Import 2.3.18pre1
[davej-history.git] / arch / sparc / kernel / smp.c
blobe611cd828f759167caf83365794f95871e6fecaa
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 */
7 #include <asm/head.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <asm/ptrace.h>
20 #include <asm/atomic.h>
22 #include <asm/delay.h>
23 #include <asm/irq.h>
24 #include <asm/page.h>
25 #include <asm/pgtable.h>
26 #include <asm/oplib.h>
27 #include <asm/atops.h>
28 #include <asm/hardirq.h>
29 #include <asm/softirq.h>
31 #define __KERNEL_SYSCALLS__
32 #include <linux/unistd.h>
34 #define IRQ_RESCHEDULE 13
35 #define IRQ_STOP_CPU 14
36 #define IRQ_CROSS_CALL 15
38 volatile int smp_processors_ready = 0;
39 unsigned long cpu_present_map = 0;
40 int smp_num_cpus = 1;
41 int smp_threads_ready=0;
42 unsigned char mid_xlate[NR_CPUS] = { 0, 0, 0, 0, };
43 volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
44 #ifdef NOTUSED
45 volatile unsigned long smp_spinning[NR_CPUS] = { 0, };
46 #endif
47 unsigned long smp_proc_in_lock[NR_CPUS] = { 0, };
48 struct cpuinfo_sparc cpu_data[NR_CPUS];
49 unsigned long cpu_offset[NR_CPUS];
50 unsigned char boot_cpu_id = 0;
51 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
52 int smp_activated = 0;
53 volatile int cpu_number_map[NR_CPUS];
54 volatile int __cpu_logical_map[NR_CPUS];
55 cycles_t cacheflush_time = 0; /* XXX */
57 /* The only guaranteed locking primitive available on all Sparc
58 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
59 * places the current byte at the effective address into dest_reg and
60 * places 0xff there afterwards. Pretty lame locking primitive
61 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
62 * instruction which is much better...
65 /* Kernel spinlock */
66 spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED;
68 /* Used to make bitops atomic */
69 unsigned char bitops_spinlock = 0;
71 volatile unsigned long ipi_count;
73 volatile int smp_process_available=0;
74 volatile int smp_commenced = 0;
76 /* Not supported on Sparc yet. */
77 void __init smp_setup(char *str, int *ints)
82 * The bootstrap kernel entry code has set these up. Save them for
83 * a given CPU
86 void __init smp_store_cpu_info(int id)
88 cpu_data[id].udelay_val = loops_per_sec; /* this is it on sparc. */
91 void __init smp_commence(void)
94 * Lets the callin's below out of their loop.
96 local_flush_cache_all();
97 local_flush_tlb_all();
98 smp_commenced = 1;
99 local_flush_cache_all();
100 local_flush_tlb_all();
103 /* Only broken Intel needs this, thus it should not even be referenced
104 * globally...
106 void __init initialize_secondary(void)
110 extern int cpu_idle(void);
112 /* Activate a secondary processor. */
113 int start_secondary(void *unused)
115 prom_printf("Start secondary called. Should not happen\n");
116 return cpu_idle();
119 void cpu_panic(void)
121 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
122 panic("SMP bolixed\n");
126 * Cycle through the processors asking the PROM to start each one.
129 extern struct prom_cpuinfo linux_cpus[NR_CPUS];
130 struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
132 void __init smp_boot_cpus(void)
134 extern void smp4m_boot_cpus(void);
135 extern void smp4d_boot_cpus(void);
137 if (sparc_cpu_model == sun4m)
138 smp4m_boot_cpus();
139 else
140 smp4d_boot_cpus();
143 void smp_flush_cache_all(void)
144 { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all)); }
146 void smp_flush_tlb_all(void)
147 { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all)); }
149 void smp_flush_cache_mm(struct mm_struct *mm)
151 if(mm->context != NO_CONTEXT) {
152 if(mm->cpu_vm_mask == (1 << smp_processor_id()))
153 local_flush_cache_mm(mm);
154 else
155 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
159 void smp_flush_tlb_mm(struct mm_struct *mm)
161 if(mm->context != NO_CONTEXT) {
162 if(mm->cpu_vm_mask == (1 << smp_processor_id())) {
163 local_flush_tlb_mm(mm);
164 } else {
165 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
166 if(atomic_read(&mm->count) == 1 && current->mm == mm)
167 mm->cpu_vm_mask = (1 << smp_processor_id());
172 void smp_flush_cache_range(struct mm_struct *mm, unsigned long start,
173 unsigned long end)
175 if(mm->context != NO_CONTEXT) {
176 if(mm->cpu_vm_mask == (1 << smp_processor_id()))
177 local_flush_cache_range(mm, start, end);
178 else
179 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) mm,
180 start, end);
184 void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
185 unsigned long end)
187 if(mm->context != NO_CONTEXT) {
188 if(mm->cpu_vm_mask == (1 << smp_processor_id()))
189 local_flush_tlb_range(mm, start, end);
190 else
191 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) mm,
192 start, end);
196 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
198 struct mm_struct *mm = vma->vm_mm;
200 if(mm->context != NO_CONTEXT) {
201 if(mm->cpu_vm_mask == (1 << smp_processor_id()))
202 local_flush_cache_page(vma, page);
203 else
204 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page),
205 (unsigned long) vma, page);
209 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
211 struct mm_struct *mm = vma->vm_mm;
213 if(mm->context != NO_CONTEXT) {
214 if(mm->cpu_vm_mask == (1 << smp_processor_id()))
215 local_flush_tlb_page(vma, page);
216 else
217 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
221 void smp_flush_page_to_ram(unsigned long page)
223 /* Current theory is that those who call this are the one's
224 * who have just dirtied their cache with the pages contents
225 * in kernel space, therefore we only run this on local cpu.
227 * XXX This experiment failed, research further... -DaveM
229 #if 1
230 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
231 #else
232 local_flush_page_to_ram(page);
233 #endif
236 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
238 if(mm->cpu_vm_mask == (1 << smp_processor_id()))
239 local_flush_sig_insns(mm, insn_addr);
240 else
241 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
244 /* Reschedule call back. */
245 void smp_reschedule_irq(void)
247 current->need_resched = 1;
250 /* Stopping processors. */
251 void smp_stop_cpu_irq(void)
253 __sti();
254 while(1)
255 barrier();
258 unsigned int prof_multiplier[NR_CPUS];
259 unsigned int prof_counter[NR_CPUS];
260 extern unsigned int lvl14_resolution;
262 int setup_profiling_timer(unsigned int multiplier)
264 int i;
265 unsigned long flags;
267 /* Prevent level14 ticker IRQ flooding. */
268 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
269 return -EINVAL;
271 save_and_cli(flags);
272 for(i = 0; i < NR_CPUS; i++) {
273 if(cpu_present_map & (1 << i)) {
274 load_profile_irq(mid_xlate[i], lvl14_resolution / multiplier);
275 prof_multiplier[i] = multiplier;
278 restore_flags(flags);
280 return 0;
283 int smp_bogo_info(char *buf)
285 int len = 0, i;
287 for (i = 0; i < NR_CPUS; i++)
288 if (cpu_present_map & (1 << i))
289 len += sprintf(buf + len, "Cpu%dBogo\t: %lu.%02lu\n",
291 cpu_data[i].udelay_val/500000,
292 (cpu_data[i].udelay_val/5000)%100);
293 return len;
296 int smp_info(char *buf)
298 int len = 0, i;
300 for (i = 0; i < NR_CPUS; i++)
301 if (cpu_present_map & (1 << i))
302 len += sprintf(buf + len, "CPU%d\t\t: online\n", i);
303 return len;