Import 2.3.18pre1
[davej-history.git] / arch / sparc64 / kernel / pci_sabre.c
blob46a9b31cfba35d8f0a3f322c6b8ee9349e4e868b
1 /* $Id: pci_sabre.c,v 1.2 1999/09/05 04:58:06 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
7 */
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/malloc.h>
15 #include <asm/apb.h>
16 #include <asm/pbm.h>
17 #include <asm/iommu.h>
18 #include <asm/irq.h>
20 #include "pci_impl.h"
22 /* All SABRE registers are 64-bits. The following accessor
23 * routines are how they are accessed. The REG parameter
24 * is a physical address.
26 #define sabre_read(__reg) \
27 ({ u64 __ret; \
28 __asm__ __volatile__("ldxa [%1] %2, %0" \
29 : "=r" (__ret) \
30 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
31 : "memory"); \
32 __ret; \
34 #define sabre_write(__reg, __val) \
35 __asm__ __volatile__("stxa %0, [%1] %2" \
36 : /* no outputs */ \
37 : "r" (__val), "r" (__reg), \
38 "i" (ASI_PHYS_BYPASS_EC_E))
40 /* SABRE PCI controller register offsets and definitions. */
41 #define SABRE_UE_AFSR 0x0030UL
42 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
43 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
44 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
45 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
46 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
47 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
48 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
49 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
50 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
51 #define SABRE_UECE_AFAR 0x0038UL
52 #define SABRE_CE_AFSR 0x0040UL
53 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
54 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
55 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
56 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
57 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
58 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
59 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
60 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
61 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
62 #define SABRE_IOMMU_CONTROL 0x0200UL
63 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
64 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
65 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
66 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
67 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
68 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
69 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
70 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
71 #define SABRE_IOMMU_TSBBASE 0x0208UL
72 #define SABRE_IOMMU_FLUSH 0x0210UL
73 #define SABRE_IMAP_A_SLOT0 0x0c00UL
74 #define SABRE_IMAP_B_SLOT0 0x0c20UL
75 #define SABRE_IMAP_SCSI 0x1000UL
76 #define SABRE_IMAP_ETH 0x1008UL
77 #define SABRE_IMAP_BPP 0x1010UL
78 #define SABRE_IMAP_AU_REC 0x1018UL
79 #define SABRE_IMAP_AU_PLAY 0x1020UL
80 #define SABRE_IMAP_PFAIL 0x1028UL
81 #define SABRE_IMAP_KMS 0x1030UL
82 #define SABRE_IMAP_FLPY 0x1038UL
83 #define SABRE_IMAP_SHW 0x1040UL
84 #define SABRE_IMAP_KBD 0x1048UL
85 #define SABRE_IMAP_MS 0x1050UL
86 #define SABRE_IMAP_SER 0x1058UL
87 #define SABRE_IMAP_UE 0x1070UL
88 #define SABRE_IMAP_CE 0x1078UL
89 #define SABRE_IMAP_PCIERR 0x1080UL
90 #define SABRE_IMAP_GFX 0x1098UL
91 #define SABRE_IMAP_EUPA 0x10a0UL
92 #define SABRE_ICLR_A_SLOT0 0x1400UL
93 #define SABRE_ICLR_B_SLOT0 0x1480UL
94 #define SABRE_ICLR_SCSI 0x1800UL
95 #define SABRE_ICLR_ETH 0x1808UL
96 #define SABRE_ICLR_BPP 0x1810UL
97 #define SABRE_ICLR_AU_REC 0x1818UL
98 #define SABRE_ICLR_AU_PLAY 0x1820UL
99 #define SABRE_ICLR_PFAIL 0x1828UL
100 #define SABRE_ICLR_KMS 0x1830UL
101 #define SABRE_ICLR_FLPY 0x1838UL
102 #define SABRE_ICLR_SHW 0x1840UL
103 #define SABRE_ICLR_KBD 0x1848UL
104 #define SABRE_ICLR_MS 0x1850UL
105 #define SABRE_ICLR_SER 0x1858UL
106 #define SABRE_ICLR_UE 0x1870UL
107 #define SABRE_ICLR_CE 0x1878UL
108 #define SABRE_ICLR_PCIERR 0x1880UL
109 #define SABRE_WRSYNC 0x1c20UL
110 #define SABRE_PCICTRL 0x2000UL
111 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
112 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
113 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
114 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
115 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
116 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
117 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
118 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
119 #define SABRE_PIOAFSR 0x2010UL
120 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
121 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
122 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
123 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
124 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
125 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
126 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
127 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
128 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
129 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
130 #define SABRE_PIOAFAR 0x2018UL
131 #define SABRE_PCIDIAG 0x2020UL
132 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
133 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
134 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
135 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
136 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
137 #define SABRE_PCITASR 0x2028UL
138 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
139 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
140 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
141 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
142 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
143 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
144 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
145 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
146 #define SABRE_PIOBUF_DIAG 0x5000UL
147 #define SABRE_DMABUF_DIAGLO 0x5100UL
148 #define SABRE_DMABUF_DIAGHI 0x51c0UL
149 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
150 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
151 #define SABRE_IOMMU_VADIAG 0xa400UL
152 #define SABRE_IOMMU_TCDIAG 0xa408UL
153 #define SABRE_IOMMU_TAG 0xa580UL
154 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
155 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
156 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
157 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
158 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
159 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
160 #define SABRE_IOMMU_DATA 0xa600UL
161 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
162 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
163 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
164 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
165 #define SABRE_PCI_IRQSTATE 0xa800UL
166 #define SABRE_OBIO_IRQSTATE 0xa808UL
167 #define SABRE_FFBCFG 0xf000UL
168 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
169 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
170 #define SABRE_MCCTRL0 0xf010UL
171 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
172 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
173 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
174 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
175 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
176 #define SABRE_MCCTRL1 0xf018UL
177 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
178 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
179 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
180 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
181 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
182 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
183 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
184 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
185 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
186 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
187 #define SABRE_RESETCTRL 0xf020UL
189 #define SABRE_CONFIGSPACE 0x001000000UL
190 #define SABRE_IOSPACE 0x002000000UL
191 #define SABRE_IOSPACE_SIZE 0x00000ffffUL
192 #define SABRE_MEMSPACE 0x100000000UL
193 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
195 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
196 * configuration space address format:
198 * 32 24 23 16 15 11 10 8 7 2 1 0
199 * ---------------------------------------------------------
200 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
201 * ---------------------------------------------------------
203 #define SABRE_CONFIG_BASE(PBM) \
204 ((PBM)->parent->config_space | (1UL << 24))
205 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
206 (((unsigned long)(BUS) << 16) | \
207 ((unsigned long)(DEVFN) << 8) | \
208 ((unsigned long)(REG)))
210 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
211 unsigned char bus,
212 unsigned int devfn,
213 int where)
215 if (!pbm)
216 return NULL;
217 return (void *)
218 (SABRE_CONFIG_BASE(pbm) |
219 SABRE_CONFIG_ENCODE(bus, devfn, where));
222 static int sabre_out_of_range(unsigned char devfn)
224 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
225 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
226 (PCI_SLOT(devfn) > 1));
229 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
230 unsigned char bus,
231 unsigned char devfn)
233 return ((pbm->parent == 0) ||
234 ((pbm == &pbm->parent->pbm_B) &&
235 (bus == pbm->pci_first_busno) &&
236 PCI_SLOT(devfn) > 8) ||
237 ((pbm == &pbm->parent->pbm_A) &&
238 (bus == pbm->pci_first_busno) &&
239 PCI_SLOT(devfn) > 8));
242 static int __sabre_read_byte(struct pci_dev *dev, int where, u8 *value)
244 struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
245 unsigned char bus = dev->bus->number;
246 unsigned int devfn = dev->devfn;
247 u8 *addr;
249 *value = 0xff;
250 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
251 if (!addr)
252 return PCIBIOS_SUCCESSFUL;
254 if (__sabre_out_of_range(pbm, bus, devfn))
255 return PCIBIOS_SUCCESSFUL;
256 pci_config_read8(addr, value);
257 return PCIBIOS_SUCCESSFUL;
260 static int __sabre_read_word(struct pci_dev *dev, int where, u16 *value)
262 struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
263 unsigned char bus = dev->bus->number;
264 unsigned int devfn = dev->devfn;
265 u16 *addr;
267 *value = 0xffff;
268 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
269 if (!addr)
270 return PCIBIOS_SUCCESSFUL;
272 if (__sabre_out_of_range(pbm, bus, devfn))
273 return PCIBIOS_SUCCESSFUL;
275 if (where & 0x01) {
276 printk("pcibios_read_config_word: misaligned reg [%x]\n",
277 where);
278 return PCIBIOS_SUCCESSFUL;
280 pci_config_read16(addr, value);
281 return PCIBIOS_SUCCESSFUL;
284 static int __sabre_read_dword(struct pci_dev *dev, int where, u32 *value)
286 struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
287 unsigned char bus = dev->bus->number;
288 unsigned int devfn = dev->devfn;
289 u32 *addr;
291 *value = 0xffffffff;
292 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
293 if (!addr)
294 return PCIBIOS_SUCCESSFUL;
296 if (__sabre_out_of_range(pbm, bus, devfn))
297 return PCIBIOS_SUCCESSFUL;
299 if (where & 0x03) {
300 printk("pcibios_read_config_dword: misaligned reg [%x]\n",
301 where);
302 return PCIBIOS_SUCCESSFUL;
304 pci_config_read32(addr, value);
305 return PCIBIOS_SUCCESSFUL;
308 static int sabre_read_byte(struct pci_dev *dev, int where, u8 *value)
310 if (dev->bus->number)
311 return __sabre_read_byte(dev, where, value);
313 if (sabre_out_of_range(dev->devfn)) {
314 *value = 0xff;
315 return PCIBIOS_SUCCESSFUL;
318 if (where < 8) {
319 u16 tmp;
321 __sabre_read_word(dev, where & ~1, &tmp);
322 if (where & 1)
323 *value = tmp >> 8;
324 else
325 *value = tmp & 0xff;
326 return PCIBIOS_SUCCESSFUL;
327 } else
328 return __sabre_read_byte(dev, where, value);
331 static int sabre_read_word(struct pci_dev *dev, int where, u16 *value)
333 if (dev->bus->number)
334 return __sabre_read_word(dev, where, value);
336 if (sabre_out_of_range(dev->devfn)) {
337 *value = 0xffff;
338 return PCIBIOS_SUCCESSFUL;
341 if (where < 8)
342 return __sabre_read_word(dev, where, value);
343 else {
344 u8 tmp;
346 __sabre_read_byte(dev, where, &tmp);
347 *value = tmp;
348 __sabre_read_byte(dev, where + 1, &tmp);
349 *value |= tmp << 8;
350 return PCIBIOS_SUCCESSFUL;
354 static int sabre_read_dword(struct pci_dev *dev, int where, u32 *value)
356 u16 tmp;
358 if (dev->bus->number)
359 return __sabre_read_dword(dev, where, value);
361 if (sabre_out_of_range(dev->devfn)) {
362 *value = 0xffffffff;
363 return PCIBIOS_SUCCESSFUL;
366 sabre_read_word(dev, where, &tmp);
367 *value = tmp;
368 sabre_read_word(dev, where + 2, &tmp);
369 *value |= tmp << 16;
370 return PCIBIOS_SUCCESSFUL;
373 static int __sabre_write_byte(struct pci_dev *dev, int where, u8 value)
375 struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
376 unsigned char bus = dev->bus->number;
377 unsigned int devfn = dev->devfn;
378 u8 *addr;
380 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
381 if (!addr)
382 return PCIBIOS_SUCCESSFUL;
384 if (__sabre_out_of_range(pbm, bus, devfn))
385 return PCIBIOS_SUCCESSFUL;
386 pci_config_write8(addr, value);
387 return PCIBIOS_SUCCESSFUL;
390 static int __sabre_write_word(struct pci_dev *dev, int where, u16 value)
392 struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
393 unsigned char bus = dev->bus->number;
394 unsigned int devfn = dev->devfn;
395 u16 *addr;
397 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
398 if (!addr)
399 return PCIBIOS_SUCCESSFUL;
401 if (__sabre_out_of_range(pbm, bus, devfn))
402 return PCIBIOS_SUCCESSFUL;
404 if (where & 0x01) {
405 printk("pcibios_write_config_word: misaligned reg [%x]\n",
406 where);
407 return PCIBIOS_SUCCESSFUL;
409 pci_config_write16(addr, value);
410 return PCIBIOS_SUCCESSFUL;
413 static int __sabre_write_dword(struct pci_dev *dev, int where, u32 value)
415 struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
416 unsigned char bus = dev->bus->number;
417 unsigned int devfn = dev->devfn;
418 u32 *addr;
420 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
421 if (!addr)
422 return PCIBIOS_SUCCESSFUL;
424 if (__sabre_out_of_range(pbm, bus, devfn))
425 return PCIBIOS_SUCCESSFUL;
427 if (where & 0x03) {
428 printk("pcibios_write_config_dword: misaligned reg [%x]\n",
429 where);
430 return PCIBIOS_SUCCESSFUL;
432 pci_config_write32(addr, value);
433 return PCIBIOS_SUCCESSFUL;
436 static int sabre_write_byte(struct pci_dev *dev, int where, u8 value)
438 if (dev->bus->number)
439 return __sabre_write_byte(dev, where, value);
441 if (sabre_out_of_range(dev->devfn))
442 return PCIBIOS_SUCCESSFUL;
444 if (where < 8) {
445 u16 tmp;
447 __sabre_read_word(dev, where & ~1, &tmp);
448 if (where & 1) {
449 value &= 0x00ff;
450 value |= tmp << 8;
451 } else {
452 value &= 0xff00;
453 value |= tmp;
455 return __sabre_write_word(dev, where & ~1, tmp);
456 } else
457 return __sabre_write_byte(dev, where, value);
460 static int sabre_write_word(struct pci_dev *dev, int where, u16 value)
462 if (dev->bus->number)
463 return __sabre_write_word(dev, where, value);
465 if (sabre_out_of_range(dev->devfn))
466 return PCIBIOS_SUCCESSFUL;
468 if (where < 8)
469 return __sabre_write_word(dev, where, value);
470 else {
471 __sabre_write_byte(dev, where, value & 0xff);
472 __sabre_write_byte(dev, where + 1, value >> 8);
473 return PCIBIOS_SUCCESSFUL;
477 static int sabre_write_dword(struct pci_dev *dev, int where, u32 value)
479 if (dev->bus->number)
480 return __sabre_write_dword(dev, where, value);
482 if (sabre_out_of_range(dev->devfn))
483 return PCIBIOS_SUCCESSFUL;
485 sabre_write_word(dev, where, value & 0xffff);
486 sabre_write_word(dev, where + 2, value >> 16);
487 return PCIBIOS_SUCCESSFUL;
490 static struct pci_ops sabre_ops = {
491 sabre_read_byte,
492 sabre_read_word,
493 sabre_read_dword,
494 sabre_write_byte,
495 sabre_write_word,
496 sabre_write_dword
499 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
501 unsigned int bus = (ino & 0x10) >> 4;
502 unsigned int slot = (ino & 0x0c) >> 2;
504 if (bus == 0)
505 return SABRE_IMAP_A_SLOT0 + (slot * 8);
506 else
507 return SABRE_IMAP_B_SLOT0 + (slot * 8);
510 static unsigned long __onboard_imap_off[] = {
511 /*0x20*/ SABRE_IMAP_SCSI,
512 /*0x21*/ SABRE_IMAP_ETH,
513 /*0x22*/ SABRE_IMAP_BPP,
514 /*0x23*/ SABRE_IMAP_AU_REC,
515 /*0x24*/ SABRE_IMAP_AU_PLAY,
516 /*0x25*/ SABRE_IMAP_PFAIL,
517 /*0x26*/ SABRE_IMAP_KMS,
518 /*0x27*/ SABRE_IMAP_FLPY,
519 /*0x28*/ SABRE_IMAP_SHW,
520 /*0x29*/ SABRE_IMAP_KBD,
521 /*0x2a*/ SABRE_IMAP_MS,
522 /*0x2b*/ SABRE_IMAP_SER,
523 /*0x2c*/ 0 /* reserved */,
524 /*0x2d*/ 0 /* reserved */,
525 /*0x2e*/ SABRE_IMAP_UE,
526 /*0x2f*/ SABRE_IMAP_CE,
527 /*0x30*/ SABRE_IMAP_PCIERR,
529 #define SABRE_ONBOARD_IRQ_BASE 0x20
530 #define SABRE_ONBOARD_IRQ_LAST 0x30
531 #define sabre_onboard_imap_offset(__ino) \
532 __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
534 #define sabre_iclr_offset(ino) \
535 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
536 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
538 /* PCI SABRE INO number to Sparc PIL level. */
539 static unsigned char sabre_pil_table[] = {
540 /*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */
541 /*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */
542 /*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */
543 /*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */
544 /*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */
545 /*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */
546 /*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */
547 /*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */
548 /*0x20*/3, /* SCSI */
549 /*0x21*/5, /* Ethernet */
550 /*0x22*/8, /* Parallel Port */
551 /*0x23*/13, /* Audio Record */
552 /*0x24*/14, /* Audio Playback */
553 /*0x25*/15, /* PowerFail */
554 /*0x26*/3, /* second SCSI */
555 /*0x27*/11, /* Floppy */
556 /*0x28*/2, /* Spare Hardware */
557 /*0x29*/9, /* Keyboard */
558 /*0x2a*/4, /* Mouse */
559 /*0x2b*/12, /* Serial */
560 /*0x2c*/10, /* Timer 0 */
561 /*0x2d*/11, /* Timer 1 */
562 /*0x2e*/15, /* Uncorrectable ECC */
563 /*0x2f*/15, /* Correctable ECC */
564 /*0x30*/15, /* PCI Bus A Error */
565 /*0x31*/15, /* PCI Bus B Error */
566 /*0x32*/1, /* Power Management */
569 static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino)
571 int ret;
573 ret = sabre_pil_table[ino];
574 if (ret == 0 && pdev == NULL) {
575 ret = 1;
576 } else if (ret == 0) {
577 switch ((pdev->class >> 16) & 0x0f) {
578 case PCI_BASE_CLASS_STORAGE:
579 ret = 4;
581 case PCI_BASE_CLASS_NETWORK:
582 ret = 6;
584 case PCI_BASE_CLASS_DISPLAY:
585 ret = 9;
587 case PCI_BASE_CLASS_MULTIMEDIA:
588 case PCI_BASE_CLASS_MEMORY:
589 case PCI_BASE_CLASS_BRIDGE:
590 ret = 10;
592 default:
593 ret = 1;
596 return ret;
599 static unsigned int __init sabre_irq_build(struct pci_controller_info *p,
600 struct pci_dev *pdev,
601 unsigned int ino)
603 struct ino_bucket *bucket;
604 volatile unsigned int *imap, *iclr;
605 unsigned long imap_off, iclr_off;
606 int pil, inofixup = 0;
608 ino &= PCI_IRQ_INO;
609 if (ino < SABRE_ONBOARD_IRQ_BASE) {
610 /* PCI slot */
611 imap_off = sabre_pcislot_imap_offset(ino);
612 } else {
613 /* onboard device */
614 if (ino > SABRE_ONBOARD_IRQ_LAST) {
615 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
616 prom_halt();
618 imap_off = sabre_onboard_imap_offset(ino);
621 /* Now build the IRQ bucket. */
622 pil = sabre_ino_to_pil(pdev, ino);
623 imap = (volatile unsigned int *)__va(p->controller_regs + imap_off);
624 imap += 1;
626 iclr_off = sabre_iclr_offset(ino);
627 iclr = (volatile unsigned int *)__va(p->controller_regs + iclr_off);
628 iclr += 1;
630 if ((ino & 0x20) == 0)
631 inofixup = ino & 0x03;
633 bucket = __bucket(build_irq(pil, inofixup, iclr, imap));
634 bucket->flags |= IBF_PCI;
636 /* XXX We still need to code up support for this in irq.c
637 * XXX It's easy to code up since only one SIMBA can exist
638 * XXX in a machine and this is where the sync register is. -DaveM
640 if (pdev) {
641 struct pcidev_cookie *pcp = pdev->sysdata;
642 if (pdev->bus->number != pcp->pbm->pci_first_busno)
643 bucket->flags |= IBF_DMA_SYNC;
645 return __irq(bucket);
648 /* SABRE error handling support. */
649 static void sabre_check_iommu_error(struct pci_controller_info *p,
650 unsigned long afsr,
651 unsigned long afar)
653 unsigned long iommu_tag[16];
654 unsigned long iommu_data[16];
655 unsigned long flags;
656 u64 control;
657 int i;
659 spin_lock_irqsave(&p->iommu.lock, flags);
660 control = sabre_read(p->iommu.iommu_control);
661 if (control & SABRE_IOMMUCTRL_ERR) {
662 char *type_string;
664 /* Clear the error encountered bit.
665 * NOTE: On Sabre this is write 1 to clear,
666 * which is different from Psycho.
668 sabre_write(p->iommu.iommu_control, control);
669 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
670 case 1:
671 type_string = "Invalid Error";
672 break;
673 case 3:
674 type_string = "ECC Error";
675 break;
676 default:
677 type_string = "Unknown";
678 break;
680 printk("SABRE%d: IOMMU Error, type[%s]\n",
681 p->index, type_string);
683 /* Enter diagnostic mode and probe for error'd
684 * entries in the IOTLB.
686 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
687 sabre_write(p->iommu.iommu_control,
688 (control | SABRE_IOMMUCTRL_DENAB));
689 for (i = 0; i < 16; i++) {
690 unsigned long base = p->controller_regs;
692 iommu_tag[i] =
693 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
694 iommu_data[i] =
695 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
696 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
697 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
699 sabre_write(p->iommu.iommu_control, control);
701 for (i = 0; i < 16; i++) {
702 unsigned long tag, data;
704 tag = iommu_tag[i];
705 if (!(tag & SABRE_IOMMUTAG_ERR))
706 continue;
708 data = iommu_data[i];
709 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
710 case 1:
711 type_string = "Invalid Error";
712 break;
713 case 3:
714 type_string = "ECC Error";
715 break;
716 default:
717 type_string = "Unknown";
718 break;
720 printk("SABRE%d: IOMMU TAG(%d)[error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
721 p->index, i, type_string,
722 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
723 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
724 ((tag & SABRE_IOMMUTAG_VPN) << PAGE_SHIFT));
725 printk("SABRE%d: IOMMU DATA(%d)[valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
726 p->index, i,
727 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
728 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
729 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
730 ((data & SABRE_IOMMUDATA_PPN) << PAGE_SHIFT));
733 spin_unlock_irqrestore(&p->iommu.lock, flags);
736 static void sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
738 struct pci_controller_info *p = dev_id;
739 unsigned long afsr_reg = p->controller_regs + SABRE_UE_AFSR;
740 unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR;
741 unsigned long afsr, afar, error_bits;
742 int reported;
744 /* Latch uncorrectable error status. */
745 afar = sabre_read(afar_reg);
746 afsr = sabre_read(afsr_reg);
748 /* Clear the primary/secondary error status bits. */
749 error_bits = afsr &
750 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
751 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
752 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
753 sabre_write(afsr_reg, error_bits);
755 /* Log the error. */
756 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
757 p->index,
758 ((error_bits & SABRE_UEAFSR_PDRD) ?
759 "DMA Read" :
760 ((error_bits & SABRE_UEAFSR_PDWR) ?
761 "DMA Write" : "???")),
762 ((error_bits & SABRE_UEAFSR_PDTE) ?
763 ":Translation Error" : ""));
764 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
765 p->index,
766 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
767 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
768 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
769 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
770 printk("SABRE%d: UE Secondary errors [", p->index);
771 reported = 0;
772 if (afsr & SABRE_UEAFSR_SDRD) {
773 reported++;
774 printk("(DMA Read)");
776 if (afsr & SABRE_UEAFSR_SDWR) {
777 reported++;
778 printk("(DMA Write)");
780 if (afsr & SABRE_UEAFSR_SDTE) {
781 reported++;
782 printk("(Translation Error)");
784 if (!reported)
785 printk("(none)");
786 printk("]\n");
788 /* Interrogate IOMMU for error status. */
789 sabre_check_iommu_error(p, afsr, afar);
792 static void sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
794 struct pci_controller_info *p = dev_id;
795 unsigned long afsr_reg = p->controller_regs + SABRE_CE_AFSR;
796 unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR;
797 unsigned long afsr, afar, error_bits;
798 int reported;
800 /* Latch error status. */
801 afar = sabre_read(afar_reg);
802 afsr = sabre_read(afsr_reg);
804 /* Clear primary/secondary error status bits. */
805 error_bits = afsr &
806 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
807 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
808 sabre_write(afsr_reg, error_bits);
810 /* Log the error. */
811 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
812 p->index,
813 ((error_bits & SABRE_CEAFSR_PDRD) ?
814 "DMA Read" :
815 ((error_bits & SABRE_CEAFSR_PDWR) ?
816 "DMA Write" : "???")));
817 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
818 "was_block(%d)\n",
819 p->index,
820 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
821 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
822 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
823 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
824 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
825 printk("SABRE%d: CE Secondary errors [", p->index);
826 reported = 0;
827 if (afsr & SABRE_CEAFSR_SDRD) {
828 reported++;
829 printk("(DMA Read)");
831 if (afsr & SABRE_CEAFSR_SDWR) {
832 reported++;
833 printk("(DMA Write)");
835 if (!reported)
836 printk("(none)");
837 printk("]\n");
840 static void sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
842 struct pci_controller_info *p = dev_id;
843 unsigned long afsr_reg, afar_reg;
844 unsigned long afsr, afar, error_bits;
845 int reported;
847 afsr_reg = p->controller_regs + SABRE_PIOAFSR;
848 afar_reg = p->controller_regs + SABRE_PIOAFAR;
850 /* Latch error status. */
851 afar = sabre_read(afar_reg);
852 afsr = sabre_read(afsr_reg);
854 /* Clear primary/secondary error status bits. */
855 error_bits = afsr &
856 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
857 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
858 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
859 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
860 sabre_write(afsr_reg, error_bits);
862 /* Log the error. */
863 printk("SABRE%d: PCI Error, primary error type[%s]\n",
864 p->index,
865 (((error_bits & SABRE_PIOAFSR_PMA) ?
866 "Master Abort" :
867 ((error_bits & SABRE_PIOAFSR_PTA) ?
868 "Target Abort" :
869 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
870 "Excessive Retries" :
871 ((error_bits & SABRE_PIOAFSR_PPERR) ?
872 "Parity Error" : "???"))))));
873 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
874 p->index,
875 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
876 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
877 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
878 printk("SABRE%d: PCI Secondary errors [", p->index);
879 reported = 0;
880 if (afsr & SABRE_PIOAFSR_SMA) {
881 reported++;
882 printk("(Master Abort)");
884 if (afsr & SABRE_PIOAFSR_STA) {
885 reported++;
886 printk("(Target Abort)");
888 if (afsr & SABRE_PIOAFSR_SRTRY) {
889 reported++;
890 printk("(Excessive Retries)");
892 if (afsr & SABRE_PIOAFSR_SPERR) {
893 reported++;
894 printk("(Parity Error)");
896 if (!reported)
897 printk("(none)");
898 printk("]\n");
900 /* For the error types shown, scan both PCI buses for devices
901 * which have logged that error type.
904 /* If we see a Target Abort, this could be the result of an
905 * IOMMU translation error of some sort. It is extremely
906 * useful to log this information as usually it indicates
907 * a bug in the IOMMU support code or a PCI device driver.
909 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
910 sabre_check_iommu_error(p, afsr, afar);
911 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
912 pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
914 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
915 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
916 pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
918 /* For excessive retries, SABRE/PBM will abort the device
919 * and there is no way to specifically check for excessive
920 * retries in the config space status registers. So what
921 * we hope is that we'll catch it via the master/target
922 * abort events.
925 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
926 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
927 pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
931 /* XXX What about PowerFail/PowerManagement??? -DaveM */
932 #define SABRE_UE_INO 0x2e
933 #define SABRE_CE_INO 0x2f
934 #define SABRE_PCIERR_INO 0x30
935 static void __init sabre_register_error_handlers(struct pci_controller_info *p)
937 unsigned long base = p->controller_regs;
938 unsigned long irq, portid = p->portid;
939 u64 tmp;
941 /* We clear the error bits in the appropriate AFSR before
942 * registering the handler so that we don't get spurious
943 * interrupts.
945 sabre_write(base + SABRE_UE_AFSR,
946 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
947 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
948 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
949 irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_UE_INO);
950 if (request_irq(irq, sabre_ue_intr,
951 SA_SHIRQ, "SABRE UE", p) < 0) {
952 prom_printf("SABRE%d: Cannot register UE interrupt.\n",
953 p->index);
954 prom_halt();
957 sabre_write(base + SABRE_CE_AFSR,
958 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
959 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
960 irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_CE_INO);
961 if (request_irq(irq, sabre_ce_intr,
962 SA_SHIRQ, "SABRE CE", p) < 0) {
963 prom_printf("SABRE%d: Cannot register CE interrupt.\n",
964 p->index);
965 prom_halt();
968 irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_PCIERR_INO);
969 if (request_irq(irq, sabre_pcierr_intr,
970 SA_SHIRQ, "SABRE PCIERR", p) < 0) {
971 prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
972 p->index);
973 prom_halt();
976 tmp = sabre_read(base + SABRE_PCICTRL);
977 tmp |= SABRE_PCICTRL_ERREN;
978 sabre_write(base + SABRE_PCICTRL, tmp);
981 static void __init sabre_resource_adjust(struct pci_dev *pdev,
982 struct resource *res,
983 struct resource *root)
985 struct pcidev_cookie *pcp = pdev->sysdata;
986 struct pci_controller_info *p = pcp->pbm->parent;
987 unsigned long base;
989 if (res->flags & IORESOURCE_IO)
990 base = p->controller_regs + SABRE_IOSPACE;
991 else
992 base = p->controller_regs + SABRE_MEMSPACE;
994 res->start += base;
995 res->end += base;
998 static void __init sabre_base_address_update(struct pci_dev *pdev, int resource)
1000 struct pcidev_cookie *pcp = pdev->sysdata;
1001 struct pci_pbm_info *pbm = pcp->pbm;
1002 struct pci_controller_info *p = pbm->parent;
1003 struct resource *res = &pdev->resource[resource];
1004 unsigned long base;
1005 u32 reg;
1006 int where, size;
1008 if (res->flags & IORESOURCE_IO)
1009 base = p->controller_regs + SABRE_IOSPACE;
1010 else
1011 base = p->controller_regs + SABRE_MEMSPACE;
1013 where = PCI_BASE_ADDRESS_0 + (resource * 4);
1014 size = res->end - res->start;
1015 pci_read_config_dword(pdev, where, &reg);
1016 reg = ((reg & size) |
1017 (((u32)(res->start - base)) & ~size));
1018 pci_write_config_dword(pdev, where, reg);
1021 static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
1023 struct pci_dev *pdev;
1024 u32 dword;
1025 u16 word;
1027 for(pdev = pci_devices; pdev; pdev = pdev->next) {
1028 if(pdev->vendor == PCI_VENDOR_ID_SUN &&
1029 pdev->device == PCI_DEVICE_ID_SUN_SABRE) {
1030 sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64);
1031 break;
1035 for (pdev = sabre_bus->devices; pdev; pdev = pdev->sibling) {
1036 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1037 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
1038 sabre_read_word(pdev, PCI_COMMAND, &word);
1039 word |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
1040 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
1041 PCI_COMMAND_IO;
1042 sabre_write_word(pdev, PCI_COMMAND, word);
1044 /* Status register bits are "write 1 to clear". */
1045 sabre_write_word(pdev, PCI_STATUS, 0xffff);
1046 sabre_write_word(pdev, PCI_SEC_STATUS, 0xffff);
1048 sabre_read_word(pdev, PCI_BRIDGE_CONTROL, &word);
1049 word = PCI_BRIDGE_CTL_MASTER_ABORT |
1050 PCI_BRIDGE_CTL_SERR |
1051 PCI_BRIDGE_CTL_PARITY;
1052 sabre_write_word(pdev, PCI_BRIDGE_CONTROL, word);
1054 sabre_read_dword(pdev, APB_PCI_CONTROL_HIGH, &dword);
1055 dword = APB_PCI_CTL_HIGH_SERR |
1056 APB_PCI_CTL_HIGH_ARBITER_EN;
1057 sabre_write_dword(pdev, APB_PCI_CONTROL_HIGH, dword);
1059 /* Systems with SIMBA are usually workstations, so
1060 * we configure to park to SIMBA not to the previous
1061 * bus owner.
1063 sabre_read_dword(pdev, APB_PCI_CONTROL_LOW, &dword);
1064 dword = APB_PCI_CTL_LOW_ERRINT_EN | 0x0f;
1065 sabre_write_dword(pdev, APB_PCI_CONTROL_LOW, dword);
1067 /* Don't mess with the retry limit and PIO/DMA latency
1068 * timer settings. But do set primary and secondary
1069 * latency timers.
1071 sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64);
1072 sabre_write_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
1077 static void __init sabre_scan_bus(struct pci_controller_info *p)
1079 static int once = 0;
1080 struct pci_bus *sabre_bus, *pbus;
1082 /* Unlike for PSYCHO, we can only have one SABRE
1083 * in a system. Having multiple SABREs is thus
1084 * and error, and as a consequence we do not need
1085 * to do any bus renumbering but we do have to have
1086 * the pci_bus2pbm array setup properly.
1088 * Also note that the SABRE host bridge is hardwired
1089 * to live at bus 0.
1091 if (once != 0) {
1092 prom_printf("SABRE: Multiple controllers unsupported.\n");
1093 prom_halt();
1095 once++;
1097 /* The pci_bus2pbm table has already been setup in sabre_init. */
1098 sabre_bus = pci_scan_bus(p->pci_first_busno,
1099 p->pci_ops,
1100 &p->pbm_A);
1101 apb_init(p, sabre_bus);
1103 for (pbus = sabre_bus->children; pbus; pbus = pbus->next) {
1104 struct pci_pbm_info *pbm;
1106 if (pbus->number == p->pbm_A.pci_first_busno) {
1107 pbm = &p->pbm_A;
1108 } else if (pbus->number == p->pbm_B.pci_first_busno) {
1109 pbm = &p->pbm_B;
1110 } else
1111 continue;
1113 pbus->sysdata = pbm;
1114 pbm->pci_bus = pbus;
1115 pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
1116 pci_record_assignments(pbm, pbus);
1117 pci_assign_unassigned(pbm, pbus);
1118 pci_fixup_irq(pbm, pbus);
1121 sabre_register_error_handlers(p);
1124 static void __init sabre_iommu_init(struct pci_controller_info *p,
1125 int tsbsize, unsigned long dvma_offset)
1127 struct linux_mlist_p1275 *mlist;
1128 unsigned long tsbbase, i, n, order;
1129 iopte_t *iopte;
1130 u64 control;
1132 /* Invalidate TLB Entries. */
1133 control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL);
1134 control |= IOMMU_CTRL_DENAB;
1135 sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
1137 for(i = 0; i < 16; i++)
1138 sabre_write(p->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1140 control &= ~(IOMMU_CTRL_DENAB);
1141 sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
1143 for(order = 0;; order++)
1144 if((PAGE_SIZE << order) >= ((tsbsize * 1024) * 8))
1145 break;
1146 tsbbase = __get_free_pages(GFP_DMA, order);
1147 if (!tsbbase) {
1148 prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n");
1149 prom_halt();
1151 iopte = (iopte_t *)tsbbase;
1153 /* Initialize to "none" settings. */
1154 for(i = 0; i < PCI_DVMA_HASHSZ; i++) {
1155 pci_dvma_v2p_hash[i] = PCI_DVMA_HASH_NONE;
1156 pci_dvma_p2v_hash[i] = PCI_DVMA_HASH_NONE;
1159 n = 0;
1160 mlist = *prom_meminfo()->p1275_totphys;
1161 while (mlist) {
1162 unsigned long paddr = mlist->start_adr;
1163 unsigned long num_bytes = mlist->num_bytes;
1165 if(paddr >= (((unsigned long) high_memory) - PAGE_OFFSET))
1166 goto next;
1168 if((paddr + num_bytes) >= (((unsigned long) high_memory) - PAGE_OFFSET))
1169 num_bytes =
1170 (((unsigned long) high_memory) -
1171 PAGE_OFFSET) - paddr;
1173 /* Align base and length so we map whole hash table sized chunks
1174 * at a time (and therefore full 64K IOMMU pages).
1176 paddr &= ~((1UL << 24UL) - 1);
1177 num_bytes = (num_bytes + ((1UL << 24UL) - 1)) & ~((1UL << 24) - 1);
1179 /* Move up the base for mappings already created. */
1180 while(pci_dvma_v2p_hash[pci_dvma_ahashfn(paddr)] !=
1181 PCI_DVMA_HASH_NONE) {
1182 paddr += (1UL << 24UL);
1183 num_bytes -= (1UL << 24UL);
1184 if(num_bytes == 0UL)
1185 goto next;
1188 /* Move down the size for tail mappings already created. */
1189 while(pci_dvma_v2p_hash[pci_dvma_ahashfn(paddr + num_bytes - (1UL << 24UL))] !=
1190 PCI_DVMA_HASH_NONE) {
1191 num_bytes -= (1UL << 24UL);
1192 if(num_bytes == 0UL)
1193 goto next;
1196 /* Now map the rest. */
1197 for (i = 0; i < ((num_bytes + ((1 << 16) - 1)) >> 16); i++) {
1198 iopte_val(*iopte) = ((IOPTE_VALID | IOPTE_64K |
1199 IOPTE_CACHE | IOPTE_WRITE) |
1200 (paddr & IOPTE_PAGE));
1202 if (!(n & 0xff))
1203 set_dvma_hash(dvma_offset, paddr, (n << 16));
1204 if (++n > (tsbsize * 1024))
1205 goto out;
1207 paddr += (1 << 16);
1208 iopte++;
1210 next:
1211 mlist = mlist->theres_more;
1213 out:
1214 if (mlist) {
1215 prom_printf("WARNING: not all physical memory mapped in IOMMU\n");
1216 prom_printf("Try booting with mem=xxxM or similar\n");
1217 prom_halt();
1220 sabre_write(p->controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase));
1222 control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL);
1223 control &= ~(IOMMU_CTRL_TSBSZ);
1224 control |= (IOMMU_CTRL_TBWSZ | IOMMU_CTRL_ENAB);
1225 switch(tsbsize) {
1226 case 8:
1227 control |= IOMMU_TSBSZ_8K;
1228 break;
1229 case 16:
1230 control |= IOMMU_TSBSZ_16K;
1231 break;
1232 case 32:
1233 control |= IOMMU_TSBSZ_32K;
1234 break;
1235 default:
1236 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1237 prom_halt();
1238 break;
1240 sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
1243 static void __init pbm_register_toplevel_resources(struct pci_controller_info *p,
1244 struct pci_pbm_info *pbm)
1246 char *name = pbm->name;
1247 unsigned long ibase = p->controller_regs + SABRE_IOSPACE;
1248 unsigned long mbase = p->controller_regs + SABRE_MEMSPACE;
1249 unsigned int devfn;
1250 unsigned long first, last, i;
1251 u8 *addr, map;
1253 sprintf(name, "SABRE%d PBM%c",
1254 p->index,
1255 (pbm == &p->pbm_A ? 'A' : 'B'));
1256 pbm->io_space.name = pbm->mem_space.name = name;
1258 devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
1259 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
1260 map = 0;
1261 pci_config_read8(addr, &map);
1263 first = 8;
1264 last = 0;
1265 for (i = 0; i < 8; i++) {
1266 if ((map & (1 << i)) != 0) {
1267 if (first > i)
1268 first = i;
1269 if (last < i)
1270 last = i;
1273 pbm->io_space.start = ibase + (first << 21UL);
1274 pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
1275 pbm->io_space.flags = IORESOURCE_IO;
1277 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
1278 map = 0;
1279 pci_config_read8(addr, &map);
1281 first = 8;
1282 last = 0;
1283 for (i = 0; i < 8; i++) {
1284 if ((map & (1 << i)) != 0) {
1285 if (first > i)
1286 first = i;
1287 if (last < i)
1288 last = i;
1291 pbm->mem_space.start = mbase + (first << 29UL);
1292 pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
1293 pbm->mem_space.flags = IORESOURCE_MEM;
1295 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1296 prom_printf("Cannot register PBM-%c's IO space.\n",
1297 (pbm == &p->pbm_A ? 'A' : 'B'));
1298 prom_halt();
1300 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1301 prom_printf("Cannot register PBM-%c's MEM space.\n",
1302 (pbm == &p->pbm_A ? 'A' : 'B'));
1303 prom_halt();
1307 static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node)
1309 char namebuf[128];
1310 u32 busrange[2];
1311 int node;
1313 node = prom_getchild(sabre_node);
1314 while ((node = prom_searchsiblings(node, "pci")) != 0) {
1315 struct pci_pbm_info *pbm;
1316 int err;
1318 err = prom_getproperty(node, "model", namebuf, sizeof(namebuf));
1319 if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err))
1320 goto next_pci;
1322 err = prom_getproperty(node, "bus-range",
1323 (char *)&busrange[0], sizeof(busrange));
1324 if (err == 0 || err == -1) {
1325 prom_printf("APB: Error, cannot get PCI bus-range.\n");
1326 prom_halt();
1329 if (busrange[0] == 1)
1330 pbm = &p->pbm_B;
1331 else
1332 pbm = &p->pbm_A;
1333 pbm->parent = p;
1334 pbm->prom_node = node;
1335 pbm->pci_first_busno = busrange[0];
1336 pbm->pci_last_busno = busrange[1];
1337 for (err = pbm->pci_first_busno;
1338 err <= pbm->pci_last_busno;
1339 err++)
1340 pci_bus2pbm[err] = pbm;
1343 prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name));
1344 err = prom_getproperty(node, "ranges",
1345 (char *)pbm->pbm_ranges,
1346 sizeof(pbm->pbm_ranges));
1347 if (err != -1)
1348 pbm->num_pbm_ranges =
1349 (err / sizeof(struct linux_prom_pci_ranges));
1350 else
1351 pbm->num_pbm_ranges = 0;
1353 err = prom_getproperty(node, "interrupt-map",
1354 (char *)pbm->pbm_intmap,
1355 sizeof(pbm->pbm_intmap));
1356 if (err != -1) {
1357 pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
1358 err = prom_getproperty(node, "interrupt-map-mask",
1359 (char *)&pbm->pbm_intmask,
1360 sizeof(pbm->pbm_intmask));
1361 if (err == -1) {
1362 prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
1363 prom_halt();
1365 } else {
1366 pbm->num_pbm_intmap = 0;
1367 memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
1370 pbm_register_toplevel_resources(p, pbm);
1372 next_pci:
1373 node = prom_getsibling(node);
1374 if (!node)
1375 break;
1379 void __init sabre_init(int pnode)
1381 struct linux_prom64_registers pr_regs[2];
1382 struct pci_controller_info *p;
1383 unsigned long flags;
1384 int tsbsize, err;
1385 u32 busrange[2];
1386 u32 vdma[2];
1387 u32 upa_portid;
1388 int bus;
1390 p = kmalloc(sizeof(*p), GFP_ATOMIC);
1391 if (!p) {
1392 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1393 prom_halt();
1396 upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff);
1398 memset(p, 0, sizeof(*p));
1400 spin_lock_irqsave(&pci_controller_lock, flags);
1401 p->next = pci_controller_root;
1402 pci_controller_root = p;
1403 spin_unlock_irqrestore(&pci_controller_lock, flags);
1405 p->portid = upa_portid;
1406 p->index = pci_num_controllers++;
1407 p->scan_bus = sabre_scan_bus;
1408 p->irq_build = sabre_irq_build;
1409 p->base_address_update = sabre_base_address_update;
1410 p->resource_adjust = sabre_resource_adjust;
1411 p->pci_ops = &sabre_ops;
1414 * Map in SABRE register set and report the presence of this SABRE.
1416 err = prom_getproperty(pnode, "reg",
1417 (char *)&pr_regs[0], sizeof(pr_regs));
1418 if(err == 0 || err == -1) {
1419 prom_printf("SABRE: Error, cannot get U2P registers "
1420 "from PROM.\n");
1421 prom_halt();
1425 * First REG in property is base of entire SABRE register space.
1427 p->controller_regs = pr_regs[0].phys_addr;
1428 printk("PCI: Found SABRE, main regs at %016lx\n", p->controller_regs);
1430 /* Error interrupts are enabled later after the bus scan. */
1431 sabre_write(p->controller_regs + SABRE_PCICTRL,
1432 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1433 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1435 /* Now map in PCI config space for entire SABRE. */
1436 p->config_space = p->controller_regs + SABRE_CONFIGSPACE;
1437 printk("SABRE: PCI config space at %016lx\n", p->config_space);
1439 err = prom_getproperty(pnode, "virtual-dma",
1440 (char *)&vdma[0], sizeof(vdma));
1441 if(err == 0 || err == -1) {
1442 prom_printf("SABRE: Error, cannot get virtual-dma property "
1443 "from PROM.\n");
1444 prom_halt();
1447 switch(vdma[1]) {
1448 case 0x20000000:
1449 tsbsize = 8;
1450 break;
1451 case 0x40000000:
1452 tsbsize = 16;
1453 break;
1454 case 0x80000000:
1455 tsbsize = 32;
1456 break;
1457 default:
1458 prom_printf("SABRE: strange virtual-dma size.\n");
1459 prom_halt();
1462 sabre_iommu_init(p, tsbsize, vdma[0]);
1464 printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]);
1466 err = prom_getproperty(pnode, "bus-range",
1467 (char *)&busrange[0], sizeof(busrange));
1468 if(err == 0 || err == -1) {
1469 prom_printf("SABRE: Error, cannot get PCI bus-range "
1470 " from PROM.\n");
1471 prom_halt();
1474 p->pci_first_busno = busrange[0];
1475 p->pci_last_busno = busrange[1];
1478 * Handle config space reads through any Simba on APB.
1480 for (bus = p->pci_first_busno; bus <= p->pci_last_busno; bus++)
1481 pci_bus2pbm[bus] = &p->pbm_A;
1484 * Look for APB underneath.
1486 sabre_pbm_init(p, pnode);