX_board_t *bp)
867 int status; /* return code from adapter port control call */
868 u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */
869 u32 host_data; /* LW data returned from port control call */
871 DBG_printk("In dfx_bus_config_check...\n");
873 /* Configuration check only valid for EISA adapter */
875 if (bp->bus_type == DFX_BUS_TYPE_EISA)
877 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
880 * First check if revision 2 EISA controller. Rev. 1 cards used
881 * PDQ revision B, so no workaround needed in this case. Rev. 3
882 * cards used PDQ revision E, so no workaround needed in this
883 * case, either. Only Rev. 2 cards used either Rev. D or E
884 * chips, so we must verify the chip revision on Rev. 2 cards.
887 if (slot_id == DEFEA_PROD_ID_2)
890 * Revision 2 FDDI EISA controller found, so let's check PDQ
891 * revision of adapter.
894 status = dfx_hw_port_ctrl_req(bp,
895 PI_PCTRL_M_SUB_CMD,
896 PI_SUB_CMD_K_PDQ_REV_GET,
898 &host_data);
899 if ((status != DFX_K_SUCCESS) || (host_data == 2))
902 * Either we couldn't determine the PDQ revision, or
903 * we determined that it is at revision D. In either case,
904 * we need to implement the workaround.
907 /* Ensure that the burst size is set to 8 longwords or less */
909 switch (bp->burst_size)
911 case PI_PDATA_B_DMA_BURST_SIZE_32:
912 case PI_PDATA_B_DMA_BURST_SIZE_16:
913 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
914 break;
916 default:
917 break;
920 /* Ensure that full-duplex mode is not enabled */
922 bp->full_duplex_enb = PI_SNMP_K_FALSE;
926 return;
931 * ===================
932 * = dfx_driver_init =
933 * ===================
935 * Overview:
936 * Initializes remaining adapter board structure information
937 * and makes sure adapter is in a safe state prior to dfx_open().
939 * Returns:
940 * Condition code
942 * Arguments:
943 * dev - pointer to device information
945 * Functional Description:
946 * This function allocates additional resources such as the host memory
947 * blocks needed by the adapter (eg. descriptor and consumer blocks).
948 * Remaining bus initialization steps are also completed. The adapter
949 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
950 * must call dfx_open() to open the adapter and bring it on-line.
952 * Return Codes:
953 * DFX_K_SUCCESS - initialization succeeded
954 * DFX_K_FAILURE - initialization failed - could not allocate memory
955 * or read adapter MAC address
957 * Assumptions:
958 * Memory allocated from kmalloc() call is physically contiguous, locked
959 * memory whose physical address equals its virtual address.
961 * Side Effects:
962 * Adapter is reset and should be in DMA_UNAVAILABLE state before
963 * returning from this routine.
966 int __init dfx_driver_init(struct net_device *dev)
968 DFX_board_t *bp = (DFX_board_t *)dev->priv;
969 int alloc_size; /* total buffer size needed */
970 char *top_v, *curr_v; /* virtual addrs into memory block */
971 u32 top_p, curr_p; /* physical addrs into memory block */
972 u32 data; /* host data register value */
974 DBG_printk("In dfx_driver_init...\n");
976 /* Initialize bus-specific hardware registers */
978 dfx_bus_init(dev);
981 * Initialize default values for configurable parameters
983 * Note: All of these parameters are ones that a user may
984 * want to customize. It'd be nice to break these
985 * out into Space.c or someplace else that's more
986 * accessible/understandable than this file.
989 bp->full_duplex_enb = PI_SNMP_K_FALSE;
990 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
991 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
992 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
995 * Ensure that HW configuration is OK
997 * Note: Depending on the hardware revision, we may need to modify
998 * some of the configurable parameters to workaround hardware
999 * limitations. We'll perform this configuration check AFTER
1000 * setting the parameters to their default values.
1003 dfx_bus_config_check(bp);
1005 /* Disable PDQ interrupts first */
1007 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1009 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1011 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1013 /* Read the factory MAC address from the adapter then save it */
1015 if (dfx_hw_port_ctrl_req(bp,
1016 PI_PCTRL_M_MLA,
1017 PI_PDATA_A_MLA_K_LO,
1019 &data) != DFX_K_SUCCESS)
1021 printk("%s: Could not read adapter factory MAC address!\n", dev->name);
1022 return(DFX_K_FAILURE);
1024 memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
1026 if (dfx_hw_port_ctrl_req(bp,
1027 PI_PCTRL_M_MLA,
1028 PI_PDATA_A_MLA_K_HI,
1030 &data) != DFX_K_SUCCESS)
1032 printk("%s: Could not read adapter factory MAC address!\n", dev->name);
1033 return(DFX_K_FAILURE);
1035 memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
1038 * Set current address to factory address
1040 * Note: Node address override support is handled through
1041 * dfx_ctl_set_mac_address.
1044 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1045 if (bp->bus_type == DFX_BUS_TYPE_EISA)
1046 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
1047 dev->name,
1048 dev->base_addr,
1049 dev->irq,
1050 dev->dev_addr[0],
1051 dev->dev_addr[1],
1052 dev->dev_addr[2],
1053 dev->dev_addr[3],
1054 dev->dev_addr[4],
1055 dev->dev_addr[5]);
1056 else
1057 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
1058 dev->name,
1059 dev->base_addr,
1060 dev->irq,
1061 dev->dev_addr[0],
1062 dev->dev_addr[1],
1063 dev->dev_addr[2],
1064 dev->dev_addr[3],
1065 dev->dev_addr[4],
1066 dev->dev_addr[5]);
1069 * Get memory for descriptor block, consumer block, and other buffers
1070 * that need to be DMA read or written to by the adapter.
1073 alloc_size = sizeof(PI_DESCR_BLOCK) +
1074 PI_CMD_REQ_K_SIZE_MAX +
1075 PI_CMD_RSP_K_SIZE_MAX +
1076 #ifndef DYNAMIC_BUFFERS
1077 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1078 #endif
1079 sizeof(PI_CONSUMER_BLOCK) +
1080 (PI_ALIGN_K_DESC_BLK - 1);
1081 top_v = (char *) kmalloc(alloc_size, GFP_KERNEL);
1082 if (top_v == NULL)
1084 printk("%s: Could not allocate memory for host buffers and structures!\n", dev->name);
1085 return(DFX_K_FAILURE);
1087 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
1088 top_p = virt_to_bus(top_v); /* get physical address of buffer */
1091 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1092 * plus the amount of memory needed was allocated. The physical address
1093 * is now 8K aligned. By carving up the memory in a specific order,
1094 * we'll guarantee the alignment requirements for all other structures.
1096 * Note: If the assumptions change regarding the non-paged, non-cached,
1097 * physically contiguous nature of the memory block or the address
1098 * alignments, then we'll need to implement a different algorithm
1099 * for allocating the needed memory.
1102 curr_p = (u32) (ALIGN(top_p, PI_ALIGN_K_DESC_BLK));
1103 curr_v = top_v + (curr_p - top_p);
1105 /* Reserve space for descriptor block */
1107 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1108 bp->descr_block_phys = curr_p;
1109 curr_v += sizeof(PI_DESCR_BLOCK);
1110 curr_p += sizeof(PI_DESCR_BLOCK);
1112 /* Reserve space for command request buffer */
1114 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1115 bp->cmd_req_phys = curr_p;
1116 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1117 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1119 /* Reserve space for command response buffer */
1121 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1122 bp->cmd_rsp_phys = curr_p;
1123 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1124 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1126 /* Reserve space for the LLC host receive queue buffers */
1128 bp->rcv_block_virt = curr_v;
1129 bp->rcv_block_phys = curr_p;
1131 #ifndef DYNAMIC_BUFFERS
1132 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1133 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1134 #endif
1136 /* Reserve space for the consumer block */
1138 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1139 bp->cons_block_phys = curr_p;
1141 /* Display virtual and physical addresses if debug driver */
1143 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", dev->name, (long)bp->descr_block_virt, bp->descr_block_phys);
1144 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", dev->name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1145 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", dev->name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1146 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", dev->name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1147 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", dev->name, (long)bp->cons_block_virt, bp->cons_block_phys);
1149 return(DFX_K_SUCCESS);
1154 * =================
1155 * = dfx_adap_init =
1156 * =================
1158 * Overview:
1159 * Brings the adapter to the link avail/link unavailable state.
1161 * Returns:
1162 * Condition code
1164 * Arguments:
1165 * bp - pointer to board information
1167 * Functional Description:
1168 * Issues the low-level firmware/hardware calls necessary to bring
1169 * the adapter up, or to properly reset and restore adapter during
1170 * run-time.
1172 * Return Codes:
1173 * DFX_K_SUCCESS - Adapter brought up successfully
1174 * DFX_K_FAILURE - Adapter initialization failed
1176 * Assumptions:
1177 * bp->reset_type should be set to a valid reset type value before
1178 * calling this routine.
1180 * Side Effects:
1181 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1182 * upon a successful return of this routine.
1185 int dfx_adap_init(
1186 DFX_board_t *bp
1190 DBG_printk("In dfx_adap_init...\n");
1192 /* Disable PDQ interrupts first */
1194 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1196 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1198 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1200 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1201 return(DFX_K_FAILURE);
1205 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1206 * so we'll acknowledge all Type 0 interrupts now before continuing.
1209 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1212 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1214 * Note: We only need to clear host copies of these registers. The PDQ reset
1215 * takes care of the on-board register values.
1218 bp->cmd_req_reg.lword = 0;
1219 bp->cmd_rsp_reg.lword = 0;
1220 bp->rcv_xmt_reg.lword = 0;
1222 /* Clear consumer block before going to DMA_AVAILABLE state */
1224 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1226 /* Initialize the DMA Burst Size */
1228 if (dfx_hw_port_ctrl_req(bp,
1229 PI_PCTRL_M_SUB_CMD,
1230 PI_SUB_CMD_K_BURST_SIZE_SET,
1231 bp->burst_size,
1232 NULL) != DFX_K_SUCCESS)
1234 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1235 return(DFX_K_FAILURE);
1239 * Set base address of Consumer Block
1241 * Assumption: 32-bit physical address of consumer block is 64 byte
1242 * aligned. That is, bits 0-5 of the address must be zero.
1245 if (dfx_hw_port_ctrl_req(bp,
1246 PI_PCTRL_M_CONS_BLOCK,
1247 bp->cons_block_phys,
1249 NULL) != DFX_K_SUCCESS)
1251 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1252 return(DFX_K_FAILURE);
1256 * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
1258 * Note: We also set the literal and data swapping requirements in this
1259 * command. Since this driver presently runs on Intel platforms
1260 * which are Little Endian, we'll tell the adapter to byte swap
1261 * data only. This code will need to change when we support
1262 * Big Endian systems (eg. PowerPC).
1264 * Assumption: 32-bit physical address of descriptor block is 8Kbyte
1265 * aligned. That is, bits 0-12 of the address must be zero.
1268 if (dfx_hw_port_ctrl_req(bp,
1269 PI_PCTRL_M_INIT,
1270 (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
1272 NULL) != DFX_K_SUCCESS)
1274 printk("%s: Could not set descriptor block address!\n", bp->dev->name);
1275 return(DFX_K_FAILURE);
1278 /* Set transmit flush timeout value */
1280 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1281 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1282 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1283 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1284 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1285 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1287 printk("%s: DMA command request failed!\n", bp->dev->name);
1288 return(DFX_K_FAILURE);
1291 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1293 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1294 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1295 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1296 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1297 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1298 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1299 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1300 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1301 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1303 printk("%s: DMA command request failed!\n", bp->dev->name);
1304 return(DFX_K_FAILURE);
1307 /* Initialize adapter CAM */
1309 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1311 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1312 return(DFX_K_FAILURE);
1315 /* Initialize adapter filters */
1317 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1319 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1320 return(DFX_K_FAILURE);
1323 /* Initialize receive descriptor block and produce buffers */
1325 dfx_rcv_init(bp);
1327 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1329 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1330 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1332 printk("%s: Start command failed\n", bp->dev->name);
1333 return(DFX_K_FAILURE);
1336 /* Initialization succeeded, reenable PDQ interrupts */
1338 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1339 return(DFX_K_SUCCESS);
1344 * ============
1345 * = dfx_open =
1346 * ============
1348 * Overview:
1349 * Opens the adapter
1351 * Returns:
1352 * Condition code
1354 * Arguments:
1355 * dev - pointer to device information
1357 * Functional Description:
1358 * This function brings the adapter to an operational state.
1360 * Return Codes:
1361 * 0 - Adapter was successfully opened
1362 * -EAGAIN - Could not register IRQ or adapter initialization failed
1364 * Assumptions:
1365 * This routine should only be called for a device that was
1366 * initialized successfully during the dfx_probe process.
1368 * Side Effects:
1369 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1370 * if the open is successful.
1373 int dfx_open(
1374 struct net_device *dev
1378 DFX_board_t *bp = (DFX_board_t *)dev->priv;
1380 DBG_printk("In dfx_open...\n");
1382 /* Register IRQ - support shared interrupts by passing device ptr */
1384 if (request_irq(dev->irq, (void *)dfx_interrupt, SA_SHIRQ, dev->name, dev))
1386 printk("%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1387 return(-EAGAIN);
1391 * Set current address to factory MAC address
1393 * Note: We've already done this step in dfx_driver_init.
1394 * However, it's possible that a user has set a node
1395 * address override, then closed and reopened the
1396 * adapter. Unless we reset the device address field
1397 * now, we'll continue to use the existing modified
1398 * address.
1401 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1403 /* Clear local unicast/multicast address tables and counts */
1405 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1406 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1407 bp->uc_count = 0;
1408 bp->mc_count = 0;
1410 /* Disable promiscuous filter settings */
1412 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1413 bp->group_prom = PI_FSTATE_K_BLOCK;
1415 /* Reset and initialize adapter */
1417 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1418 if (dfx_adap_init(bp) != DFX_K_SUCCESS)
1420 printk("%s: Adapter open failed!\n", dev->name);
1421 return(-EAGAIN);
1424 /* Set device structure info */
1426 dev->tbusy = 0;
1427 dev->interrupt = DFX_UNMASK_INTERRUPTS;
1428 dev->start = 1;
1429 return(0);
1434 * =============
1435 * = dfx_close =
1436 * =============
1438 * Overview:
1439 * Closes the device/module.
1441 * Returns:
1442 * Condition code
1444 * Arguments:
1445 * dev - pointer to device information
1447 * Functional Description:
1448 * This routine closes the adapter and brings it to a safe state.
1449 * The interrupt service routine is deregistered with the OS.
1450 * The adapter can be opened again with another call to dfx_open().
1452 * Return Codes:
1453 * Always return 0.
1455 * Assumptions:
1456 * No further requests for this adapter are made after this routine is
1457 * called. dfx_open() can be called to reset and reinitialize the
1458 * adapter.
1460 * Side Effects:
1461 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1462 * routine.
1465 int dfx_close(
1466 struct net_device *dev
1470 DFX_board_t *bp = (DFX_board_t *)dev->priv;
1472 DBG_printk("In dfx_close...\n");
1474 /* Disable PDQ interrupts first */
1476 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1478 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1480 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1483 * Flush any pending transmit buffers
1485 * Note: It's important that we flush the transmit buffers
1486 * BEFORE we clear our copy of the Type 2 register.
1487 * Otherwise, we'll have no idea how many buffers
1488 * we need to free.
1491 dfx_xmt_flush(bp);
1494 * Clear Type 1 and Type 2 registers after adapter reset
1496 * Note: Even though we're closing the adapter, it's
1497 * possible that an interrupt will occur after
1498 * dfx_close is called. Without some assurance to
1499 * the contrary we want to make sure that we don't
1500 * process receive and transmit LLC frames and update
1501 * the Type 2 register with bad information.
1504 bp->cmd_req_reg.lword = 0;
1505 bp->cmd_rsp_reg.lword = 0;
1506 bp->rcv_xmt_reg.lword = 0;
1508 /* Clear consumer block for the same reason given above */
1510 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1512 /* Clear device structure flags */
1514 dev->start = 0;
1515 dev->tbusy = 1;
1517 /* Deregister (free) IRQ */
1519 free_irq(dev->irq, dev);
1520 return(0);
1525 * ======================
1526 * = dfx_int_pr_halt_id =
1527 * ======================
1529 * Overview:
1530 * Displays halt id's in string form.
1532 * Returns:
1533 * None
1535 * Arguments:
1536 * bp - pointer to board information
1538 * Functional Description:
1539 * Determine current halt id and display appropriate string.
1541 * Return Codes:
1542 * None
1544 * Assumptions:
1545 * None
1547 * Side Effects:
1548 * None
1551 void dfx_int_pr_halt_id(
1552 DFX_board_t *bp
1556 PI_UINT32 port_status; /* PDQ port status register value */
1557 PI_UINT32 halt_id; /* PDQ port status halt ID */
1559 /* Read the latest port status */
1561 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1563 /* Display halt state transition information */
1565 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1566 switch (halt_id)
1568 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1569 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1570 break;
1572 case PI_HALT_ID_K_PARITY_ERROR:
1573 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1574 break;
1576 case PI_HALT_ID_K_HOST_DIR_HALT:
1577 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1578 break;
1580 case PI_HALT_ID_K_SW_FAULT:
1581 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1582 break;
1584 case PI_HALT_ID_K_HW_FAULT:
1585 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1586 break;
1588 case PI_HALT_ID_K_PC_TRACE:
1589 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1590 break;
1592 case PI_HALT_ID_K_DMA_ERROR:
1593 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1594 break;
1596 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1597 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1598 break;
1600 case PI_HALT_ID_K_BUS_EXCEPTION:
1601 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1602 break;
1604 default:
1605 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1606 break;
1608 return;
1613 * ==========================
1614 * = dfx_int_type_0_process =
1615 * ==========================
1617 * Overview:
1618 * Processes Type 0 interrupts.
1620 * Returns:
1621 * None
1623 * Arguments:
1624 * bp - pointer to board information
1626 * Functional Description:
1627 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1628 * is a serious fault on the adapter, then an error message is displayed
1629 * and the adapter is reset.
1631 * One tricky potential timing window is the rapid succession of "link avail"
1632 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1633 * interrupt must be done before reading the state from the Port Status
1634 * register. This is true because a state change could occur after reading
1635 * the data, but before acknowledging the interrupt. If this state change
1636 * does happen, it would be lost because the driver is using the old state,
1637 * and it will never know about the new state because it subsequently
1638 * acknowledges the state change interrupt.
1640 * INCORRECT CORRECT
1641 * read type 0 int reasons read type 0 int reasons
1642 * read adapter state ack type 0 interrupts
1643 * ack type 0 interrupts read adapter state
1644 * ... process interrupt ... ... process interrupt ...
1646 * Return Codes:
1647 * None
1649 * Assumptions:
1650 * None
1652 * Side Effects:
1653 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1654 * or if the port status indicates that the adapter is halted. The driver
1655 * is responsible for reinitializing the adapter with the current CAM
1656 * contents and adapter filter settings.
1659 void dfx_int_type_0_process(
1660 DFX_board_t *bp
1664 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1665 PI_UINT32 state; /* current adap state (from port status) */
1668 * Read host interrupt Type 0 register to determine which Type 0
1669 * interrupts are pending. Immediately write it back out to clear
1670 * those interrupts.
1673 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1674 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1676 /* Check for Type 0 error interrupts */
1678 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1679 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1680 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1682 /* Check for Non-Existent Memory error */
1684 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1685 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1687 /* Check for Packet Memory Parity error */
1689 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1690 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1692 /* Check for Host Bus Parity error */
1694 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1695 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1697 /* Reset adapter and bring it back on-line */
1699 bp->link_available = PI_K_FALSE; /* link is no longer available */
1700 bp->reset_type = 0; /* rerun on-board diagnostics */
1701 printk("%s: Resetting adapter...\n", bp->dev->name);
1702 if (dfx_adap_init(bp) != DFX_K_SUCCESS)
1704 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1705 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1706 return;
1708 printk("%s: Adapter reset successful!\n", bp->dev->name);
1709 return;
1712 /* Check for transmit flush interrupt */
1714 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1716 /* Flush any pending xmt's and acknowledge the flush interrupt */
1718 bp->link_available = PI_K_FALSE; /* link is no longer available */
1719 dfx_xmt_flush(bp); /* flush any outstanding packets */
1720 (void) dfx_hw_port_ctrl_req(bp,
1721 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1724 NULL);
1727 /* Check for adapter state change */
1729 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1731 /* Get latest adapter state */
1733 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1734 if (state == PI_STATE_K_HALTED)
1737 * Adapter has transitioned to HALTED state, try to reset
1738 * adapter to bring it back on-line. If reset fails,
1739 * leave the adapter in the broken state.
1742 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1743 dfx_int_pr_halt_id(bp); /* display halt id as string */
1745 /* Reset adapter and bring it back on-line */
1747 bp->link_available = PI_K_FALSE; /* link is no longer available */
1748 bp->reset_type = 0; /* rerun on-board diagnostics */
1749 printk("%s: Resetting adapter...\n", bp->dev->name);
1750 if (dfx_adap_init(bp) != DFX_K_SUCCESS)
1752 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1753 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1754 return;
1756 printk("%s: Adapter reset successful!\n", bp->dev->name);
1758 else if (state == PI_STATE_K_LINK_AVAIL)
1760 bp->link_available = PI_K_TRUE; /* set link available flag */
1763 return;
1768 * ==================
1769 * = dfx_int_common =
1770 * ==================
1772 * Overview:
1773 * Interrupt service routine (ISR)
1775 * Returns:
1776 * None
1778 * Arguments:
1779 * bp - pointer to board information
1781 * Functional Description:
1782 * This is the ISR which processes incoming adapter interrupts.
1784 * Return Codes:
1785 * None
1787 * Assumptions:
1788 * This routine assumes PDQ interrupts have not been disabled.
1789 * When interrupts are disabled at the PDQ, the Port Status register
1790 * is automatically cleared. This routine uses the Port Status
1791 * register value to determine whether a Type 0 interrupt occurred,
1792 * so it's important that adapter interrupts are not normally
1793 * enabled/disabled at the PDQ.
1795 * It's vital that this routine is NOT reentered for the
1796 * same board and that the OS is not in another section of
1797 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1798 * different thread.
1800 * Side Effects:
1801 * Pending interrupts are serviced. Depending on the type of
1802 * interrupt, acknowledging and clearing the interrupt at the
1803 * PDQ involves writing a register to clear the interrupt bit
1804 * or updating completion indices.
1807 void dfx_int_common(
1808 DFX_board_t *bp
1812 PI_UINT32 port_status; /* Port Status register */
1814 /* Process xmt interrupts - frequent case, so always call this routine */
1816 dfx_xmt_done(bp); /* free consumed xmt packets */
1818 /* Process rcv interrupts - frequent case, so always call this routine */
1820 dfx_rcv_queue_process(bp); /* service received LLC frames */
1823 * Transmit and receive producer and completion indices are updated on the
1824 * adapter by writing to the Type 2 Producer register. Since the frequent
1825 * case is that we'll be processing either LLC transmit or receive buffers,
1826 * we'll optimize I/O writes by doing a single register write here.
1829 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1831 /* Read PDQ Port Status register to find out which interrupts need processing */
1833 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1835 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1837 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1838 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1839 return;
1844 * =================
1845 * = dfx_interrupt =
1846 * =================
1848 * Overview:
1849 * Interrupt processing routine
1851 * Returns:
1852 * None
1854 * Arguments:
1855 * irq - interrupt vector
1856 * dev_id - pointer to device information
1857 * regs - pointer to registers structure
1859 * Functional Description:
1860 * This routine calls the interrupt processing routine for this adapter. It
1861 * disables and reenables adapter interrupts, as appropriate. We can support
1862 * shared interrupts since the incoming dev_id pointer provides our device
1863 * structure context.
1865 * Return Codes:
1866 * None
1868 * Assumptions:
1869 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1870 * on Intel-based systems) is done by the operating system outside this
1871 * routine.
1873 * System interrupts are enabled through this call.
1875 * Side Effects:
1876 * Interrupts are disabled, then reenabled at the adapter.
1879 void dfx_interrupt(
1880 int irq,
1881 void *dev_id,
1882 struct pt_regs *regs
1886 struct net_device *dev = (struct net_device *) dev_id;
1887 DFX_board_t *bp; /* private board structure pointer */
1888 u8 tmp; /* used for disabling/enabling ints */
1890 /* Get board pointer only if device structure is valid */
1892 if (dev == NULL)
1894 printk("dfx_interrupt(): irq %d for unknown device!\n", irq);
1895 return;
1897 bp = (DFX_board_t *) dev->priv;
1899 spin_lock(&bp->lock);
1901 /* See if we're already servicing an interrupt */
1903 if (dev->interrupt)
1904 printk("%s: Re-entering the interrupt handler!\n", dev->name);
1905 dev->interrupt = DFX_MASK_INTERRUPTS; /* ensure non reentrancy */
1907 /* Service adapter interrupts */
1909 if (bp->bus_type == DFX_BUS_TYPE_PCI)
1911 /* Disable PDQ-PFI interrupts at PFI */
1913 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB);
1915 /* Call interrupt service routine for this adapter */
1917 dfx_int_common(bp);
1919 /* Clear PDQ interrupt status bit and reenable interrupts */
1921 dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT);
1922 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1923 (PFI_MODE_M_PDQ_INT_ENB + PFI_MODE_M_DMA_ENB));
1925 else
1927 /* Disable interrupts at the ESIC */
1929 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1930 tmp &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1931 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1933 /* Call interrupt service routine for this adapter */
1935 dfx_int_common(bp);
1937 /* Reenable interrupts at the ESIC */
1939 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1940 tmp |= PI_CONFIG_STAT_0_M_INT_ENB;
1941 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1944 dev->interrupt = DFX_UNMASK_INTERRUPTS;
1945 spin_unlock(&bp->lock);
1946 return;
1951 * =====================
1952 * = dfx_ctl_get_stats =
1953 * =====================
1955 * Overview:
1956 * Get statistics for FDDI adapter
1958 * Returns:
1959 * Pointer to FDDI statistics structure
1961 * Arguments:
1962 * dev - pointer to device information
1964 * Functional Description:
1965 * Gets current MIB objects from adapter, then
1966 * returns FDDI statistics structure as defined
1967 * in if_fddi.h.
1969 * Note: Since the FDDI statistics structure is
1970 * still new and the device structure doesn't
1971 * have an FDDI-specific get statistics handler,
1972 * we'll return the FDDI statistics structure as
1973 * a pointer to an Ethernet statistics structure.
1974 * That way, at least the first part of the statistics
1975 * structure can be decoded properly, and it allows
1976 * "smart" applications to perform a second cast to
1977 * decode the FDDI-specific statistics.
1979 * We'll have to pay attention to this routine as the
1980 * device structure becomes more mature and LAN media
1981 * independent.
1983 * Return Codes:
1984 * None
1986 * Assumptions:
1987 * None
1989 * Side Effects:
1990 * None
1993 struct net_device_stats *dfx_ctl_get_stats(
1994 struct net_device *dev
1998 DFX_board_t *bp = (DFX_board_t *)dev->priv;
2000 /* Fill the bp->stats structure with driver-maintained counters */
2002 bp->stats.rx_packets = bp->rcv_total_frames;
2003 bp->stats.tx_packets = bp->xmt_total_frames;
2004 bp->stats.rx_bytes = bp->rcv_total_bytes;
2005 bp->stats.tx_bytes = bp->xmt_total_bytes;
2006 bp->stats.rx_errors = (u32)(bp->rcv_crc_errors + bp->rcv_frame_status_errors + bp->rcv_length_errors);
2007 bp->stats.tx_errors = bp->xmt_length_errors;
2008 bp->stats.rx_dropped = bp->rcv_discards;
2009 bp->stats.tx_dropped = bp->xmt_discards;
2010 bp->stats.multicast = bp->rcv_multicast_frames;
2011 bp->stats.transmit_collision = 0; /* always zero (0) for FDDI */
2013 /* Get FDDI SMT MIB objects */
2015 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2016 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2017 return((struct net_device_stats *) &bp->stats);
2019 /* Fill the bp->stats structure with the SMT MIB object values */
2021 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2022 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2023 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2024 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2025 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2026 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2027 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2028 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2029 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2030 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2031 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2032 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2033 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2034 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2035 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2036 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2037 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2038 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2039 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2040 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2041 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2042 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2043 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2044 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2045 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2046 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2047 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2048 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2049 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2050 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2051 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2052 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2053 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2054 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2055 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2056 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2057 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2058 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2059 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2060 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2061 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2062 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2063 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2064 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2065 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2066 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2067 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2068 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2069 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2070 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2071 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2072 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2073 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2074 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2075 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2076 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2077 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2078 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2079 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2080 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2081 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2082 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2083 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2084 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2085 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2086 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2087 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2088 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2089 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2090 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2091 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2092 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2093 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2094 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2095 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2096 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2097 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2098 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2099 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2100 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2101 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2102 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2103 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2104 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2105 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2106 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2107 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2108 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2109 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2110 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2111 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2112 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2114 /* Get FDDI counters */
2116 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2117 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2118 return((struct net_device_stats *) &bp->stats);
2120 /* Fill the bp->stats structure with the FDDI counter values */
2122 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2123 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2124 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2125 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2126 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2127 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2128 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2129 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2130 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2131 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2132 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2134 return((struct net_device_stats *) &bp->stats);
2139 * ==============================
2140 * = dfx_ctl_set_multicast_list =
2141 * ==============================
2143 * Overview:
2144 * Enable/Disable LLC frame promiscuous mode reception
2145 * on the adapter and/or update multicast address table.
2147 * Returns:
2148 * None
2150 * Arguments:
2151 * dev - pointer to device information
2153 * Functional Description:
2154 * This routine follows a fairly simple algorithm for setting the
2155 * adapter filters and CAM:
2157 * if IFF_PROMISC flag is set
2158 * enable LLC individual/group promiscuous mode
2159 * else
2160 * disable LLC individual/group promiscuous mode
2161 * if number of incoming multicast addresses >
2162 * (CAM max size - number of unicast addresses in CAM)
2163 * enable LLC group promiscuous mode
2164 * set driver-maintained multicast address count to zero
2165 * else
2166 * disable LLC group promiscuous mode
2167 * set driver-maintained multicast address count to incoming count
2168 * update adapter CAM
2169 * update adapter filters
2171 * Return Codes:
2172 * None
2174 * Assumptions:
2175 * Multicast addresses are presented in canonical (LSB) format.
2177 * Side Effects:
2178 * On-board adapter CAM and filters are updated.
2181 void dfx_ctl_set_multicast_list(
2182 struct net_device *dev
2186 DFX_board_t *bp = (DFX_board_t *)dev->priv;
2187 int i; /* used as index in for loop */
2188 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
2190 /* Enable LLC frame promiscuous mode, if necessary */
2192 if (dev->flags & IFF_PROMISC)
2193 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2195 /* Else, update multicast address table */
2197 else
2199 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2201 * Check whether incoming multicast address count exceeds table size
2203 * Note: The adapters utilize an on-board 64 entry CAM for
2204 * supporting perfect filtering of multicast packets
2205 * and bridge functions when adding unicast addresses.
2206 * There is no hash function available. To support
2207 * additional multicast addresses, the all multicast
2208 * filter (LLC group promiscuous mode) must be enabled.
2210 * The firmware reserves two CAM entries for SMT-related
2211 * multicast addresses, which leaves 62 entries available.
2212 * The following code ensures that we're not being asked
2213 * to add more than 62 addresses to the CAM. If we are,
2214 * the driver will enable the all multicast filter.
2215 * Should the number of multicast addresses drop below
2216 * the high water mark, the filter will be disabled and
2217 * perfect filtering will be used.
2220 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2222 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2223 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2225 else
2227 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2228 bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
2231 /* Copy addresses to multicast address table, then update adapter CAM */
2233 dmi = dev->mc_list; /* point to first multicast addr */
2234 for (i=0; i < bp->mc_count; i++)
2236 memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2237 dmi = dmi->next; /* point to next multicast addr */
2239 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2241 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2243 else
2245 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2249 /* Update adapter filters */
2251 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2253 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2255 else
2257 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2259 return;
2264 * ===========================
2265 * = dfx_ctl_set_mac_address =
2266 * ===========================
2268 * Overview:
2269 * Add node address override (unicast address) to adapter
2270 * CAM and update dev_addr field in device table.
2272 * Returns:
2273 * None
2275 * Arguments:
2276 * dev - pointer to device information
2277 * addr - pointer to sockaddr structure containing unicast address to add
2279 * Functional Description:
2280 * The adapter supports node address overrides by adding one or more
2281 * unicast addresses to the adapter CAM. This is similar to adding
2282 * multicast addresses. In this routine we'll update the driver and
2283 * device structures with the new address, then update the adapter CAM
2284 * to ensure that the adapter will copy and strip frames destined and
2285 * sourced by that address.
2287 * Return Codes:
2288 * Always returns zero.
2290 * Assumptions:
2291 * The address pointed to by addr->sa_data is a valid unicast
2292 * address and is presented in canonical (LSB) format.
2294 * Side Effects:
2295 * On-board adapter CAM is updated. On-board adapter filters
2296 * may be updated.
2299 int dfx_ctl_set_mac_address(
2300 struct net_device *dev,
2301 void *addr
2305 DFX_board_t *bp = (DFX_board_t *)dev->priv;
2306 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2308 /* Copy unicast address to driver-maintained structs and update count */
2310 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2311 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2312 bp->uc_count = 1;
2315 * Verify we're not exceeding the CAM size by adding unicast address
2317 * Note: It's possible that before entering this routine we've
2318 * already filled the CAM with 62 multicast addresses.
2319 * Since we need to place the node address override into
2320 * the CAM, we have to check to see that we're not
2321 * exceeding the CAM size. If we are, we have to enable
2322 * the LLC group (multicast) promiscuous mode filter as
2323 * in dfx_ctl_set_multicast_list.
2326 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2328 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2329 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2331 /* Update adapter filters */
2333 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2335 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2337 else
2339 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2343 /* Update adapter CAM with new unicast address */
2345 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2347 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2349 else
2351 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2353 return(0); /* always return zero */
2358 * ======================
2359 * = dfx_ctl_update_cam =
2360 * ======================
2362 * Overview:
2363 * Procedure to update adapter CAM (Content Addressable Memory)
2364 * with desired unicast and multicast address entries.
2366 * Returns:
2367 * Condition code
2369 * Arguments:
2370 * bp - pointer to board information
2372 * Functional Description:
2373 * Updates adapter CAM with current contents of board structure
2374 * unicast and multicast address tables. Since there are only 62
2375 * free entries in CAM, this routine ensures that the command
2376 * request buffer is not overrun.
2378 * Return Codes:
2379 * DFX_K_SUCCESS - Request succeeded
2380 * DFX_K_FAILURE - Request failed
2382 * Assumptions:
2383 * All addresses being added (unicast and multicast) are in canonical
2384 * order.
2386 * Side Effects:
2387 * On-board adapter CAM is updated.
2390 int dfx_ctl_update_cam(
2391 DFX_board_t *bp
2395 int i; /* used as index */
2396 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2399 * Fill in command request information
2401 * Note: Even though both the unicast and multicast address
2402 * table entries are stored as contiguous 6 byte entries,
2403 * the firmware address filter set command expects each
2404 * entry to be two longwords (8 bytes total). We must be
2405 * careful to only copy the six bytes of each unicast and
2406 * multicast table entry into each command entry. This
2407 * is also why we must first clear the entire command
2408 * request buffer.
2411 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2412 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2413 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2415 /* Now add unicast addresses to command request buffer, if any */
2417 for (i=0; i < (int)bp->uc_count; i++)
2419 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2421 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2422 p_addr++; /* point to next command entry */
2426 /* Now add multicast addresses to command request buffer, if any */
2428 for (i=0; i < (int)bp->mc_count; i++)
2430 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2432 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2433 p_addr++; /* point to next command entry */
2437 /* Issue command to update adapter CAM, then return */
2439 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2440 return(DFX_K_FAILURE);
2441 return(DFX_K_SUCCESS);
2446 * ==========================
2447 * = dfx_ctl_update_filters =
2448 * ==========================
2450 * Overview:
2451 * Procedure to update adapter filters with desired
2452 * filter settings.
2454 * Returns:
2455 * Condition code
2457 * Arguments:
2458 * bp - pointer to board information
2460 * Functional Description:
2461 * Enables or disables filter using current filter settings.
2463 * Return Codes:
2464 * DFX_K_SUCCESS - Request succeeded.
2465 * DFX_K_FAILURE - Request failed.
2467 * Assumptions:
2468 * We must always pass up packets destined to the broadcast
2469 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2470 * broadcast filter enabled.
2472 * Side Effects:
2473 * On-board adapter filters are updated.
2476 int dfx_ctl_update_filters(
2477 DFX_board_t *bp
2481 int i = 0; /* used as index */
2483 /* Fill in command request information */
2485 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2487 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2489 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2490 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2492 /* Initialize LLC Individual/Group Promiscuous filter */
2494 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2495 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2497 /* Initialize LLC Group Promiscuous filter */
2499 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2500 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2502 /* Terminate the item code list */
2504 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2506 /* Issue command to update adapter filters, then return */
2508 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2509 return(DFX_K_FAILURE);
2510 return(DFX_K_SUCCESS);
2515 * ======================
2516 * = dfx_hw_dma_cmd_req =
2517 * ======================
2519 * Overview:
2520 * Sends PDQ DMA command to adapter firmware
2522 * Returns:
2523 * Condition code
2525 * Arguments:
2526 * bp - pointer to board information
2528 * Functional Description:
2529 * The command request and response buffers are posted to the adapter in the manner
2530 * described in the PDQ Port Specification:
2532 * 1. Command Response Buffer is posted to adapter.
2533 * 2. Command Request Buffer is posted to adapter.
2534 * 3. Command Request consumer index is polled until it indicates that request
2535 * buffer has been DMA'd to adapter.
2536 * 4. Command Response consumer index is polled until it indicates that response
2537 * buffer has been DMA'd from adapter.
2539 * This ordering ensures that a response buffer is already available for the firmware
2540 * to use once it's done processing the request buffer.
2542 * Return Codes:
2543 * DFX_K_SUCCESS - DMA command succeeded
2544 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2545 * DFX_K_HW_TIMEOUT - DMA command timed out
2547 * Assumptions:
2548 * Command request buffer has already been filled with desired DMA command.
2550 * Side Effects:
2551 * None
2554 int dfx_hw_dma_cmd_req(
2555 DFX_board_t *bp
2559 int status; /* adapter status */
2560 int timeout_cnt; /* used in for loops */
2562 /* Make sure the adapter is in a state that we can issue the DMA command in */
2564 status = dfx_hw_adap_state_rd(bp);
2565 if ((status == PI_STATE_K_RESET) ||
2566 (status == PI_STATE_K_HALTED) ||
2567 (status == PI_STATE_K_DMA_UNAVAIL) ||
2568 (status == PI_STATE_K_UPGRADE))
2569 return(DFX_K_OUTSTATE);
2571 /* Put response buffer on the command response queue */
2573 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2574 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2575 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2577 /* Bump (and wrap) the producer index and write out to register */
2579 bp->cmd_rsp_reg.index.prod += 1;
2580 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2581 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2583 /* Put request buffer on the command request queue */
2585 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2586 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2587 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2589 /* Bump (and wrap) the producer index and write out to register */
2591 bp->cmd_req_reg.index.prod += 1;
2592 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2593 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2596 * Here we wait for the command request consumer index to be equal
2597 * to the producer, indicating that the adapter has DMAed the request.
2600 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2602 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2603 break;
2604 udelay(100); /* wait for 100 microseconds */
2606 if (timeout_cnt == 0)
2607 return(DFX_K_HW_TIMEOUT);
2609 /* Bump (and wrap) the completion index and write out to register */
2611 bp->cmd_req_reg.index.comp += 1;
2612 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2613 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2616 * Here we wait for the command response consumer index to be equal
2617 * to the producer, indicating that the adapter has DMAed the response.
2620 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2622 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2623 break;
2624 udelay(100); /* wait for 100 microseconds */
2626 if (timeout_cnt == 0)
2627 return(DFX_K_HW_TIMEOUT);
2629 /* Bump (and wrap) the completion index and write out to register */
2631 bp->cmd_rsp_reg.index.comp += 1;
2632 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2633 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2634 return(DFX_K_SUCCESS);
2639 * ========================
2640 * = dfx_hw_port_ctrl_req =
2641 * ========================
2643 * Overview:
2644 * Sends PDQ port control command to adapter firmware
2646 * Returns:
2647 * Host data register value in host_data if ptr is not NULL
2649 * Arguments:
2650 * bp - pointer to board information
2651 * command - port control command
2652 * data_a - port data A register value
2653 * data_b - port data B register value
2654 * host_data - ptr to host data register value
2656 * Functional Description:
2657 * Send generic port control command to adapter by writing
2658 * to various PDQ port registers, then polling for completion.
2660 * Return Codes:
2661 * DFX_K_SUCCESS - port control command succeeded
2662 * DFX_K_HW_TIMEOUT - port control command timed out
2664 * Assumptions:
2665 * None
2667 * Side Effects:
2668 * None
2671 int dfx_hw_port_ctrl_req(
2672 DFX_board_t *bp,
2673 PI_UINT32 command,
2674 PI_UINT32 data_a,
2675 PI_UINT32 data_b,
2676 PI_UINT32 *host_data
2680 PI_UINT32 port_cmd; /* Port Control command register value */
2681 int timeout_cnt; /* used in for loops */
2683 /* Set Command Error bit in command longword */
2685 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2687 /* Issue port command to the adapter */
2689 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2690 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2691 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2693 /* Now wait for command to complete */
2695 if (command == PI_PCTRL_M_BLAST_FLASH)
2696 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2697 else
2698 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2700 for (; timeout_cnt > 0; timeout_cnt--)
2702 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2703 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2704 break;
2705 udelay(100); /* wait for 100 microseconds */
2707 if (timeout_cnt == 0)
2708 return(DFX_K_HW_TIMEOUT);
2711 * If the address of host_data is non-zero, assume caller has supplied a
2712 * non NULL pointer, and return the contents of the HOST_DATA register in
2713 * it.
2716 if (host_data != NULL)
2717 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2718 return(DFX_K_SUCCESS);
2723 * =====================
2724 * = dfx_hw_adap_reset =
2725 * =====================
2727 * Overview:
2728 * Resets adapter
2730 * Returns:
2731 * None
2733 * Arguments:
2734 * bp - pointer to board information
2735 * type - type of reset to perform
2737 * Functional Description:
2738 * Issue soft reset to adapter by writing to PDQ Port Reset
2739 * register. Use incoming reset type to tell adapter what
2740 * kind of reset operation to perform.
2742 * Return Codes:
2743 * None
2745 * Assumptions:
2746 * This routine merely issues a soft reset to the adapter.
2747 * It is expected that after this routine returns, the caller
2748 * will appropriately poll the Port Status register for the
2749 * adapter to enter the proper state.
2751 * Side Effects:
2752 * Internal adapter registers are cleared.
2755 void dfx_hw_adap_reset(
2756 DFX_board_t *bp,
2757 PI_UINT32 type
2761 /* Set Reset type and assert reset */
2763 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2764 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2766 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2768 udelay(20);
2770 /* Deassert reset */
2772 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2773 return;
2778 * ========================
2779 * = dfx_hw_adap_state_rd =
2780 * ========================
2782 * Overview:
2783 * Returns current adapter state
2785 * Returns:
2786 * Adapter state per PDQ Port Specification
2788 * Arguments:
2789 * bp - pointer to board information
2791 * Functional Description:
2792 * Reads PDQ Port Status register and returns adapter state.
2794 * Return Codes:
2795 * None
2797 * Assumptions:
2798 * None
2800 * Side Effects:
2801 * None
2804 int dfx_hw_adap_state_rd(
2805 DFX_board_t *bp
2809 PI_UINT32 port_status; /* Port Status register value */
2811 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2812 return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2817 * =====================
2818 * = dfx_hw_dma_uninit =
2819 * =====================
2821 * Overview:
2822 * Brings adapter to DMA_UNAVAILABLE state
2824 * Returns:
2825 * Condition code
2827 * Arguments:
2828 * bp - pointer to board information
2829 * type - type of reset to perform
2831 * Functional Description:
2832 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2833 * 1. Set reset type bit in Port Data A Register then reset adapter.
2834 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2836 * Return Codes:
2837 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2838 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2840 * Assumptions:
2841 * None
2843 * Side Effects:
2844 * Internal adapter registers are cleared.
2847 int dfx_hw_dma_uninit(
2848 DFX_board_t *bp,
2849 PI_UINT32 type
2853 int timeout_cnt; /* used in for loops */
2855 /* Set reset type bit and reset adapter */
2857 dfx_hw_adap_reset(bp, type);
2859 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2861 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2863 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2864 break;
2865 udelay(100); /* wait for 100 microseconds */
2867 if (timeout_cnt == 0)
2868 return(DFX_K_HW_TIMEOUT);
2869 return(DFX_K_SUCCESS);
2874 * Align an sk_buff to a boundary power of 2
2878 void my_skb_align(struct sk_buff *skb, int n)
2880 u32 x=(u32)skb->data; /* We only want the low bits .. */
2881 u32 v;
2883 v=(x+n-1)&~(n-1); /* Where we want to be */
2885 skb_reserve(skb, v-x);
2890 * ================
2891 * = dfx_rcv_init =
2892 * ================
2894 * Overview:
2895 * Produces buffers to adapter LLC Host receive descriptor block
2897 * Returns:
2898 * None
2900 * Arguments:
2901 * bp - pointer to board information
2903 * Functional Description:
2904 * This routine can be called during dfx_adap_init() or during an adapter
2905 * reset. It initializes the descriptor block and produces all allocated
2906 * LLC Host queue receive buffers.
2908 * Return Codes:
2909 * None
2911 * Assumptions:
2912 * The PDQ has been reset and the adapter and driver maintained Type 2
2913 * register indices are cleared.
2915 * Side Effects:
2916 * Receive buffers are posted to the adapter LLC queue and the adapter
2917 * is notified.
2920 void dfx_rcv_init(
2921 DFX_board_t *bp
2925 int i, j; /* used in for loop */
2928 * Since each receive buffer is a single fragment of same length, initialize
2929 * first longword in each receive descriptor for entire LLC Host descriptor
2930 * block. Also initialize second longword in each receive descriptor with
2931 * physical address of receive buffer. We'll always allocate receive
2932 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2933 * block and produce new receive buffers by simply updating the receive
2934 * producer index.
2936 * Assumptions:
2937 * To support all shipping versions of PDQ, the receive buffer size
2938 * must be mod 128 in length and the physical address must be 128 byte
2939 * aligned. In other words, bits 0-6 of the length and address must
2940 * be zero for the following descriptor field entries to be correct on
2941 * all PDQ-based boards. We guaranteed both requirements during
2942 * driver initialization when we allocated memory for the receive buffers.
2945 #ifdef DYNAMIC_BUFFERS
2946 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2947 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2949 struct sk_buff *newskb;
2950 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2951 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2952 newskb = dev_alloc_skb(NEW_SKB_SIZE);
2954 * align to 128 bytes for compatibility with
2955 * the old EISA boards.
2958 my_skb_align(newskb,128);
2959 bp->descr_block_virt->rcv_data[i+j].long_1 = virt_to_bus(newskb->data);
2961 * p_rcv_buff_va is only used inside the
2962 * kernel so we put the skb pointer here.
2964 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2966 #else
2967 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2968 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2970 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2971 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2972 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2973 bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2975 #endif
2977 /* Update receive producer and Type 2 register */
2979 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2980 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2981 return;
2986 * =========================
2987 * = dfx_rcv_queue_process =
2988 * =========================
2990 * Overview:
2991 * Process received LLC frames.
2993 * Returns:
2994 * None
2996 * Arguments:
2997 * bp - pointer to board information
2999 * Functional Description:
3000 * Received LLC frames are processed until there are no more consumed frames.
3001 * Once all frames are processed, the receive buffers are returned to the
3002 * adapter. Note that this algorithm fixes the length of time that can be spent
3003 * in this routine, because there are a fixed number of receive buffers to
3004 * process and buffers are not produced until this routine exits and returns
3005 * to the ISR.
3007 * Return Codes:
3008 * None
3010 * Assumptions:
3011 * None
3013 * Side Effects:
3014 * None
3017 void dfx_rcv_queue_process(
3018 DFX_board_t *bp
3022 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3023 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3024 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3025 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3027 /* Service all consumed LLC receive frames */
3029 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3030 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3032 /* Process any errors */
3034 int entry;
3036 entry = bp->rcv_xmt_reg.index.rcv_comp;
3037 #ifdef DYNAMIC_BUFFERS
3038 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3039 #else
3040 p_buff = (char *) bp->p_rcv_buff_va[entry];
3041 #endif
3042 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3044 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3046 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3047 bp->rcv_crc_errors++;
3048 else
3049 bp->rcv_frame_status_errors++;
3051 else
3053 int rx_in_place = 0;
3055 /* The frame was received without errors - verify packet length */
3057 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3058 pkt_len -= 4; /* subtract 4 byte CRC */
3059 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3060 bp->rcv_length_errors++;
3061 else{
3062 #ifdef DYNAMIC_BUFFERS
3063 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3064 struct sk_buff *newskb;
3066 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3067 if (newskb){
3068 rx_in_place = 1;
3070 my_skb_align(newskb, 128);
3071 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3072 skb_reserve(skb, RCV_BUFF_K_PADDING);
3073 bp->p_rcv_buff_va[entry] = (char *)newskb;
3074 bp->descr_block_virt->rcv_data[entry].long_1 = virt_to_bus(newskb->data);
3075 } else
3076 skb = 0;
3077 } else
3078 #endif
3079 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3080 if (skb == NULL)
3082 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3083 bp->rcv_discards++;
3084 break;
3086 else {
3087 #ifndef DYNAMIC_BUFFERS
3088 if (! rx_in_place)
3089 #endif
3091 /* Receive buffer allocated, pass receive packet up */
3093 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
3096 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3097 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
3098 skb->dev = bp->dev; /* pass up device pointer */
3100 skb->protocol = fddi_type_trans(skb, bp->dev);
3101 netif_rx(skb);
3103 /* Update the rcv counters */
3105 bp->rcv_total_frames++;
3106 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3107 bp->rcv_multicast_frames++;
3109 bp->rcv_total_bytes += skb->len;
3115 * Advance the producer (for recycling) and advance the completion
3116 * (for servicing received frames). Note that it is okay to
3117 * advance the producer without checking that it passes the
3118 * completion index because they are both advanced at the same
3119 * rate.
3122 bp->rcv_xmt_reg.index.rcv_prod += 1;
3123 bp->rcv_xmt_reg.index.rcv_comp += 1;
3125 return;
3130 * =====================
3131 * = dfx_xmt_queue_pkt =
3132 * =====================
3134 * Overview:
3135 * Queues packets for transmission
3137 * Returns:
3138 * Condition code
3140 * Arguments:
3141 * skb - pointer to sk_buff to queue for transmission
3142 * dev - pointer to device information
3144 * Functional Description:
3145 * Here we assume that an incoming skb transmit request
3146 * is contained in a single physically contiguous buffer
3147 * in which the virtual address of the start of packet
3148 * (skb->data) can be converted to a physical address
3149 * by using virt_to_bus().
3151 * Since the adapter architecture requires a three byte
3152 * packet request header to prepend the start of packet,
3153 * we'll write the three byte field immediately prior to
3154 * the FC byte. This assumption is valid because we've
3155 * ensured that dev->hard_header_len includes three pad
3156 * bytes. By posting a single fragment to the adapter,
3157 * we'll reduce the number of descriptor fetches and
3158 * bus traffic needed to send the request.
3160 * Also, we can't free the skb until after it's been DMA'd
3161 * out by the adapter, so we'll queue it in the driver and
3162 * return it in dfx_xmt_done.
3164 * Return Codes:
3165 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3166 * 1 - caller should requeue the sk_buff for later transmission
3168 * Assumptions:
3169 * First and foremost, we assume the incoming skb pointer
3170 * is NOT NULL and is pointing to a valid sk_buff structure.
3172 * The outgoing packet is complete, starting with the
3173 * frame control byte including the last byte of data,
3174 * but NOT including the 4 byte CRC. We'll let the
3175 * adapter hardware generate and append the CRC.
3177 * The entire packet is stored in one physically
3178 * contiguous buffer which is not cached and whose
3179 * 32-bit physical address can be determined.
3181 * It's vital that this routine is NOT reentered for the
3182 * same board and that the OS is not in another section of
3183 * code (eg. dfx_int_common) for the same board on a
3184 * different thread.
3186 * Side Effects:
3187 * None
3190 int dfx_xmt_queue_pkt(
3191 struct sk_buff *skb,
3192 struct net_device *dev
3196 DFX_board_t *bp = (DFX_board_t *) dev->priv;
3197 u8 prod; /* local transmit producer index */
3198 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3199 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3200 unsigned long flags;
3203 * Verify that incoming transmit request is OK
3205 * Note: The packet size check is consistent with other
3206 * Linux device drivers, although the correct packet
3207 * size should be verified before calling the
3208 * transmit routine.
3211 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3213 printk("%s: Invalid packet length - %u bytes\n",
3214 dev->name, skb->len);
3215 bp->xmt_length_errors++; /* bump error counter */
3216 mark_bh(NET_BH);
3217 dev_kfree_skb(skb);
3218 return(0); /* return "success" */
3221 * See if adapter link is available, if not, free buffer
3223 * Note: If the link isn't available, free buffer and return 0
3224 * rather than tell the upper layer to requeue the packet.
3225 * The methodology here is that by the time the link
3226 * becomes available, the packet to be sent will be
3227 * fairly stale. By simply dropping the packet, the
3228 * higher layer protocols will eventually time out
3229 * waiting for response packets which it won't receive.
3232 if (bp->link_available == PI_K_FALSE)
3234 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3235 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3236 else
3238 bp->xmt_discards++; /* bump error counter */
3239 dev_kfree_skb(skb); /* free sk_buff now */
3240 return(0); /* return "success" */
3244 spin_lock_irqsave(&bp->lock, flags);
3246 /* Get the current producer and the next free xmt data descriptor */
3248 prod = bp->rcv_xmt_reg.index.xmt_prod;
3249 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3252 * Get pointer to auxiliary queue entry to contain information
3253 * for this packet.
3255 * Note: The current xmt producer index will become the
3256 * current xmt completion index when we complete this
3257 * packet later on. So, we'll get the pointer to the
3258 * next auxiliary queue entry now before we bump the
3259 * producer index.
3262 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3264 /* Write the three PRH bytes immediately before the FC byte */
3266 skb_push(skb,3);
3267 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3268 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3269 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3272 * Write the descriptor with buffer info and bump producer
3274 * Note: Since we need to start DMA from the packet request
3275 * header, we'll add 3 bytes to the DMA buffer length,
3276 * and we'll determine the physical address of the
3277 * buffer from the PRH, not skb->data.
3279 * Assumptions:
3280 * 1. Packet starts with the frame control (FC) byte
3281 * at skb->data.
3282 * 2. The 4-byte CRC is not appended to the buffer or
3283 * included in the length.
3284 * 3. Packet length (skb->len) is from FC to end of
3285 * data, inclusive.
3286 * 4. The packet length does not exceed the maximum
3287 * FDDI LLC frame length of 4491 bytes.
3288 * 5. The entire packet is contained in a physically
3289 * contiguous, non-cached, locked memory space
3290 * comprised of a single buffer pointed to by
3291 * skb->data.
3292 * 6. The physical address of the start of packet
3293 * can be determined from the virtual address
3294 * by using virt_to_bus() and is only 32-bits
3295 * wide.
3298 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len + 3) << PI_XMT_DESCR_V_SEG_LEN));
3299 p_xmt_descr->long_1 = (u32) virt_to_bus(skb->data);
3302 * Verify that descriptor is actually available
3304 * Note: If descriptor isn't available, return 1 which tells
3305 * the upper layer to requeue the packet for later
3306 * transmission.
3308 * We need to ensure that the producer never reaches the
3309 * completion, except to indicate that the queue is empty.
3312 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3314 skb_pull(skb,3);
3315 spin_unlock_irqrestore(&bp->lock, flags);
3316 return(1); /* requeue packet for later */
3320 * Save info for this packet for xmt done indication routine
3322 * Normally, we'd save the producer index in the p_xmt_drv_descr
3323 * structure so that we'd have it handy when we complete this
3324 * packet later (in dfx_xmt_done). However, since the current
3325 * transmit architecture guarantees a single fragment for the
3326 * entire packet, we can simply bump the completion index by
3327 * one (1) for each completed packet.
3329 * Note: If this assumption changes and we're presented with
3330 * an inconsistent number of transmit fragments for packet
3331 * data, we'll need to modify this code to save the current
3332 * transmit producer index.
3335 p_xmt_drv_descr->p_skb = skb;
3337 /* Update Type 2 register */
3339 bp->rcv_xmt_reg.index.xmt_prod = prod;
3340 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3341 spin_unlock_irqrestore(&bp->lock, flags);
3342 return(0); /* packet queued to adapter */
3347 * ================
3348 * = dfx_xmt_done =
3349 * ================
3351 * Overview:
3352 * Processes all frames that have been transmitted.
3354 * Returns:
3355 * None
3357 * Arguments:
3358 * bp - pointer to board information
3360 * Functional Description:
3361 * For all consumed transmit descriptors that have not
3362 * yet been completed, we'll free the skb we were holding
3363 * onto using dev_kfree_skb and bump the appropriate
3364 * counters.
3366 * Return Codes:
3367 * None
3369 * Assumptions:
3370 * The Type 2 register is not updated in this routine. It is
3371 * assumed that it will be updated in the ISR when dfx_xmt_done
3372 * returns.
3374 * Side Effects:
3375 * None
3378 void dfx_xmt_done(
3379 DFX_board_t *bp
3383 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3384 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3386 /* Service all consumed transmit frames */
3388 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3389 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3391 /* Get pointer to the transmit driver descriptor block information */
3393 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3395 /* Increment transmit counters */
3397 bp->xmt_total_frames++;
3398 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3400 /* Return skb to operating system */
3402 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3405 * Move to start of next packet by updating completion index
3407 * Here we assume that a transmit packet request is always
3408 * serviced by posting one fragment. We can therefore
3409 * simplify the completion code by incrementing the
3410 * completion index by one. This code will need to be
3411 * modified if this assumption changes. See comments
3412 * in dfx_xmt_queue_pkt for more details.
3415 bp->rcv_xmt_reg.index.xmt_comp += 1;
3417 return;
3422 * =================
3423 * = dfx_xmt_flush =
3424 * =================
3426 * Overview:
3427 * Processes all frames whether they've been transmitted
3428 * or not.
3430 * Returns:
3431 * None
3433 * Arguments:
3434 * bp - pointer to board information
3436 * Functional Description:
3437 * For all produced transmit descriptors that have not
3438 * yet been completed, we'll free the skb we were holding
3439 * onto using dev_kfree_skb and bump the appropriate
3440 * counters. Of course, it's possible that some of
3441 * these transmit requests actually did go out, but we
3442 * won't make that distinction here. Finally, we'll
3443 * update the consumer index to match the producer.
3445 * Return Codes:
3446 * None
3448 * Assumptions:
3449 * This routine does NOT update the Type 2 register. It
3450 * is assumed that this routine is being called during a
3451 * transmit flush interrupt, or a shutdown or close routine.
3453 * Side Effects:
3454 * None
3457 void dfx_xmt_flush(
3458 DFX_board_t *bp
3462 u32 prod_cons; /* rcv/xmt consumer block longword */
3463 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3465 /* Flush all outstanding transmit frames */
3467 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3469 /* Get pointer to the transmit driver descriptor block information */
3471 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3473 /* Return skb to operating system */
3475 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3477 /* Increment transmit error counter */
3479 bp->xmt_discards++;
3482 * Move to start of next packet by updating completion index
3484 * Here we assume that a transmit packet request is always
3485 * serviced by posting one fragment. We can therefore
3486 * simplify the completion code by incrementing the
3487 * completion index by one. This code will need to be
3488 * modified if this assumption changes. See comments
3489 * in dfx_xmt_queue_pkt for more details.
3492 bp->rcv_xmt_reg.index.xmt_comp += 1;
3495 /* Update the transmit consumer index in the consumer block */
3497 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3498 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3499 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3500 return;
3505 * Local variables:
3506 * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DCPU=586 -c defxx.c"
3507 * End: