3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * 11 April '97. Started multi-threading - markhe
7 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
8 * The sem is only needed when accessing/extending the cache-chain, which
9 * can never happen inside an interrupt (kmem_cache_create(),
10 * kmem_cache_shrink() and kmem_cache_reap()).
11 * This is a medium-term exclusion lock.
13 * Each cache has its own lock; 'c_spinlock'. This lock is needed only
14 * when accessing non-constant members of a cache-struct.
15 * Note: 'constant members' are assigned a value in kmem_cache_create() before
16 * the cache is linked into the cache-chain. The values never change, so not
17 * even a multi-reader lock is needed for these members.
18 * The c_spinlock is only ever held for a few cycles.
20 * To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
21 * maybe be sleeping and therefore not holding the semaphore/lock), the
22 * c_growing field is used. This also prevents reaping from a cache.
24 * Note, caches can _never_ be destroyed. When a sub-system (eg module) has
25 * finished with a cache, it can only be shrunk. This leaves the cache empty,
26 * but already enabled for re-use, eg. during a module re-load.
29 * o Constructors/deconstructors are called while the cache-lock
30 * is _not_ held. Therefore they _must_ be threaded.
31 * o Constructors must not attempt to allocate memory from the
32 * same cache that they are a constructor for - infinite loop!
33 * (There is no easy way to trap this.)
34 * o The per-cache locks must be obtained with local-interrupts disabled.
35 * o When compiled with debug support, and an object-verify (upon release)
36 * is request for a cache, the verify-function is called with the cache
37 * lock held. This helps debugging.
38 * o The functions called from try_to_free_page() must not attempt
39 * to allocate memory from a cache which is being grown.
40 * The buffer sub-system might try to allocate memory, via buffer_cachep.
41 * As this pri is passed to the SLAB, and then (if necessary) onto the
42 * gfp() funcs (which avoid calling try_to_free_page()), no deadlock
45 * The positioning of the per-cache lock is tricky. If the lock is
46 * placed on the same h/w cache line as commonly accessed members
47 * the number of L1 cache-line faults is reduced. However, this can
48 * lead to the cache-line ping-ponging between processors when the
49 * lock is in contention (and the common members are being accessed).
50 * Decided to keep it away from common members.
52 * More fine-graining is possible, with per-slab locks...but this might be
53 * taking fine graining too far, but would have the advantage;
54 * During most allocs/frees no writes occur to the cache-struct.
55 * Therefore a multi-reader/one writer lock could be used (the writer
56 * needed when the slab chain is being link/unlinked).
57 * As we would not have an exclusion lock for the cache-structure, one
58 * would be needed per-slab (for updating s_free ptr, and/or the contents
60 * The above locking would allow parallel operations to different slabs within
61 * the same cache with reduced spinning.
63 * Per-engine slab caches, backed by a global cache (as in Mach's Zone allocator),
64 * would allow most allocations from the same cache to execute in parallel.
66 * At present, each engine can be growing a cache. This should be blocked.
68 * It is not currently 100% safe to examine the page_struct outside of a kernel
69 * or global cli lock. The risk is v. small, and non-fatal.
71 * Calls to printk() are not 100% safe (the function is not threaded). However,
72 * printk() is only used under an error condition, and the risk is v. small (not
73 * sure if the console write functions 'enjoy' executing multiple contexts in
74 * parallel. I guess they don't...).
75 * Note, for most calls to printk() any held cache-lock is dropped. This is not
76 * always done for text size reasons - having *_unlock() everywhere is bloat.
80 * An implementation of the Slab Allocator as described in outline in;
81 * UNIX Internals: The New Frontiers by Uresh Vahalia
82 * Pub: Prentice Hall ISBN 0-13-101908-2
83 * or with a little more detail in;
84 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
85 * Jeff Bonwick (Sun Microsystems).
86 * Presented at: USENIX Summer 1994 Technical Conference
90 * This implementation deviates from Bonwick's paper as it
91 * does not use a hash-table for large objects, but rather a per slab
92 * index to hold the bufctls. This allows the bufctl structure to
93 * be small (one word), but limits the number of objects a slab (not
94 * a cache) can contain when off-slab bufctls are used. The limit is the
95 * size of the largest general cache that does not use off-slab bufctls,
96 * divided by the size of a bufctl. For 32bit archs, is this 256/4 = 64.
97 * This is not serious, as it is only for large objects, when it is unwise
98 * to have too many per slab.
99 * Note: This limit can be raised by introducing a general cache whose size
100 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
103 #include <linux/mm.h>
104 #include <linux/slab.h>
105 #include <linux/interrupt.h>
106 #include <linux/config.h>
107 #include <linux/init.h>
108 #include <linux/smp.h>
110 #include <asm/system.h>
111 #include <asm/atomic.h>
112 #include <asm/spinlock.h>
114 /* If there is a different PAGE_SIZE around, and it works with this allocator,
115 * then change the following.
117 #if (PAGE_SIZE != 8192 && PAGE_SIZE != 4096)
118 #error Your page size is probably not correctly supported - please check
121 /* SLAB_MGMT_CHECKS - 1 to enable extra checks in kmem_cache_create().
122 * 0 if you wish to reduce memory usage.
124 * SLAB_DEBUG_SUPPORT - 1 for kmem_cache_create() to honour; SLAB_DEBUG_FREE,
125 * SLAB_DEBUG_INITIAL, SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller, code (especially in the critical paths).
128 * SLAB_STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller, code (especially in the critical paths).
131 * SLAB_SELFTEST - 1 to perform a few tests, mainly for development.
133 #define SLAB_MGMT_CHECKS 1
134 #define SLAB_DEBUG_SUPPORT 0
136 #define SLAB_SELFTEST 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 /* Legal flag mask for kmem_cache_create(). */
142 #if SLAB_DEBUG_SUPPORT
144 #define SLAB_C_MASK (SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
145 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP| \
148 #define SLAB_C_MASK (SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
149 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
152 #define SLAB_C_MASK (SLAB_HWCACHE_ALIGN|SLAB_NO_REAP|SLAB_HIGH_PACK)
154 #define SLAB_C_MASK (SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
155 #endif /* SLAB_DEBUG_SUPPORT */
157 /* Slab management struct.
158 * Manages the objs in a slab. Placed either at the end of mem allocated
159 * for a slab, or from an internal obj cache (cache_slabp).
160 * Slabs are chained into a partially ordered list; fully used first, partial
161 * next, and then fully free slabs.
162 * The first 4 members are referenced during an alloc/free operation, and
163 * should always appear on the same cache line.
164 * Note: The offset between some members _must_ match offsets within
165 * the kmem_cache_t - see kmem_cache_init() for the checks. */
167 #define SLAB_OFFSET_BITS 16 /* could make this larger for 64bit archs */
169 typedef struct kmem_slab_s
{
170 struct kmem_bufctl_s
*s_freep
; /* ptr to first inactive obj in slab */
171 struct kmem_bufctl_s
*s_index
;
172 unsigned long s_magic
;
173 unsigned long s_inuse
; /* num of objs active in slab */
175 struct kmem_slab_s
*s_nextp
;
176 struct kmem_slab_s
*s_prevp
;
177 void *s_mem
; /* addr of first obj in slab */
178 unsigned long s_offset
:SLAB_OFFSET_BITS
,
182 /* When the slab management is on-slab, this gives the size to use. */
183 #define slab_align_size (L1_CACHE_ALIGN(sizeof(kmem_slab_t)))
185 /* Test for end of slab chain. */
186 #define kmem_slab_end(x) ((kmem_slab_t*)&((x)->c_offset))
189 #define SLAB_MAGIC_ALLOC 0xA5C32F2BUL /* slab is alive */
190 #define SLAB_MAGIC_DESTROYED 0xB2F23C5AUL /* slab has been destroyed */
192 /* Bufctl's are used for linking objs within a slab, identifying what slab an obj
193 * is in, and the address of the associated obj (for sanity checking with off-slab
194 * bufctls). What a bufctl contains depends upon the state of the obj and
195 * the organisation of the cache.
197 typedef struct kmem_bufctl_s
{
199 struct kmem_bufctl_s
*buf_nextp
;
200 kmem_slab_t
*buf_slabp
; /* slab for obj */
205 /* ...shorthand... */
206 #define buf_nextp u.buf_nextp
207 #define buf_slabp u.buf_slabp
208 #define buf_objp u.buf_objp
210 #if SLAB_DEBUG_SUPPORT
211 /* Magic nums for obj red zoning.
212 * Placed in the first word before and the first word after an obj.
214 #define SLAB_RED_MAGIC1 0x5A2CF071UL /* when obj is active */
215 #define SLAB_RED_MAGIC2 0x170FC2A5UL /* when obj is inactive */
217 /* ...and for poisoning */
218 #define SLAB_POISON_BYTE 0x5a /* byte value for poisoning */
219 #define SLAB_POISON_END 0xa5 /* end-byte of poisoning */
221 #endif /* SLAB_DEBUG_SUPPORT */
223 /* Cache struct - manages a cache.
224 * First four members are commonly referenced during an alloc/free operation.
226 struct kmem_cache_s
{
227 kmem_slab_t
*c_freep
; /* first slab w. free objs */
228 unsigned long c_flags
; /* constant flags */
229 unsigned long c_offset
;
230 unsigned long c_num
; /* # of objs per slab */
232 unsigned long c_magic
;
233 unsigned long c_inuse
; /* kept at zero */
234 kmem_slab_t
*c_firstp
; /* first slab in chain */
235 kmem_slab_t
*c_lastp
; /* last slab in chain */
237 spinlock_t c_spinlock
;
238 unsigned long c_growing
;
239 unsigned long c_dflags
; /* dynamic flags */
241 unsigned long c_gfporder
; /* order of pgs per slab (2^n) */
242 void (*c_ctor
)(void *, kmem_cache_t
*, unsigned long); /* constructor func */
243 void (*c_dtor
)(void *, kmem_cache_t
*, unsigned long); /* de-constructor func */
244 unsigned long c_align
; /* alignment of objs */
245 size_t c_colour
; /* cache colouring range */
246 size_t c_colour_next
;/* cache colouring */
247 unsigned long c_failures
;
249 struct kmem_cache_s
*c_nextp
;
250 kmem_cache_t
*c_index_cachep
;
252 unsigned long c_num_active
;
253 unsigned long c_num_allocations
;
254 unsigned long c_high_mark
;
255 unsigned long c_grown
;
256 unsigned long c_reaped
;
258 #endif /* SLAB_STATS */
261 /* internal c_flags */
262 #define SLAB_CFLGS_OFF_SLAB 0x010000UL /* slab management in own cache */
263 #define SLAB_CFLGS_BUFCTL 0x020000UL /* bufctls in own cache */
264 #define SLAB_CFLGS_GENERAL 0x080000UL /* a general cache */
266 /* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
267 #define SLAB_CFLGS_GROWN 0x000002UL /* don't reap a recently grown */
269 #define SLAB_OFF_SLAB(x) ((x) & SLAB_CFLGS_OFF_SLAB)
270 #define SLAB_BUFCTL(x) ((x) & SLAB_CFLGS_BUFCTL)
271 #define SLAB_GROWN(x) ((x) & SLAB_CFLGS_GROWN)
274 #define SLAB_STATS_INC_ACTIVE(x) ((x)->c_num_active++)
275 #define SLAB_STATS_DEC_ACTIVE(x) ((x)->c_num_active--)
276 #define SLAB_STATS_INC_ALLOCED(x) ((x)->c_num_allocations++)
277 #define SLAB_STATS_INC_GROWN(x) ((x)->c_grown++)
278 #define SLAB_STATS_INC_REAPED(x) ((x)->c_reaped++)
279 #define SLAB_STATS_SET_HIGH(x) do { if ((x)->c_num_active > (x)->c_high_mark) \
280 (x)->c_high_mark = (x)->c_num_active; \
282 #define SLAB_STATS_INC_ERR(x) (atomic_inc(&(x)->c_errors))
284 #define SLAB_STATS_INC_ACTIVE(x)
285 #define SLAB_STATS_DEC_ACTIVE(x)
286 #define SLAB_STATS_INC_ALLOCED(x)
287 #define SLAB_STATS_INC_GROWN(x)
288 #define SLAB_STATS_INC_REAPED(x)
289 #define SLAB_STATS_SET_HIGH(x)
290 #define SLAB_STATS_INC_ERR(x)
291 #endif /* SLAB_STATS */
294 #if !SLAB_DEBUG_SUPPORT
295 #error Debug support needed for self-test
297 static void kmem_self_test(void);
298 #endif /* SLAB_SELFTEST */
300 /* c_magic - used to detect 'out of slabs' in __kmem_cache_alloc() */
301 #define SLAB_C_MAGIC 0x4F17A36DUL
303 /* maximum size of an obj (in 2^order pages) */
304 #define SLAB_OBJ_MAX_ORDER 5 /* 32 pages */
306 /* maximum num of pages for a slab (prevents large requests to the VM layer) */
307 #define SLAB_MAX_GFP_ORDER 5 /* 32 pages */
309 /* the 'preferred' minimum num of objs per slab - maybe less for large objs */
310 #define SLAB_MIN_OBJS_PER_SLAB 4
312 /* If the num of objs per slab is <= SLAB_MIN_OBJS_PER_SLAB,
313 * then the page order must be less than this before trying the next order.
315 #define SLAB_BREAK_GFP_ORDER_HI 2
316 #define SLAB_BREAK_GFP_ORDER_LO 1
317 static int slab_break_gfp_order
= SLAB_BREAK_GFP_ORDER_LO
;
319 /* Macros for storing/retrieving the cachep and or slab from the
320 * global 'mem_map'. With off-slab bufctls, these are used to find the
321 * slab an obj belongs to. With kmalloc(), and kfree(), these are used
322 * to find the cache which an obj belongs to.
324 #define SLAB_SET_PAGE_CACHE(pg, x) ((pg)->next = (struct page *)(x))
325 #define SLAB_GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->next)
326 #define SLAB_SET_PAGE_SLAB(pg, x) ((pg)->prev = (struct page *)(x))
327 #define SLAB_GET_PAGE_SLAB(pg) ((kmem_slab_t *)(pg)->prev)
329 /* Size description struct for general caches. */
330 typedef struct cache_sizes
{
332 kmem_cache_t
*cs_cachep
;
335 static cache_sizes_t cache_sizes
[] = {
336 #if PAGE_SIZE == 4096
354 /* Names for the general caches. Not placed into the sizes struct for
355 * a good reason; the string ptr is not needed while searching in kmalloc(),
356 * and would 'get-in-the-way' in the h/w cache.
358 static char *cache_sizes_name
[] = {
359 #if PAGE_SIZE == 4096
376 /* internal cache of cache description objs */
377 static kmem_cache_t cache_cache
= {
378 /* freep, flags */ kmem_slab_end(&cache_cache
), SLAB_NO_REAP
,
379 /* offset, num */ sizeof(kmem_cache_t
), 0,
380 /* c_magic, c_inuse */ SLAB_C_MAGIC
, 0,
381 /* firstp, lastp */ kmem_slab_end(&cache_cache
), kmem_slab_end(&cache_cache
),
382 /* spinlock */ SPIN_LOCK_UNLOCKED
,
385 /* org_size, gfp */ 0, 0,
386 /* ctor, dtor, align */ NULL
, NULL
, L1_CACHE_BYTES
,
387 /* colour, colour_next */ 0, 0,
389 /* name */ "kmem_cache",
390 /* nextp */ &cache_cache
,
394 /* Guard access to the cache-chain. */
395 static struct semaphore cache_chain_sem
;
397 /* Place maintainer for reaping. */
398 static kmem_cache_t
*clock_searchp
= &cache_cache
;
400 /* Internal slab management cache, for when slab management is off-slab. */
401 static kmem_cache_t
*cache_slabp
= NULL
;
403 /* Max number of objs-per-slab for caches which use bufctl's.
404 * Needed to avoid a possible looping condition in kmem_cache_grow().
406 static unsigned long bufctl_limit
= 0;
408 /* Initialisation - setup the `cache' cache. */
409 long __init
kmem_cache_init(long start
, long end
)
413 #define kmem_slab_offset(x) ((unsigned long)&((kmem_slab_t *)0)->x)
414 #define kmem_slab_diff(a,b) (kmem_slab_offset(a) - kmem_slab_offset(b))
415 #define kmem_cache_offset(x) ((unsigned long)&((kmem_cache_t *)0)->x)
416 #define kmem_cache_diff(a,b) (kmem_cache_offset(a) - kmem_cache_offset(b))
418 /* Sanity checks... */
419 if (kmem_cache_diff(c_firstp
, c_magic
) != kmem_slab_diff(s_nextp
, s_magic
) ||
420 kmem_cache_diff(c_firstp
, c_inuse
) != kmem_slab_diff(s_nextp
, s_inuse
) ||
421 ((kmem_cache_offset(c_lastp
) -
422 ((unsigned long) kmem_slab_end((kmem_cache_t
*)NULL
))) !=
423 kmem_slab_offset(s_prevp
)) ||
424 kmem_cache_diff(c_lastp
, c_firstp
) != kmem_slab_diff(s_prevp
, s_nextp
)) {
425 /* Offsets to the magic are incorrect, either the structures have
426 * been incorrectly changed, or adjustments are needed for your
429 panic("kmem_cache_init(): Offsets are wrong - I've been messed with!");
432 #undef kmem_cache_offset
433 #undef kmem_cache_diff
434 #undef kmem_slab_offset
435 #undef kmem_slab_diff
437 cache_chain_sem
= MUTEX
;
439 size
= cache_cache
.c_offset
+ sizeof(kmem_bufctl_t
);
440 size
+= (L1_CACHE_BYTES
-1);
441 size
&= ~(L1_CACHE_BYTES
-1);
442 cache_cache
.c_offset
= size
-sizeof(kmem_bufctl_t
);
444 i
= (PAGE_SIZE
<<cache_cache
.c_gfporder
)-slab_align_size
;
445 cache_cache
.c_num
= i
/ size
; /* num of objs per slab */
447 /* Cache colouring. */
448 cache_cache
.c_colour
= (i
-(cache_cache
.c_num
*size
))/L1_CACHE_BYTES
;
449 cache_cache
.c_colour_next
= cache_cache
.c_colour
;
452 * Fragmentation resistance on low memory - only use bigger
453 * page orders on machines with more than 32MB of memory.
455 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
456 slab_break_gfp_order
= SLAB_BREAK_GFP_ORDER_HI
;
460 /* Initialisation - setup remaining internal and general caches.
461 * Called after the gfp() functions have been enabled, and before smp_init().
463 void __init
kmem_cache_sizes_init(void)
465 unsigned int found
= 0;
467 cache_slabp
= kmem_cache_create("slab_cache", sizeof(kmem_slab_t
),
468 0, SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
470 char **names
= cache_sizes_name
;
471 cache_sizes_t
*sizes
= cache_sizes
;
473 /* For performance, all the general caches are L1 aligned.
474 * This should be particularly beneficial on SMP boxes, as it
475 * eliminates "false sharing".
476 * Note for systems short on memory removing the alignment will
477 * allow tighter packing of the smaller caches. */
478 if (!(sizes
->cs_cachep
=
479 kmem_cache_create(*names
++, sizes
->cs_size
,
480 0, SLAB_HWCACHE_ALIGN
, NULL
, NULL
)))
483 /* Inc off-slab bufctl limit until the ceiling is hit. */
484 if (SLAB_BUFCTL(sizes
->cs_cachep
->c_flags
))
488 (sizes
->cs_size
/sizeof(kmem_bufctl_t
));
490 sizes
->cs_cachep
->c_flags
|= SLAB_CFLGS_GENERAL
;
492 } while (sizes
->cs_size
);
495 #endif /* SLAB_SELFTEST */
499 panic("kmem_cache_sizes_init: Error creating caches");
503 /* Interface to system's page allocator. Dma pts to non-zero if all
504 * of memory is DMAable. No need to hold the cache-lock.
507 kmem_getpages(kmem_cache_t
*cachep
, unsigned long flags
, unsigned int *dma
)
511 *dma
= flags
& SLAB_DMA
;
512 addr
= (void*) __get_free_pages(flags
, cachep
->c_gfporder
);
513 /* Assume that now we have the pages no one else can legally
514 * messes with the 'struct page's.
515 * However vm_scan() might try to test the structure to see if
516 * it is a named-page or buffer-page. The members it tests are
517 * of no interest here.....
520 /* Need to check if can dma. */
521 struct page
*page
= mem_map
+ MAP_NR(addr
);
522 *dma
= 1<<cachep
->c_gfporder
;
524 if (!PageDMA(page
)) {
534 /* Interface to system's page release. */
536 kmem_freepages(kmem_cache_t
*cachep
, void *addr
)
538 unsigned long i
= (1<<cachep
->c_gfporder
);
539 struct page
*page
= &mem_map
[MAP_NR(addr
)];
541 /* free_pages() does not clear the type bit - we do that.
542 * The pages have been unlinked from their cache-slab,
543 * but their 'struct page's might be accessed in
544 * vm_scan(). Shouldn't be a worry.
550 free_pages((unsigned long)addr
, cachep
->c_gfporder
);
553 #if SLAB_DEBUG_SUPPORT
555 kmem_poison_obj(kmem_cache_t
*cachep
, void *addr
)
557 memset(addr
, SLAB_POISON_BYTE
, cachep
->c_org_size
);
558 *(unsigned char *)(addr
+cachep
->c_org_size
-1) = SLAB_POISON_END
;
562 kmem_check_poison_obj(kmem_cache_t
*cachep
, void *addr
)
565 end
= memchr(addr
, SLAB_POISON_END
, cachep
->c_org_size
);
566 if (end
!= (addr
+cachep
->c_org_size
-1))
570 #endif /* SLAB_DEBUG_SUPPORT */
572 /* Three slab chain funcs - all called with ints disabled and the appropriate
576 kmem_slab_unlink(kmem_slab_t
*slabp
)
578 kmem_slab_t
*prevp
= slabp
->s_prevp
;
579 kmem_slab_t
*nextp
= slabp
->s_nextp
;
580 prevp
->s_nextp
= nextp
;
581 nextp
->s_prevp
= prevp
;
585 kmem_slab_link_end(kmem_cache_t
*cachep
, kmem_slab_t
*slabp
)
587 kmem_slab_t
*lastp
= cachep
->c_lastp
;
588 slabp
->s_nextp
= kmem_slab_end(cachep
);
589 slabp
->s_prevp
= lastp
;
590 cachep
->c_lastp
= slabp
;
591 lastp
->s_nextp
= slabp
;
595 kmem_slab_link_free(kmem_cache_t
*cachep
, kmem_slab_t
*slabp
)
597 kmem_slab_t
*nextp
= cachep
->c_freep
;
598 kmem_slab_t
*prevp
= nextp
->s_prevp
;
599 slabp
->s_nextp
= nextp
;
600 slabp
->s_prevp
= prevp
;
601 nextp
->s_prevp
= slabp
;
602 slabp
->s_prevp
->s_nextp
= slabp
;
605 /* Destroy all the objs in a slab, and release the mem back to the system.
606 * Before calling the slab must have been unlinked from the cache.
607 * The cache-lock is not held/needed.
610 kmem_slab_destroy(kmem_cache_t
*cachep
, kmem_slab_t
*slabp
)
613 #if SLAB_DEBUG_SUPPORT
614 || cachep
->c_flags
& (SLAB_POISON
| SLAB_RED_ZONE
)
615 #endif /*SLAB_DEBUG_SUPPORT*/
617 /* Doesn't use the bufctl ptrs to find objs. */
618 unsigned long num
= cachep
->c_num
;
619 void *objp
= slabp
->s_mem
;
621 #if SLAB_DEBUG_SUPPORT
622 if (cachep
->c_flags
& SLAB_RED_ZONE
) {
623 if (*((unsigned long*)(objp
)) != SLAB_RED_MAGIC1
)
624 printk(KERN_ERR
"kmem_slab_destroy: "
625 "Bad front redzone - %s\n",
627 objp
+= BYTES_PER_WORD
;
628 if (*((unsigned long*)(objp
+cachep
->c_org_size
)) !=
630 printk(KERN_ERR
"kmem_slab_destroy: "
631 "Bad rear redzone - %s\n",
635 #endif /*SLAB_DEBUG_SUPPORT*/
636 (cachep
->c_dtor
)(objp
, cachep
, 0);
637 #if SLAB_DEBUG_SUPPORT
638 else if (cachep
->c_flags
& SLAB_POISON
) {
639 if (kmem_check_poison_obj(cachep
, objp
))
640 printk(KERN_ERR
"kmem_slab_destroy: "
641 "Bad poison - %s\n", cachep
->c_name
);
643 if (cachep
->c_flags
& SLAB_RED_ZONE
)
644 objp
-= BYTES_PER_WORD
;
645 #endif /* SLAB_DEBUG_SUPPORT */
646 objp
+= cachep
->c_offset
;
648 objp
+= sizeof(kmem_bufctl_t
);
652 slabp
->s_magic
= SLAB_MAGIC_DESTROYED
;
653 kmem_freepages(cachep
, slabp
->s_mem
-slabp
->s_offset
);
655 kmem_cache_free(cachep
->c_index_cachep
, slabp
->s_index
);
656 if (SLAB_OFF_SLAB(cachep
->c_flags
))
657 kmem_cache_free(cache_slabp
, slabp
);
660 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
662 kmem_cache_cal_waste(unsigned long gfporder
, size_t size
, size_t extra
,
663 unsigned long flags
, size_t *left_over
, unsigned long *num
)
665 size_t wastage
= PAGE_SIZE
<<gfporder
;
667 if (SLAB_OFF_SLAB(flags
))
670 gfporder
= slab_align_size
;
672 *num
= wastage
/ size
;
673 wastage
-= (*num
* size
);
674 *left_over
= wastage
;
676 return (wastage
+ gfporder
+ (extra
* *num
));
680 * Returns a ptr to the cache on success, NULL on failure.
681 * Cannot be called within a int, but can be interrupted.
682 * NOTE: The 'name' is assumed to be memory that is _not_ going to disappear.
685 kmem_cache_create(const char *name
, size_t size
, size_t offset
,
686 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
687 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
689 const char *func_nm
= KERN_ERR
"kmem_create: ";
690 kmem_cache_t
*searchp
;
691 kmem_cache_t
*cachep
=NULL
;
696 /* Sanity checks... */
699 printk("%sNULL ptr\n", func_nm
);
702 if (in_interrupt()) {
703 printk("%sCalled during int - %s\n", func_nm
, name
);
707 if (size
< BYTES_PER_WORD
) {
708 printk("%sSize too small %d - %s\n", func_nm
, (int) size
, name
);
709 size
= BYTES_PER_WORD
;
712 if (size
> ((1<<SLAB_OBJ_MAX_ORDER
)*PAGE_SIZE
)) {
713 printk("%sSize too large %d - %s\n", func_nm
, (int) size
, name
);
718 /* Decon, but no con - doesn't make sense */
719 printk("%sDecon but no con - %s\n", func_nm
, name
);
723 if (offset
< 0 || offset
> size
) {
724 printk("%sOffset weird %d - %s\n", func_nm
, (int) offset
, name
);
728 #if SLAB_DEBUG_SUPPORT
729 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
730 /* No constructor, but inital state check requested */
731 printk("%sNo con, but init state check requested - %s\n", func_nm
, name
);
732 flags
&= ~SLAB_DEBUG_INITIAL
;
735 if ((flags
& SLAB_POISON
) && ctor
) {
736 /* request for poisoning, but we can't do that with a constructor */
737 printk("%sPoisoning requested, but con given - %s\n", func_nm
, name
);
738 flags
&= ~SLAB_POISON
;
741 if ((flags
& SLAB_HIGH_PACK
) && ctor
) {
742 printk("%sHigh pack requested, but con given - %s\n", func_nm
, name
);
743 flags
&= ~SLAB_HIGH_PACK
;
745 if ((flags
& SLAB_HIGH_PACK
) && (flags
& (SLAB_POISON
|SLAB_RED_ZONE
))) {
746 printk("%sHigh pack requested, but with poisoning/red-zoning - %s\n",
748 flags
&= ~SLAB_HIGH_PACK
;
751 #endif /* SLAB_DEBUG_SUPPORT */
752 #endif /* SLAB_MGMT_CHECKS */
754 /* Always checks flags, a caller might be expecting debug
755 * support which isn't available.
757 if (flags
& ~SLAB_C_MASK
) {
758 printk("%sIllgl flg %lX - %s\n", func_nm
, flags
, name
);
759 flags
&= SLAB_C_MASK
;
762 /* Get cache's description obj. */
763 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
766 memset(cachep
, 0, sizeof(kmem_cache_t
));
768 /* Check that size is in terms of words. This is needed to avoid
769 * unaligned accesses for some archs when redzoning is used, and makes
770 * sure any on-slab bufctl's are also correctly aligned.
772 if (size
& (BYTES_PER_WORD
-1)) {
773 size
+= (BYTES_PER_WORD
-1);
774 size
&= ~(BYTES_PER_WORD
-1);
775 printk("%sForcing size word alignment - %s\n", func_nm
, name
);
778 cachep
->c_org_size
= size
;
779 #if SLAB_DEBUG_SUPPORT
780 if (flags
& SLAB_RED_ZONE
) {
781 /* There is no point trying to honour cache alignment when redzoning. */
782 flags
&= ~SLAB_HWCACHE_ALIGN
;
783 size
+= 2*BYTES_PER_WORD
; /* words for redzone */
785 #endif /* SLAB_DEBUG_SUPPORT */
787 align
= BYTES_PER_WORD
;
788 if (flags
& SLAB_HWCACHE_ALIGN
)
789 align
= L1_CACHE_BYTES
;
791 /* Determine if the slab management and/or bufclts are 'on' or 'off' slab. */
792 extra
= sizeof(kmem_bufctl_t
);
793 if (size
< (PAGE_SIZE
>>3)) {
794 /* Size is small(ish). Use packing where bufctl size per
795 * obj is low, and slab management is on-slab.
798 if ((flags
& SLAB_HIGH_PACK
)) {
799 /* Special high packing for small objects
800 * (mainly for vm_mapping structs, but
801 * others can use it).
803 if (size
== (L1_CACHE_BYTES
/4) || size
== (L1_CACHE_BYTES
/2) ||
804 size
== L1_CACHE_BYTES
) {
805 /* The bufctl is stored with the object. */
808 flags
&= ~SLAB_HIGH_PACK
;
812 /* Size is large, assume best to place the slab management obj
813 * off-slab (should allow better packing of objs).
815 flags
|= SLAB_CFLGS_OFF_SLAB
;
816 if (!(size
& ~PAGE_MASK
) || size
== (PAGE_SIZE
/2)
817 || size
== (PAGE_SIZE
/4) || size
== (PAGE_SIZE
/8)) {
818 /* To avoid waste the bufctls are off-slab... */
819 flags
|= SLAB_CFLGS_BUFCTL
;
821 } /* else slab management is off-slab, but freelist pointers are on. */
825 if (flags
& SLAB_HWCACHE_ALIGN
) {
826 /* Need to adjust size so that objs are cache aligned. */
827 if (size
> (L1_CACHE_BYTES
/2)) {
828 size_t words
= size
% L1_CACHE_BYTES
;
830 size
+= (L1_CACHE_BYTES
-words
);
832 /* Small obj size, can get at least two per cache line. */
833 int num_per_line
= L1_CACHE_BYTES
/size
;
834 left_over
= L1_CACHE_BYTES
- (num_per_line
*size
);
836 /* Need to adjust size so objs cache align. */
837 if (left_over
%num_per_line
) {
838 /* Odd num of objs per line - fixup. */
842 size
+= (left_over
/num_per_line
);
845 } else if (!(size
%L1_CACHE_BYTES
)) {
846 /* Size happens to cache align... */
847 flags
|= SLAB_HWCACHE_ALIGN
;
848 align
= L1_CACHE_BYTES
;
851 /* Cal size (in pages) of slabs, and the num of objs per slab.
852 * This could be made much more intelligent. For now, try to avoid
853 * using high page-orders for slabs. When the gfp() funcs are more
854 * friendly towards high-order requests, this should be changed.
858 unsigned int break_flag
= 0;
860 wastage
= kmem_cache_cal_waste(cachep
->c_gfporder
, size
, extra
,
861 flags
, &left_over
, &cachep
->c_num
);
866 if (SLAB_BUFCTL(flags
) && cachep
->c_num
> bufctl_limit
) {
867 /* Oops, this num of objs will cause problems. */
868 cachep
->c_gfporder
--;
872 if (cachep
->c_gfporder
== SLAB_MAX_GFP_ORDER
)
875 /* Large num of objs is good, but v. large slabs are currently
876 * bad for the gfp()s.
878 if (cachep
->c_num
<= SLAB_MIN_OBJS_PER_SLAB
) {
879 if (cachep
->c_gfporder
< slab_break_gfp_order
)
883 /* Stop caches with small objs having a large num of pages. */
884 if (left_over
<= slab_align_size
)
886 if ((wastage
*8) <= (PAGE_SIZE
<<cachep
->c_gfporder
))
887 break; /* Acceptable internal fragmentation. */
889 cachep
->c_gfporder
++;
892 /* If the slab has been placed off-slab, and we have enough space then
893 * move it on-slab. This is at the expense of any extra colouring.
895 if ((flags
& SLAB_CFLGS_OFF_SLAB
) && !SLAB_BUFCTL(flags
) &&
896 left_over
>= slab_align_size
) {
897 flags
&= ~SLAB_CFLGS_OFF_SLAB
;
898 left_over
-= slab_align_size
;
901 /* Offset must be a factor of the alignment. */
903 offset
&= ~(align
-1);
905 /* Mess around with the offset alignment. */
908 } else if (left_over
< offset
) {
910 if (flags
& SLAB_HWCACHE_ALIGN
) {
911 if (left_over
< offset
)
914 /* Offset is BYTES_PER_WORD, and left_over is at
915 * least BYTES_PER_WORD.
917 if (left_over
>= (BYTES_PER_WORD
*2)) {
919 if (left_over
>= (BYTES_PER_WORD
*4))
923 } else if (!offset
) {
924 /* No offset requested, but space enough - give one. */
925 offset
= left_over
/align
;
926 if (flags
& SLAB_HWCACHE_ALIGN
) {
928 /* A large number of colours - use a larger alignment. */
942 printk("%s: Left_over:%d Align:%d Size:%d\n", name
, left_over
, offset
, size
);
945 if ((cachep
->c_align
= (unsigned long) offset
))
946 cachep
->c_colour
= (left_over
/offset
);
947 cachep
->c_colour_next
= cachep
->c_colour
;
949 /* If the bufctl's are on-slab, c_offset does not include the size of bufctl. */
950 if (!SLAB_BUFCTL(flags
))
951 size
-= sizeof(kmem_bufctl_t
);
953 cachep
->c_index_cachep
=
954 kmem_find_general_cachep(cachep
->c_num
*sizeof(kmem_bufctl_t
));
955 cachep
->c_offset
= (unsigned long) size
;
956 cachep
->c_freep
= kmem_slab_end(cachep
);
957 cachep
->c_firstp
= kmem_slab_end(cachep
);
958 cachep
->c_lastp
= kmem_slab_end(cachep
);
959 cachep
->c_flags
= flags
;
960 cachep
->c_ctor
= ctor
;
961 cachep
->c_dtor
= dtor
;
962 cachep
->c_magic
= SLAB_C_MAGIC
;
963 cachep
->c_name
= name
; /* Simply point to the name. */
964 spin_lock_init(&cachep
->c_spinlock
);
966 /* Need the semaphore to access the chain. */
967 down(&cache_chain_sem
);
968 searchp
= &cache_cache
;
970 /* The name field is constant - no lock needed. */
971 if (!strcmp(searchp
->c_name
, name
)) {
972 printk("%sDup name - %s\n", func_nm
, name
);
975 searchp
= searchp
->c_nextp
;
976 } while (searchp
!= &cache_cache
);
978 /* There is no reason to lock our new cache before we
979 * link it in - no one knows about it yet...
981 cachep
->c_nextp
= cache_cache
.c_nextp
;
982 cache_cache
.c_nextp
= cachep
;
983 up(&cache_chain_sem
);
988 /* Shrink a cache. Releases as many slabs as possible for a cache.
989 * It is expected this function will be called by a module when it is
990 * unloaded. The cache is _not_ removed, this creates too many problems and
991 * the cache-structure does not take up much room. A module should keep its
992 * cache pointer(s) in unloaded memory, so when reloaded it knows the cache
993 * is available. To help debugging, a zero exit status indicates all slabs
997 kmem_cache_shrink(kmem_cache_t
*cachep
)
999 kmem_cache_t
*searchp
;
1004 printk(KERN_ERR
"kmem_shrink: NULL ptr\n");
1007 if (in_interrupt()) {
1008 printk(KERN_ERR
"kmem_shrink: Called during int - %s\n", cachep
->c_name
);
1012 /* Find the cache in the chain of caches. */
1013 down(&cache_chain_sem
); /* Semaphore is needed. */
1014 searchp
= &cache_cache
;
1015 for (;searchp
->c_nextp
!= &cache_cache
; searchp
= searchp
->c_nextp
) {
1016 if (searchp
->c_nextp
!= cachep
)
1019 /* Accessing clock_searchp is safe - we hold the mutex. */
1020 if (cachep
== clock_searchp
)
1021 clock_searchp
= cachep
->c_nextp
;
1024 up(&cache_chain_sem
);
1025 printk(KERN_ERR
"kmem_shrink: Invalid cache addr %p\n", cachep
);
1028 /* Release the semaphore before getting the cache-lock. This could
1029 * mean multiple engines are shrinking the cache, but so what.
1031 up(&cache_chain_sem
);
1032 spin_lock_irq(&cachep
->c_spinlock
);
1034 /* If the cache is growing, stop shrinking. */
1035 while (!cachep
->c_growing
) {
1036 slabp
= cachep
->c_lastp
;
1037 if (slabp
->s_inuse
|| slabp
== kmem_slab_end(cachep
))
1039 kmem_slab_unlink(slabp
);
1040 spin_unlock_irq(&cachep
->c_spinlock
);
1041 kmem_slab_destroy(cachep
, slabp
);
1042 spin_lock_irq(&cachep
->c_spinlock
);
1045 if (cachep
->c_lastp
== kmem_slab_end(cachep
))
1046 ret
--; /* Cache is empty. */
1047 spin_unlock_irq(&cachep
->c_spinlock
);
1051 /* Get the memory for a slab management obj. */
1052 static inline kmem_slab_t
*
1053 kmem_cache_slabmgmt(kmem_cache_t
*cachep
, void *objp
, int local_flags
)
1057 if (SLAB_OFF_SLAB(cachep
->c_flags
)) {
1058 /* Slab management obj is off-slab. */
1059 slabp
= kmem_cache_alloc(cache_slabp
, local_flags
);
1061 /* Slab management at end of slab memory, placed so that
1062 * the position is 'coloured'.
1065 end
= objp
+ (cachep
->c_num
* cachep
->c_offset
);
1066 if (!SLAB_BUFCTL(cachep
->c_flags
))
1067 end
+= (cachep
->c_num
* sizeof(kmem_bufctl_t
));
1068 slabp
= (kmem_slab_t
*) L1_CACHE_ALIGN((unsigned long)end
);
1074 slabp
->s_index
= NULL
;
1081 kmem_cache_init_objs(kmem_cache_t
* cachep
, kmem_slab_t
* slabp
, void *objp
,
1082 unsigned long ctor_flags
)
1084 kmem_bufctl_t
**bufpp
= &slabp
->s_freep
;
1085 unsigned long num
= cachep
->c_num
-1;
1088 #if SLAB_DEBUG_SUPPORT
1089 if (cachep
->c_flags
& SLAB_RED_ZONE
) {
1090 *((unsigned long*)(objp
)) = SLAB_RED_MAGIC1
;
1091 objp
+= BYTES_PER_WORD
;
1092 *((unsigned long*)(objp
+cachep
->c_org_size
)) = SLAB_RED_MAGIC1
;
1094 #endif /* SLAB_DEBUG_SUPPORT */
1096 /* Constructors are not allowed to allocate memory from the same cache
1097 * which they are a constructor for. Otherwise, deadlock.
1098 * They must also be threaded.
1101 cachep
->c_ctor(objp
, cachep
, ctor_flags
);
1102 #if SLAB_DEBUG_SUPPORT
1103 else if (cachep
->c_flags
& SLAB_POISON
) {
1104 /* need to poison the objs */
1105 kmem_poison_obj(cachep
, objp
);
1108 if (cachep
->c_flags
& SLAB_RED_ZONE
) {
1109 if (*((unsigned long*)(objp
+cachep
->c_org_size
)) !=
1111 *((unsigned long*)(objp
+cachep
->c_org_size
)) =
1113 printk(KERN_ERR
"kmem_init_obj: Bad rear redzone "
1114 "after constructor - %s\n", cachep
->c_name
);
1116 objp
-= BYTES_PER_WORD
;
1117 if (*((unsigned long*)(objp
)) != SLAB_RED_MAGIC1
) {
1118 *((unsigned long*)(objp
)) = SLAB_RED_MAGIC1
;
1119 printk(KERN_ERR
"kmem_init_obj: Bad front redzone "
1120 "after constructor - %s\n", cachep
->c_name
);
1123 #endif /* SLAB_DEBUG_SUPPORT */
1125 objp
+= cachep
->c_offset
;
1126 if (!slabp
->s_index
) {
1128 objp
+= sizeof(kmem_bufctl_t
);
1130 *bufpp
= &slabp
->s_index
[num
];
1131 bufpp
= &(*bufpp
)->buf_nextp
;
1137 /* Grow (by 1) the number of slabs within a cache. This is called by
1138 * kmem_cache_alloc() when there are no active objs left in a cache.
1141 kmem_cache_grow(kmem_cache_t
* cachep
, int flags
)
1147 unsigned int dma
, local_flags
;
1148 unsigned long ctor_flags
;
1149 unsigned long save_flags
;
1151 /* Be lazy and only check for valid flags here,
1152 * keeping it out of the critical path in kmem_cache_alloc().
1154 if (flags
& ~(SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
)) {
1155 printk(KERN_WARNING
"kmem_grow: Illegal flgs %X (correcting) - %s\n",
1156 flags
, cachep
->c_name
);
1157 flags
&= (SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
);
1160 if (flags
& SLAB_NO_GROW
)
1163 /* The test for missing atomic flag is performed here, rather than
1164 * the more obvious place, simply to reduce the critical path length
1165 * in kmem_cache_alloc(). If a caller is slightly mis-behaving they
1166 * will eventually be caught here (where it matters).
1168 if (in_interrupt() && (flags
& SLAB_LEVEL_MASK
) != SLAB_ATOMIC
) {
1169 printk(KERN_ERR
"kmem_grow: Called nonatomically from int - %s\n",
1171 flags
&= ~SLAB_LEVEL_MASK
;
1172 flags
|= SLAB_ATOMIC
;
1174 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
1175 local_flags
= (flags
& SLAB_LEVEL_MASK
);
1176 if (local_flags
== SLAB_ATOMIC
) {
1177 /* Not allowed to sleep. Need to tell a constructor about
1178 * this - it might need to know...
1180 ctor_flags
|= SLAB_CTOR_ATOMIC
;
1183 /* About to mess with non-constant members - lock. */
1184 spin_lock_irqsave(&cachep
->c_spinlock
, save_flags
);
1186 /* Get colour for the slab, and cal the next value. */
1187 if (!(offset
= cachep
->c_colour_next
--))
1188 cachep
->c_colour_next
= cachep
->c_colour
;
1189 offset
*= cachep
->c_align
;
1190 cachep
->c_dflags
= SLAB_CFLGS_GROWN
;
1192 cachep
->c_growing
++;
1194 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1196 /* A series of memory allocations for a new slab.
1197 * Neither the cache-chain semaphore, or cache-lock, are
1198 * held, but the incrementing c_growing prevents this
1199 * this cache from being reaped or shrunk.
1200 * Note: The cache could be selected in for reaping in
1201 * kmem_cache_reap(), but when the final test is made the
1202 * growing value will be seen.
1205 /* Get mem for the objs. */
1206 if (!(objp
= kmem_getpages(cachep
, flags
, &dma
)))
1209 /* Get slab management. */
1210 if (!(slabp
= kmem_cache_slabmgmt(cachep
, objp
+offset
, local_flags
)))
1214 if (SLAB_BUFCTL(cachep
->c_flags
)) {
1215 slabp
->s_index
= kmem_cache_alloc(cachep
->c_index_cachep
, local_flags
);
1216 if (!slabp
->s_index
)
1220 /* Nasty!!!!!! I hope this is OK. */
1221 dma
= 1 << cachep
->c_gfporder
;
1222 page
= &mem_map
[MAP_NR(objp
)];
1224 SLAB_SET_PAGE_CACHE(page
, cachep
);
1225 SLAB_SET_PAGE_SLAB(page
, slabp
);
1230 slabp
->s_offset
= offset
; /* It will fit... */
1231 objp
+= offset
; /* Address of first object. */
1232 slabp
->s_mem
= objp
;
1234 /* For on-slab bufctls, c_offset is the distance between the start of
1235 * an obj and its related bufctl. For off-slab bufctls, c_offset is
1236 * the distance between objs in the slab.
1238 kmem_cache_init_objs(cachep
, slabp
, objp
, ctor_flags
);
1240 spin_lock_irq(&cachep
->c_spinlock
);
1242 /* Make slab active. */
1243 slabp
->s_magic
= SLAB_MAGIC_ALLOC
;
1244 kmem_slab_link_end(cachep
, slabp
);
1245 if (cachep
->c_freep
== kmem_slab_end(cachep
))
1246 cachep
->c_freep
= slabp
;
1247 SLAB_STATS_INC_GROWN(cachep
);
1248 cachep
->c_failures
= 0;
1249 cachep
->c_growing
--;
1251 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1254 if (SLAB_OFF_SLAB(cachep
->c_flags
))
1255 kmem_cache_free(cache_slabp
, slabp
);
1257 kmem_freepages(cachep
, objp
);
1259 spin_lock_irq(&cachep
->c_spinlock
);
1260 if (local_flags
!= SLAB_ATOMIC
&& cachep
->c_gfporder
) {
1261 /* For large order (>0) slabs, we try again.
1262 * Needed because the gfp() functions are not good at giving
1263 * out contiguous pages unless pushed (but do not push too hard).
1265 if (cachep
->c_failures
++ < 4 && cachep
->c_freep
== kmem_slab_end(cachep
))
1267 cachep
->c_failures
= 1; /* Memory is low, don't try as hard next time. */
1269 cachep
->c_growing
--;
1270 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1275 kmem_report_alloc_err(const char *str
, kmem_cache_t
* cachep
)
1278 SLAB_STATS_INC_ERR(cachep
); /* this is atomic */
1279 printk(KERN_ERR
"kmem_alloc: %s (name=%s)\n",
1280 str
, cachep
? cachep
->c_name
: "unknown");
1284 kmem_report_free_err(const char *str
, const void *objp
, kmem_cache_t
* cachep
)
1287 SLAB_STATS_INC_ERR(cachep
);
1288 printk(KERN_ERR
"kmem_free: %s (objp=%p, name=%s)\n",
1289 str
, objp
, cachep
? cachep
->c_name
: "unknown");
1292 /* Search for a slab whose objs are suitable for DMA.
1293 * Note: since testing the first free slab (in __kmem_cache_alloc()),
1294 * ints must not have been enabled, or the cache-lock released!
1296 static inline kmem_slab_t
*
1297 kmem_cache_search_dma(kmem_cache_t
* cachep
)
1299 kmem_slab_t
*slabp
= cachep
->c_freep
->s_nextp
;
1301 for (; slabp
!= kmem_slab_end(cachep
); slabp
= slabp
->s_nextp
) {
1302 if (!(slabp
->s_dma
))
1304 kmem_slab_unlink(slabp
);
1305 kmem_slab_link_free(cachep
, slabp
);
1306 cachep
->c_freep
= slabp
;
1312 #if SLAB_DEBUG_SUPPORT
1313 /* Perform extra freeing checks. Currently, this check is only for caches
1314 * that use bufctl structures within the slab. Those which use bufctl's
1315 * from the internal cache have a reasonable check when the address is
1316 * searched for. Called with the cache-lock held.
1319 kmem_extra_free_checks(kmem_cache_t
* cachep
, kmem_bufctl_t
*search_bufp
,
1320 kmem_bufctl_t
*bufp
, void * objp
)
1322 if (SLAB_BUFCTL(cachep
->c_flags
))
1325 /* Check slab's freelist to see if this obj is there. */
1326 for (; search_bufp
; search_bufp
= search_bufp
->buf_nextp
) {
1327 if (search_bufp
!= bufp
)
1333 #endif /* SLAB_DEBUG_SUPPORT */
1335 /* Called with cache lock held. */
1337 kmem_cache_full_free(kmem_cache_t
*cachep
, kmem_slab_t
*slabp
)
1339 if (slabp
->s_nextp
->s_inuse
) {
1340 /* Not at correct position. */
1341 if (cachep
->c_freep
== slabp
)
1342 cachep
->c_freep
= slabp
->s_nextp
;
1343 kmem_slab_unlink(slabp
);
1344 kmem_slab_link_end(cachep
, slabp
);
1348 /* Called with cache lock held. */
1350 kmem_cache_one_free(kmem_cache_t
*cachep
, kmem_slab_t
*slabp
)
1352 if (slabp
->s_nextp
->s_inuse
== cachep
->c_num
) {
1353 kmem_slab_unlink(slabp
);
1354 kmem_slab_link_free(cachep
, slabp
);
1356 cachep
->c_freep
= slabp
;
1359 /* Returns a ptr to an obj in the given cache. */
1360 static inline void *
1361 __kmem_cache_alloc(kmem_cache_t
*cachep
, int flags
)
1364 kmem_bufctl_t
*bufp
;
1366 unsigned long save_flags
;
1371 spin_lock_irqsave(&cachep
->c_spinlock
, save_flags
);
1373 /* Get slab alloc is to come from. */
1374 slabp
= cachep
->c_freep
;
1376 /* Magic is a sanity check _and_ says if we need a new slab. */
1377 if (slabp
->s_magic
!= SLAB_MAGIC_ALLOC
)
1378 goto alloc_new_slab
;
1379 /* DMA requests are 'rare' - keep out of the critical path. */
1380 if (flags
& SLAB_DMA
)
1383 SLAB_STATS_INC_ALLOCED(cachep
);
1384 SLAB_STATS_INC_ACTIVE(cachep
);
1385 SLAB_STATS_SET_HIGH(cachep
);
1387 bufp
= slabp
->s_freep
;
1388 slabp
->s_freep
= bufp
->buf_nextp
;
1389 if (slabp
->s_freep
) {
1391 if (!slabp
->s_index
) {
1392 bufp
->buf_slabp
= slabp
;
1393 objp
= ((void*)bufp
) - cachep
->c_offset
;
1395 /* The lock is not needed by the red-zone or poison ops, and the
1396 * obj has been removed from the slab. Should be safe to drop
1399 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1400 #if SLAB_DEBUG_SUPPORT
1401 if (cachep
->c_flags
& SLAB_RED_ZONE
)
1404 if ((cachep
->c_flags
& SLAB_POISON
) && kmem_check_poison_obj(cachep
, objp
))
1405 kmem_report_alloc_err("Bad poison", cachep
);
1406 #endif /* SLAB_DEBUG_SUPPORT */
1409 /* Update index ptr. */
1410 objp
= ((bufp
-slabp
->s_index
)*cachep
->c_offset
) + slabp
->s_mem
;
1411 bufp
->buf_objp
= objp
;
1414 cachep
->c_freep
= slabp
->s_nextp
;
1417 #if SLAB_DEBUG_SUPPORT
1419 /* Set alloc red-zone, and check old one. */
1420 if (xchg((unsigned long *)objp
, SLAB_RED_MAGIC2
) != SLAB_RED_MAGIC1
)
1421 kmem_report_alloc_err("Bad front redzone", cachep
);
1422 objp
+= BYTES_PER_WORD
;
1423 if (xchg((unsigned long *)(objp
+cachep
->c_org_size
), SLAB_RED_MAGIC2
) != SLAB_RED_MAGIC1
)
1424 kmem_report_alloc_err("Bad rear redzone", cachep
);
1426 #endif /* SLAB_DEBUG_SUPPORT */
1429 if (slabp
->s_dma
|| (slabp
= kmem_cache_search_dma(cachep
))!=kmem_slab_end(cachep
))
1432 /* Either out of slabs, or magic number corruption. */
1433 if (slabp
== kmem_slab_end(cachep
)) {
1434 /* Need a new slab. Release the lock before calling kmem_cache_grow().
1435 * This allows objs to be released back into the cache while growing.
1437 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1438 if (kmem_cache_grow(cachep
, flags
)) {
1439 /* Someone may have stolen our objs. Doesn't matter, we'll
1440 * just come back here again.
1442 spin_lock_irq(&cachep
->c_spinlock
);
1445 /* Couldn't grow, but some objs may have been freed. */
1446 spin_lock_irq(&cachep
->c_spinlock
);
1447 if (cachep
->c_freep
!= kmem_slab_end(cachep
))
1450 /* Very serious error - maybe panic() here? */
1451 kmem_report_alloc_err("Bad slab magic (corrupt)", cachep
);
1453 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1457 kmem_report_alloc_err("NULL ptr", NULL
);
1461 /* Release an obj back to its cache. If the obj has a constructed state,
1462 * it should be in this state _before_ it is released.
1465 __kmem_cache_free(kmem_cache_t
*cachep
, const void *objp
)
1468 kmem_bufctl_t
*bufp
;
1469 unsigned long save_flags
;
1471 /* Basic sanity checks. */
1472 if (!cachep
|| !objp
)
1475 #if SLAB_DEBUG_SUPPORT
1476 /* A verify func is called without the cache-lock held. */
1477 if (cachep
->c_flags
& SLAB_DEBUG_INITIAL
)
1478 goto init_state_check
;
1481 if (cachep
->c_flags
& SLAB_RED_ZONE
)
1484 #endif /* SLAB_DEBUG_SUPPORT */
1486 spin_lock_irqsave(&cachep
->c_spinlock
, save_flags
);
1488 if (SLAB_BUFCTL(cachep
->c_flags
))
1490 bufp
= (kmem_bufctl_t
*)(objp
+cachep
->c_offset
);
1492 /* Get slab for the object. */
1494 /* _NASTY_IF/ELSE_, but avoids a 'distant' memory ref for some objects.
1495 * Is this worth while? XXX
1497 if (cachep
->c_flags
& SLAB_HIGH_PACK
)
1498 slabp
= SLAB_GET_PAGE_SLAB(&mem_map
[MAP_NR(bufp
)]);
1501 slabp
= bufp
->buf_slabp
;
1504 if (slabp
->s_magic
!= SLAB_MAGIC_ALLOC
) /* Sanity check. */
1507 #if SLAB_DEBUG_SUPPORT
1508 if (cachep
->c_flags
& SLAB_DEBUG_FREE
)
1511 #endif /* SLAB_DEBUG_SUPPORT */
1513 if (slabp
->s_inuse
) { /* Sanity check. */
1514 SLAB_STATS_DEC_ACTIVE(cachep
);
1516 bufp
->buf_nextp
= slabp
->s_freep
;
1517 slabp
->s_freep
= bufp
;
1518 if (bufp
->buf_nextp
) {
1519 if (slabp
->s_inuse
) {
1520 /* (hopefully) The most common case. */
1522 #if SLAB_DEBUG_SUPPORT
1523 if (cachep
->c_flags
& SLAB_POISON
) {
1524 if (cachep
->c_flags
& SLAB_RED_ZONE
)
1525 objp
+= BYTES_PER_WORD
;
1526 kmem_poison_obj(cachep
, objp
);
1528 #endif /* SLAB_DEBUG_SUPPORT */
1529 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1532 kmem_cache_full_free(cachep
, slabp
);
1535 kmem_cache_one_free(cachep
, slabp
);
1539 /* Don't add to freelist. */
1540 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1541 kmem_report_free_err("free with no active objs", objp
, cachep
);
1544 /* No 'extra' checks are performed for objs stored this way, finding
1545 * the obj is check enough.
1547 slabp
= SLAB_GET_PAGE_SLAB(&mem_map
[MAP_NR(objp
)]);
1548 bufp
= &slabp
->s_index
[(objp
- slabp
->s_mem
)/cachep
->c_offset
];
1549 if (bufp
->buf_objp
== objp
)
1551 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1552 kmem_report_free_err("Either bad obj addr or double free", objp
, cachep
);
1554 #if SLAB_DEBUG_SUPPORT
1556 /* Need to call the slab's constructor so the
1557 * caller can perform a verify of its state (debugging).
1559 cachep
->c_ctor(objp
, cachep
, SLAB_CTOR_CONSTRUCTOR
|SLAB_CTOR_VERIFY
);
1560 goto finished_initial
;
1562 if (!kmem_extra_free_checks(cachep
, slabp
->s_freep
, bufp
, objp
)) {
1563 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1564 kmem_report_free_err("Double free detected during checks", objp
, cachep
);
1569 /* We do not hold the cache-lock while checking the red-zone.
1571 objp
-= BYTES_PER_WORD
;
1572 if (xchg((unsigned long *)objp
, SLAB_RED_MAGIC1
) != SLAB_RED_MAGIC2
) {
1573 /* Either write before start of obj, or a double free. */
1574 kmem_report_free_err("Bad front redzone", objp
, cachep
);
1576 if (xchg((unsigned long *)(objp
+cachep
->c_org_size
+BYTES_PER_WORD
), SLAB_RED_MAGIC1
) != SLAB_RED_MAGIC2
) {
1577 /* Either write past end of obj, or a double free. */
1578 kmem_report_free_err("Bad rear redzone", objp
, cachep
);
1581 #endif /* SLAB_DEBUG_SUPPORT */
1584 /* Slab doesn't contain the correct magic num. */
1585 if (slabp
->s_magic
== SLAB_MAGIC_DESTROYED
) {
1586 /* Magic num says this is a destroyed slab. */
1587 kmem_report_free_err("free from inactive slab", objp
, cachep
);
1589 kmem_report_free_err("Bad obj addr", objp
, cachep
);
1590 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1593 /* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
1599 kmem_report_free_err("NULL ptr", objp
, cachep
);
1604 kmem_cache_alloc(kmem_cache_t
*cachep
, int flags
)
1606 return __kmem_cache_alloc(cachep
, flags
);
1610 kmem_cache_free(kmem_cache_t
*cachep
, void *objp
)
1612 __kmem_cache_free(cachep
, objp
);
1616 kmalloc(size_t size
, int flags
)
1618 cache_sizes_t
*csizep
= cache_sizes
;
1620 for (; csizep
->cs_size
; csizep
++) {
1621 if (size
> csizep
->cs_size
)
1623 return __kmem_cache_alloc(csizep
->cs_cachep
, flags
);
1625 printk(KERN_ERR
"kmalloc: Size (%lu) too large\n", (unsigned long) size
);
1630 kfree(const void *objp
)
1638 if (nr
>= max_mapnr
)
1641 /* Assume we own the page structure - hence no locking.
1642 * If someone is misbehaving (for example, calling us with a bad
1643 * address), then access to the page structure can race with the
1644 * kmem_slab_destroy() code. Need to add a spin_lock to each page
1645 * structure, which would be useful in threading the gfp() functions....
1647 page
= &mem_map
[nr
];
1648 if (PageSlab(page
)) {
1649 kmem_cache_t
*cachep
;
1651 /* Here, we again assume the obj address is good.
1652 * If it isn't, and happens to map onto another
1653 * general cache page which has no active objs, then
1656 cachep
= SLAB_GET_PAGE_CACHE(page
);
1657 if (cachep
&& (cachep
->c_flags
& SLAB_CFLGS_GENERAL
)) {
1658 __kmem_cache_free(cachep
, objp
);
1663 printk(KERN_ERR
"kfree: Bad obj %p\n", objp
);
1666 /* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
1675 kfree_s(const void *objp
, size_t size
)
1683 if (nr
>= max_mapnr
)
1685 /* See comment in kfree() */
1686 page
= &mem_map
[nr
];
1687 if (PageSlab(page
)) {
1688 kmem_cache_t
*cachep
;
1689 /* See comment in kfree() */
1690 cachep
= SLAB_GET_PAGE_CACHE(page
);
1691 if (cachep
&& cachep
->c_flags
& SLAB_CFLGS_GENERAL
) {
1692 if (size
<= cachep
->c_org_size
) { /* XXX better check */
1693 __kmem_cache_free(cachep
, objp
);
1699 printk(KERN_ERR
"kfree_s: Bad obj %p\n", objp
);
1704 kmem_find_general_cachep(size_t size
)
1706 cache_sizes_t
*csizep
= cache_sizes
;
1708 /* This function could be moved to the header file, and
1709 * made inline so consumers can quickly determine what
1710 * cache pointer they require.
1712 for (; csizep
->cs_size
; csizep
++) {
1713 if (size
> csizep
->cs_size
)
1717 return csizep
->cs_cachep
;
1721 /* Called from try_to_free_page().
1722 * This function _cannot_ be called within a int, but it
1723 * can be interrupted.
1726 kmem_cache_reap(int gfp_mask
)
1729 kmem_cache_t
*searchp
;
1730 kmem_cache_t
*best_cachep
;
1732 unsigned int reap_level
;
1734 if (in_interrupt()) {
1735 printk("kmem_cache_reap() called within int!\n");
1739 /* We really need a test semaphore op so we can avoid sleeping when
1742 down(&cache_chain_sem
);
1748 searchp
= clock_searchp
;
1750 unsigned int full_free
;
1751 unsigned int dma_flag
;
1753 /* It's safe to test this without holding the cache-lock. */
1754 if (searchp
->c_flags
& SLAB_NO_REAP
)
1756 spin_lock_irq(&searchp
->c_spinlock
);
1757 if (searchp
->c_growing
)
1759 if (searchp
->c_dflags
& SLAB_CFLGS_GROWN
) {
1760 searchp
->c_dflags
&= ~SLAB_CFLGS_GROWN
;
1763 /* Sanity check for corruption of static values. */
1764 if (searchp
->c_inuse
|| searchp
->c_magic
!= SLAB_C_MAGIC
) {
1765 spin_unlock_irq(&searchp
->c_spinlock
);
1766 printk(KERN_ERR
"kmem_reap: Corrupted cache struct for %s\n", searchp
->c_name
);
1772 /* Count the fully free slabs. There should not be not many,
1773 * since we are holding the cache lock.
1775 slabp
= searchp
->c_lastp
;
1776 while (!slabp
->s_inuse
&& slabp
!= kmem_slab_end(searchp
)) {
1777 slabp
= slabp
->s_prevp
;
1782 spin_unlock_irq(&searchp
->c_spinlock
);
1784 if ((gfp_mask
& GFP_DMA
) && !dma_flag
)
1788 if (full_free
>= 10) {
1789 best_cachep
= searchp
;
1793 /* Try to avoid slabs with constructors and/or
1794 * more than one page per slab (as it can be difficult
1795 * to get high orders from gfp()).
1797 if (full_free
>= reap_level
) {
1798 reap_level
= full_free
;
1799 best_cachep
= searchp
;
1804 spin_unlock_irq(&searchp
->c_spinlock
);
1806 searchp
= searchp
->c_nextp
;
1807 } while (--scan
&& searchp
!= clock_searchp
);
1809 clock_searchp
= searchp
;
1810 up(&cache_chain_sem
);
1813 /* couldn't find anything to reap */
1817 spin_lock_irq(&best_cachep
->c_spinlock
);
1818 while (!best_cachep
->c_growing
&&
1819 !(slabp
= best_cachep
->c_lastp
)->s_inuse
&&
1820 slabp
!= kmem_slab_end(best_cachep
)) {
1821 if (gfp_mask
& GFP_DMA
) {
1825 slabp
= slabp
->s_prevp
;
1826 } while (!slabp
->s_inuse
&& slabp
!= kmem_slab_end(best_cachep
));
1828 /* Didn't found a DMA slab (there was a free one -
1829 * must have been become active).
1834 if (slabp
== best_cachep
->c_freep
)
1835 best_cachep
->c_freep
= slabp
->s_nextp
;
1836 kmem_slab_unlink(slabp
);
1837 SLAB_STATS_INC_REAPED(best_cachep
);
1839 /* Safe to drop the lock. The slab is no longer linked to the
1842 spin_unlock_irq(&best_cachep
->c_spinlock
);
1843 kmem_slab_destroy(best_cachep
, slabp
);
1844 spin_lock_irq(&best_cachep
->c_spinlock
);
1847 spin_unlock_irq(&best_cachep
->c_spinlock
);
1852 /* A few v. simple tests */
1854 kmem_self_test(void)
1856 kmem_cache_t
*test_cachep
;
1858 printk(KERN_INFO
"kmem_test() - start\n");
1859 test_cachep
= kmem_cache_create("test-cachep", 16, 0, SLAB_RED_ZONE
|SLAB_POISON
, NULL
, NULL
);
1861 char *objp
= kmem_cache_alloc(test_cachep
, SLAB_KERNEL
);
1863 /* Write in front and past end, red-zone test. */
1866 kmem_cache_free(test_cachep
, objp
);
1868 /* Mess up poisoning. */
1870 objp
= kmem_cache_alloc(test_cachep
, SLAB_KERNEL
);
1871 kmem_cache_free(test_cachep
, objp
);
1873 /* Mess up poisoning (again). */
1875 kmem_cache_shrink(test_cachep
);
1878 printk(KERN_INFO
"kmem_test() - finished\n");
1880 #endif /* SLAB_SELFTEST */
1882 #if defined(CONFIG_PROC_FS)
1884 * cache-name num-active-objs total-objs num-active-slabs total-slabs num-pages-per-slab
1887 get_slabinfo(char *buf
)
1889 kmem_cache_t
*cachep
;
1891 unsigned long active_objs
;
1892 unsigned long save_flags
;
1893 unsigned long num_slabs
;
1894 unsigned long num_objs
;
1897 unsigned long active_slabs
;
1898 #endif /* SLAB_STATS */
1900 __save_flags(save_flags
);
1902 /* Output format version, so at least we can change it without _too_
1906 len
= sprintf(buf
, "slabinfo - version: 1.0 (statistics)\n");
1908 len
= sprintf(buf
, "slabinfo - version: 1.0\n");
1909 #endif /* SLAB_STATS */
1910 down(&cache_chain_sem
);
1911 cachep
= &cache_cache
;
1915 #endif /* SLAB_STATS */
1916 num_slabs
= active_objs
= 0;
1917 spin_lock_irq(&cachep
->c_spinlock
);
1918 for (slabp
= cachep
->c_firstp
; slabp
!= kmem_slab_end(cachep
); slabp
= slabp
->s_nextp
) {
1919 active_objs
+= slabp
->s_inuse
;
1924 #endif /* SLAB_STATS */
1926 num_objs
= cachep
->c_num
*num_slabs
;
1929 unsigned long errors
;
1930 unsigned long high
= cachep
->c_high_mark
;
1931 unsigned long grown
= cachep
->c_grown
;
1932 unsigned long reaped
= cachep
->c_reaped
;
1933 unsigned long allocs
= cachep
->c_num_allocations
;
1934 errors
= (unsigned long) atomic_read(&cachep
->c_errors
);
1935 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1936 len
+= sprintf(buf
+len
, "%-16s %6lu %6lu %4lu %4lu %4lu %6lu %7lu %5lu %4lu %4lu\n",
1937 cachep
->c_name
, active_objs
, num_objs
, active_slabs
, num_slabs
,
1938 (1<<cachep
->c_gfporder
)*num_slabs
,
1939 high
, allocs
, grown
, reaped
, errors
);
1942 spin_unlock_irqrestore(&cachep
->c_spinlock
, save_flags
);
1943 len
+= sprintf(buf
+len
, "%-17s %6lu %6lu\n", cachep
->c_name
, active_objs
, num_objs
);
1944 #endif /* SLAB_STATS */
1945 } while ((cachep
= cachep
->c_nextp
) != &cache_cache
);
1946 up(&cache_chain_sem
);
1950 #endif /* CONFIG_PROC_FS */