2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
17 * Version: @(#)strip.c 1.3 July 1997
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
72 static const char StripVersion
[] = "1.3-STUART.CHESHIRE-MODULAR";
74 static const char StripVersion
[] = "1.3-STUART.CHESHIRE";
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
81 /************************************************************************/
84 #include <linux/config.h>
87 #include <linux/module.h>
88 #include <linux/version.h>
91 #include <asm/system.h>
92 #include <asm/uaccess.h>
93 #include <asm/segment.h>
94 #include <asm/bitops.h>
97 * isdigit() and isspace() use the ctype[] array, which is not available
98 * to kernel modules. If compiling as a module, use a local definition
99 * of isdigit() and isspace() until _ctype is added to ksyms.
102 # define isdigit(c) ('0' <= (c) && (c) <= '9')
103 # define isspace(c) ((c) == ' ' || (c) == '\t')
105 # include <linux/ctype.h>
108 #include <linux/string.h>
109 #include <linux/mm.h>
110 #include <linux/interrupt.h>
111 #include <linux/in.h>
112 #include <linux/tty.h>
113 #include <linux/errno.h>
114 #include <linux/netdevice.h>
115 #include <linux/inetdevice.h>
116 #include <linux/etherdevice.h>
117 #include <linux/skbuff.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_strip.h>
120 #include <linux/proc_fs.h>
121 #include <linux/serial.h>
122 #include <linux/serialP.h>
125 #include <linux/ip.h>
126 #include <linux/tcp.h>
127 #include <linux/time.h>
130 /************************************************************************/
131 /* Useful structures and definitions */
134 * A MetricomKey identifies the protocol being carried inside a Metricom
145 * An IP address can be viewed as four bytes in memory (which is what it is) or as
146 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
156 * A MetricomAddressString is used to hold a printable representation of
157 * a Metricom address.
163 } MetricomAddressString
;
165 /* Encapsulation can expand packet of size x to 65/64x + 1
166 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
168 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
169 * We allow 31 bytes for the stars, the key, the address and the <CR>s
171 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
174 * A STRIP_Header is never really sent over the radio, but making a dummy
175 * header for internal use within the kernel that looks like an Ethernet
176 * header makes certain other software happier. For example, tcpdump
177 * already understands Ethernet headers.
182 MetricomAddress dst_addr
; /* Destination address, e.g. "0000-1234" */
183 MetricomAddress src_addr
; /* Source address, e.g. "0000-5678" */
184 unsigned short protocol
; /* The protocol type, using Ethernet codes */
192 #define NODE_TABLE_SIZE 32
195 struct timeval timestamp
;
197 MetricomNode node
[NODE_TABLE_SIZE
];
200 enum { FALSE
= 0, TRUE
= 1 };
203 * Holds the radio's firmware version.
211 * Holds the radio's serial number.
219 * Holds the radio's battery voltage.
233 NoStructure
= 0, /* Really old firmware */
234 StructuredMessages
= 1, /* Parsable AT response msgs */
235 ChecksummedMessages
= 2 /* Parsable AT response msgs with checksums */
242 * These are pointers to the malloc()ed frame buffers.
245 unsigned char *rx_buff
; /* buffer for received IP packet*/
246 unsigned char *sx_buff
; /* buffer for received serial data*/
247 int sx_count
; /* received serial data counter */
248 int sx_size
; /* Serial buffer size */
249 unsigned char *tx_buff
; /* transmitter buffer */
250 unsigned char *tx_head
; /* pointer to next byte to XMIT */
251 int tx_left
; /* bytes left in XMIT queue */
252 int tx_size
; /* Serial buffer size */
255 * STRIP interface statistics.
258 unsigned long rx_packets
; /* inbound frames counter */
259 unsigned long tx_packets
; /* outbound frames counter */
260 unsigned long rx_errors
; /* Parity, etc. errors */
261 unsigned long tx_errors
; /* Planned stuff */
262 unsigned long rx_dropped
; /* No memory for skb */
263 unsigned long tx_dropped
; /* When MTU change */
264 unsigned long rx_over_errors
; /* Frame bigger then STRIP buf. */
266 unsigned long pps_timer
; /* Timer to determine pps */
267 unsigned long rx_pps_count
; /* Counter to determine pps */
268 unsigned long tx_pps_count
; /* Counter to determine pps */
269 unsigned long sx_pps_count
; /* Counter to determine pps */
270 unsigned long rx_average_pps
; /* rx packets per second * 8 */
271 unsigned long tx_average_pps
; /* tx packets per second * 8 */
272 unsigned long sx_average_pps
; /* sent packets per second * 8 */
275 unsigned long rx_bytes
; /* total received bytes */
276 unsigned long tx_bytes
; /* total received bytes */
277 unsigned long rx_rbytes
; /* bytes thru radio i/f */
278 unsigned long tx_rbytes
; /* bytes thru radio i/f */
279 unsigned long rx_sbytes
; /* tot bytes thru serial i/f */
280 unsigned long tx_sbytes
; /* tot bytes thru serial i/f */
281 unsigned long rx_ebytes
; /* tot stat/err bytes */
282 unsigned long tx_ebytes
; /* tot stat/err bytes */
286 * Internal variables.
289 struct strip
*next
; /* The next struct in the list */
290 struct strip
**referrer
; /* The pointer that points to us*/
291 int discard
; /* Set if serial error */
292 int working
; /* Is radio working correctly? */
293 int firmware_level
; /* Message structuring level */
294 int next_command
; /* Next periodic command */
295 unsigned int user_baud
; /* The user-selected baud rate */
296 int mtu
; /* Our mtu (to spot changes!) */
297 long watchdog_doprobe
; /* Next time to test the radio */
298 long watchdog_doreset
; /* Time to do next reset */
299 long gratuitous_arp
; /* Time to send next ARP refresh*/
300 long arp_interval
; /* Next ARP interval */
301 struct timer_list idle_timer
; /* For periodic wakeup calls */
302 MetricomAddress true_dev_addr
; /* True address of radio */
303 int manual_dev_addr
; /* Hack: See note below */
305 FirmwareVersion firmware_version
; /* The radio's firmware version */
306 SerialNumber serial_number
; /* The radio's serial number */
307 BatteryVoltage battery_voltage
; /* The radio's battery voltage */
310 * Other useful structures.
313 struct tty_struct
*tty
; /* ptr to TTY structure */
314 struct net_device dev
; /* Our device structure */
317 * Neighbour radio records
320 MetricomNodeTable portables
;
321 MetricomNodeTable poletops
;
325 * Note: manual_dev_addr hack
327 * It is not possible to change the hardware address of a Metricom radio,
328 * or to send packets with a user-specified hardware source address, thus
329 * trying to manually set a hardware source address is a questionable
330 * thing to do. However, if the user *does* manually set the hardware
331 * source address of a STRIP interface, then the kernel will believe it,
332 * and use it in certain places. For example, the hardware address listed
333 * by ifconfig will be the manual address, not the true one.
334 * (Both addresses are listed in /proc/net/strip.)
335 * Also, ARP packets will be sent out giving the user-specified address as
336 * the source address, not the real address. This is dangerous, because
337 * it means you won't receive any replies -- the ARP replies will go to
338 * the specified address, which will be some other radio. The case where
339 * this is useful is when that other radio is also connected to the same
340 * machine. This allows you to connect a pair of radios to one machine,
341 * and to use one exclusively for inbound traffic, and the other
342 * exclusively for outbound traffic. Pretty neat, huh?
344 * Here's the full procedure to set this up:
346 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
347 * and st1 for incoming packets
349 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
350 * which is the real hardware address of st1 (inbound radio).
351 * Now when it sends out packets, it will masquerade as st1, and
352 * replies will be sent to that radio, which is exactly what we want.
354 * 3. Set the route table entry ("route add default ..." or
355 * "route add -net ...", as appropriate) to send packets via the st0
356 * interface (outbound radio). Do not add any route which sends packets
357 * out via the st1 interface -- that radio is for inbound traffic only.
359 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
360 * This tells the STRIP driver to "shut down" that interface and not
361 * send any packets through it. In particular, it stops sending the
362 * periodic gratuitous ARP packets that a STRIP interface normally sends.
363 * Also, when packets arrive on that interface, it will search the
364 * interface list to see if there is another interface who's manual
365 * hardware address matches its own real address (i.e. st0 in this
366 * example) and if so it will transfer ownership of the skbuff to
367 * that interface, so that it looks to the kernel as if the packet
368 * arrived on that interface. This is necessary because when the
369 * kernel sends an ARP packet on st0, it expects to get a reply on
370 * st0, and if it sees the reply come from st1 then it will ignore
371 * it (to be accurate, it puts the entry in the ARP table, but
372 * labelled in such a way that st0 can't use it).
374 * Thanks to Petros Maniatis for coming up with the idea of splitting
375 * inbound and outbound traffic between two interfaces, which turned
376 * out to be really easy to implement, even if it is a bit of a hack.
378 * Having set a manual address on an interface, you can restore it
379 * to automatic operation (where the address is automatically kept
380 * consistent with the real address of the radio) by setting a manual
381 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
382 * This 'turns off' manual override mode for the device address.
384 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
385 * radio addresses the packets were sent and received from, so that you
386 * can see what is really going on with packets, and which interfaces
387 * they are really going through.
391 /************************************************************************/
395 * CommandString1 works on all radios
396 * Other CommandStrings are only used with firmware that provides structured responses.
398 * ats319=1 Enables Info message for node additions and deletions
399 * ats319=2 Enables Info message for a new best node
400 * ats319=4 Enables checksums
401 * ats319=8 Enables ACK messages
404 static const int MaxCommandStringLength
= 32;
405 static const int CompatibilityCommand
= 1;
407 static const char CommandString0
[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
408 static const char CommandString1
[] = "*&COMMAND*ATS305?"; /* Query radio name */
409 static const char CommandString2
[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
410 static const char CommandString3
[] = "*&COMMAND*ATS300?"; /* Query version information */
411 static const char CommandString4
[] = "*&COMMAND*ATS311?"; /* Query poletop list */
412 static const char CommandString5
[] = "*&COMMAND*AT~LA"; /* Query portables list */
413 typedef struct { const char *string
; long length
; } StringDescriptor
;
415 static const StringDescriptor CommandString
[] =
417 { CommandString0
, sizeof(CommandString0
)-1 },
418 { CommandString1
, sizeof(CommandString1
)-1 },
419 { CommandString2
, sizeof(CommandString2
)-1 },
420 { CommandString3
, sizeof(CommandString3
)-1 },
421 { CommandString4
, sizeof(CommandString4
)-1 },
422 { CommandString5
, sizeof(CommandString5
)-1 }
425 #define GOT_ALL_RADIO_INFO(S) \
426 ((S)->firmware_version.c[0] && \
427 (S)->battery_voltage.c[0] && \
428 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
430 static const char hextable
[16] = "0123456789ABCDEF";
432 static const MetricomAddress zero_address
;
433 static const MetricomAddress broadcast_address
= { { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF } };
435 static const MetricomKey SIP0Key
= { { "SIP0" } };
436 static const MetricomKey ARP0Key
= { { "ARP0" } };
437 static const MetricomKey ATR_Key
= { { "ATR " } };
438 static const MetricomKey ACK_Key
= { { "ACK_" } };
439 static const MetricomKey INF_Key
= { { "INF_" } };
440 static const MetricomKey ERR_Key
= { { "ERR_" } };
442 static const long MaxARPInterval
= 60 * HZ
; /* One minute */
445 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
446 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
447 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
448 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
449 * long, including IP header, UDP header, and NFS header. Setting the STRIP
450 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
452 static const unsigned short MAX_SEND_MTU
= 1152;
453 static const unsigned short MAX_RECV_MTU
= 1500; /* Hoping for Ethernet sized packets in the future! */
454 static const unsigned short DEFAULT_STRIP_MTU
= 1152;
455 static const int STRIP_MAGIC
= 0x5303;
456 static const long LongTime
= 0x7FFFFFFF;
459 /************************************************************************/
460 /* Global variables */
462 static struct strip
*struct_strip_list
= NULL
;
465 /************************************************************************/
468 /* Returns TRUE if text T begins with prefix P */
469 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
471 /* Returns TRUE if text T of length L is equal to string S */
472 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
474 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
475 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
476 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
478 #define READHEX16(X) ((__u16)(READHEX(X)))
480 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
482 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
483 #define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
484 #define ELEMENTS_OF(X) (sizeof(X) / sizeof((X)[0]))
485 #define ARRAY_END(X) (&((X)[ELEMENTS_OF(X)]))
487 #define JIFFIE_TO_SEC(X) ((X) / HZ)
490 /************************************************************************/
491 /* Utility routines */
493 typedef unsigned long InterruptStatus
;
495 extern __inline__ InterruptStatus
DisableInterrupts(void)
503 extern __inline__
void RestoreInterrupts(InterruptStatus x
)
508 static int arp_query(unsigned char *haddr
, u32 paddr
, struct net_device
* dev
)
510 struct neighbour
*neighbor_entry
;
512 neighbor_entry
= neigh_lookup(&arp_tbl
, &paddr
, dev
);
514 if (neighbor_entry
!= NULL
)
516 neighbor_entry
->used
= jiffies
;
517 if (neighbor_entry
->nud_state
& NUD_VALID
)
519 memcpy(haddr
, neighbor_entry
->ha
, dev
->addr_len
);
526 static void DumpData(char *msg
, struct strip
*strip_info
, __u8
*ptr
, __u8
*end
)
528 static const int MAX_DumpData
= 80;
529 __u8 pkt_text
[MAX_DumpData
], *p
= pkt_text
;
533 while (ptr
<end
&& p
< &pkt_text
[MAX_DumpData
-4])
542 if (*ptr
>= 32 && *ptr
<= 126)
548 sprintf(p
, "\\%02X", *ptr
);
562 printk(KERN_INFO
"%s: %-13s%s\n", strip_info
->dev
.name
, msg
, pkt_text
);
566 static void HexDump(char *msg
, struct strip
*strip_info
, __u8
*start
, __u8
*end
)
569 printk(KERN_INFO
"%s: %s: %d bytes\n", strip_info
->dev
.name
, msg
, end
-ptr
);
573 long offset
= ptr
- start
;
574 __u8 text
[80], *p
= text
;
575 while (ptr
< end
&& p
< &text
[16*3])
577 *p
++ = hextable
[*ptr
>> 4];
578 *p
++ = hextable
[*ptr
++ & 0xF];
582 printk(KERN_INFO
"%s: %4lX %s\n", strip_info
->dev
.name
, offset
, text
);
588 /************************************************************************/
589 /* Byte stuffing/unstuffing routines */
592 * 00 Unused (reserved character)
593 * 01-3F Run of 2-64 different characters
594 * 40-7F Run of 1-64 different characters plus a single zero at the end
595 * 80-BF Run of 1-64 of the same character
596 * C0-FF Run of 1-64 zeroes (ASCII 0)
602 Stuff_DiffZero
= 0x40,
605 Stuff_NoCode
= 0xFF, /* Special code, meaning no code selected */
607 Stuff_CodeMask
= 0xC0,
608 Stuff_CountMask
= 0x3F,
609 Stuff_MaxCount
= 0x3F,
610 Stuff_Magic
= 0x0D /* The value we are eliminating */
613 /* StuffData encodes the data starting at "src" for "length" bytes.
614 * It writes it to the buffer pointed to by "dst" (which must be at least
615 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
616 * larger than the input for pathological input, but will usually be smaller.
617 * StuffData returns the new value of the dst pointer as its result.
618 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
619 * between calls, allowing an encoded packet to be incrementally built up
620 * from small parts. On the first call, the "__u8 *" pointed to should be
621 * initialized to NULL; between subsequent calls the calling routine should
622 * leave the value alone and simply pass it back unchanged so that the
623 * encoder can recover its current state.
626 #define StuffData_FinishBlock(X) \
627 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
629 static __u8
*StuffData(__u8
*src
, __u32 length
, __u8
*dst
, __u8
**code_ptr_ptr
)
631 __u8
*end
= src
+ length
;
632 __u8
*code_ptr
= *code_ptr_ptr
;
633 __u8 code
= Stuff_NoCode
, count
= 0;
641 * Recover state from last call, if applicable
643 code
= (*code_ptr
^ Stuff_Magic
) & Stuff_CodeMask
;
644 count
= (*code_ptr
^ Stuff_Magic
) & Stuff_CountMask
;
651 /* Stuff_NoCode: If no current code, select one */
653 /* Record where we're going to put this code */
655 count
= 0; /* Reset the count (zero means one instance) */
656 /* Tentatively start a new block */
665 *dst
++ = *src
++ ^ Stuff_Magic
;
667 /* Note: We optimistically assume run of same -- */
668 /* which will be fixed later in Stuff_Same */
669 /* if it turns out not to be true. */
672 /* Stuff_Zero: We already have at least one zero encoded */
674 /* If another zero, count it, else finish this code block */
682 StuffData_FinishBlock(Stuff_Zero
+ count
);
686 /* Stuff_Same: We already have at least one byte encoded */
688 /* If another one the same, count it */
689 if ((*src
^ Stuff_Magic
) == code_ptr
[1])
695 /* else, this byte does not match this block. */
696 /* If we already have two or more bytes encoded, finish this code block */
699 StuffData_FinishBlock(Stuff_Same
+ count
);
702 /* else, we only have one so far, so switch to Stuff_Diff code */
704 /* and fall through to Stuff_Diff case below
705 * Note cunning cleverness here: case Stuff_Diff compares
706 * the current character with the previous two to see if it
707 * has a run of three the same. Won't this be an error if
708 * there aren't two previous characters stored to compare with?
709 * No. Because we know the current character is *not* the same
710 * as the previous one, the first test below will necessarily
711 * fail and the send half of the "if" won't be executed.
714 /* Stuff_Diff: We have at least two *different* bytes encoded */
716 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
719 StuffData_FinishBlock(Stuff_DiffZero
+ count
);
721 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
722 else if ((*src
^ Stuff_Magic
)==dst
[-1] && dst
[-1]==dst
[-2])
724 /* Back off the last two characters we encoded */
726 /* Note: "Stuff_Diff + 0" is an illegal code */
727 if (code
== Stuff_Diff
+ 0)
729 code
= Stuff_Same
+ 0;
731 StuffData_FinishBlock(code
);
733 /* dst[-1] already holds the correct value */
734 count
= 2; /* 2 means three bytes encoded */
737 /* else, another different byte, so add it to the block */
740 *dst
++ = *src
^ Stuff_Magic
;
743 src
++; /* Consume the byte */
746 if (count
== Stuff_MaxCount
)
748 StuffData_FinishBlock(code
+ count
);
751 if (code
== Stuff_NoCode
)
753 *code_ptr_ptr
= NULL
;
757 *code_ptr_ptr
= code_ptr
;
758 StuffData_FinishBlock(code
+ count
);
764 * UnStuffData decodes the data at "src", up to (but not including) "end".
765 * It writes the decoded data into the buffer pointed to by "dst", up to a
766 * maximum of "dst_length", and returns the new value of "src" so that a
767 * follow-on call can read more data, continuing from where the first left off.
769 * There are three types of results:
770 * 1. The source data runs out before extracting "dst_length" bytes:
771 * UnStuffData returns NULL to indicate failure.
772 * 2. The source data produces exactly "dst_length" bytes:
773 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
774 * 3. "dst_length" bytes are extracted, with more remaining.
775 * UnStuffData returns new_src < end to indicate that there are more bytes
778 * Note: The decoding may be destructive, in that it may alter the source
779 * data in the process of decoding it (this is necessary to allow a follow-on
780 * call to resume correctly).
783 static __u8
*UnStuffData(__u8
*src
, __u8
*end
, __u8
*dst
, __u32 dst_length
)
785 __u8
*dst_end
= dst
+ dst_length
;
787 if (!src
|| !end
|| !dst
|| !dst_length
)
789 while (src
< end
&& dst
< dst_end
)
791 int count
= (*src
^ Stuff_Magic
) & Stuff_CountMask
;
792 switch ((*src
^ Stuff_Magic
) & Stuff_CodeMask
)
795 if (src
+1+count
>= end
)
799 *dst
++ = *++src
^ Stuff_Magic
;
801 while(--count
>= 0 && dst
< dst_end
);
807 *src
= Stuff_Same
^ Stuff_Magic
;
809 *src
= (Stuff_Diff
+ count
) ^ Stuff_Magic
;
813 if (src
+1+count
>= end
)
817 *dst
++ = *++src
^ Stuff_Magic
;
819 while(--count
>= 0 && dst
< dst_end
);
821 *src
= Stuff_Zero
^ Stuff_Magic
;
823 *src
= (Stuff_DiffZero
+ count
) ^ Stuff_Magic
;
830 *dst
++ = src
[1] ^ Stuff_Magic
;
832 while(--count
>= 0 && dst
< dst_end
);
836 *src
= (Stuff_Same
+ count
) ^ Stuff_Magic
;
843 while(--count
>= 0 && dst
< dst_end
);
847 *src
= (Stuff_Zero
+ count
) ^ Stuff_Magic
;
858 /************************************************************************/
859 /* General routines for STRIP */
862 * get_baud returns the current baud rate, as one of the constants defined in
864 * If the user has issued a baud rate override using the 'setserial' command
865 * and the logical current rate is set to 38.4, then the true baud rate
866 * currently in effect (57.6 or 115.2) is returned.
868 static unsigned int get_baud(struct tty_struct
*tty
)
870 if (!tty
|| !tty
->termios
) return(0);
871 if ((tty
->termios
->c_cflag
& CBAUD
) == B38400
&& tty
->driver_data
)
873 struct async_struct
*info
= (struct async_struct
*)tty
->driver_data
;
874 if ((info
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
) return(B57600
);
875 if ((info
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
) return(B115200
);
877 return(tty
->termios
->c_cflag
& CBAUD
);
881 * set_baud sets the baud rate to the rate defined by baudcode
882 * Note: The rate B38400 should be avoided, because the user may have
883 * issued a 'setserial' speed override to map that to a different speed.
884 * We could achieve a true rate of 38400 if we needed to by cancelling
885 * any user speed override that is in place, but that might annoy the
886 * user, so it is simplest to just avoid using 38400.
888 static void set_baud(struct tty_struct
*tty
, unsigned int baudcode
)
890 struct termios old_termios
= *(tty
->termios
);
891 tty
->termios
->c_cflag
&= ~CBAUD
; /* Clear the old baud setting */
892 tty
->termios
->c_cflag
|= baudcode
; /* Set the new baud setting */
893 tty
->driver
.set_termios(tty
, &old_termios
);
897 * Convert a string to a Metricom Address.
900 #define IS_RADIO_ADDRESS(p) ( \
901 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
903 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
905 static int string_to_radio_address(MetricomAddress
*addr
, __u8
*p
)
907 if (!IS_RADIO_ADDRESS(p
)) return(1);
910 addr
->c
[2] = READHEX(p
[0]) << 4 | READHEX(p
[1]);
911 addr
->c
[3] = READHEX(p
[2]) << 4 | READHEX(p
[3]);
912 addr
->c
[4] = READHEX(p
[5]) << 4 | READHEX(p
[6]);
913 addr
->c
[5] = READHEX(p
[7]) << 4 | READHEX(p
[8]);
918 * Convert a Metricom Address to a string.
921 static __u8
*radio_address_to_string(const MetricomAddress
*addr
, MetricomAddressString
*p
)
923 sprintf(p
->c
, "%02X%02X-%02X%02X", addr
->c
[2], addr
->c
[3], addr
->c
[4], addr
->c
[5]);
928 * Note: Must make sure sx_size is big enough to receive a stuffed
929 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
930 * big enough to receive a large radio neighbour list (currently 4K).
933 static int allocate_buffers(struct strip
*strip_info
)
935 struct net_device
*dev
= &strip_info
->dev
;
936 int sx_size
= MAX(STRIP_ENCAP_SIZE(MAX_RECV_MTU
), 4096);
937 int tx_size
= STRIP_ENCAP_SIZE(dev
->mtu
) + MaxCommandStringLength
;
938 __u8
*r
= kmalloc(MAX_RECV_MTU
, GFP_ATOMIC
);
939 __u8
*s
= kmalloc(sx_size
, GFP_ATOMIC
);
940 __u8
*t
= kmalloc(tx_size
, GFP_ATOMIC
);
943 strip_info
->rx_buff
= r
;
944 strip_info
->sx_buff
= s
;
945 strip_info
->tx_buff
= t
;
946 strip_info
->sx_size
= sx_size
;
947 strip_info
->tx_size
= tx_size
;
948 strip_info
->mtu
= dev
->mtu
;
958 * MTU has been changed by the IP layer. Unfortunately we are not told
959 * about this, but we spot it ourselves and fix things up. We could be in
960 * an upcall from the tty driver, or in an ip packet queue.
963 static void strip_changedmtu(struct strip
*strip_info
)
965 int old_mtu
= strip_info
->mtu
;
966 struct net_device
*dev
= &strip_info
->dev
;
967 unsigned char *orbuff
= strip_info
->rx_buff
;
968 unsigned char *osbuff
= strip_info
->sx_buff
;
969 unsigned char *otbuff
= strip_info
->tx_buff
;
970 InterruptStatus intstat
;
972 if (dev
->mtu
> MAX_SEND_MTU
)
974 printk(KERN_ERR
"%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
975 strip_info
->dev
.name
, MAX_SEND_MTU
);
981 * Have to disable interrupts here because we're reallocating and resizing
982 * the serial buffers, and we can't have data arriving in them while we're
983 * moving them around in memory. This may cause data to be lost on the serial
984 * port, but hopefully people won't change MTU that often.
985 * Also note, this may not work on a symmetric multi-processor system.
987 intstat
= DisableInterrupts();
989 if (!allocate_buffers(strip_info
))
991 RestoreInterrupts(intstat
);
992 printk(KERN_ERR
"%s: unable to grow strip buffers, MTU change cancelled.\n",
993 strip_info
->dev
.name
);
998 if (strip_info
->sx_count
)
1000 if (strip_info
->sx_count
<= strip_info
->sx_size
)
1001 memcpy(strip_info
->sx_buff
, osbuff
, strip_info
->sx_count
);
1004 strip_info
->discard
= strip_info
->sx_count
;
1005 strip_info
->rx_over_errors
++;
1009 if (strip_info
->tx_left
)
1011 if (strip_info
->tx_left
<= strip_info
->tx_size
)
1012 memcpy(strip_info
->tx_buff
, strip_info
->tx_head
, strip_info
->tx_left
);
1015 strip_info
->tx_left
= 0;
1016 strip_info
->tx_dropped
++;
1019 strip_info
->tx_head
= strip_info
->tx_buff
;
1021 RestoreInterrupts(intstat
);
1023 printk(KERN_NOTICE
"%s: strip MTU changed fom %d to %d.\n",
1024 strip_info
->dev
.name
, old_mtu
, strip_info
->mtu
);
1026 if (orbuff
) kfree(orbuff
);
1027 if (osbuff
) kfree(osbuff
);
1028 if (otbuff
) kfree(otbuff
);
1031 static void strip_unlock(struct strip
*strip_info
)
1034 * Set the timer to go off in one second.
1036 strip_info
->idle_timer
.expires
= jiffies
+ 1*HZ
;
1037 add_timer(&strip_info
->idle_timer
);
1038 netif_wake_queue(&strip_info
->dev
);
1042 /************************************************************************/
1043 /* Callback routines for exporting information through /proc */
1046 * This function updates the total amount of data printed so far. It then
1047 * determines if the amount of data printed into a buffer has reached the
1048 * offset requested. If it hasn't, then the buffer is shifted over so that
1049 * the next bit of data can be printed over the old bit. If the total
1050 * amount printed so far exceeds the total amount requested, then this
1051 * function returns 1, otherwise 0.
1054 shift_buffer(char *buffer
, int requested_offset
, int requested_len
,
1055 int *total
, int *slop
, char **buf
)
1059 /* printk(KERN_DEBUG "shift: buffer: %d o: %d l: %d t: %d buf: %d\n",
1060 (int) buffer, requested_offset, requested_len, *total,
1062 printed
= *buf
- buffer
;
1063 if (*total
+ printed
<= requested_offset
) {
1068 if (*total
< requested_offset
) {
1069 *slop
= requested_offset
- *total
;
1071 *total
= requested_offset
+ printed
- *slop
;
1073 if (*total
> requested_offset
+ requested_len
) {
1082 * This function calculates the actual start of the requested data
1083 * in the buffer. It also calculates actual length of data returned,
1084 * which could be less that the amount of data requested.
1087 calc_start_len(char *buffer
, char **start
, int requested_offset
,
1088 int requested_len
, int total
, char *buf
)
1090 int return_len
, buffer_len
;
1092 buffer_len
= buf
- buffer
;
1093 if (buffer_len
>= 4095) {
1094 printk(KERN_ERR
"STRIP: exceeded /proc buffer size\n");
1098 * There may be bytes before and after the
1099 * chunk that was actually requested.
1101 return_len
= total
- requested_offset
;
1102 if (return_len
< 0) {
1105 *start
= buf
- return_len
;
1106 if (return_len
> requested_len
) {
1107 return_len
= requested_len
;
1109 /* printk(KERN_DEBUG "return_len: %d\n", return_len); */
1114 * If the time is in the near future, time_delta prints the number of
1115 * seconds to go into the buffer and returns the address of the buffer.
1116 * If the time is not in the near future, it returns the address of the
1117 * string "Not scheduled" The buffer must be long enough to contain the
1118 * ascii representation of the number plus 9 charactes for the " seconds"
1119 * and the null character.
1121 static char *time_delta(char buffer
[], long time
)
1124 if (time
> LongTime
/ 2) return("Not scheduled");
1125 if(time
< 0) time
= 0; /* Don't print negative times */
1126 sprintf(buffer
, "%ld seconds", time
/ HZ
);
1130 static int sprintf_neighbours(char *buffer
, MetricomNodeTable
*table
, char *title
)
1132 /* We wrap this in a do/while loop, so if the table changes */
1133 /* while we're reading it, we just go around and try again. */
1139 t
= table
->timestamp
;
1141 if (table
->num_nodes
) ptr
+= sprintf(ptr
, "\n %s\n", title
);
1142 for (i
=0; i
<table
->num_nodes
; i
++)
1144 InterruptStatus intstat
= DisableInterrupts();
1145 MetricomNode node
= table
->node
[i
];
1146 RestoreInterrupts(intstat
);
1147 ptr
+= sprintf(ptr
, " %s\n", node
.c
);
1149 } while (table
->timestamp
.tv_sec
!= t
.tv_sec
|| table
->timestamp
.tv_usec
!= t
.tv_usec
);
1150 return ptr
- buffer
;
1154 * This function prints radio status information into the specified buffer.
1155 * I think the buffer size is 4K, so this routine should never print more
1156 * than 4K of data into it. With the maximum of 32 portables and 32 poletops
1157 * reported, the routine outputs 3107 bytes into the buffer.
1160 sprintf_status_info(char *buffer
, struct strip
*strip_info
)
1164 MetricomAddressString addr_string
;
1166 /* First, we must copy all of our data to a safe place, */
1167 /* in case a serial interrupt comes in and changes it. */
1168 InterruptStatus intstat
= DisableInterrupts();
1169 int tx_left
= strip_info
->tx_left
;
1170 unsigned long rx_average_pps
= strip_info
->rx_average_pps
;
1171 unsigned long tx_average_pps
= strip_info
->tx_average_pps
;
1172 unsigned long sx_average_pps
= strip_info
->sx_average_pps
;
1173 int working
= strip_info
->working
;
1174 int firmware_level
= strip_info
->firmware_level
;
1175 long watchdog_doprobe
= strip_info
->watchdog_doprobe
;
1176 long watchdog_doreset
= strip_info
->watchdog_doreset
;
1177 long gratuitous_arp
= strip_info
->gratuitous_arp
;
1178 long arp_interval
= strip_info
->arp_interval
;
1179 FirmwareVersion firmware_version
= strip_info
->firmware_version
;
1180 SerialNumber serial_number
= strip_info
->serial_number
;
1181 BatteryVoltage battery_voltage
= strip_info
->battery_voltage
;
1182 char* if_name
= strip_info
->dev
.name
;
1183 MetricomAddress true_dev_addr
= strip_info
->true_dev_addr
;
1184 MetricomAddress dev_dev_addr
= *(MetricomAddress
*)strip_info
->dev
.dev_addr
;
1185 int manual_dev_addr
= strip_info
->manual_dev_addr
;
1187 unsigned long rx_bytes
= strip_info
->rx_bytes
;
1188 unsigned long tx_bytes
= strip_info
->tx_bytes
;
1189 unsigned long rx_rbytes
= strip_info
->rx_rbytes
;
1190 unsigned long tx_rbytes
= strip_info
->tx_rbytes
;
1191 unsigned long rx_sbytes
= strip_info
->rx_sbytes
;
1192 unsigned long tx_sbytes
= strip_info
->tx_sbytes
;
1193 unsigned long rx_ebytes
= strip_info
->rx_ebytes
;
1194 unsigned long tx_ebytes
= strip_info
->tx_ebytes
;
1196 RestoreInterrupts(intstat
);
1198 p
+= sprintf(p
, "\nInterface name\t\t%s\n", if_name
);
1199 p
+= sprintf(p
, " Radio working:\t\t%s\n", working
? "Yes" : "No");
1200 radio_address_to_string(&true_dev_addr
, &addr_string
);
1201 p
+= sprintf(p
, " Radio address:\t\t%s\n", addr_string
.c
);
1202 if (manual_dev_addr
)
1204 radio_address_to_string(&dev_dev_addr
, &addr_string
);
1205 p
+= sprintf(p
, " Device address:\t%s\n", addr_string
.c
);
1207 p
+= sprintf(p
, " Firmware version:\t%s", !working
? "Unknown" :
1208 !firmware_level
? "Should be upgraded" :
1209 firmware_version
.c
);
1210 if (firmware_level
>= ChecksummedMessages
) p
+= sprintf(p
, " (Checksums Enabled)");
1211 p
+= sprintf(p
, "\n");
1212 p
+= sprintf(p
, " Serial number:\t\t%s\n", serial_number
.c
);
1213 p
+= sprintf(p
, " Battery voltage:\t%s\n", battery_voltage
.c
);
1214 p
+= sprintf(p
, " Transmit queue (bytes):%d\n", tx_left
);
1215 p
+= sprintf(p
, " Receive packet rate: %ld packets per second\n", rx_average_pps
/ 8);
1216 p
+= sprintf(p
, " Transmit packet rate: %ld packets per second\n", tx_average_pps
/ 8);
1217 p
+= sprintf(p
, " Sent packet rate: %ld packets per second\n", sx_average_pps
/ 8);
1218 p
+= sprintf(p
, " Next watchdog probe:\t%s\n", time_delta(temp
, watchdog_doprobe
));
1219 p
+= sprintf(p
, " Next watchdog reset:\t%s\n", time_delta(temp
, watchdog_doreset
));
1220 p
+= sprintf(p
, " Next gratuitous ARP:\t");
1222 if (!memcmp(strip_info
->dev
.dev_addr
, zero_address
.c
, sizeof(zero_address
)))
1223 p
+= sprintf(p
, "Disabled\n");
1226 p
+= sprintf(p
, "%s\n", time_delta(temp
, gratuitous_arp
));
1227 p
+= sprintf(p
, " Next ARP interval:\t%ld seconds\n", JIFFIE_TO_SEC(arp_interval
));
1233 p
+= sprintf(p
, "\n");
1234 p
+= sprintf(p
, " Total bytes: \trx:\t%lu\ttx:\t%lu\n", rx_bytes
, tx_bytes
);
1235 p
+= sprintf(p
, " thru radio: \trx:\t%lu\ttx:\t%lu\n", rx_rbytes
, tx_rbytes
);
1236 p
+= sprintf(p
, " thru serial port: \trx:\t%lu\ttx:\t%lu\n", rx_sbytes
, tx_sbytes
);
1237 p
+= sprintf(p
, " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", rx_ebytes
, tx_ebytes
);
1239 p
+= sprintf_neighbours(p
, &strip_info
->poletops
, "Poletops:");
1240 p
+= sprintf_neighbours(p
, &strip_info
->portables
, "Portables:");
1247 * This function is exports status information from the STRIP driver through
1248 * the /proc file system.
1251 static int get_status_info(char *buffer
, char **start
, off_t req_offset
, int req_len
)
1253 int total
= 0, slop
= 0;
1254 struct strip
*strip_info
= struct_strip_list
;
1257 buf
+= sprintf(buf
, "strip_version: %s\n", StripVersion
);
1258 if (shift_buffer(buffer
, req_offset
, req_len
, &total
, &slop
, &buf
)) goto exit
;
1260 while (strip_info
!= NULL
)
1262 buf
+= sprintf_status_info(buf
, strip_info
);
1263 if (shift_buffer(buffer
, req_offset
, req_len
, &total
, &slop
, &buf
)) break;
1264 strip_info
= strip_info
->next
;
1267 return(calc_start_len(buffer
, start
, req_offset
, req_len
, total
, buf
));
1270 /************************************************************************/
1271 /* Sending routines */
1273 static void ResetRadio(struct strip
*strip_info
)
1275 struct tty_struct
*tty
= strip_info
->tty
;
1276 static const char init
[] = "ate0q1dt**starmode\r**";
1277 StringDescriptor s
= { init
, sizeof(init
)-1 };
1280 * If the radio isn't working anymore,
1281 * we should clear the old status information.
1283 if (strip_info
->working
)
1285 printk(KERN_INFO
"%s: No response: Resetting radio.\n", strip_info
->dev
.name
);
1286 strip_info
->firmware_version
.c
[0] = '\0';
1287 strip_info
->serial_number
.c
[0] = '\0';
1288 strip_info
->battery_voltage
.c
[0] = '\0';
1289 strip_info
->portables
.num_nodes
= 0;
1290 do_gettimeofday(&strip_info
->portables
.timestamp
);
1291 strip_info
->poletops
.num_nodes
= 0;
1292 do_gettimeofday(&strip_info
->poletops
.timestamp
);
1295 strip_info
->pps_timer
= jiffies
;
1296 strip_info
->rx_pps_count
= 0;
1297 strip_info
->tx_pps_count
= 0;
1298 strip_info
->sx_pps_count
= 0;
1299 strip_info
->rx_average_pps
= 0;
1300 strip_info
->tx_average_pps
= 0;
1301 strip_info
->sx_average_pps
= 0;
1303 /* Mark radio address as unknown */
1304 *(MetricomAddress
*)&strip_info
->true_dev_addr
= zero_address
;
1305 if (!strip_info
->manual_dev_addr
)
1306 *(MetricomAddress
*)strip_info
->dev
.dev_addr
= zero_address
;
1307 strip_info
->working
= FALSE
;
1308 strip_info
->firmware_level
= NoStructure
;
1309 strip_info
->next_command
= CompatibilityCommand
;
1310 strip_info
->watchdog_doprobe
= jiffies
+ 10 * HZ
;
1311 strip_info
->watchdog_doreset
= jiffies
+ 1 * HZ
;
1313 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1314 if (strip_info
->user_baud
> B38400
)
1317 * Subtle stuff: Pay attention :-)
1318 * If the serial port is currently at the user's selected (>38.4) rate,
1319 * then we temporarily switch to 19.2 and issue the ATS304 command
1320 * to tell the radio to switch to the user's selected rate.
1321 * If the serial port is not currently at that rate, that means we just
1322 * issued the ATS304 command last time through, so this time we restore
1323 * the user's selected rate and issue the normal starmode reset string.
1325 if (strip_info
->user_baud
== get_baud(tty
))
1327 static const char b0
[] = "ate0q1s304=57600\r";
1328 static const char b1
[] = "ate0q1s304=115200\r";
1329 static const StringDescriptor baudstring
[2] =
1330 { { b0
, sizeof(b0
)-1 }, { b1
, sizeof(b1
)-1 } };
1331 set_baud(tty
, B19200
);
1332 if (strip_info
->user_baud
== B57600
) s
= baudstring
[0];
1333 else if (strip_info
->user_baud
== B115200
) s
= baudstring
[1];
1334 else s
= baudstring
[1]; /* For now */
1336 else set_baud(tty
, strip_info
->user_baud
);
1339 tty
->driver
.write(tty
, 0, s
.string
, s
.length
);
1341 strip_info
->tx_ebytes
+= s
.length
;
1346 * Called by the driver when there's room for more data. If we have
1347 * more packets to send, we send them here.
1350 static void strip_write_some_more(struct tty_struct
*tty
)
1352 struct strip
*strip_info
= (struct strip
*) tty
->disc_data
;
1354 /* First make sure we're connected. */
1355 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
||
1356 !netif_running(&strip_info
->dev
))
1359 if (strip_info
->tx_left
> 0)
1362 * If some data left, send it
1363 * Note: There's a kernel design bug here. The write_wakeup routine has to
1364 * know how many bytes were written in the previous call, but the number of
1365 * bytes written is returned as the result of the tty->driver.write call,
1366 * and there's no guarantee that the tty->driver.write routine will have
1367 * returned before the write_wakeup routine is invoked. If the PC has fast
1368 * Serial DMA hardware, then it's quite possible that the write could complete
1369 * almost instantaneously, meaning that my write_wakeup routine could be
1370 * called immediately, before tty->driver.write has had a chance to return
1371 * the number of bytes that it wrote. In an attempt to guard against this,
1372 * I disable interrupts around the call to tty->driver.write, although even
1373 * this might not work on a symmetric multi-processor system.
1375 InterruptStatus intstat
= DisableInterrupts();
1376 int num_written
= tty
->driver
.write(tty
, 0, strip_info
->tx_head
, strip_info
->tx_left
);
1377 strip_info
->tx_left
-= num_written
;
1378 strip_info
->tx_head
+= num_written
;
1380 strip_info
->tx_sbytes
+= num_written
;
1382 RestoreInterrupts(intstat
);
1384 else /* Else start transmission of another packet */
1386 tty
->flags
&= ~(1 << TTY_DO_WRITE_WAKEUP
);
1387 strip_unlock(strip_info
);
1391 static __u8
*add_checksum(__u8
*buffer
, __u8
*end
)
1395 while (p
< end
) sum
+= *p
++;
1396 end
[3] = hextable
[sum
& 0xF]; sum
>>= 4;
1397 end
[2] = hextable
[sum
& 0xF]; sum
>>= 4;
1398 end
[1] = hextable
[sum
& 0xF]; sum
>>= 4;
1399 end
[0] = hextable
[sum
& 0xF];
1403 static unsigned char *strip_make_packet(unsigned char *buffer
, struct strip
*strip_info
, struct sk_buff
*skb
)
1406 __u8
*stuffstate
= NULL
;
1407 STRIP_Header
*header
= (STRIP_Header
*)skb
->data
;
1408 MetricomAddress haddr
= header
->dst_addr
;
1409 int len
= skb
->len
- sizeof(STRIP_Header
);
1412 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len);*/
1414 if (header
->protocol
== htons(ETH_P_IP
)) key
= SIP0Key
;
1415 else if (header
->protocol
== htons(ETH_P_ARP
)) key
= ARP0Key
;
1418 printk(KERN_ERR
"%s: strip_make_packet: Unknown packet type 0x%04X\n",
1419 strip_info
->dev
.name
, ntohs(header
->protocol
));
1423 if (len
> strip_info
->mtu
)
1425 printk(KERN_ERR
"%s: Dropping oversized transmit packet: %d bytes\n",
1426 strip_info
->dev
.name
, len
);
1431 * If we're sending to ourselves, discard the packet.
1432 * (Metricom radios choke if they try to send a packet to their own address.)
1434 if (!memcmp(haddr
.c
, strip_info
->true_dev_addr
.c
, sizeof(haddr
)))
1436 printk(KERN_ERR
"%s: Dropping packet addressed to self\n", strip_info
->dev
.name
);
1441 * If this is a broadcast packet, send it to our designated Metricom
1442 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1444 if (haddr
.c
[0] == 0xFF)
1447 struct in_device
*in_dev
= in_dev_get(&strip_info
->dev
);
1450 read_lock(&in_dev
->lock
);
1451 if (in_dev
->ifa_list
)
1452 brd
= in_dev
->ifa_list
->ifa_broadcast
;
1453 read_unlock(&in_dev
->lock
);
1456 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1457 if (!arp_query(haddr
.c
, brd
, &strip_info
->dev
))
1459 printk(KERN_ERR
"%s: Unable to send packet (no broadcast hub configured)\n",
1460 strip_info
->dev
.name
);
1464 * If we are the broadcast hub, don't bother sending to ourselves.
1465 * (Metricom radios choke if they try to send a packet to their own address.)
1467 if (!memcmp(haddr
.c
, strip_info
->true_dev_addr
.c
, sizeof(haddr
))) return(NULL
);
1472 *ptr
++ = hextable
[haddr
.c
[2] >> 4];
1473 *ptr
++ = hextable
[haddr
.c
[2] & 0xF];
1474 *ptr
++ = hextable
[haddr
.c
[3] >> 4];
1475 *ptr
++ = hextable
[haddr
.c
[3] & 0xF];
1477 *ptr
++ = hextable
[haddr
.c
[4] >> 4];
1478 *ptr
++ = hextable
[haddr
.c
[4] & 0xF];
1479 *ptr
++ = hextable
[haddr
.c
[5] >> 4];
1480 *ptr
++ = hextable
[haddr
.c
[5] & 0xF];
1487 ptr
= StuffData(skb
->data
+ sizeof(STRIP_Header
), len
, ptr
, &stuffstate
);
1489 if (strip_info
->firmware_level
>= ChecksummedMessages
) ptr
= add_checksum(buffer
+1, ptr
);
1495 static void strip_send(struct strip
*strip_info
, struct sk_buff
*skb
)
1497 MetricomAddress haddr
;
1498 unsigned char *ptr
= strip_info
->tx_buff
;
1499 int doreset
= (long)jiffies
- strip_info
->watchdog_doreset
>= 0;
1500 int doprobe
= (long)jiffies
- strip_info
->watchdog_doprobe
>= 0 && !doreset
;
1504 * 1. If we have a packet, encapsulate it and put it in the buffer
1508 char *newptr
= strip_make_packet(ptr
, strip_info
, skb
);
1509 strip_info
->tx_pps_count
++;
1510 if (!newptr
) strip_info
->tx_dropped
++;
1514 strip_info
->sx_pps_count
++;
1515 strip_info
->tx_packets
++; /* Count another successful packet */
1517 strip_info
->tx_bytes
+= skb
->len
;
1518 strip_info
->tx_rbytes
+= ptr
- strip_info
->tx_buff
;
1520 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr);*/
1521 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr);*/
1526 * 2. If it is time for another tickle, tack it on, after the packet
1530 StringDescriptor ts
= CommandString
[strip_info
->next_command
];
1534 do_gettimeofday(&tv
);
1535 printk(KERN_INFO
"**** Sending tickle string %d at %02d.%06d\n",
1536 strip_info
->next_command
, tv
.tv_sec
% 100, tv
.tv_usec
);
1539 if (ptr
== strip_info
->tx_buff
) *ptr
++ = 0x0D;
1541 *ptr
++ = '*'; /* First send "**" to provoke an error message */
1544 /* Then add the command */
1545 memcpy(ptr
, ts
.string
, ts
.length
);
1547 /* Add a checksum ? */
1548 if (strip_info
->firmware_level
< ChecksummedMessages
) ptr
+= ts
.length
;
1549 else ptr
= add_checksum(ptr
, ptr
+ ts
.length
);
1551 *ptr
++ = 0x0D; /* Terminate the command with a <CR> */
1553 /* Cycle to next periodic command? */
1554 if (strip_info
->firmware_level
>= StructuredMessages
)
1555 if (++strip_info
->next_command
>= ELEMENTS_OF(CommandString
))
1556 strip_info
->next_command
= 0;
1558 strip_info
->tx_ebytes
+= ts
.length
;
1560 strip_info
->watchdog_doprobe
= jiffies
+ 10 * HZ
;
1561 strip_info
->watchdog_doreset
= jiffies
+ 1 * HZ
;
1562 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev.name);*/
1566 * 3. Set up the strip_info ready to send the data (if any).
1568 strip_info
->tx_head
= strip_info
->tx_buff
;
1569 strip_info
->tx_left
= ptr
- strip_info
->tx_buff
;
1570 strip_info
->tty
->flags
|= (1 << TTY_DO_WRITE_WAKEUP
);
1573 * 4. Debugging check to make sure we're not overflowing the buffer.
1575 if (strip_info
->tx_size
- strip_info
->tx_left
< 20)
1576 printk(KERN_ERR
"%s: Sending%5d bytes;%5d bytes free.\n", strip_info
->dev
.name
,
1577 strip_info
->tx_left
, strip_info
->tx_size
- strip_info
->tx_left
);
1580 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1581 * the buffer, strip_write_some_more will send it after the reset has finished
1583 if (doreset
) { ResetRadio(strip_info
); return; }
1586 struct in_device
*in_dev
= in_dev_get(&strip_info
->dev
);
1589 read_lock(&in_dev
->lock
);
1590 if (in_dev
->ifa_list
) {
1591 brd
= in_dev
->ifa_list
->ifa_broadcast
;
1592 addr
= in_dev
->ifa_list
->ifa_local
;
1594 read_unlock(&in_dev
->lock
);
1601 * 6. If it is time for a periodic ARP, queue one up to be sent.
1602 * We only do this if:
1603 * 1. The radio is working
1604 * 2. It's time to send another periodic ARP
1605 * 3. We really know what our address is (and it is not manually set to zero)
1606 * 4. We have a designated broadcast address configured
1607 * If we queue up an ARP packet when we don't have a designated broadcast
1608 * address configured, then the packet will just have to be discarded in
1609 * strip_make_packet. This is not fatal, but it causes misleading information
1610 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1611 * being sent, when in fact they are not, because they are all being dropped
1612 * in the strip_make_packet routine.
1614 if (strip_info
->working
&& (long)jiffies
- strip_info
->gratuitous_arp
>= 0 &&
1615 memcmp(strip_info
->dev
.dev_addr
, zero_address
.c
, sizeof(zero_address
)) &&
1616 arp_query(haddr
.c
, brd
, &strip_info
->dev
))
1618 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1619 strip_info->dev.name, strip_info->arp_interval / HZ);*/
1620 strip_info
->gratuitous_arp
= jiffies
+ strip_info
->arp_interval
;
1621 strip_info
->arp_interval
*= 2;
1622 if (strip_info
->arp_interval
> MaxARPInterval
)
1623 strip_info
->arp_interval
= MaxARPInterval
;
1626 ARPOP_REPLY
, ETH_P_ARP
,
1627 addr
, /* Target address of ARP packet is our address */
1628 &strip_info
->dev
, /* Device to send packet on */
1629 addr
, /* Source IP address this ARP packet comes from */
1630 NULL
, /* Destination HW address is NULL (broadcast it) */
1631 strip_info
->dev
.dev_addr
, /* Source HW address is our HW address */
1632 strip_info
->dev
.dev_addr
); /* Target HW address is our HW address (redundant) */
1636 * 7. All ready. Start the transmission
1638 strip_write_some_more(strip_info
->tty
);
1641 /* Encapsulate a datagram and kick it into a TTY queue. */
1642 static int strip_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1644 struct strip
*strip_info
= (struct strip
*)(dev
->priv
);
1646 if (!netif_running(dev
))
1648 printk(KERN_ERR
"%s: xmit call when iface is down\n", dev
->name
);
1652 netif_stop_queue(dev
);
1654 del_timer(&strip_info
->idle_timer
);
1656 /* See if someone has been ifconfigging */
1657 if (strip_info
->mtu
!= strip_info
->dev
.mtu
)
1658 strip_changedmtu(strip_info
);
1660 if (jiffies
- strip_info
->pps_timer
> HZ
)
1662 unsigned long t
= jiffies
- strip_info
->pps_timer
;
1663 unsigned long rx_pps_count
= (strip_info
->rx_pps_count
* HZ
* 8 + t
/2) / t
;
1664 unsigned long tx_pps_count
= (strip_info
->tx_pps_count
* HZ
* 8 + t
/2) / t
;
1665 unsigned long sx_pps_count
= (strip_info
->sx_pps_count
* HZ
* 8 + t
/2) / t
;
1667 strip_info
->pps_timer
= jiffies
;
1668 strip_info
->rx_pps_count
= 0;
1669 strip_info
->tx_pps_count
= 0;
1670 strip_info
->sx_pps_count
= 0;
1672 strip_info
->rx_average_pps
= (strip_info
->rx_average_pps
+ rx_pps_count
+ 1) / 2;
1673 strip_info
->tx_average_pps
= (strip_info
->tx_average_pps
+ tx_pps_count
+ 1) / 2;
1674 strip_info
->sx_average_pps
= (strip_info
->sx_average_pps
+ sx_pps_count
+ 1) / 2;
1676 if (rx_pps_count
/ 8 >= 10)
1677 printk(KERN_INFO
"%s: WARNING: Receiving %ld packets per second.\n",
1678 strip_info
->dev
.name
, rx_pps_count
/ 8);
1679 if (tx_pps_count
/ 8 >= 10)
1680 printk(KERN_INFO
"%s: WARNING: Tx %ld packets per second.\n",
1681 strip_info
->dev
.name
, tx_pps_count
/ 8);
1682 if (sx_pps_count
/ 8 >= 10)
1683 printk(KERN_INFO
"%s: WARNING: Sending %ld packets per second.\n",
1684 strip_info
->dev
.name
, sx_pps_count
/ 8);
1687 strip_send(strip_info
, skb
);
1695 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1696 * to send for an extended period of time, the watchdog processing still gets
1697 * done to ensure that the radio stays in Starmode
1700 static void strip_IdleTask(unsigned long parameter
)
1702 strip_xmit(NULL
, (struct net_device
*)parameter
);
1706 * Create the MAC header for an arbitrary protocol layer
1708 * saddr!=NULL means use this specific address (n/a for Metricom)
1709 * saddr==NULL means use default device source address
1710 * daddr!=NULL means use this destination address
1711 * daddr==NULL means leave destination address alone
1712 * (e.g. unresolved arp -- kernel will call
1713 * rebuild_header later to fill in the address)
1716 static int strip_header(struct sk_buff
*skb
, struct net_device
*dev
,
1717 unsigned short type
, void *daddr
, void *saddr
, unsigned len
)
1719 struct strip
*strip_info
= (struct strip
*)(dev
->priv
);
1720 STRIP_Header
*header
= (STRIP_Header
*)skb_push(skb
, sizeof(STRIP_Header
));
1722 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1723 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : "");*/
1725 header
->src_addr
= strip_info
->true_dev_addr
;
1726 header
->protocol
= htons(type
);
1728 /*HexDump("strip_header", (struct strip *)(dev->priv), skb->data, skb->data + skb->len);*/
1730 if (!daddr
) return(-dev
->hard_header_len
);
1732 header
->dst_addr
= *(MetricomAddress
*)daddr
;
1733 return(dev
->hard_header_len
);
1737 * Rebuild the MAC header. This is called after an ARP
1738 * (or in future other address resolution) has completed on this
1739 * sk_buff. We now let ARP fill in the other fields.
1740 * I think this should return zero if packet is ready to send,
1741 * or non-zero if it needs more time to do an address lookup
1744 static int strip_rebuild_header(struct sk_buff
*skb
)
1747 STRIP_Header
*header
= (STRIP_Header
*) skb
->data
;
1749 /* Arp find returns zero if if knows the address, */
1750 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1751 return arp_find(header
->dst_addr
.c
, skb
)? 1 : 0;
1758 /************************************************************************/
1759 /* Receiving routines */
1761 static int strip_receive_room(struct tty_struct
*tty
)
1763 return 0x10000; /* We can handle an infinite amount of data. :-) */
1767 * This function parses the response to the ATS300? command,
1768 * extracting the radio version and serial number.
1770 static void get_radio_version(struct strip
*strip_info
, __u8
*ptr
, __u8
*end
)
1772 __u8
*p
, *value_begin
, *value_end
;
1775 /* Determine the beginning of the second line of the payload */
1777 while (p
< end
&& *p
!= 10) p
++;
1778 if (p
>= end
) return;
1782 /* Determine the end of line */
1783 while (p
< end
&& *p
!= 10) p
++;
1784 if (p
>= end
) return;
1788 len
= value_end
- value_begin
;
1789 len
= MIN(len
, sizeof(FirmwareVersion
) - 1);
1790 if (strip_info
->firmware_version
.c
[0] == 0)
1791 printk(KERN_INFO
"%s: Radio Firmware: %.*s\n",
1792 strip_info
->dev
.name
, len
, value_begin
);
1793 sprintf(strip_info
->firmware_version
.c
, "%.*s", len
, value_begin
);
1795 /* Look for the first colon */
1796 while (p
< end
&& *p
!= ':') p
++;
1797 if (p
>= end
) return;
1798 /* Skip over the space */
1800 len
= sizeof(SerialNumber
) - 1;
1801 if (p
+ len
<= end
) {
1802 sprintf(strip_info
->serial_number
.c
, "%.*s", len
, p
);
1805 printk(KERN_DEBUG
"STRIP: radio serial number shorter (%d) than expected (%d)\n",
1811 * This function parses the response to the ATS325? command,
1812 * extracting the radio battery voltage.
1814 static void get_radio_voltage(struct strip
*strip_info
, __u8
*ptr
, __u8
*end
)
1818 len
= sizeof(BatteryVoltage
) - 1;
1819 if (ptr
+ len
<= end
) {
1820 sprintf(strip_info
->battery_voltage
.c
, "%.*s", len
, ptr
);
1823 printk(KERN_DEBUG
"STRIP: radio voltage string shorter (%d) than expected (%d)\n",
1829 * This function parses the responses to the AT~LA and ATS311 commands,
1830 * which list the radio's neighbours.
1832 static void get_radio_neighbours(MetricomNodeTable
*table
, __u8
*ptr
, __u8
*end
)
1834 table
->num_nodes
= 0;
1835 while (ptr
< end
&& table
->num_nodes
< NODE_TABLE_SIZE
)
1837 MetricomNode
*node
= &table
->node
[table
->num_nodes
++];
1838 char *dst
= node
->c
, *limit
= dst
+ sizeof(*node
) - 1;
1839 while (ptr
< end
&& *ptr
<= 32) ptr
++;
1840 while (ptr
< end
&& dst
< limit
&& *ptr
!= 10) *dst
++ = *ptr
++;
1842 while (ptr
< end
&& ptr
[-1] != 10) ptr
++;
1844 do_gettimeofday(&table
->timestamp
);
1847 static int get_radio_address(struct strip
*strip_info
, __u8
*p
)
1849 MetricomAddress addr
;
1851 if (string_to_radio_address(&addr
, p
)) return(1);
1853 /* See if our radio address has changed */
1854 if (memcmp(strip_info
->true_dev_addr
.c
, addr
.c
, sizeof(addr
)))
1856 MetricomAddressString addr_string
;
1857 radio_address_to_string(&addr
, &addr_string
);
1858 printk(KERN_INFO
"%s: Radio address = %s\n", strip_info
->dev
.name
, addr_string
.c
);
1859 strip_info
->true_dev_addr
= addr
;
1860 if (!strip_info
->manual_dev_addr
) *(MetricomAddress
*)strip_info
->dev
.dev_addr
= addr
;
1861 /* Give the radio a few seconds to get its head straight, then send an arp */
1862 strip_info
->gratuitous_arp
= jiffies
+ 15 * HZ
;
1863 strip_info
->arp_interval
= 1 * HZ
;
1868 static int verify_checksum(struct strip
*strip_info
)
1870 __u8
*p
= strip_info
->sx_buff
;
1871 __u8
*end
= strip_info
->sx_buff
+ strip_info
->sx_count
- 4;
1872 u_short sum
= (READHEX16(end
[0]) << 12) | (READHEX16(end
[1]) << 8) |
1873 (READHEX16(end
[2]) << 4) | (READHEX16(end
[3]));
1874 while (p
< end
) sum
-= *p
++;
1875 if (sum
== 0 && strip_info
->firmware_level
== StructuredMessages
)
1877 strip_info
->firmware_level
= ChecksummedMessages
;
1878 printk(KERN_INFO
"%s: Radio provides message checksums\n", strip_info
->dev
.name
);
1883 static void RecvErr(char *msg
, struct strip
*strip_info
)
1885 __u8
*ptr
= strip_info
->sx_buff
;
1886 __u8
*end
= strip_info
->sx_buff
+ strip_info
->sx_count
;
1887 DumpData(msg
, strip_info
, ptr
, end
);
1888 strip_info
->rx_errors
++;
1891 static void RecvErr_Message(struct strip
*strip_info
, __u8
*sendername
, const __u8
*msg
, u_long len
)
1893 if (has_prefix(msg
, len
, "001")) /* Not in StarMode! */
1895 RecvErr("Error Msg:", strip_info
);
1896 printk(KERN_INFO
"%s: Radio %s is not in StarMode\n",
1897 strip_info
->dev
.name
, sendername
);
1900 else if (has_prefix(msg
, len
, "002")) /* Remap handle */
1902 /* We ignore "Remap handle" messages for now */
1905 else if (has_prefix(msg
, len
, "003")) /* Can't resolve name */
1907 RecvErr("Error Msg:", strip_info
);
1908 printk(KERN_INFO
"%s: Destination radio name is unknown\n",
1909 strip_info
->dev
.name
);
1912 else if (has_prefix(msg
, len
, "004")) /* Name too small or missing */
1914 strip_info
->watchdog_doreset
= jiffies
+ LongTime
;
1918 do_gettimeofday(&tv
);
1919 printk(KERN_INFO
"**** Got ERR_004 response at %02d.%06d\n",
1920 tv
.tv_sec
% 100, tv
.tv_usec
);
1923 if (!strip_info
->working
)
1925 strip_info
->working
= TRUE
;
1926 printk(KERN_INFO
"%s: Radio now in starmode\n", strip_info
->dev
.name
);
1928 * If the radio has just entered a working state, we should do our first
1929 * probe ASAP, so that we find out our radio address etc. without delay.
1931 strip_info
->watchdog_doprobe
= jiffies
;
1933 if (strip_info
->firmware_level
== NoStructure
&& sendername
)
1935 strip_info
->firmware_level
= StructuredMessages
;
1936 strip_info
->next_command
= 0; /* Try to enable checksums ASAP */
1937 printk(KERN_INFO
"%s: Radio provides structured messages\n", strip_info
->dev
.name
);
1939 if (strip_info
->firmware_level
>= StructuredMessages
)
1942 * If this message has a valid checksum on the end, then the call to verify_checksum
1943 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1944 * code from verify_checksum is ignored here.)
1946 verify_checksum(strip_info
);
1948 * If the radio has structured messages but we don't yet have all our information about it,
1949 * we should do probes without delay, until we have gathered all the information
1951 if (!GOT_ALL_RADIO_INFO(strip_info
)) strip_info
->watchdog_doprobe
= jiffies
;
1955 else if (has_prefix(msg
, len
, "005")) /* Bad count specification */
1956 RecvErr("Error Msg:", strip_info
);
1958 else if (has_prefix(msg
, len
, "006")) /* Header too big */
1959 RecvErr("Error Msg:", strip_info
);
1961 else if (has_prefix(msg
, len
, "007")) /* Body too big */
1963 RecvErr("Error Msg:", strip_info
);
1964 printk(KERN_ERR
"%s: Error! Packet size too big for radio.\n",
1965 strip_info
->dev
.name
);
1968 else if (has_prefix(msg
, len
, "008")) /* Bad character in name */
1970 RecvErr("Error Msg:", strip_info
);
1971 printk(KERN_ERR
"%s: Radio name contains illegal character\n",
1972 strip_info
->dev
.name
);
1975 else if (has_prefix(msg
, len
, "009")) /* No count or line terminator */
1976 RecvErr("Error Msg:", strip_info
);
1978 else if (has_prefix(msg
, len
, "010")) /* Invalid checksum */
1979 RecvErr("Error Msg:", strip_info
);
1981 else if (has_prefix(msg
, len
, "011")) /* Checksum didn't match */
1982 RecvErr("Error Msg:", strip_info
);
1984 else if (has_prefix(msg
, len
, "012")) /* Failed to transmit packet */
1985 RecvErr("Error Msg:", strip_info
);
1988 RecvErr("Error Msg:", strip_info
);
1991 static void process_AT_response(struct strip
*strip_info
, __u8
*ptr
, __u8
*end
)
1995 while (p
< end
&& p
[-1] != 10) p
++; /* Skip past first newline character */
1996 /* Now ptr points to the AT command, and p points to the text of the response. */
2002 do_gettimeofday(&tv
);
2003 printk(KERN_INFO
"**** Got AT response %.7s at %02d.%06d\n",
2004 ptr
, tv
.tv_sec
% 100, tv
.tv_usec
);
2008 if (has_prefix(ptr
, len
, "ATS300?" )) get_radio_version(strip_info
, p
, end
);
2009 else if (has_prefix(ptr
, len
, "ATS305?" )) get_radio_address(strip_info
, p
);
2010 else if (has_prefix(ptr
, len
, "ATS311?" )) get_radio_neighbours(&strip_info
->poletops
, p
, end
);
2011 else if (has_prefix(ptr
, len
, "ATS319=7")) verify_checksum(strip_info
);
2012 else if (has_prefix(ptr
, len
, "ATS325?" )) get_radio_voltage(strip_info
, p
, end
);
2013 else if (has_prefix(ptr
, len
, "AT~LA" )) get_radio_neighbours(&strip_info
->portables
, p
, end
);
2014 else RecvErr("Unknown AT Response:", strip_info
);
2017 static void process_ACK(struct strip
*strip_info
, __u8
*ptr
, __u8
*end
)
2019 /* Currently we don't do anything with ACKs from the radio */
2022 static void process_Info(struct strip
*strip_info
, __u8
*ptr
, __u8
*end
)
2024 if (ptr
+16 > end
) RecvErr("Bad Info Msg:", strip_info
);
2027 static struct net_device
*get_strip_dev(struct strip
*strip_info
)
2029 /* If our hardware address is *manually set* to zero, and we know our */
2030 /* real radio hardware address, try to find another strip device that has been */
2031 /* manually set to that address that we can 'transfer ownership' of this packet to */
2032 if (strip_info
->manual_dev_addr
&&
2033 !memcmp(strip_info
->dev
.dev_addr
, zero_address
.c
, sizeof(zero_address
)) &&
2034 memcmp(&strip_info
->true_dev_addr
, zero_address
.c
, sizeof(zero_address
)))
2036 struct net_device
*dev
;
2037 read_lock_bh(&dev_base_lock
);
2041 if (dev
->type
== strip_info
->dev
.type
&&
2042 !memcmp(dev
->dev_addr
, &strip_info
->true_dev_addr
, sizeof(MetricomAddress
)))
2044 printk(KERN_INFO
"%s: Transferred packet ownership to %s.\n",
2045 strip_info
->dev
.name
, dev
->name
);
2046 read_unlock_bh(&dev_base_lock
);
2051 read_unlock_bh(&dev_base_lock
);
2053 return(&strip_info
->dev
);
2057 * Send one completely decapsulated datagram to the next layer.
2060 static void deliver_packet(struct strip
*strip_info
, STRIP_Header
*header
, __u16 packetlen
)
2062 struct sk_buff
*skb
= dev_alloc_skb(sizeof(STRIP_Header
) + packetlen
);
2065 printk(KERN_ERR
"%s: memory squeeze, dropping packet.\n", strip_info
->dev
.name
);
2066 strip_info
->rx_dropped
++;
2070 memcpy(skb_put(skb
, sizeof(STRIP_Header
)), header
, sizeof(STRIP_Header
));
2071 memcpy(skb_put(skb
, packetlen
), strip_info
->rx_buff
, packetlen
);
2072 skb
->dev
= get_strip_dev(strip_info
);
2073 skb
->protocol
= header
->protocol
;
2074 skb
->mac
.raw
= skb
->data
;
2076 /* Having put a fake header on the front of the sk_buff for the */
2077 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
2078 /* fake header before we hand the packet up to the next layer. */
2079 skb_pull(skb
, sizeof(STRIP_Header
));
2081 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2082 strip_info
->rx_packets
++;
2083 strip_info
->rx_pps_count
++;
2085 strip_info
->rx_bytes
+= packetlen
;
2091 static void process_IP_packet(struct strip
*strip_info
, STRIP_Header
*header
, __u8
*ptr
, __u8
*end
)
2095 /* Decode start of the IP packet header */
2096 ptr
= UnStuffData(ptr
, end
, strip_info
->rx_buff
, 4);
2099 RecvErr("IP Packet too short", strip_info
);
2103 packetlen
= ((__u16
)strip_info
->rx_buff
[2] << 8) | strip_info
->rx_buff
[3];
2105 if (packetlen
> MAX_RECV_MTU
)
2107 printk(KERN_INFO
"%s: Dropping oversized received IP packet: %d bytes\n",
2108 strip_info
->dev
.name
, packetlen
);
2109 strip_info
->rx_dropped
++;
2113 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev.name, packetlen);*/
2115 /* Decode remainder of the IP packet */
2116 ptr
= UnStuffData(ptr
, end
, strip_info
->rx_buff
+4, packetlen
-4);
2119 RecvErr("IP Packet too short", strip_info
);
2125 RecvErr("IP Packet too long", strip_info
);
2129 header
->protocol
= htons(ETH_P_IP
);
2131 deliver_packet(strip_info
, header
, packetlen
);
2134 static void process_ARP_packet(struct strip
*strip_info
, STRIP_Header
*header
, __u8
*ptr
, __u8
*end
)
2137 struct arphdr
*arphdr
= (struct arphdr
*)strip_info
->rx_buff
;
2139 /* Decode start of the ARP packet */
2140 ptr
= UnStuffData(ptr
, end
, strip_info
->rx_buff
, 8);
2143 RecvErr("ARP Packet too short", strip_info
);
2147 packetlen
= 8 + (arphdr
->ar_hln
+ arphdr
->ar_pln
) * 2;
2149 if (packetlen
> MAX_RECV_MTU
)
2151 printk(KERN_INFO
"%s: Dropping oversized received ARP packet: %d bytes\n",
2152 strip_info
->dev
.name
, packetlen
);
2153 strip_info
->rx_dropped
++;
2157 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2158 strip_info->dev.name, packetlen,
2159 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply");*/
2161 /* Decode remainder of the ARP packet */
2162 ptr
= UnStuffData(ptr
, end
, strip_info
->rx_buff
+8, packetlen
-8);
2165 RecvErr("ARP Packet too short", strip_info
);
2171 RecvErr("ARP Packet too long", strip_info
);
2175 header
->protocol
= htons(ETH_P_ARP
);
2177 deliver_packet(strip_info
, header
, packetlen
);
2181 * process_text_message processes a <CR>-terminated block of data received
2182 * from the radio that doesn't begin with a '*' character. All normal
2183 * Starmode communication messages with the radio begin with a '*',
2184 * so any text that does not indicates a serial port error, a radio that
2185 * is in Hayes command mode instead of Starmode, or a radio with really
2186 * old firmware that doesn't frame its Starmode responses properly.
2188 static void process_text_message(struct strip
*strip_info
)
2190 __u8
*msg
= strip_info
->sx_buff
;
2191 int len
= strip_info
->sx_count
;
2193 /* Check for anything that looks like it might be our radio name */
2194 /* (This is here for backwards compatibility with old firmware) */
2195 if (len
== 9 && get_radio_address(strip_info
, msg
) == 0) return;
2197 if (text_equal(msg
, len
, "OK" )) return; /* Ignore 'OK' responses from prior commands */
2198 if (text_equal(msg
, len
, "ERROR" )) return; /* Ignore 'ERROR' messages */
2199 if (has_prefix(msg
, len
, "ate0q1" )) return; /* Ignore character echo back from the radio */
2201 /* Catch other error messages */
2202 /* (This is here for backwards compatibility with old firmware) */
2203 if (has_prefix(msg
, len
, "ERR_")) { RecvErr_Message(strip_info
, NULL
, &msg
[4], len
-4); return; }
2205 RecvErr("No initial *", strip_info
);
2209 * process_message processes a <CR>-terminated block of data received
2210 * from the radio. If the radio is not in Starmode or has old firmware,
2211 * it may be a line of text in response to an AT command. Ideally, with
2212 * a current radio that's properly in Starmode, all data received should
2213 * be properly framed and checksummed radio message blocks, containing
2214 * either a starmode packet, or a other communication from the radio
2215 * firmware, like "INF_" Info messages and &COMMAND responses.
2217 static void process_message(struct strip
*strip_info
)
2219 STRIP_Header header
= { zero_address
, zero_address
, 0 };
2220 __u8
*ptr
= strip_info
->sx_buff
;
2221 __u8
*end
= strip_info
->sx_buff
+ strip_info
->sx_count
;
2222 __u8 sendername
[32], *sptr
= sendername
;
2225 /*HexDump("Receiving", strip_info, ptr, end);*/
2227 /* Check for start of address marker, and then skip over it */
2228 if (*ptr
== '*') ptr
++;
2229 else { process_text_message(strip_info
); return; }
2231 /* Copy out the return address */
2232 while (ptr
< end
&& *ptr
!= '*' && sptr
< ARRAY_END(sendername
)-1) *sptr
++ = *ptr
++;
2233 *sptr
= 0; /* Null terminate the sender name */
2235 /* Check for end of address marker, and skip over it */
2236 if (ptr
>= end
|| *ptr
!= '*')
2238 RecvErr("No second *", strip_info
);
2241 ptr
++; /* Skip the second '*' */
2243 /* If the sender name is "&COMMAND", ignore this 'packet' */
2244 /* (This is here for backwards compatibility with old firmware) */
2245 if (!strcmp(sendername
, "&COMMAND"))
2247 strip_info
->firmware_level
= NoStructure
;
2248 strip_info
->next_command
= CompatibilityCommand
;
2254 RecvErr("No proto key", strip_info
);
2258 /* Get the protocol key out of the buffer */
2264 /* If we're using checksums, verify the checksum at the end of the packet */
2265 if (strip_info
->firmware_level
>= ChecksummedMessages
)
2267 end
-= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2270 RecvErr("Missing Checksum", strip_info
);
2273 if (!verify_checksum(strip_info
))
2275 RecvErr("Bad Checksum", strip_info
);
2280 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev.name, sendername);*/
2283 * Fill in (pseudo) source and destination addresses in the packet.
2284 * We assume that the destination address was our address (the radio does not
2285 * tell us this). If the radio supplies a source address, then we use it.
2287 header
.dst_addr
= strip_info
->true_dev_addr
;
2288 string_to_radio_address(&header
.src_addr
, sendername
);
2291 if (key
.l
== SIP0Key
.l
) {
2292 strip_info
->rx_rbytes
+= (end
- ptr
);
2293 process_IP_packet(strip_info
, &header
, ptr
, end
);
2294 } else if (key
.l
== ARP0Key
.l
) {
2295 strip_info
->rx_rbytes
+= (end
- ptr
);
2296 process_ARP_packet(strip_info
, &header
, ptr
, end
);
2297 } else if (key
.l
== ATR_Key
.l
) {
2298 strip_info
->rx_ebytes
+= (end
- ptr
);
2299 process_AT_response(strip_info
, ptr
, end
);
2300 } else if (key
.l
== ACK_Key
.l
) {
2301 strip_info
->rx_ebytes
+= (end
- ptr
);
2302 process_ACK(strip_info
, ptr
, end
);
2303 } else if (key
.l
== INF_Key
.l
) {
2304 strip_info
->rx_ebytes
+= (end
- ptr
);
2305 process_Info(strip_info
, ptr
, end
);
2306 } else if (key
.l
== ERR_Key
.l
) {
2307 strip_info
->rx_ebytes
+= (end
- ptr
);
2308 RecvErr_Message(strip_info
, sendername
, ptr
, end
-ptr
);
2309 } else RecvErr("Unrecognized protocol key", strip_info
);
2311 if (key
.l
== SIP0Key
.l
) process_IP_packet (strip_info
, &header
, ptr
, end
);
2312 else if (key
.l
== ARP0Key
.l
) process_ARP_packet (strip_info
, &header
, ptr
, end
);
2313 else if (key
.l
== ATR_Key
.l
) process_AT_response(strip_info
, ptr
, end
);
2314 else if (key
.l
== ACK_Key
.l
) process_ACK (strip_info
, ptr
, end
);
2315 else if (key
.l
== INF_Key
.l
) process_Info (strip_info
, ptr
, end
);
2316 else if (key
.l
== ERR_Key
.l
) RecvErr_Message (strip_info
, sendername
, ptr
, end
-ptr
);
2317 else RecvErr("Unrecognized protocol key", strip_info
);
2321 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2322 (X) == TTY_FRAME ? "Framing Error" : \
2323 (X) == TTY_PARITY ? "Parity Error" : \
2324 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2327 * Handle the 'receiver data ready' interrupt.
2328 * This function is called by the 'tty_io' module in the kernel when
2329 * a block of STRIP data has been received, which can now be decapsulated
2330 * and sent on to some IP layer for further processing.
2334 strip_receive_buf(struct tty_struct
*tty
, const unsigned char *cp
, char *fp
, int count
)
2336 struct strip
*strip_info
= (struct strip
*) tty
->disc_data
;
2337 const unsigned char *end
= cp
+ count
;
2339 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
2340 || !netif_running(&strip_info
->dev
))
2343 /* Argh! mtu change time! - costs us the packet part received at the change */
2344 if (strip_info
->mtu
!= strip_info
->dev
.mtu
)
2345 strip_changedmtu(strip_info
);
2350 do_gettimeofday(&tv
);
2351 printk(KERN_INFO
"**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2352 count
, tv
.tv_sec
% 100, tv
.tv_usec
);
2357 strip_info
->rx_sbytes
+= count
;
2360 /* Read the characters out of the buffer */
2363 if (fp
&& *fp
) printk(KERN_INFO
"%s: %s on serial port\n", strip_info
->dev
.name
, TTYERROR(*fp
));
2364 if (fp
&& *fp
++ && !strip_info
->discard
) /* If there's a serial error, record it */
2366 /* If we have some characters in the buffer, discard them */
2367 strip_info
->discard
= strip_info
->sx_count
;
2368 strip_info
->rx_errors
++;
2371 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2372 if (strip_info
->sx_count
> 0 || *cp
>= ' ')
2374 if (*cp
== 0x0D) /* If end of packet, decide what to do with it */
2376 if (strip_info
->sx_count
> 3000)
2377 printk(KERN_INFO
"%s: Cut a %d byte packet (%d bytes remaining)%s\n",
2378 strip_info
->dev
.name
, strip_info
->sx_count
, end
-cp
-1,
2379 strip_info
->discard
? " (discarded)" : "");
2380 if (strip_info
->sx_count
> strip_info
->sx_size
)
2382 strip_info
->rx_over_errors
++;
2383 printk(KERN_INFO
"%s: sx_buff overflow (%d bytes total)\n",
2384 strip_info
->dev
.name
, strip_info
->sx_count
);
2386 else if (strip_info
->discard
)
2387 printk(KERN_INFO
"%s: Discarding bad packet (%d/%d)\n",
2388 strip_info
->dev
.name
, strip_info
->discard
, strip_info
->sx_count
);
2389 else process_message(strip_info
);
2390 strip_info
->discard
= 0;
2391 strip_info
->sx_count
= 0;
2395 /* Make sure we have space in the buffer */
2396 if (strip_info
->sx_count
< strip_info
->sx_size
)
2397 strip_info
->sx_buff
[strip_info
->sx_count
] = *cp
;
2398 strip_info
->sx_count
++;
2406 /************************************************************************/
2407 /* General control routines */
2409 static int set_mac_address(struct strip
*strip_info
, MetricomAddress
*addr
)
2412 * We're using a manually specified address if the address is set
2413 * to anything other than all ones. Setting the address to all ones
2414 * disables manual mode and goes back to automatic address determination
2415 * (tracking the true address that the radio has).
2417 strip_info
->manual_dev_addr
= memcmp(addr
->c
, broadcast_address
.c
, sizeof(broadcast_address
));
2418 if (strip_info
->manual_dev_addr
)
2419 *(MetricomAddress
*)strip_info
->dev
.dev_addr
= *addr
;
2420 else *(MetricomAddress
*)strip_info
->dev
.dev_addr
= strip_info
->true_dev_addr
;
2424 static int dev_set_mac_address(struct net_device
*dev
, void *addr
)
2426 struct strip
*strip_info
= (struct strip
*)(dev
->priv
);
2427 struct sockaddr
*sa
= addr
;
2428 printk(KERN_INFO
"%s: strip_set_dev_mac_address called\n", dev
->name
);
2429 set_mac_address(strip_info
, (MetricomAddress
*)sa
->sa_data
);
2433 static struct enet_statistics
*strip_get_stats(struct net_device
*dev
)
2435 static struct enet_statistics stats
;
2436 struct strip
*strip_info
= (struct strip
*)(dev
->priv
);
2438 memset(&stats
, 0, sizeof(struct enet_statistics
));
2440 stats
.rx_packets
= strip_info
->rx_packets
;
2441 stats
.tx_packets
= strip_info
->tx_packets
;
2442 stats
.rx_dropped
= strip_info
->rx_dropped
;
2443 stats
.tx_dropped
= strip_info
->tx_dropped
;
2444 stats
.tx_errors
= strip_info
->tx_errors
;
2445 stats
.rx_errors
= strip_info
->rx_errors
;
2446 stats
.rx_over_errors
= strip_info
->rx_over_errors
;
2451 /************************************************************************/
2452 /* Opening and closing */
2455 * Here's the order things happen:
2456 * When the user runs "slattach -p strip ..."
2457 * 1. The TTY module calls strip_open
2458 * 2. strip_open calls strip_alloc
2459 * 3. strip_alloc calls register_netdev
2460 * 4. register_netdev calls strip_dev_init
2461 * 5. then strip_open finishes setting up the strip_info
2463 * When the user runs "ifconfig st<x> up address netmask ..."
2464 * 6. strip_open_low gets called
2466 * When the user runs "ifconfig st<x> down"
2467 * 7. strip_close_low gets called
2469 * When the user kills the slattach process
2470 * 8. strip_close gets called
2471 * 9. strip_close calls dev_close
2472 * 10. if the device is still up, then dev_close calls strip_close_low
2473 * 11. strip_close calls strip_free
2476 /* Open the low-level part of the STRIP channel. Easy! */
2478 static int strip_open_low(struct net_device
*dev
)
2480 struct strip
*strip_info
= (struct strip
*)(dev
->priv
);
2482 struct in_device
*in_dev
= dev
->ip_ptr
;
2485 if (strip_info
->tty
== NULL
)
2488 if (!allocate_buffers(strip_info
))
2491 strip_info
->sx_count
= 0;
2492 strip_info
->tx_left
= 0;
2494 strip_info
->discard
= 0;
2495 strip_info
->working
= FALSE
;
2496 strip_info
->firmware_level
= NoStructure
;
2497 strip_info
->next_command
= CompatibilityCommand
;
2498 strip_info
->user_baud
= get_baud(strip_info
->tty
);
2502 * Needed because address '0' is special
2504 * --ANK Needed it or not needed, it does not matter at all.
2505 * Make it at user level, guys.
2508 if (in_dev
->ifa_list
->ifa_address
== 0)
2509 in_dev
->ifa_list
->ifa_address
= ntohl(0xC0A80001);
2511 printk(KERN_INFO
"%s: Initializing Radio.\n", strip_info
->dev
.name
);
2512 ResetRadio(strip_info
);
2513 strip_info
->idle_timer
.expires
= jiffies
+ 1*HZ
;
2514 add_timer(&strip_info
->idle_timer
);
2515 netif_wake_queue(dev
);
2521 * Close the low-level part of the STRIP channel. Easy!
2524 static int strip_close_low(struct net_device
*dev
)
2526 struct strip
*strip_info
= (struct strip
*)(dev
->priv
);
2528 if (strip_info
->tty
== NULL
)
2530 strip_info
->tty
->flags
&= ~(1 << TTY_DO_WRITE_WAKEUP
);
2532 netif_stop_queue(dev
);
2535 * Free all STRIP frame buffers.
2537 if (strip_info
->rx_buff
)
2539 kfree(strip_info
->rx_buff
);
2540 strip_info
->rx_buff
= NULL
;
2542 if (strip_info
->sx_buff
)
2544 kfree(strip_info
->sx_buff
);
2545 strip_info
->sx_buff
= NULL
;
2547 if (strip_info
->tx_buff
)
2549 kfree(strip_info
->tx_buff
);
2550 strip_info
->tx_buff
= NULL
;
2552 del_timer(&strip_info
->idle_timer
);
2557 * This routine is called by DDI when the
2558 * (dynamically assigned) device is registered
2561 static int strip_dev_init(struct net_device
*dev
)
2564 * Finish setting up the DEVICE info.
2567 dev
->trans_start
= 0;
2569 dev
->tx_queue_len
= 30; /* Drop after 30 frames queued */
2572 dev
->mtu
= DEFAULT_STRIP_MTU
;
2573 dev
->type
= ARPHRD_METRICOM
; /* dtang */
2574 dev
->hard_header_len
= sizeof(STRIP_Header
);
2576 * dev->priv Already holds a pointer to our struct strip
2579 *(MetricomAddress
*)&dev
->broadcast
= broadcast_address
;
2580 dev
->dev_addr
[0] = 0;
2581 dev
->addr_len
= sizeof(MetricomAddress
);
2584 * Pointers to interface service routines.
2587 dev
->open
= strip_open_low
;
2588 dev
->stop
= strip_close_low
;
2589 dev
->hard_start_xmit
= strip_xmit
;
2590 dev
->hard_header
= strip_header
;
2591 dev
->rebuild_header
= strip_rebuild_header
;
2592 /* dev->type_trans unused */
2593 /* dev->set_multicast_list unused */
2594 dev
->set_mac_address
= dev_set_mac_address
;
2595 /* dev->do_ioctl unused */
2596 /* dev->set_config unused */
2597 dev
->get_stats
= strip_get_stats
;
2602 * Free a STRIP channel.
2605 static void strip_free(struct strip
*strip_info
)
2607 *(strip_info
->referrer
) = strip_info
->next
;
2608 if (strip_info
->next
)
2609 strip_info
->next
->referrer
= strip_info
->referrer
;
2610 strip_info
->magic
= 0;
2615 * Allocate a new free STRIP channel
2618 static struct strip
*strip_alloc(void)
2621 struct strip
**s
= &struct_strip_list
;
2622 struct strip
*strip_info
= (struct strip
*)
2623 kmalloc(sizeof(struct strip
), GFP_KERNEL
);
2626 return(NULL
); /* If no more memory, return */
2629 * Clear the allocated memory
2632 memset(strip_info
, 0, sizeof(struct strip
));
2635 * Search the list to find where to put our new entry
2636 * (and in the process decide what channel number it is
2640 while (*s
&& (*s
)->dev
.base_addr
== channel_id
)
2647 * Fill in the link pointers
2650 strip_info
->next
= *s
;
2652 (*s
)->referrer
= &strip_info
->next
;
2653 strip_info
->referrer
= s
;
2656 strip_info
->magic
= STRIP_MAGIC
;
2657 strip_info
->tty
= NULL
;
2659 strip_info
->gratuitous_arp
= jiffies
+ LongTime
;
2660 strip_info
->arp_interval
= 0;
2661 init_timer(&strip_info
->idle_timer
);
2662 strip_info
->idle_timer
.data
= (long)&strip_info
->dev
;
2663 strip_info
->idle_timer
.function
= strip_IdleTask
;
2665 /* Note: strip_info->if_name is currently 8 characters long */
2666 sprintf(strip_info
->dev
.name
, "st%d", channel_id
);
2667 strip_info
->dev
.base_addr
= channel_id
;
2668 strip_info
->dev
.priv
= (void*)strip_info
;
2669 strip_info
->dev
.next
= NULL
;
2670 strip_info
->dev
.init
= strip_dev_init
;
2676 * Open the high-level part of the STRIP channel.
2677 * This function is called by the TTY module when the
2678 * STRIP line discipline is called for. Because we are
2679 * sure the tty line exists, we only have to link it to
2680 * a free STRIP channel...
2683 static int strip_open(struct tty_struct
*tty
)
2685 struct strip
*strip_info
= (struct strip
*) tty
->disc_data
;
2688 * First make sure we're not already connected.
2691 if (strip_info
&& strip_info
->magic
== STRIP_MAGIC
)
2695 * OK. Find a free STRIP channel to use.
2697 if ((strip_info
= strip_alloc()) == NULL
)
2701 * Register our newly created device so it can be ifconfig'd
2702 * strip_dev_init() will be called as a side-effect
2705 if (register_netdev(&strip_info
->dev
) != 0)
2707 printk(KERN_ERR
"strip: register_netdev() failed.\n");
2708 strip_free(strip_info
);
2712 strip_info
->tty
= tty
;
2713 tty
->disc_data
= strip_info
;
2714 if (tty
->driver
.flush_buffer
)
2715 tty
->driver
.flush_buffer(tty
);
2716 if (tty
->ldisc
.flush_buffer
)
2717 tty
->ldisc
.flush_buffer(tty
);
2720 * Restore default settings
2723 strip_info
->dev
.type
= ARPHRD_METRICOM
; /* dtang */
2729 tty
->termios
->c_iflag
|= IGNBRK
|IGNPAR
;/* Ignore breaks and parity errors. */
2730 tty
->termios
->c_cflag
|= CLOCAL
; /* Ignore modem control signals. */
2731 tty
->termios
->c_cflag
&= ~HUPCL
; /* Don't close on hup */
2737 printk(KERN_INFO
"STRIP: device \"%s\" activated\n", strip_info
->dev
.name
);
2740 * Done. We have linked the TTY line to a channel.
2742 return(strip_info
->dev
.base_addr
);
2746 * Close down a STRIP channel.
2747 * This means flushing out any pending queues, and then restoring the
2748 * TTY line discipline to what it was before it got hooked to STRIP
2749 * (which usually is TTY again).
2752 static void strip_close(struct tty_struct
*tty
)
2754 struct strip
*strip_info
= (struct strip
*) tty
->disc_data
;
2757 * First make sure we're connected.
2760 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
)
2763 dev_close(&strip_info
->dev
);
2764 unregister_netdev(&strip_info
->dev
);
2767 strip_info
->tty
= NULL
;
2768 printk(KERN_INFO
"STRIP: device \"%s\" closed down\n", strip_info
->dev
.name
);
2769 strip_free(strip_info
);
2770 tty
->disc_data
= NULL
;
2777 /************************************************************************/
2778 /* Perform I/O control calls on an active STRIP channel. */
2780 static int strip_ioctl(struct tty_struct
*tty
, struct file
*file
,
2781 unsigned int cmd
, unsigned long arg
)
2783 struct strip
*strip_info
= (struct strip
*) tty
->disc_data
;
2786 * First make sure we're connected.
2789 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
)
2795 return copy_to_user((void*)arg
, strip_info
->dev
.name
,
2796 strlen(strip_info
->dev
.name
) + 1) ?
2801 MetricomAddress addr
;
2802 printk(KERN_INFO
"%s: SIOCSIFHWADDR\n", strip_info
->dev
.name
);
2803 return copy_from_user(&addr
, (void*)arg
, sizeof(MetricomAddress
)) ?
2804 -EFAULT
: set_mac_address(strip_info
, &addr
);
2808 * Allow stty to read, but not set, the serial port
2813 return n_tty_ioctl(tty
, (struct file
*) file
, cmd
,
2814 (unsigned long) arg
);
2817 return -ENOIOCTLCMD
;
2823 /************************************************************************/
2824 /* Initialization */
2827 * Initialize the STRIP driver.
2828 * This routine is called at boot time, to bootstrap the multi-channel
2832 int strip_init_ctrl_dev(struct net_device
*dummy
)
2834 static struct tty_ldisc strip_ldisc
;
2837 printk(KERN_INFO
"STRIP: Version %s (unlimited channels)\n", StripVersion
);
2840 * Fill in our line protocol discipline, and register it
2843 memset(&strip_ldisc
, 0, sizeof(strip_ldisc
));
2844 strip_ldisc
.magic
= TTY_LDISC_MAGIC
;
2845 strip_ldisc
.flags
= 0;
2846 strip_ldisc
.open
= strip_open
;
2847 strip_ldisc
.close
= strip_close
;
2848 strip_ldisc
.read
= NULL
;
2849 strip_ldisc
.write
= NULL
;
2850 strip_ldisc
.ioctl
= strip_ioctl
;
2851 strip_ldisc
.poll
= NULL
;
2852 strip_ldisc
.receive_buf
= strip_receive_buf
;
2853 strip_ldisc
.receive_room
= strip_receive_room
;
2854 strip_ldisc
.write_wakeup
= strip_write_some_more
;
2855 status
= tty_register_ldisc(N_STRIP
, &strip_ldisc
);
2858 printk(KERN_ERR
"STRIP: can't register line discipline (err = %d)\n", status
);
2862 * Register the status file with /proc
2864 proc_net_create ("strip", S_IFREG
| S_IRUGO
, get_status_info
);
2870 /* Return "not found", so that dev_init() will unlink
2871 * the placeholder device entry for us.
2878 /************************************************************************/
2879 /* From here down is only used when compiled as an external module */
2883 int init_module(void)
2885 return strip_init_ctrl_dev(0);
2888 void cleanup_module(void)
2891 while (struct_strip_list
)
2892 strip_free(struct_strip_list
);
2894 /* Unregister with the /proc/net file here. */
2895 proc_net_remove ("strip");
2897 if ((i
= tty_register_ldisc(N_STRIP
, NULL
)))
2898 printk(KERN_ERR
"STRIP: can't unregister line discipline (err = %d)\n", i
);
2900 printk(KERN_INFO
"STRIP: Module Unloaded\n");